linux/drivers/scsi/csiostor/csio_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/pci.h>
  36#include <linux/pci_regs.h>
  37#include <linux/firmware.h>
  38#include <linux/stddef.h>
  39#include <linux/delay.h>
  40#include <linux/string.h>
  41#include <linux/compiler.h>
  42#include <linux/jiffies.h>
  43#include <linux/kernel.h>
  44#include <linux/log2.h>
  45
  46#include "csio_hw.h"
  47#include "csio_lnode.h"
  48#include "csio_rnode.h"
  49
  50int csio_dbg_level = 0xFEFF;
  51unsigned int csio_port_mask = 0xf;
  52
  53/* Default FW event queue entries. */
  54static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
  55
  56/* Default MSI param level */
  57int csio_msi = 2;
  58
  59/* FCoE function instances */
  60static int dev_num;
  61
  62/* FCoE Adapter types & its description */
  63static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
  64        {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
  65        {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
  66        {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
  67        {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
  68        {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
  69        {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
  70        {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
  71        {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
  72        {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
  73        {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
  74        {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
  75        {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
  76        {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
  77        {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
  78        {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
  79        {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
  80        {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
  81        {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
  82        {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
  83        {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
  84        {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
  85        {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
  86};
  87
  88static void csio_mgmtm_cleanup(struct csio_mgmtm *);
  89static void csio_hw_mbm_cleanup(struct csio_hw *);
  90
  91/* State machine forward declarations */
  92static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
  93static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
  94static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
  95static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
  96static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
  97static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
  98static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
  99static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
 100static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
 101
 102static void csio_hw_initialize(struct csio_hw *hw);
 103static void csio_evtq_stop(struct csio_hw *hw);
 104static void csio_evtq_start(struct csio_hw *hw);
 105
 106int csio_is_hw_ready(struct csio_hw *hw)
 107{
 108        return csio_match_state(hw, csio_hws_ready);
 109}
 110
 111int csio_is_hw_removing(struct csio_hw *hw)
 112{
 113        return csio_match_state(hw, csio_hws_removing);
 114}
 115
 116
 117/*
 118 *      csio_hw_wait_op_done_val - wait until an operation is completed
 119 *      @hw: the HW module
 120 *      @reg: the register to check for completion
 121 *      @mask: a single-bit field within @reg that indicates completion
 122 *      @polarity: the value of the field when the operation is completed
 123 *      @attempts: number of check iterations
 124 *      @delay: delay in usecs between iterations
 125 *      @valp: where to store the value of the register at completion time
 126 *
 127 *      Wait until an operation is completed by checking a bit in a register
 128 *      up to @attempts times.  If @valp is not NULL the value of the register
 129 *      at the time it indicated completion is stored there.  Returns 0 if the
 130 *      operation completes and -EAGAIN otherwise.
 131 */
 132int
 133csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
 134                         int polarity, int attempts, int delay, uint32_t *valp)
 135{
 136        uint32_t val;
 137        while (1) {
 138                val = csio_rd_reg32(hw, reg);
 139
 140                if (!!(val & mask) == polarity) {
 141                        if (valp)
 142                                *valp = val;
 143                        return 0;
 144                }
 145
 146                if (--attempts == 0)
 147                        return -EAGAIN;
 148                if (delay)
 149                        udelay(delay);
 150        }
 151}
 152
 153/*
 154 *      csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 155 *      @hw: the adapter
 156 *      @addr: the indirect TP register address
 157 *      @mask: specifies the field within the register to modify
 158 *      @val: new value for the field
 159 *
 160 *      Sets a field of an indirect TP register to the given value.
 161 */
 162void
 163csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
 164                        unsigned int mask, unsigned int val)
 165{
 166        csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
 167        val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
 168        csio_wr_reg32(hw, val, TP_PIO_DATA_A);
 169}
 170
 171void
 172csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
 173                   uint32_t value)
 174{
 175        uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
 176
 177        csio_wr_reg32(hw, val | value, reg);
 178        /* Flush */
 179        csio_rd_reg32(hw, reg);
 180
 181}
 182
 183static int
 184csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
 185{
 186        return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
 187                                            addr, len, buf, 0);
 188}
 189
 190/*
 191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
 192 */
 193#define EEPROM_MAX_RD_POLL      40
 194#define EEPROM_MAX_WR_POLL      6
 195#define EEPROM_STAT_ADDR        0x7bfc
 196#define VPD_BASE                0x400
 197#define VPD_BASE_OLD            0
 198#define VPD_LEN                 1024
 199#define VPD_INFO_FLD_HDR_SIZE   3
 200
 201/*
 202 *      csio_hw_seeprom_read - read a serial EEPROM location
 203 *      @hw: hw to read
 204 *      @addr: EEPROM virtual address
 205 *      @data: where to store the read data
 206 *
 207 *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
 208 *      VPD capability.  Note that this function must be called with a virtual
 209 *      address.
 210 */
 211static int
 212csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
 213{
 214        uint16_t val = 0;
 215        int attempts = EEPROM_MAX_RD_POLL;
 216        uint32_t base = hw->params.pci.vpd_cap_addr;
 217
 218        if (addr >= EEPROMVSIZE || (addr & 3))
 219                return -EINVAL;
 220
 221        pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
 222
 223        do {
 224                udelay(10);
 225                pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
 226        } while (!(val & PCI_VPD_ADDR_F) && --attempts);
 227
 228        if (!(val & PCI_VPD_ADDR_F)) {
 229                csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
 230                return -EINVAL;
 231        }
 232
 233        pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
 234        *data = le32_to_cpu(*(__le32 *)data);
 235
 236        return 0;
 237}
 238
 239/*
 240 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
 241 * VPD-R sections.
 242 */
 243struct t4_vpd_hdr {
 244        u8  id_tag;
 245        u8  id_len[2];
 246        u8  id_data[ID_LEN];
 247        u8  vpdr_tag;
 248        u8  vpdr_len[2];
 249};
 250
 251/*
 252 *      csio_hw_get_vpd_keyword_val - Locates an information field keyword in
 253 *                                    the VPD
 254 *      @v: Pointer to buffered vpd data structure
 255 *      @kw: The keyword to search for
 256 *
 257 *      Returns the value of the information field keyword or
 258 *      -EINVAL otherwise.
 259 */
 260static int
 261csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
 262{
 263        int32_t i;
 264        int32_t offset , len;
 265        const uint8_t *buf = &v->id_tag;
 266        const uint8_t *vpdr_len = &v->vpdr_tag;
 267        offset = sizeof(struct t4_vpd_hdr);
 268        len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
 269
 270        if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
 271                return -EINVAL;
 272
 273        for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
 274                if (memcmp(buf + i , kw, 2) == 0) {
 275                        i += VPD_INFO_FLD_HDR_SIZE;
 276                        return i;
 277                }
 278
 279                i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
 280        }
 281
 282        return -EINVAL;
 283}
 284
 285static int
 286csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
 287{
 288        *pos = pci_find_capability(pdev, cap);
 289        if (*pos)
 290                return 0;
 291
 292        return -1;
 293}
 294
 295/*
 296 *      csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
 297 *      @hw: HW module
 298 *      @p: where to store the parameters
 299 *
 300 *      Reads card parameters stored in VPD EEPROM.
 301 */
 302static int
 303csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
 304{
 305        int i, ret, ec, sn, addr;
 306        uint8_t *vpd, csum;
 307        const struct t4_vpd_hdr *v;
 308        /* To get around compilation warning from strstrip */
 309        char *s;
 310
 311        if (csio_is_valid_vpd(hw))
 312                return 0;
 313
 314        ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
 315                                  &hw->params.pci.vpd_cap_addr);
 316        if (ret)
 317                return -EINVAL;
 318
 319        vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
 320        if (vpd == NULL)
 321                return -ENOMEM;
 322
 323        /*
 324         * Card information normally starts at VPD_BASE but early cards had
 325         * it at 0.
