linux/drivers/s390/crypto/zcrypt_msgtype50.c
<<
>>
Prefs
   1/*
   2 *  zcrypt 2.1.0
   3 *
   4 *  Copyright IBM Corp. 2001, 2012
   5 *  Author(s): Robert Burroughs
   6 *             Eric Rossman (edrossma@us.ibm.com)
   7 *
   8 *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
   9 *  Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com>
  10 *                                Ralph Wuerthner <rwuerthn@de.ibm.com>
  11 *  MSGTYPE restruct:             Holger Dengler <hd@linux.vnet.ibm.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2, or (at your option)
  16 * any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 */
  27
  28#define KMSG_COMPONENT "zcrypt"
  29#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/err.h>
  35#include <linux/atomic.h>
  36#include <linux/uaccess.h>
  37
  38#include "ap_bus.h"
  39#include "zcrypt_api.h"
  40#include "zcrypt_error.h"
  41#include "zcrypt_msgtype50.h"
  42
  43#define CEX3A_MAX_MOD_SIZE      512     /* 4096 bits    */
  44
  45#define CEX2A_MAX_RESPONSE_SIZE 0x110   /* max outputdatalength + type80_hdr */
  46
  47#define CEX3A_MAX_RESPONSE_SIZE 0x210   /* 512 bit modulus
  48                                         * (max outputdatalength) +
  49                                         * type80_hdr*/
  50
  51MODULE_AUTHOR("IBM Corporation");
  52MODULE_DESCRIPTION("Cryptographic Accelerator (message type 50), " \
  53                   "Copyright IBM Corp. 2001, 2012");
  54MODULE_LICENSE("GPL");
  55
  56static void zcrypt_cex2a_receive(struct ap_device *, struct ap_message *,
  57                                 struct ap_message *);
  58
  59/**
  60 * The type 50 message family is associated with a CEX2A card.
  61 *
  62 * The four members of the family are described below.
  63 *
  64 * Note that all unsigned char arrays are right-justified and left-padded
  65 * with zeroes.
  66 *
  67 * Note that all reserved fields must be zeroes.
  68 */
  69struct type50_hdr {
  70        unsigned char   reserved1;
  71        unsigned char   msg_type_code;  /* 0x50 */
  72        unsigned short  msg_len;
  73        unsigned char   reserved2;
  74        unsigned char   ignored;
  75        unsigned short  reserved3;
  76} __packed;
  77
  78#define TYPE50_TYPE_CODE        0x50
  79
  80#define TYPE50_MEB1_FMT         0x0001
  81#define TYPE50_MEB2_FMT         0x0002
  82#define TYPE50_MEB3_FMT         0x0003
  83#define TYPE50_CRB1_FMT         0x0011
  84#define TYPE50_CRB2_FMT         0x0012
  85#define TYPE50_CRB3_FMT         0x0013
  86
  87/* Mod-Exp, with a small modulus */
  88struct type50_meb1_msg {
  89        struct type50_hdr header;
  90        unsigned short  keyblock_type;  /* 0x0001 */
  91        unsigned char   reserved[6];
  92        unsigned char   exponent[128];
  93        unsigned char   modulus[128];
  94        unsigned char   message[128];
  95} __packed;
  96
  97/* Mod-Exp, with a large modulus */
  98struct type50_meb2_msg {
  99        struct type50_hdr header;
 100        unsigned short  keyblock_type;  /* 0x0002 */
 101        unsigned char   reserved[6];
 102        unsigned char   exponent[256];
 103        unsigned char   modulus[256];
 104        unsigned char   message[256];
 105} __packed;
 106
 107/* Mod-Exp, with a larger modulus */
 108struct type50_meb3_msg {
 109        struct type50_hdr header;
 110        unsigned short  keyblock_type;  /* 0x0003 */
 111        unsigned char   reserved[6];
 112        unsigned char   exponent[512];
 113        unsigned char   modulus[512];
 114        unsigned char   message[512];
 115} __packed;
 116
 117/* CRT, with a small modulus */
 118struct type50_crb1_msg {
 119        struct type50_hdr header;
 120        unsigned short  keyblock_type;  /* 0x0011 */
 121        unsigned char   reserved[6];