 326         */
 327        ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
 328        addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
 329
 330        for (i = 0; i < VPD_LEN; i += 4) {
 331                ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
 332                if (ret) {
 333                        kfree(vpd);
 334                        return ret;
 335                }
 336        }
 337
 338        /* Reset the VPD flag! */
 339        hw->flags &= (~CSIO_HWF_VPD_VALID);
 340
 341        v = (const struct t4_vpd_hdr *)vpd;
 342
 343#define FIND_VPD_KW(var, name) do { \
 344        var = csio_hw_get_vpd_keyword_val(v, name); \
 345        if (var < 0) { \
 346                csio_err(hw, "missing VPD keyword " name "\n"); \
 347                kfree(vpd); \
 348                return -EINVAL; \
 349        } \
 350} while (0)
 351
 352        FIND_VPD_KW(i, "RV");
 353        for (csum = 0; i >= 0; i--)
 354                csum += vpd[i];
 355
 356        if (csum) {
 357                csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
 358                kfree(vpd);
 359                return -EINVAL;
 360        }
 361        FIND_VPD_KW(ec, "EC");
 362        FIND_VPD_KW(sn, "SN");
 363#undef FIND_VPD_KW
 364
 365        memcpy(p->id, v->id_data, ID_LEN);
 366        s = strstrip(p->id);
 367        memcpy(p->ec, vpd + ec, EC_LEN);
 368        s = strstrip(p->ec);
 369        i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
 370        memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
 371        s = strstrip(p->sn);
 372
 373        csio_valid_vpd_copied(hw);
 374
 375        kfree(vpd);
 376        return 0;
 377}
 378
 379/*
 380 *      csio_hw_sf1_read - read data from the serial flash
 381 *      @hw: the HW module
 382 *      @byte_cnt: number of bytes to read
 383 *      @cont: whether another operation will be chained
 384 *      @lock: whether to lock SF for PL access only
 385 *      @valp: where to store the read data
 386 *
 387 *      Reads up to 4 bytes of data from the serial flash.  The location of
 388 *      the read needs to be specified prior to calling this by issuing the
 389 *      appropriate commands to the serial flash.
 390 */
 391static int
 392csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
 393                 int32_t lock, uint32_t *valp)
 394{
 395        int ret;
 396
 397        if (!byte_cnt || byte_cnt > 4)
 398                return -EINVAL;
 399        if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
 400                return -EBUSY;
 401
 402        csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
 403                      BYTECNT_V(byte_cnt - 1), SF_OP_A);
 404        ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
 405                                       10, NULL);
 406        if (!ret)
 407                *valp = csio_rd_reg32(hw, SF_DATA_A);
 408        return ret;
 409}
 410
 411/*
 412 *      csio_hw_sf1_write - write data to the serial flash
 413 *      @hw: the HW module
 414 *      @byte_cnt: number of bytes to write
 415 *      @cont: whether another operation will be chained
 416 *      @lock: whether to lock SF for PL access only
 417 *      @val: value to write
 418 *
 419 *      Writes up to 4 bytes of data to the serial flash.  The location of
 420 *      the write needs to be specified prior to calling this by issuing the
 421 *      appropriate commands to the serial flash.
 422 */
 423static int
 424csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
 425                  int32_t lock, uint32_t val)
 426{
 427        if (!byte_cnt || byte_cnt > 4)
 428                return -EINVAL;
 429        if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
 430                return -EBUSY;
 431
 432        csio_wr_reg32(hw, val, SF_DATA_A);
 433        csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
 434                      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
 435
 436        return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
 437                                        10, NULL);
 438}
 439
 440/*
 441 *      csio_hw_flash_wait_op - wait for a flash operation to complete
 442 *      @hw: the HW module
 443 *      @attempts: max number of polls of the status register
 444 *      @delay: delay between polls in ms
 445 *
 446 *      Wait for a flash operation to complete by polling the status register.
 447 */
 448static int
 449csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
 450{
 451        int ret;
 452        uint32_t status;
 453
 454        while (1) {
 455                ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
 456                if (ret != 0)
 457                        return ret;
 458
 459                ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
 460                if (ret != 0)
 461                        return ret;
 462
 463                if (!(status & 1))
 464                        return 0;
 465                if (--attempts == 0)
 466                        return -EAGAIN;
 467                if (delay)
 468                        msleep(delay);
 469        }
 470}
 471
 472/*
 473 *      csio_hw_read_flash - read words from serial flash
 474 *      @hw: the HW module
 475 *      @addr: the start address for the read
 476 *      @nwords: how many 32-bit words to read
 477 *      @data: where to store the read data
 478 *      @byte_oriented: whether to store data as bytes or as words
 479 *
 480 *      Read the specified number of 32-bit words from the serial flash.
 481 *      If @byte_oriented is set the read data is stored as a byte array
 482 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
 483 *      natural endianess.
 484 */
 485static int
 486csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
 487                  uint32_t *data, int32_t byte_oriented)
 488{
 489        int ret;
 490
 491        if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
 492                return -EINVAL;
 493
 494        addr = swab32(addr) | SF_RD_DATA_FAST;
 495
 496        ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
 497        if (ret != 0)
 498                return ret;
 499
 500        ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
 501        if (ret != 0)
 502                return ret;
 503
 504        for ( ; nwords; nwords--, data++) {
 505                ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
 506                if (nwords == 1)
 507                        csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
 508                if (ret)
 509                        return ret;
 510                if (byte_oriented)
 511                        *data = (__force __u32) htonl(*data);
 512        }
 513        return 0;
 514}
 515
 516/*
 517 *      csio_hw_write_flash - write up to a page of data to the serial flash
 518 *      @hw: the hw
 519 *      @addr: the start address to write
 520 *      @n: length of data to write in bytes
 521 *      @data: the data to write
 522 *
 523 *      Writes up to a page of data (256 bytes) to the serial flash starting
 524 *      at the given address.  All the data must be written to the same page.
 525 */
 526static int
 527csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
 528                    uint32_t n, const uint8_t *data)
 529{
 530        int ret = -EINVAL;
 531        uint32_t buf[64];
 532        uint32_t i, c, left, val, offset = addr & 0xff;
 533
 534        if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
 535                return -EINVAL;
 536
 537        val = swab32(addr) | SF_PROG_PAGE;
 538
 539        ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
 540        if (ret != 0)
 541                goto unlock;
 542
 543        ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
 544        if (ret != 0)
 545                goto unlock;
 546
 547        for (left = n; left; left -= c) {
 548                c = min(left, 4U);
 549                for (val = 0, i = 0; i < c; ++i)
 550                        val = (val << 8) + *data++;
 551
 552                ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
 553                if (ret)
 554                        goto unlock;
 555        }
 556        ret = csio_hw_flash_wait_op(hw, 8, 1);
 557        if (ret)
 558                goto unlock;
 559
 560        csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
 561
 562        /* Read the page to verify the write succeeded */
 563        ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
 564        if (ret)
 565                return ret;
 566
 567        if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
 568                csio_err(hw,
 569                         "failed to correctly write the flash page at %#x\n",
 570                         addr);
 571                return -EINVAL;
 572        }
 573
 574        return 0;
 575
 576unlock:
 577        csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
 578        return ret;
 579}
 580
 581/*
 582 *      csio_hw_flash_erase_sectors - erase a range of flash sectors
 583 *      @hw: the HW module
 584 *      @start: the first sector to erase
 585 *      @end: the last sector to erase
 586 *
 587 *      Erases the sectors in the given inclusive range.
 588 */
 589static int
 590csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
 591{
 592        int ret = 0;
 593
 594        while (start <= end) {
 595
 596                ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
 597                if (ret != 0)
 598                        goto out;
 599
 600                ret = csio_hw_sf1_write(hw, 4, 0, 1,
 601                                        SF_ERASE_SECTOR | (start << 8));
 602                if (ret != 0)
 603                        goto out;
 604
 605                ret = csio_hw_flash_wait_op(hw, 14, 500);
 606                if (ret != 0)
 607                        goto out;
 608
 609                start++;
 610        }
 611out:
 612        if (ret)
 613                csio_err(hw, "erase of flash sector %d failed, error %d\n",
 614                         start, ret);
 615        csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
 616        return 0;
 617}
 618
 619static void
 620csio_hw_print_fw_version(struct csio_hw *hw, char *str)
 621{
 622        csio_info(hw, "%s: %u.%u.%u.%u\n", str,
 623                    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
 624                    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
 625                    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
 626                    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
 627}
 628
 629/*
 630 * csio_hw_get_fw_version - read the firmware version
 631 * @hw: HW module
 632 * @vers: where to place the version
 633 *
 634 * Reads the FW version from flash.
 635 */
 636static int
 637csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
 638{
 639        return csio_hw_read_flash(hw, FLASH_FW_START +
 640                                  offsetof(struct fw_hdr, fw_ver), 1,
 641                                  vers, 0);
 642}
 643
 644/*
 645 *      csio_hw_get_tp_version - read the TP microcode version
 646 *      @hw: HW module
 647 *      @vers: where to place the version
 648 *
 649 *      Reads the TP microcode version from flash.
 650 */
 651static int
 652csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
 653{
 654        return csio_hw_read_flash(hw, FLASH_FW_START +
 655                        offsetof(struct fw_hdr, tp_microcode_ver), 1,
 656                        vers, 0);
 657}
 658
 659/*
 660 * csio_hw_fw_dload - download firmware.
 661 * @hw: HW module
 662 * @fw_data: firmware image to write.
 663 * @size: image size
 664 *
 665 * Write the supplied firmware image to the card's serial flash.
 666 */
 667static int
 668csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
 669{
 670        uint32_t csum;
 671        int32_t addr;
 672        int ret;
 673        uint32_t i;
 674        uint8_t first_page[SF_PAGE_SIZE];
 675        const __be32 *p = (const __be32 *)fw_data;
 676        struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
 677        uint32_t sf_sec_size;
 678
 679        if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
 680                csio_err(hw, "Serial Flash data invalid\n");
 681                return -EINVAL;
 682        }
 683
 684        if (!size) {
 685                csio_err(hw, "FW image has no data\n");
 686                return -EINVAL;
 687        }
 688
 689        if (size & 511) {
 690                csio_err(hw, "FW image size not multiple of 512 bytes\n");
 691                return -EINVAL;
 692        }
 693
 694        if (ntohs(hdr->len512) * 512 != size) {
 695                csio_err(hw, "FW image size differs from size in FW header\n");
 696                return -EINVAL;
 697        }
 698
 699        if (size > FLASH_FW_MAX_SIZE) {
 700                csio_err(hw, "FW image too large, max is %u bytes\n",
 701                            FLASH_FW_MAX_SIZE);
 702                return -EINVAL;
 703        }
 704
 705        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
 706                csum += ntohl(p[i]);
 707
 708        if (csum != 0xffffffff) {
 709                csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
 710                return -EINVAL;
 711        }
 712
 713        sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
 714        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
 715
 716        csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
 717                          FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
 718
 719        ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
 720                                          FLASH_FW_START_SEC + i - 1);
 721        if (ret) {
 722                csio_err(hw, "Flash Erase failed\n");
 723                goto out;
 724        }
 725
 726        /*
 727         * We write the correct version at the end so the driver can see a bad
 728         * version if the FW write fails.  Start by writing a copy of the
 729         * first page with a bad version.
 730         */
 731        memcpy(first_page, fw_data, SF_PAGE_SIZE);
 732        ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
 733        ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
 734        if (ret)
 735                goto out;
 736
 737        csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
 738                    FW_IMG_START, FW_IMG_START + size);
 739
 740        addr = FLASH_FW_START;
 741        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
 742                addr += SF_PAGE_SIZE;
 743                fw_data += SF_PAGE_SIZE;
 744                ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
 745                if (ret)
 746                        goto out;
 747        }
 748
 749        ret = csio_hw_write_flash(hw,
 750                                  FLASH_FW_START +
 751                                        offsetof(struct fw_hdr, fw_ver),
 752                                  sizeof(hdr->fw_ver),
 753                                  (const uint8_t *)&hdr->fw_ver);
 754
 755out:
 756        if (ret)
 757                csio_err(hw, "firmware download failed, error %d\n", ret);
 758        return ret;
 759}
 760
 761static int
 762csio_hw_get_flash_params(struct csio_hw *hw)
 763{
 764        int ret;
 765        uint32_t info = 0;
 766
 767        ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
 768        if (!ret)
 769                ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
 770        csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
 771        if (ret != 0)
 772                return ret;
 773
 774        if ((info & 0xff) != 0x20)              /* not a Numonix flash */
 775                return -EINVAL;
 776        info >>= 16;                            /* log2 of size */
 777        if (info >= 0x14 && info < 0x18)
 778                hw->params.sf_nsec = 1 << (info - 16);
 779        else if (info == 0x18)
 780                hw->params.sf_nsec = 64;
 781        else
 782                return -EINVAL;
 783        hw->params.sf_size = 1 << info;
 784
 785        return 0;
 786}
 787
 788/*****************************************************************************/
 789/* HW State machine assists                                                  */
 790/*****************************************************************************/
 791
 792static int
 793csio_hw_dev_ready(struct csio_hw *hw)
 794{
 795        uint32_t reg;
 796        int cnt = 6;
 797
 798        while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
 799               (--cnt != 0))
 800                mdelay(100);
 801
 802        if ((cnt == 0) && (((int32_t)(SOURCEPF_G(reg)) < 0) ||
 803                           (SOURCEPF_G(reg) >= CSIO_MAX_PFN))) {
 804                csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
 805                return -EIO;
 806        }
 807
 808        hw->pfn = SOURCEPF_G(reg);
 809
 810        return 0;
 811}
 812
 813/*
 814 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
 815 * @hw: HW module
 816 * @state: Device state
 817 *
 818 * FW_HELLO_CMD has to be polled for completion.
 819 */
 820static int
 821csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
 822{
 823        struct csio_mb  *mbp;
 824        int     rv = 0;
 825        enum fw_retval retval;
 826        uint8_t mpfn;
 827        char state_str[16];
 828        int retries = FW_CMD_HELLO_RETRIES;
 829
 830        memset(state_str, 0, sizeof(state_str));
 831
 832        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 833        if (!mbp) {
 834                rv = -ENOMEM;
 835                CSIO_INC_STATS(hw, n_err_nomem);
 836                goto out;
 837        }
 838
 839retry:
 840        csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
 841                      hw->pfn, CSIO_MASTER_MAY, NULL);
 842
 843        rv = csio_mb_issue(hw, mbp);
 844        if (rv) {
 845                csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
 846                goto out_free_mb;
 847        }
 848
 849        csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
 850        if (retval != FW_SUCCESS) {
 851                csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
 852                rv = -EINVAL;
 853                goto out_free_mb;
 854        }
 855
 856        /* Firmware has designated us to be master */
 857        if (hw->pfn == mpfn) {
 858                hw->flags |= CSIO_HWF_MASTER;
 859        } else if (*state == CSIO_DEV_STATE_UNINIT) {
 860                /*
 861                 * If we're not the Master PF then we need to wait around for
 862                 * the Master PF Driver to finish setting up the adapter.
 863                 *
 864                 * Note that we also do this wait if we're a non-Master-capable
 865                 * PF and there is no current Master PF; a Master PF may show up
 866                 * momentarily and we wouldn't want to fail pointlessly.  (This
 867                 * can happen when an OS loads lots of different drivers rapidly
 868                 * at the same time). In this case, the Master PF returned by
 869                 * the firmware will be PCIE_FW_MASTER_MASK so the test below
 870                 * will work ...
 871                 */
 872
 873                int waiting = FW_CMD_HELLO_TIMEOUT;
 874
 875                /*
 876                 * Wait for the firmware to either indicate an error or
 877                 * initialized state.  If we see either of these we bail out
 878                 * and report the issue to the caller.  If we exhaust the
 879                 * "hello timeout" and we haven't exhausted our retries, try
 880                 * again.  Otherwise bail with a timeout error.
 881                 */
 882                for (;;) {
 883                        uint32_t pcie_fw;
 884
 885                        spin_unlock_irq(&hw->lock);
 886                        msleep(50);
 887                        spin_lock_irq(&hw->lock);
 888                        waiting -= 50;
 889
 890                        /*
 891                         * If neither Error nor Initialialized are indicated
 892                         * by the firmware keep waiting till we exaust our
 893                         * timeout ... and then retry if we haven't exhausted
 894                         * our retries ...
 895                         */
 896                        pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
 897                        if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
 898                                if (waiting <= 0) {
 899                                        if (retries-- > 0)
 900                                                goto retry;
 901
 902                                        rv = -ETIMEDOUT;
 903                                        break;
 904                                }
 905                                continue;
 906                        }
 907
 908                        /*
 909                         * We either have an Error or Initialized condition
 910                         * report errors preferentially.
 911                         */
 912                        if (state) {
 913                                if (pcie_fw & PCIE_FW_ERR_F) {
 914                                        *state = CSIO_DEV_STATE_ERR;
 915                                        rv = -ETIMEDOUT;
 916                                } else if (pcie_fw & PCIE_FW_INIT_F)
 917                                        *state = CSIO_DEV_STATE_INIT;
 918                        }
 919
 920                        /*
 921                         * If we arrived before a Master PF was selected and
 922                         * there's not a valid Master PF, grab its identity
 923                         * for our caller.