 122        unsigned char   p[64];
 123        unsigned char   q[64];
 124        unsigned char   dp[64];
 125        unsigned char   dq[64];
 126        unsigned char   u[64];
 127        unsigned char   message[128];
 128} __packed;
 129
 130/* CRT, with a large modulus */
 131struct type50_crb2_msg {
 132        struct type50_hdr header;
 133        unsigned short  keyblock_type;  /* 0x0012 */
 134        unsigned char   reserved[6];
 135        unsigned char   p[128];
 136        unsigned char   q[128];
 137        unsigned char   dp[128];
 138        unsigned char   dq[128];
 139        unsigned char   u[128];
 140        unsigned char   message[256];
 141} __packed;
 142
 143/* CRT, with a larger modulus */
 144struct type50_crb3_msg {
 145        struct type50_hdr header;
 146        unsigned short  keyblock_type;  /* 0x0013 */
 147        unsigned char   reserved[6];
 148        unsigned char   p[256];
 149        unsigned char   q[256];
 150        unsigned char   dp[256];
 151        unsigned char   dq[256];
 152        unsigned char   u[256];
 153        unsigned char   message[512];
 154} __packed;
 155
 156/**
 157 * The type 80 response family is associated with a CEX2A card.
 158 *
 159 * Note that all unsigned char arrays are right-justified and left-padded
 160 * with zeroes.
 161 *
 162 * Note that all reserved fields must be zeroes.
 163 */
 164
 165#define TYPE80_RSP_CODE 0x80
 166
 167struct type80_hdr {
 168        unsigned char   reserved1;
 169        unsigned char   type;           /* 0x80 */
 170        unsigned short  len;
 171        unsigned char   code;           /* 0x00 */
 172        unsigned char   reserved2[3];
 173        unsigned char   reserved3[8];
 174} __packed;
 175
 176/**
 177 * Convert a ICAMEX message to a type50 MEX message.
 178 *
 179 * @zdev: crypto device pointer
 180 * @zreq: crypto request pointer
 181 * @mex: pointer to user input data
 182 *
 183 * Returns 0 on success or -EFAULT.
 184 */
 185static int ICAMEX_msg_to_type50MEX_msg(struct zcrypt_device *zdev,
 186                                       struct ap_message *ap_msg,
 187                                       struct ica_rsa_modexpo *mex)
 188{
 189        unsigned char *mod, *exp, *inp;
 190        int mod_len;
 191
 192        mod_len = mex->inputdatalength;
 193
 194        if (mod_len <= 128) {
 195                struct type50_meb1_msg *meb1 = ap_msg->message;
 196                memset(meb1, 0, sizeof(*meb1));
 197                ap_msg->length = sizeof(*meb1);
 198                meb1->header.msg_type_code = TYPE50_TYPE_CODE;
 199                meb1->header.msg_len = sizeof(*meb1);
 200                meb1->keyblock_type = TYPE50_MEB1_FMT;
 201                mod = meb1->modulus + sizeof(meb1->modulus) - mod_len;
 202                exp = meb1->exponent + sizeof(meb1->exponent) - mod_len;
 203                inp = meb1->message + sizeof(meb1->message) - mod_len;
 204        } else if (mod_len <= 256) {
 205                struct type50_meb2_msg *meb2 = ap_msg->message;
 206                memset(meb2, 0, sizeof(*meb2));
 207                ap_msg->length = sizeof(*meb2);
 208                meb2->header.msg_type_code = TYPE50_TYPE_CODE;
 209                meb2->header.msg_len = sizeof(*meb2);
 210                meb2->keyblock_type = TYPE50_MEB2_FMT;
 211                mod = meb2->modulus + sizeof(meb2->modulus) - mod_len;
 212                exp = meb2->exponent + sizeof(meb2->exponent) - mod_len;
 213                inp = meb2->message + sizeof(meb2->message) - mod_len;
 214        } else {
 215                /* mod_len > 256 = 4096 bit RSA Key */
 216                struct type50_meb3_msg *meb3 = ap_msg->message;
 217                memset(meb3, 0, sizeof(*meb3));
 218                ap_msg->length = sizeof(*meb3);