 924                         */
 925                        if (mpfn == PCIE_FW_MASTER_M &&
 926                            (pcie_fw & PCIE_FW_MASTER_VLD_F))
 927                                mpfn = PCIE_FW_MASTER_G(pcie_fw);
 928                        break;
 929                }
 930                hw->flags &= ~CSIO_HWF_MASTER;
 931        }
 932
 933        switch (*state) {
 934        case CSIO_DEV_STATE_UNINIT:
 935                strcpy(state_str, "Initializing");
 936                break;
 937        case CSIO_DEV_STATE_INIT:
 938                strcpy(state_str, "Initialized");
 939                break;
 940        case CSIO_DEV_STATE_ERR:
 941                strcpy(state_str, "Error");
 942                break;
 943        default:
 944                strcpy(state_str, "Unknown");
 945                break;
 946        }
 947
 948        if (hw->pfn == mpfn)
 949                csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
 950                        hw->pfn, state_str);
 951        else
 952                csio_info(hw,
 953                    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
 954                    hw->pfn, mpfn, state_str);
 955
 956out_free_mb:
 957        mempool_free(mbp, hw->mb_mempool);
 958out:
 959        return rv;
 960}
 961
 962/*
 963 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
 964 * @hw: HW module
 965 *
 966 */
 967static int
 968csio_do_bye(struct csio_hw *hw)
 969{
 970        struct csio_mb  *mbp;
 971        enum fw_retval retval;
 972
 973        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 974        if (!mbp) {
 975                CSIO_INC_STATS(hw, n_err_nomem);
 976                return -ENOMEM;
 977        }
 978
 979        csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
 980
 981        if (csio_mb_issue(hw, mbp)) {
 982                csio_err(hw, "Issue of BYE command failed\n");
 983                mempool_free(mbp, hw->mb_mempool);
 984                return -EINVAL;
 985        }
 986
 987        retval = csio_mb_fw_retval(mbp);
 988        if (retval != FW_SUCCESS) {
 989                mempool_free(mbp, hw->mb_mempool);
 990                return -EINVAL;
 991        }
 992
 993        mempool_free(mbp, hw->mb_mempool);
 994
 995        return 0;
 996}
 997
 998/*
 999 * csio_do_reset- Perform the device reset.
1000 * @hw: HW module
1001 * @fw_rst: FW reset
1002 *
1003 * If fw_rst is set, issues FW reset mbox cmd otherwise
1004 * does PIO reset.
1005 * Performs reset of the function.
1006 */
1007static int
1008csio_do_reset(struct csio_hw *hw, bool fw_rst)
1009{
1010        struct csio_mb  *mbp;
1011        enum fw_retval retval;
1012
1013        if (!fw_rst) {
1014                /* PIO reset */
1015                csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1016                mdelay(2000);
1017                return 0;
1018        }
1019
1020        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1021        if (!mbp) {
1022                CSIO_INC_STATS(hw, n_err_nomem);
1023                return -ENOMEM;
1024        }
1025
1026        csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1027                      PIORSTMODE_F | PIORST_F, 0, NULL);
1028
1029        if (csio_mb_issue(hw, mbp)) {
1030                csio_err(hw, "Issue of RESET command failed.n");
1031                mempool_free(mbp, hw->mb_mempool);
1032                return -EINVAL;
1033        }
1034
1035        retval = csio_mb_fw_retval(mbp);
1036        if (retval != FW_SUCCESS) {
1037                csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1038                mempool_free(mbp, hw->mb_mempool);
1039                return -EINVAL;
1040        }
1041
1042        mempool_free(mbp, hw->mb_mempool);
1043
1044        return 0;
1045}
1046
1047static int
1048csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1049{
1050        struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1051        uint16_t caps;
1052
1053        caps = ntohs(rsp->fcoecaps);
1054
1055        if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1056                csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1057                return -EINVAL;
1058        }
1059
1060        if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1061                csio_err(hw, "No FCoE Control Offload capability\n");
1062                return -EINVAL;
1063        }
1064
1065        return 0;
1066}
1067
1068/*
1069 *      csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1070 *      @hw: the HW module
1071 *      @mbox: mailbox to use for the FW RESET command (if desired)
1072 *      @force: force uP into RESET even if FW RESET command fails
1073 *
1074 *      Issues a RESET command to firmware (if desired) with a HALT indication
1075 *      and then puts the microprocessor into RESET state.  The RESET command
1076 *      will only be issued if a legitimate mailbox is provided (mbox <=
1077 *      PCIE_FW_MASTER_MASK).
1078 *
1079 *      This is generally used in order for the host to safely manipulate the
1080 *      adapter without fear of conflicting with whatever the firmware might
1081 *      be doing.  The only way out of this state is to RESTART the firmware
1082 *      ...
1083 */
1084static int
1085csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1086{
1087        enum fw_retval retval = 0;
1088
1089        /*
1090         * If a legitimate mailbox is provided, issue a RESET command
1091         * with a HALT indication.
1092         */
1093        if (mbox <= PCIE_FW_MASTER_M) {
1094                struct csio_mb  *mbp;
1095
1096                mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1097                if (!mbp) {
1098                        CSIO_INC_STATS(hw, n_err_nomem);
1099                        return -ENOMEM;
1100                }
1101
1102                csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1103                              PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1104                              NULL);
1105
1106                if (csio_mb_issue(hw, mbp)) {
1107                        csio_err(hw, "Issue of RESET command failed!\n");
1108                        mempool_free(mbp, hw->mb_mempool);
1109                        return -EINVAL;
1110                }
1111
1112                retval = csio_mb_fw_retval(mbp);
1113                mempool_free(mbp, hw->mb_mempool);
1114        }
1115
1116        /*
1117         * Normally we won't complete the operation if the firmware RESET
1118         * command fails but if our caller insists we'll go ahead and put the
1119         * uP into RESET.  This can be useful if the firmware is hung or even
1120         * missing ...  We'll have to take the risk of putting the uP into
1121         * RESET without the cooperation of firmware in that case.
1122         *
1123         * We also force the firmware's HALT flag to be on in case we bypassed
1124         * the firmware RESET command above or we're dealing with old firmware
1125         * which doesn't have the HALT capability.  This will serve as a flag
1126         * for the incoming firmware to know that it's coming out of a HALT
1127         * rather than a RESET ... if it's new enough to understand that ...
1128         */
1129        if (retval == 0 || force) {
1130                csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1131                csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1132                                   PCIE_FW_HALT_F);
1133        }
1134
1135        /*
1136         * And we always return the result of the firmware RESET command
1137         * even when we force the uP into RESET ...
1138         */
1139        return retval ? -EINVAL : 0;
1140}
1141
1142/*
1143 *      csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1144 *      @hw: the HW module
1145 *      @reset: if we want to do a RESET to restart things
1146 *
1147 *      Restart firmware previously halted by csio_hw_fw_halt().  On successful
1148 *      return the previous PF Master remains as the new PF Master and there
1149 *      is no need to issue a new HELLO command, etc.
1150 *
1151 *      We do this in two ways:
1152 *
1153 *       1. If we're dealing with newer firmware we'll simply want to take
1154 *          the chip's microprocessor out of RESET.  This will cause the
1155 *          firmware to start up from its start vector.  And then we'll loop
1156 *          until the firmware indicates it's started again (PCIE_FW.HALT
1157 *          reset to 0) or we timeout.
1158 *
1159 *       2. If we're dealing with older firmware then we'll need to RESET
1160 *          the chip since older firmware won't recognize the PCIE_FW.HALT
1161 *          flag and automatically RESET itself on startup.
1162 */
1163static int
1164csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1165{
1166        if (reset) {
1167                /*
1168                 * Since we're directing the RESET instead of the firmware
1169                 * doing it automatically, we need to clear the PCIE_FW.HALT
1170                 * bit.
1171                 */
1172                csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1173
1174                /*
1175                 * If we've been given a valid mailbox, first try to get the
1176                 * firmware to do the RESET.  If that works, great and we can
1177                 * return success.  Otherwise, if we haven't been given a
1178                 * valid mailbox or the RESET command failed, fall back to
1179                 * hitting the chip with a hammer.
1180                 */
1181                if (mbox <= PCIE_FW_MASTER_M) {
1182                        csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1183                        msleep(100);
1184                        if (csio_do_reset(hw, true) == 0)
1185                                return 0;
1186                }
1187
1188                csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1189                msleep(2000);
1190        } else {
1191                int ms;
1192
1193                csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1194                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1195                        if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1196                                return 0;
1197                        msleep(100);
1198                        ms += 100;
1199                }
1200                return -ETIMEDOUT;
1201        }
1202        return 0;
1203}
1204
1205/*
1206 *      csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1207 *      @hw: the HW module
1208 *      @mbox: mailbox to use for the FW RESET command (if desired)
1209 *      @fw_data: the firmware image to write
1210 *      @size: image size
1211 *      @force: force upgrade even if firmware doesn't cooperate
1212 *
1213 *      Perform all of the steps necessary for upgrading an adapter's
1214 *      firmware image.  Normally this requires the cooperation of the
1215 *      existing firmware in order to halt all existing activities
1216 *      but if an invalid mailbox token is passed in we skip that step
1217 *      (though we'll still put the adapter microprocessor into RESET in
1218 *      that case).
1219 *
1220 *      On successful return the new firmware will have been loaded and
1221 *      the adapter will have been fully RESET losing all previous setup
1222 *      state.  On unsuccessful return the adapter may be completely hosed ...
1223 *      positive errno indicates that the adapter is ~probably~ intact, a
1224 *      negative errno indicates that things are looking bad ...
1225 */
1226static int
1227csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1228                  const u8 *fw_data, uint32_t size, int32_t force)
1229{
1230        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1231        int reset, ret;
1232
1233        ret = csio_hw_fw_halt(hw, mbox, force);
1234        if (ret != 0 && !force)
1235                return ret;
1236
1237        ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1238        if (ret != 0)
1239                return ret;
1240
1241        /*
1242         * Older versions of the firmware don't understand the new
1243         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1244         * restart.  So for newly loaded older firmware we'll have to do the
1245         * RESET for it so it starts up on a clean slate.  We can tell if
1246         * the newly loaded firmware will handle this right by checking
1247         * its header flags to see if it advertises the capability.
1248         */
1249        reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1250        return csio_hw_fw_restart(hw, mbox, reset);
1251}
1252
1253/*
1254 * csio_get_device_params - Get device parameters.
1255 * @hw: HW module
1256 *
1257 */
1258static int
1259csio_get_device_params(struct csio_hw *hw)
1260{
1261        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1262        struct csio_mb  *mbp;
1263        enum fw_retval retval;
1264        u32 param[6];
1265        int i, j = 0;
1266
1267        /* Initialize portids to -1 */
1268        for (i = 0; i < CSIO_MAX_PPORTS; i++)
1269                hw->pport[i].portid = -1;
1270
1271        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1272        if (!mbp) {
1273                CSIO_INC_STATS(hw, n_err_nomem);
1274                return -ENOMEM;
1275        }
1276
1277        /* Get port vec information. */
1278        param[0] = FW_PARAM_DEV(PORTVEC);
1279
1280        /* Get Core clock. */
1281        param[1] = FW_PARAM_DEV(CCLK);
1282
1283        /* Get EQ id start and end. */
1284        param[2] = FW_PARAM_PFVF(EQ_START);
1285        param[3] = FW_PARAM_PFVF(EQ_END);
1286
1287        /* Get IQ id start and end. */
1288        param[4] = FW_PARAM_PFVF(IQFLINT_START);
1289        param[5] = FW_PARAM_PFVF(IQFLINT_END);
1290
1291        csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1292                       ARRAY_SIZE(param), param, NULL, false, NULL);
1293        if (csio_mb_issue(hw, mbp)) {
1294                csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1295                mempool_free(mbp, hw->mb_mempool);
1296                return -EINVAL;
1297        }
1298
1299        csio_mb_process_read_params_rsp(hw, mbp, &retval,
1300                        ARRAY_SIZE(param), param);
1301        if (retval != FW_SUCCESS) {
1302                csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1303                                retval);
1304                mempool_free(mbp, hw->mb_mempool);
1305                return -EINVAL;
1306        }
1307
1308        /* cache the information. */
1309        hw->port_vec = param[0];
1310        hw->vpd.cclk = param[1];
1311        wrm->fw_eq_start = param[2];
1312        wrm->fw_iq_start = param[4];
1313
1314        /* Using FW configured max iqs & eqs */
1315        if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1316                !csio_is_hw_master(hw)) {
1317                hw->cfg_niq = param[5] - param[4] + 1;
1318                hw->cfg_neq = param[3] - param[2] + 1;
1319                csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1320                        hw->cfg_niq, hw->cfg_neq);
1321        }
1322
1323        hw->port_vec &= csio_port_mask;
1324
1325        hw->num_pports  = hweight32(hw->port_vec);
1326
1327        csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1328                    hw->port_vec, hw->num_pports);
1329
1330        for (i = 0; i < hw->num_pports; i++) {
1331                while ((hw->port_vec & (1 << j)) == 0)
1332                        j++;
1333                hw->pport[i].portid = j++;
1334                csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1335        }
1336        mempool_free(mbp, hw->mb_mempool);
1337
1338        return 0;
1339}
1340
1341
1342/*
1343 * csio_config_device_caps - Get and set device capabilities.
1344 * @hw: HW module
1345 *
1346 */
1347static int
1348csio_config_device_caps(struct csio_hw *hw)
1349{
1350        struct csio_mb  *mbp;
1351        enum fw_retval retval;
1352        int rv = -EINVAL;
1353
1354        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1355        if (!mbp) {
1356                CSIO_INC_STATS(hw, n_err_nomem);
1357                return -ENOMEM;
1358        }
1359
1360        /* Get device capabilities */
1361        csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1362
1363        if (csio_mb_issue(hw, mbp)) {
1364                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1365                goto out;
1366        }
1367
1368        retval = csio_mb_fw_retval(mbp);
1369        if (retval != FW_SUCCESS) {
1370                csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1371                goto out;
1372        }
1373
1374        /* Validate device capabilities */
1375        rv = csio_hw_validate_caps(hw, mbp);
1376        if (rv != 0)
1377                goto out;
1378
1379        /* Don't config device capabilities if already configured */
1380        if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1381                rv = 0;
1382                goto out;
1383        }
1384
1385        /* Write back desired device capabilities */
1386        csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1387                            false, true, NULL);
1388
1389        if (csio_mb_issue(hw, mbp)) {
1390                csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1391                goto out;
1392        }
1393
1394        retval = csio_mb_fw_retval(mbp);
1395        if (retval != FW_SUCCESS) {
1396                csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1397                goto out;
1398        }
1399
1400        rv = 0;
1401out:
1402        mempool_free(mbp, hw->mb_mempool);
1403        return rv;
1404}
1405
1406/*
1407 * csio_enable_ports - Bring up all available ports.
1408 * @hw: HW module.
1409 *
1410 */
1411static int
1412csio_enable_ports(struct csio_hw *hw)
1413{
1414        struct csio_mb  *mbp;
1415        enum fw_retval retval;
1416        uint8_t portid;
1417        int i;
1418
1419        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1420        if (!mbp) {
1421                CSIO_INC_STATS(hw, n_err_nomem);
1422                return -ENOMEM;
1423        }
1424
1425        for (i = 0; i < hw->num_pports; i++) {
1426                portid = hw->pport[i].portid;
1427
1428                /* Read PORT information */
1429                csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1430                             false, 0, 0, NULL);
1431
1432                if (csio_mb_issue(hw, mbp)) {
1433                        csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1434                                 portid);
1435                        mempool_free(mbp, hw->mb_mempool);
1436                        return -EINVAL;
1437                }
1438
1439                csio_mb_process_read_port_rsp(hw, mbp, &retval,
1440                                              &hw->pport[i].pcap);
1441                if (retval != FW_SUCCESS) {
1442                        csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1443                                 portid, retval);
1444                        mempool_free(mbp, hw->mb_mempool);
1445                        return -EINVAL;
1446                }
1447
1448                /* Write back PORT information */
1449                csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1450                             (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1451
1452                if (csio_mb_issue(hw, mbp)) {
1453                        csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1454                                 portid);
1455                        mempool_free(mbp, hw->mb_mempool);
1456                        return -EINVAL;
1457                }
1458
1459                retval = csio_mb_fw_retval(mbp);
1460                if (retval != FW_SUCCESS) {
1461                        csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1462                                 portid, retval);
1463                        mempool_free(mbp, hw->mb_mempool);
1464                        return -EINVAL;
1465                }
1466
1467        } /* For all ports */
1468
1469        mempool_free(mbp, hw->mb_mempool);
1470
1471        return 0;
1472}
1473
1474/*
1475 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1476 * @hw: HW module
1477 * Issued with lock held.
1478 */
1479static int
1480csio_get_fcoe_resinfo(struct csio_hw *hw)
1481{
1482        struct csio_fcoe_res_info *res_info = &hw->fres_info;
1483        struct fw_fcoe_res_info_cmd *rsp;
1484        struct csio_mb  *mbp;
1485        enum fw_retval retval;
1486
1487        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1488        if (!mbp) {
1489                CSIO_INC_STATS(hw, n_err_nomem);
1490                return -ENOMEM;
1491        }
1492
1493        /* Get FCoE FW resource information */
1494        csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1495
1496        if (csio_mb_issue(hw, mbp)) {
1497                csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1498                mempool_free(mbp, hw->mb_mempool);
1499                return -EINVAL;
1500        }
1501
1502        rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1503        retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1504        if (retval != FW_SUCCESS) {
1505                csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1506                         retval);
1507                mempool_free(mbp, hw->mb_mempool);
1508                return -EINVAL;
1509        }
1510
1511        res_info->e_d_tov = ntohs(rsp->e_d_tov);
1512        res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1513        res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1514        res_info->r_r_tov = ntohs(rsp->r_r_tov);
1515        res_info->max_xchgs = ntohl(rsp->max_xchgs);
1516        res_info->max_ssns = ntohl(rsp->max_ssns);
1517        res_info->used_xchgs = ntohl(rsp->used_xchgs);
1518        res_info->used_ssns = ntohl(rsp->used_ssns);
1519        res_info->max_fcfs = ntohl(rsp->max_fcfs);
1520        res_info->max_vnps = ntohl(rsp->max_vnps);
1521        res_info->used_fcfs = ntohl(rsp->used_fcfs);
1522        res_info->used_vnps = ntohl(rsp->used_vnps);
1523
1524        csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1525                                                  res_info->max_xchgs);
1526        mempool_free(mbp, hw->mb_mempool);
1527
1528        return 0;
1529}
1530
1531static int
1532csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1533{
1534        struct csio_mb  *mbp;
1535        enum fw_retval retval;
1536        u32 _param[1];
1537
1538        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1539        if (!mbp) {
1540                CSIO_INC_STATS(hw, n_err_nomem);
1541                return -ENOMEM;
1542        }
1543
1544        /*
1545         * Find out whether we're dealing with a version of
1546         * the firmware which has configuration file support.