 219                meb3->header.msg_type_code = TYPE50_TYPE_CODE;
 220                meb3->header.msg_len = sizeof(*meb3);
 221                meb3->keyblock_type = TYPE50_MEB3_FMT;
 222                mod = meb3->modulus + sizeof(meb3->modulus) - mod_len;
 223                exp = meb3->exponent + sizeof(meb3->exponent) - mod_len;
 224                inp = meb3->message + sizeof(meb3->message) - mod_len;
 225        }
 226
 227        if (copy_from_user(mod, mex->n_modulus, mod_len) ||
 228            copy_from_user(exp, mex->b_key, mod_len) ||
 229            copy_from_user(inp, mex->inputdata, mod_len))
 230                return -EFAULT;
 231        return 0;
 232}
 233
 234/**
 235 * Convert a ICACRT message to a type50 CRT message.
 236 *
 237 * @zdev: crypto device pointer
 238 * @zreq: crypto request pointer
 239 * @crt: pointer to user input data
 240 *
 241 * Returns 0 on success or -EFAULT.
 242 */
 243static int ICACRT_msg_to_type50CRT_msg(struct zcrypt_device *zdev,
 244                                       struct ap_message *ap_msg,
 245                                       struct ica_rsa_modexpo_crt *crt)
 246{
 247        int mod_len, short_len;
 248        unsigned char *p, *q, *dp, *dq, *u, *inp;
 249
 250        mod_len = crt->inputdatalength;
 251        short_len = (mod_len + 1) / 2;
 252
 253        /*
 254         * CEX2A and CEX3A w/o FW update can handle requests up to
 255         * 256 byte modulus (2k keys).
 256         * CEX3A with FW update and CEX4A cards are able to handle
 257         * 512 byte modulus (4k keys).
 258         */
 259        if (mod_len <= 128) {           /* up to 1024 bit key size */
 260                struct type50_crb1_msg *crb1 = ap_msg->message;
 261                memset(crb1, 0, sizeof(*crb1));
 262                ap_msg->length = sizeof(*crb1);
 263                crb1->header.msg_type_code = TYPE50_TYPE_CODE;
 264                crb1->header.msg_len = sizeof(*crb1);
 265                crb1->keyblock_type = TYPE50_CRB1_FMT;
 266                p = crb1->p + sizeof(crb1->p) - short_len;
 267                q = crb1->q + sizeof(crb1->q) - short_len;
 268                dp = crb1->dp + sizeof(crb1->dp) - short_len;
 269                dq = crb1->dq + sizeof(crb1->dq) - short_len;
 270                u = crb1->u + sizeof(crb1->u) - short_len;
 271                inp = crb1->message + sizeof(crb1->message) - mod_len;
 272        } else if (mod_len <= 256) {    /* up to 2048 bit key size */
 273                struct type50_crb2_msg *crb2 = ap_msg->message;
 274                memset(crb2, 0, sizeof(*crb2));
 275                ap_msg->length = sizeof(*crb2);
 276                crb2->header.msg_type_code = TYPE50_TYPE_CODE;
 277                crb2->header.msg_len = sizeof(*crb2);
 278                crb2->keyblock_type = TYPE50_CRB2_FMT;
 279                p = crb2->p + sizeof(crb2->p) - short_len;
 280                q = crb2->q + sizeof(crb2->q) - short_len;
 281                dp = crb2->dp + sizeof(crb2->dp) - short_len;
 282                dq = crb2->dq + sizeof(crb2->dq) - short_len;
 283                u = crb2->u + sizeof(crb2->u) - short_len;
 284                inp = crb2->message + sizeof(crb2->message) - mod_len;
 285        } else if ((mod_len <= 512) &&  /* up to 4096 bit key size */
 286                   (zdev->max_mod_size == CEX3A_MAX_MOD_SIZE)) { /* >= CEX3A */
 287                struct type50_crb3_msg *crb3 = ap_msg->message;
 288                memset(crb3, 0, sizeof(*crb3));
 289                ap_msg->length = sizeof(*crb3);
 290                crb3->header.msg_type_code = TYPE50_TYPE_CODE;
 291                crb3->header.msg_len = sizeof(*crb3);
 292                crb3->keyblock_type = TYPE50_CRB3_FMT;
 293                p = crb3->p + sizeof(crb3->p) - short_len;