1547         */
1548        _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1549                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1550
1551        csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1552                       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1553        if (csio_mb_issue(hw, mbp)) {
1554                csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1555                mempool_free(mbp, hw->mb_mempool);
1556                return -EINVAL;
1557        }
1558
1559        csio_mb_process_read_params_rsp(hw, mbp, &retval,
1560                        ARRAY_SIZE(_param), _param);
1561        if (retval != FW_SUCCESS) {
1562                csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1563                                retval);
1564                mempool_free(mbp, hw->mb_mempool);
1565                return -EINVAL;
1566        }
1567
1568        mempool_free(mbp, hw->mb_mempool);
1569        *param = _param[0];
1570
1571        return 0;
1572}
1573
1574static int
1575csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1576{
1577        int ret = 0;
1578        const struct firmware *cf;
1579        struct pci_dev *pci_dev = hw->pdev;
1580        struct device *dev = &pci_dev->dev;
1581        unsigned int mtype = 0, maddr = 0;
1582        uint32_t *cfg_data;
1583        int value_to_add = 0;
1584
1585        if (request_firmware(&cf, FW_CFG_NAME_T5, dev) < 0) {
1586                csio_err(hw, "could not find config file %s, err: %d\n",
1587                         FW_CFG_NAME_T5, ret);
1588                return -ENOENT;
1589        }
1590
1591        if (cf->size%4 != 0)
1592                value_to_add = 4 - (cf->size % 4);
1593
1594        cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1595        if (cfg_data == NULL) {
1596                ret = -ENOMEM;
1597                goto leave;
1598        }
1599
1600        memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1601        if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1602                ret = -EINVAL;
1603                goto leave;
1604        }
1605
1606        mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1607        maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1608
1609        ret = csio_memory_write(hw, mtype, maddr,
1610                                cf->size + value_to_add, cfg_data);
1611
1612        if ((ret == 0) && (value_to_add != 0)) {
1613                union {
1614                        u32 word;
1615                        char buf[4];
1616                } last;
1617                size_t size = cf->size & ~0x3;
1618                int i;
1619
1620                last.word = cfg_data[size >> 2];
1621                for (i = value_to_add; i < 4; i++)
1622                        last.buf[i] = 0;
1623                ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1624        }
1625        if (ret == 0) {
1626                csio_info(hw, "config file upgraded to %s\n",
1627                          FW_CFG_NAME_T5);
1628                snprintf(path, 64, "%s%s", "/lib/firmware/", FW_CFG_NAME_T5);
1629        }
1630
1631leave:
1632        kfree(cfg_data);
1633        release_firmware(cf);
1634        return ret;
1635}
1636
1637/*
1638 * HW initialization: contact FW, obtain config, perform basic init.
1639 *
1640 * If the firmware we're dealing with has Configuration File support, then
1641 * we use that to perform all configuration -- either using the configuration
1642 * file stored in flash on the adapter or using a filesystem-local file
1643 * if available.
1644 *
1645 * If we don't have configuration file support in the firmware, then we'll
1646 * have to set things up the old fashioned way with hard-coded register
1647 * writes and firmware commands ...
1648 */
1649
1650/*
1651 * Attempt to initialize the HW via a Firmware Configuration File.
1652 */
1653static int
1654csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1655{
1656        struct csio_mb  *mbp = NULL;
1657        struct fw_caps_config_cmd *caps_cmd;
1658        unsigned int mtype, maddr;
1659        int rv = -EINVAL;
1660        uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1661        char path[64];
1662        char *config_name = NULL;
1663
1664        /*
1665         * Reset device if necessary
1666         */
1667        if (reset) {
1668                rv = csio_do_reset(hw, true);
1669                if (rv != 0)
1670                        goto bye;
1671        }
1672
1673        /*
1674         * If we have a configuration file in host ,
1675         * then use that.  Otherwise, use the configuration file stored
1676         * in the HW flash ...
1677         */
1678        spin_unlock_irq(&hw->lock);
1679        rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1680        spin_lock_irq(&hw->lock);
1681        if (rv != 0) {
1682                /*
1683                 * config file was not found. Use default
1684                 * config file from flash.
1685                 */
1686                config_name = "On FLASH";
1687                mtype = FW_MEMTYPE_CF_FLASH;
1688                maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1689        } else {
1690                config_name = path;
1691                mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1692                maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1693        }
1694
1695        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1696        if (!mbp) {
1697                CSIO_INC_STATS(hw, n_err_nomem);
1698                return -ENOMEM;
1699        }
1700        /*
1701         * Tell the firmware to process the indicated Configuration File.
1702         * If there are no errors and the caller has provided return value
1703         * pointers for the [fini] section version, checksum and computed
1704         * checksum, pass those back to the caller.
1705         */
1706        caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1707        CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1708        caps_cmd->op_to_write =
1709                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1710                      FW_CMD_REQUEST_F |
1711                      FW_CMD_READ_F);
1712        caps_cmd->cfvalid_to_len16 =
1713                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1714                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1715                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1716                      FW_LEN16(*caps_cmd));
1717
1718        if (csio_mb_issue(hw, mbp)) {
1719                rv = -EINVAL;
1720                goto bye;
1721        }
1722
1723        rv = csio_mb_fw_retval(mbp);
1724         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1725          * Configuration File in FLASH), our last gasp effort is to use the
1726          * Firmware Configuration File which is embedded in the
1727          * firmware.  A very few early versions of the firmware didn't
1728          * have one embedded but we can ignore those.
1729          */
1730        if (rv == ENOENT) {
1731                CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1732                caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1733                                              FW_CMD_REQUEST_F |
1734                                              FW_CMD_READ_F);
1735                caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1736
1737                if (csio_mb_issue(hw, mbp)) {
1738                        rv = -EINVAL;
1739                        goto bye;
1740                }
1741
1742                rv = csio_mb_fw_retval(mbp);
1743                config_name = "Firmware Default";
1744        }
1745        if (rv != FW_SUCCESS)
1746                goto bye;
1747
1748        finiver = ntohl(caps_cmd->finiver);
1749        finicsum = ntohl(caps_cmd->finicsum);
1750        cfcsum = ntohl(caps_cmd->cfcsum);
1751
1752        /*
1753         * And now tell the firmware to use the configuration we just loaded.
1754         */
1755        caps_cmd->op_to_write =
1756                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1757                      FW_CMD_REQUEST_F |
1758                      FW_CMD_WRITE_F);
1759        caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1760
1761        if (csio_mb_issue(hw, mbp)) {
1762                rv = -EINVAL;
1763                goto bye;
1764        }
1765
1766        rv = csio_mb_fw_retval(mbp);
1767        if (rv != FW_SUCCESS) {
1768                csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1769                goto bye;
1770        }
1771
1772        mempool_free(mbp, hw->mb_mempool);
1773        if (finicsum != cfcsum) {
1774                csio_warn(hw,
1775                      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1776                      finicsum, cfcsum);
1777        }
1778
1779        /* Validate device capabilities */
1780        rv = csio_hw_validate_caps(hw, mbp);
1781        if (rv != 0)
1782                goto bye;
1783        /*
1784         * Note that we're operating with parameters
1785         * not supplied by the driver, rather than from hard-wired
1786         * initialization constants buried in the driver.
1787         */
1788        hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1789
1790        /* device parameters */
1791        rv = csio_get_device_params(hw);
1792        if (rv != 0)
1793                goto bye;
1794
1795        /* Configure SGE */
1796        csio_wr_sge_init(hw);
1797
1798        /*
1799         * And finally tell the firmware to initialize itself using the
1800         * parameters from the Configuration File.
1801         */
1802        /* Post event to notify completion of configuration */
1803        csio_post_event(&hw->sm, CSIO_HWE_INIT);
1804
1805        csio_info(hw, "Successfully configure using Firmware "
1806                  "Configuration File %s, version %#x, computed checksum %#x\n",
1807                  config_name, finiver, cfcsum);
1808        return 0;
1809
1810        /*
1811         * Something bad happened.  Return the error ...
1812         */
1813bye:
1814        if (mbp)
1815                mempool_free(mbp, hw->mb_mempool);
1816        hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1817        csio_warn(hw, "Configuration file error %d\n", rv);
1818        return rv;
1819}
1820
1821/* Is the given firmware API compatible with the one the driver was compiled
1822 * with?
1823 */
1824static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1825{
1826
1827        /* short circuit if it's the exact same firmware version */
1828        if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1829                return 1;
1830
1831#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1832        if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1833            SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1834                return 1;
1835#undef SAME_INTF
1836
1837        return 0;
1838}
1839
1840/* The firmware in the filesystem is usable, but should it be installed?
1841 * This routine explains itself in detail if it indicates the filesystem
1842 * firmware should be installed.
1843 */
1844static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1845                                int k, int c)
1846{
1847        const char *reason;
1848
1849        if (!card_fw_usable) {
1850                reason = "incompatible or unusable";
1851                goto install;
1852        }
1853
1854        if (k > c) {
1855                reason = "older than the version supported with this driver";
1856                goto install;
1857        }
1858
1859        return 0;
1860
1861install:
1862        csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1863                "installing firmware %u.%u.%u.%u on card.\n",
1864                FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1865                FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1866                FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1867                FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1868
1869        return 1;
1870}
1871
1872static struct fw_info fw_info_array[] = {
1873        {
1874                .chip = CHELSIO_T5,
1875                .fs_name = FW_CFG_NAME_T5,
1876                .fw_mod_name = FW_FNAME_T5,
1877                .fw_hdr = {
1878                        .chip = FW_HDR_CHIP_T5,
1879                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1880                        .intfver_nic = FW_INTFVER(T5, NIC),
1881                        .intfver_vnic = FW_INTFVER(T5, VNIC),
1882                        .intfver_ri = FW_INTFVER(T5, RI),
1883                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
1884                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
1885                },
1886        }
1887};
1888
1889static struct fw_info *find_fw_info(int chip)
1890{
1891        int i;
1892
1893        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1894                if (fw_info_array[i].chip == chip)
1895                        return &fw_info_array[i];
1896        }
1897        return NULL;
1898}
1899
1900static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1901               const u8 *fw_data, unsigned int fw_size,
1902               struct fw_hdr *card_fw, enum csio_dev_state state,
1903               int *reset)
1904{
1905        int ret, card_fw_usable, fs_fw_usable;
1906        const struct fw_hdr *fs_fw;
1907        const struct fw_hdr *drv_fw;
1908
1909        drv_fw = &fw_info->fw_hdr;
1910
1911        /* Read the header of the firmware on the card */
1912        ret = csio_hw_read_flash(hw, FLASH_FW_START,
1913                            sizeof(*card_fw) / sizeof(uint32_t),
1914                            (uint32_t *)card_fw, 1);
1915        if (ret == 0) {
1916                card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1917        } else {
1918                csio_err(hw,
1919                        "Unable to read card's firmware header: %d\n", ret);
1920                card_fw_usable = 0;
1921        }
1922
1923        if (fw_data != NULL) {
1924                fs_fw = (const void *)fw_data;
1925                fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1926        } else {
1927                fs_fw = NULL;
1928                fs_fw_usable = 0;
1929        }
1930
1931        if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1932            (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1933                /* Common case: the firmware on the card is an exact match and
1934                 * the filesystem one is an exact match too, or the filesystem
1935                 * one is absent/incompatible.
1936                 */
1937        } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1938                   csio_should_install_fs_fw(hw, card_fw_usable,
1939                                        be32_to_cpu(fs_fw->fw_ver),
1940                                        be32_to_cpu(card_fw->fw_ver))) {
1941                ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1942                                     fw_size, 0);
1943                if (ret != 0) {
1944                        csio_err(hw,
1945                                "failed to install firmware: %d\n", ret);
1946                        goto bye;
1947                }
1948
1949                /* Installed successfully, update the cached header too. */
1950                memcpy(card_fw, fs_fw, sizeof(*card_fw));
1951                card_fw_usable = 1;
1952                *reset = 0;     /* already reset as part of load_fw */
1953        }
1954
1955        if (!card_fw_usable) {
1956                uint32_t d, c, k;
1957
1958                d = be32_to_cpu(drv_fw->fw_ver);
1959                c = be32_to_cpu(card_fw->fw_ver);
1960                k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1961
1962                csio_err(hw, "Cannot find a usable firmware: "
1963                        "chip state %d, "
1964                        "driver compiled with %d.%d.%d.%d, "
1965                        "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1966                        state,
1967                        FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1968                        FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1969                        FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1970                        FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1971                        FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1972                        FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1973                ret = EINVAL;
1974                goto bye;
1975        }
1976
1977        /* We're using whatever's on the card and it's known to be good. */
1978        hw->fwrev = be32_to_cpu(card_fw->fw_ver);
1979        hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1980
1981bye:
1982        return ret;
1983}
1984
1985/*
1986 * Returns -EINVAL if attempts to flash the firmware failed
1987 * else returns 0,
1988 * if flashing was not attempted because the card had the
1989 * latest firmware ECANCELED is returned
1990 */
1991static int
1992csio_hw_flash_fw(struct csio_hw *hw, int *reset)
1993{
1994        int ret = -ECANCELED;
1995        const struct firmware *fw;
1996        struct fw_info *fw_info;
1997        struct fw_hdr *card_fw;
1998        struct pci_dev *pci_dev = hw->pdev;
1999        struct device *dev = &pci_dev->dev ;
2000        const u8 *fw_data = NULL;
2001        unsigned int fw_size = 0;
2002
2003        /* This is the firmware whose headers the driver was compiled
2004         * against
2005         */
2006        fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2007        if (fw_info == NULL) {
2008                csio_err(hw,
2009                        "unable to get firmware info for chip %d.\n",
2010                        CHELSIO_CHIP_VERSION(hw->chip_id));
2011                return -EINVAL;
2012        }
2013
2014        if (request_firmware(&fw, FW_FNAME_T5, dev) < 0) {
2015                csio_err(hw, "could not find firmware image %s, err: %d\n",
2016                         FW_FNAME_T5, ret);
2017        } else {
2018                fw_data = fw->data;
2019                fw_size = fw->size;
2020        }
2021
2022        /* allocate memory to read the header of the firmware on the
2023         * card
2024         */
2025        card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2026
2027        /* upgrade FW logic */
2028        ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2029                         hw->fw_state, reset);
2030
2031        /* Cleaning up */
2032        if (fw != NULL)
2033                release_firmware(fw);
2034        kfree(card_fw);
2035        return ret;
2036}
2037
2038/*
2039 * csio_hw_configure - Configure HW
2040 * @hw - HW module
2041 *
2042 */
2043static void
2044csio_hw_configure(struct csio_hw *hw)
2045{
2046        int reset = 1;
2047        int rv;
2048        u32 param[1];
2049
2050        rv = csio_hw_dev_ready(hw);
2051        if (rv != 0) {
2052                CSIO_INC_STATS(hw, n_err_fatal);
2053                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2054                goto out;
2055        }
2056
2057        /* HW version */
2058        hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2059
2060        /* Needed for FW download */
2061        rv = csio_hw_get_flash_params(hw);
2062        if (rv != 0) {
2063                csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2064                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2065                goto out;
2066        }
2067
2068        /* Set PCIe completion timeout to 4 seconds */
2069        if (pci_is_pcie(hw->pdev))
2070                pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2071                                PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2072
2073        hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2074
2075        rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2076        if (rv != 0)
2077                goto out;
2078
2079        csio_hw_print_fw_version(hw, "Firmware revision");
2080
2081        rv = csio_do_hello(hw, &hw->fw_state);
2082        if (rv != 0) {
2083                CSIO_INC_STATS(hw, n_err_fatal);
2084                csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2085                goto out;
2086        }
2087
2088        /* Read vpd */
2089        rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2090        if (rv != 0)
2091                goto out;
2092
2093        csio_hw_get_fw_version(hw, &hw->fwrev);
2094        csio_hw_get_tp_version(hw, &hw->tp_vers);
2095        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2096
2097                        /* Do firmware update */
2098                spin_unlock_irq(&hw->lock);
2099                rv = csio_hw_flash_fw(hw, &reset);
2100                spin_lock_irq(&hw->lock);
2101
2102                if (rv != 0)
2103                        goto out;
2104
2105                /* If the firmware doesn't support Configuration Files,
2106                 * return an error.
2107                 */
2108                rv = csio_hw_check_fwconfig(hw, param);
2109                if (rv != 0) {
2110                        csio_info(hw, "Firmware doesn't support "
2111                                  "Firmware Configuration files\n");
2112                        goto out;
2113                }
2114
2115                /* The firmware provides us with a memory buffer where we can
2116                 * load a Configuration File from the host if we want to
2117                 * override the Configuration File in flash.