 294                q = crb3->q + sizeof(crb3->q) - short_len;
 295                dp = crb3->dp + sizeof(crb3->dp) - short_len;
 296                dq = crb3->dq + sizeof(crb3->dq) - short_len;
 297                u = crb3->u + sizeof(crb3->u) - short_len;
 298                inp = crb3->message + sizeof(crb3->message) - mod_len;
 299        } else
 300                return -EINVAL;
 301
 302        /*
 303         * correct the offset of p, bp and mult_inv according zcrypt.h
 304         * block size right aligned (skip the first byte)
 305         */
 306        if (copy_from_user(p, crt->np_prime + MSGTYPE_ADJUSTMENT, short_len) ||
 307            copy_from_user(q, crt->nq_prime, short_len) ||
 308            copy_from_user(dp, crt->bp_key + MSGTYPE_ADJUSTMENT, short_len) ||
 309            copy_from_user(dq, crt->bq_key, short_len) ||
 310            copy_from_user(u, crt->u_mult_inv + MSGTYPE_ADJUSTMENT, short_len) ||
 311            copy_from_user(inp, crt->inputdata, mod_len))
 312                return -EFAULT;
 313
 314        return 0;
 315}
 316
 317/**
 318 * Copy results from a type 80 reply message back to user space.
 319 *
 320 * @zdev: crypto device pointer
 321 * @reply: reply AP message.
 322 * @data: pointer to user output data
 323 * @length: size of user output data
 324 *
 325 * Returns 0 on success or -EFAULT.
 326 */
 327static int convert_type80(struct zcrypt_device *zdev,
 328                          struct ap_message *reply,
 329                          char __user *outputdata,
 330                          unsigned int outputdatalength)
 331{
 332        struct type80_hdr *t80h = reply->message;
 333        unsigned char *data;
 334
 335        if (t80h->len < sizeof(*t80h) + outputdatalength) {
 336                /* The result is too short, the CEX2A card may not do that.. */
 337                zdev->online = 0;
 338                pr_err("Cryptographic device %x failed and was set offline\n",
 339                       AP_QID_DEVICE(zdev->ap_dev->qid));
 340                ZCRYPT_DBF_DEV(DBF_ERR, zdev, "dev%04xo%drc%d",
 341                               AP_QID_DEVICE(zdev->ap_dev->qid),
 342                               zdev->online, t80h->code);
 343
 344                return -EAGAIN; /* repeat the request on a different device. */
 345        }
 346        if (zdev->user_space_type == ZCRYPT_CEX2A)
 347                BUG_ON(t80h->len > CEX2A_MAX_RESPONSE_SIZE);
 348        else
 349                BUG_ON(t80h->len > CEX3A_MAX_RESPONSE_SIZE);
 350        data = reply->message + t80h->len - outputdatalength;
 351        if (copy_to_user(outputdata, data, outputdatalength))
 352                return -EFAULT;
 353        return 0;
 354}
 355
 356static int convert_response(struct zcrypt_device *zdev,
 357                            struct ap_message *reply,
 358                            char __user *outputdata,
 359                            unsigned int outputdatalength)
 360{
 361        /* Response type byte is the second byte in the response. */
 362        switch (((unsigned char *) reply->message)[1]) {
 363        case TYPE82_RSP_CODE:
 364        case TYPE88_RSP_CODE:
 365                return convert_error(zdev, reply);
 366        case TYPE80_RSP_CODE:
 367                return convert_type80(zdev, reply,
 368                                      outputdata, outputdatalength);
 369        default: /* Unknown response type, this should NEVER EVER happen */
 370                zdev->online = 0;
 371                pr_err("Cryptographic device %x failed and was set offline\n",
 372                       AP_QID_DEVICE(zdev->ap_dev->qid));
 373                ZCRYPT_DBF_DEV(DBF_ERR, zdev, "dev%04xo%dfail",
 374                               AP_QID_DEVICE(zdev->ap_dev->qid), zdev->online);
 375                return -EAGAIN; /* repeat the request on a different device. */
 376        }
 377}
 378
 379/**
 380 * This function is called from the AP bus code after a crypto request
 381 * "msg" has finished with the reply message "reply".
 382 * It is called from tasklet context.
 383 * @ap_dev: pointer to the AP device
 384 * @msg: pointer to the AP message
 385 * @reply: pointer to the AP reply message
 386 */
 387static void zcrypt_cex2a_receive(struct ap_device *ap_dev,
 388                                 struct ap_message *msg,
 389                                 struct ap_message *reply)
 390{
 391        static struct error_hdr error_reply = {
 392                .type = TYPE82_RSP_CODE,
 393                .reply_code = REP82_ERROR_MACHINE_FAILURE,
 394        };
 395        struct type80_hdr *t80h;
 396        int length;
 397
 398        /* Copy the reply message to the request message buffer. */
 399        if (!reply)
 400                goto out;       /* ap_msg->rc indicates the error */
 401        t80h = reply->message;
 402        if (t80h->type == TYPE80_RSP_CODE) {
 403                if (ap_dev->device_type == AP_DEVICE_TYPE_CEX2A)
 404                        length = min_t(int,
 405                                       CEX2A_MAX_RESPONSE_SIZE, t80h->len);
 406                else
 407                        length = min_t(int,
 408                                       CEX3A_MAX_RESPONSE_SIZE, t80h->len);
 409                memcpy(msg->message, reply->message, length);
 410        } else
 411                memcpy(msg->message, reply->message, sizeof(error_reply));
 412out:
 413        complete((struct completion *) msg->private);
 414}
 415
 416static atomic_t zcrypt_step = ATOMIC_INIT(0);
 417
 418/**
 419 * The request distributor calls this function if it picked the CEX2A
 420 * device to handle a modexpo request.
 421 * @zdev: pointer to zcrypt_device structure that identifies the
 422 *        CEX2A device to the request distributor
 423 * @mex: pointer to the modexpo request buffer
 424 */
 425static long zcrypt_cex2a_modexpo(struct zcrypt_device *zdev,
 426                                 struct ica_rsa_modexpo *mex)
 427{
 428        struct ap_message ap_msg;
 429        struct completion work;
 430        int rc;
 431
 432        ap_init_message(&ap_msg);
 433        if (zdev->user_space_type == ZCRYPT_CEX2A)
 434                ap_msg.message = kmalloc(MSGTYPE50_CRB2_MAX_MSG_SIZE,
 435                                         GFP_KERNEL);
 436        else
 437                ap_msg.message = kmalloc(MSGTYPE50_CRB3_MAX_MSG_SIZE,
 438                                         GFP_KERNEL);
 439        if (!ap_msg.message)
 440                return -ENOMEM;
 441        ap_msg.receive = zcrypt_cex2a_receive;
 442        ap_msg.psmid = (((unsigned long long) current->pid) << 32) +
 443                                atomic_inc_return(&zcrypt_step);
 444        ap_msg.private = &work;
 445        rc = ICAMEX_msg_to_type50MEX_msg(zdev, &ap_msg, mex);
 446        if (rc)
 447                goto out_free;
 448        init_completion(&work);
 449        ap_queue_message(zdev->ap_dev, &ap_msg);
 450        rc = wait_for_completion_interruptible(&work);
 451        if (rc == 0) {
 452                rc = ap_msg.rc;
 453                if (rc == 0)
 454                        rc = convert_response(zdev, &ap_msg, mex->outputdata,
 455                                              mex->outputdatalength);
 456        } else
 457                /* Signal pending. */
 458                ap_cancel_message(zdev->ap_dev, &ap_msg);
 459out_free:
 460        kfree(ap_msg.message);
 461        return rc;
 462}
 463
 464/**
 465 * The request distributor calls this function if it picked the CEX2A
 466 * device to handle a modexpo_crt request.
 467 * @zdev: pointer to zcrypt_device structure that identifies the
 468 *        CEX2A device to the request distributor
 469 * @crt: pointer to the modexpoc_crt request buffer
 470 */
 471static long zcrypt_cex2a_modexpo_crt(struct zcrypt_device *zdev,
 472                                     struct ica_rsa_modexpo_crt *crt)
 473{
 474        struct ap_message ap_msg;
 475        struct completion work;
 476        int rc;
 477
 478        ap_init_message(&ap_msg);
 479        if (zdev->user_space_type == ZCRYPT_CEX2A)
 480                ap_msg.message = kmalloc(MSGTYPE50_CRB2_MAX_MSG_SIZE,
 481                                         GFP_KERNEL);
 482        else
 483                ap_msg.message = kmalloc(MSGTYPE50_CRB3_MAX_MSG_SIZE,
 484                                         GFP_KERNEL);
 485        if (!ap_msg.message)
 486                return -ENOMEM;
 487        ap_msg.receive = zcrypt_cex2a_receive;
 488        ap_msg.psmid = (((unsigned long long) current->pid) << 32) +
 489                                atomic_inc_return(&zcrypt_step);
 490        ap_msg.private = &work;
 491        rc = ICACRT_msg_to_type50CRT_msg(zdev, &ap_msg, crt);
 492        if (rc)
 493                goto out_free;
 494        init_completion(&work);
 495        ap_queue_message(zdev->ap_dev, &ap_msg);
 496        rc = wait_for_completion_interruptible(&work);
 497        if (rc == 0) {
 498                rc = ap_msg.rc;
 499                if (rc == 0)
 500                        rc = convert_response(zdev, &ap_msg, crt->outputdata,
 501                                              crt->outputdatalength);
 502        } else
 503                /* Signal pending. */
 504                ap_cancel_message(zdev->ap_dev, &ap_msg);
 505out_free:
 506        kfree(ap_msg.message);
 507        return rc;
 508}
 509
 510/**
 511 * The crypto operations for message type 50.
 512 */
 513static struct zcrypt_ops zcrypt_msgtype50_ops = {
 514        .rsa_modexpo = zcrypt_cex2a_modexpo,
 515        .rsa_modexpo_crt = zcrypt_cex2a_modexpo_crt,
 516        .owner = THIS_MODULE,
 517        .name = MSGTYPE50_NAME,
 518        .variant = MSGTYPE50_VARIANT_DEFAULT,
 519};
 520
 521int __init zcrypt_msgtype50_init(void)
 522{
 523        zcrypt_msgtype_register(&zcrypt_msgtype50_ops);
 524        return 0;
 525}
 526
 527void __exit zcrypt_msgtype50_exit(void)
 528{
 529        zcrypt_msgtype_unregister(&zcrypt_msgtype50_ops);
 530}
 531
 532module_init(zcrypt_msgtype50_init);
 533module_exit(zcrypt_msgtype50_exit);
 534