2118                 */
2119                rv = csio_hw_use_fwconfig(hw, reset, param);
2120                if (rv == -ENOENT) {
2121                        csio_info(hw, "Could not initialize "
2122                                  "adapter, error%d\n", rv);
2123                        goto out;
2124                }
2125                if (rv != 0) {
2126                        csio_info(hw, "Could not initialize "
2127                                  "adapter, error%d\n", rv);
2128                        goto out;
2129                }
2130
2131        } else {
2132                if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2133
2134                        hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2135
2136                        /* device parameters */
2137                        rv = csio_get_device_params(hw);
2138                        if (rv != 0)
2139                                goto out;
2140
2141                        /* Get device capabilities */
2142                        rv = csio_config_device_caps(hw);
2143                        if (rv != 0)
2144                                goto out;
2145
2146                        /* Configure SGE */
2147                        csio_wr_sge_init(hw);
2148
2149                        /* Post event to notify completion of configuration */
2150                        csio_post_event(&hw->sm, CSIO_HWE_INIT);
2151                        goto out;
2152                }
2153        } /* if not master */
2154
2155out:
2156        return;
2157}
2158
2159/*
2160 * csio_hw_initialize - Initialize HW
2161 * @hw - HW module
2162 *
2163 */
2164static void
2165csio_hw_initialize(struct csio_hw *hw)
2166{
2167        struct csio_mb  *mbp;
2168        enum fw_retval retval;
2169        int rv;
2170        int i;
2171
2172        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2173                mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2174                if (!mbp)
2175                        goto out;
2176
2177                csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2178
2179                if (csio_mb_issue(hw, mbp)) {
2180                        csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2181                        goto free_and_out;
2182                }
2183
2184                retval = csio_mb_fw_retval(mbp);
2185                if (retval != FW_SUCCESS) {
2186                        csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2187                                 retval);
2188                        goto free_and_out;
2189                }
2190
2191                mempool_free(mbp, hw->mb_mempool);
2192        }
2193
2194        rv = csio_get_fcoe_resinfo(hw);
2195        if (rv != 0) {
2196                csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2197                goto out;
2198        }
2199
2200        spin_unlock_irq(&hw->lock);
2201        rv = csio_config_queues(hw);
2202        spin_lock_irq(&hw->lock);
2203
2204        if (rv != 0) {
2205                csio_err(hw, "Config of queues failed!: %d\n", rv);
2206                goto out;
2207        }
2208
2209        for (i = 0; i < hw->num_pports; i++)
2210                hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2211
2212        if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2213                rv = csio_enable_ports(hw);
2214                if (rv != 0) {
2215                        csio_err(hw, "Failed to enable ports: %d\n", rv);
2216                        goto out;
2217                }
2218        }
2219
2220        csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2221        return;
2222
2223free_and_out:
2224        mempool_free(mbp, hw->mb_mempool);
2225out:
2226        return;
2227}
2228
2229#define PF_INTR_MASK (PFSW_F | PFCIM_F)
2230
2231/*
2232 * csio_hw_intr_enable - Enable HW interrupts
2233 * @hw: Pointer to HW module.
2234 *
2235 * Enable interrupts in HW registers.
2236 */
2237static void
2238csio_hw_intr_enable(struct csio_hw *hw)
2239{
2240        uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2241        uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2242        uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2243
2244        /*
2245         * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2246         * by FW, so do nothing for INTX.
2247         */
2248        if (hw->intr_mode == CSIO_IM_MSIX)
2249                csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2250                                   AIVEC_V(AIVEC_M), vec);
2251        else if (hw->intr_mode == CSIO_IM_MSI)
2252                csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2253                                   AIVEC_V(AIVEC_M), 0);
2254
2255        csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2256
2257        /* Turn on MB interrupts - this will internally flush PIO as well */
2258        csio_mb_intr_enable(hw);
2259
2260        /* These are common registers - only a master can modify them */
2261        if (csio_is_hw_master(hw)) {
2262                /*
2263                 * Disable the Serial FLASH interrupt, if enabled!
2264                 */
2265                pl &= (~SF_F);
2266                csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2267
2268                csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2269                              EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2270                              ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2271                              ERR_DATA_CPL_ON_HIGH_QID1_F |
2272                              ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2273                              ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2274                              ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2275                              ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2276                              SGE_INT_ENABLE3_A);
2277                csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2278        }
2279
2280        hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2281
2282}
2283
2284/*
2285 * csio_hw_intr_disable - Disable HW interrupts
2286 * @hw: Pointer to HW module.
2287 *
2288 * Turn off Mailbox and PCI_PF_CFG interrupts.
2289 */
2290void
2291csio_hw_intr_disable(struct csio_hw *hw)
2292{
2293        uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2294
2295        if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2296                return;
2297
2298        hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2299
2300        csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2301        if (csio_is_hw_master(hw))
2302                csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2303
2304        /* Turn off MB interrupts */
2305        csio_mb_intr_disable(hw);
2306
2307}
2308
2309void
2310csio_hw_fatal_err(struct csio_hw *hw)
2311{
2312        csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2313        csio_hw_intr_disable(hw);
2314
2315        /* Do not reset HW, we may need FW state for debugging */
2316        csio_fatal(hw, "HW Fatal error encountered!\n");
2317}
2318
2319/*****************************************************************************/
2320/* START: HW SM                                                              */
2321/*****************************************************************************/
2322/*
2323 * csio_hws_uninit - Uninit state
2324 * @hw - HW module
2325 * @evt - Event
2326 *
2327 */
2328static void
2329csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2330{
2331        hw->prev_evt = hw->cur_evt;
2332        hw->cur_evt = evt;
2333        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2334
2335        switch (evt) {
2336        case CSIO_HWE_CFG:
2337                csio_set_state(&hw->sm, csio_hws_configuring);
2338                csio_hw_configure(hw);
2339                break;
2340
2341        default:
2342                CSIO_INC_STATS(hw, n_evt_unexp);
2343                break;
2344        }
2345}
2346
2347/*
2348 * csio_hws_configuring - Configuring state
2349 * @hw - HW module
2350 * @evt - Event
2351 *
2352 */
2353static void
2354csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2355{
2356        hw->prev_evt = hw->cur_evt;
2357        hw->cur_evt = evt;
2358        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2359
2360        switch (evt) {
2361        case CSIO_HWE_INIT:
2362                csio_set_state(&hw->sm, csio_hws_initializing);
2363                csio_hw_initialize(hw);
2364                break;
2365
2366        case CSIO_HWE_INIT_DONE:
2367                csio_set_state(&hw->sm, csio_hws_ready);
2368                /* Fan out event to all lnode SMs */
2369                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2370                break;
2371
2372        case CSIO_HWE_FATAL:
2373                csio_set_state(&hw->sm, csio_hws_uninit);
2374                break;
2375
2376        case CSIO_HWE_PCI_REMOVE:
2377                csio_do_bye(hw);
2378                break;
2379        default:
2380                CSIO_INC_STATS(hw, n_evt_unexp);
2381                break;
2382        }
2383}
2384
2385/*
2386 * csio_hws_initializing - Initialiazing state
2387 * @hw - HW module
2388 * @evt - Event
2389 *
2390 */
2391static void
2392csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2393{
2394        hw->prev_evt = hw->cur_evt;
2395        hw->cur_evt = evt;
2396        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2397
2398        switch (evt) {
2399        case CSIO_HWE_INIT_DONE:
2400                csio_set_state(&hw->sm, csio_hws_ready);
2401
2402                /* Fan out event to all lnode SMs */
2403                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2404
2405                /* Enable interrupts */
2406                csio_hw_intr_enable(hw);
2407                break;
2408
2409        case CSIO_HWE_FATAL:
2410                csio_set_state(&hw->sm, csio_hws_uninit);
2411                break;
2412
2413        case CSIO_HWE_PCI_REMOVE:
2414                csio_do_bye(hw);
2415                break;
2416
2417        default:
2418                CSIO_INC_STATS(hw, n_evt_unexp);
2419                break;
2420        }
2421}
2422
2423/*
2424 * csio_hws_ready - Ready state
2425 * @hw - HW module
2426 * @evt - Event
2427 *
2428 */
2429static void
2430csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2431{
2432        /* Remember the event */
2433        hw->evtflag = evt;
2434
2435        hw->prev_evt = hw->cur_evt;
2436        hw->cur_evt = evt;
2437        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2438
2439        switch (evt) {
2440        case CSIO_HWE_HBA_RESET:
2441        case CSIO_HWE_FW_DLOAD:
2442        case CSIO_HWE_SUSPEND:
2443        case CSIO_HWE_PCI_REMOVE:
2444        case CSIO_HWE_PCIERR_DETECTED:
2445                csio_set_state(&hw->sm, csio_hws_quiescing);
2446                /* cleanup all outstanding cmds */
2447                if (evt == CSIO_HWE_HBA_RESET ||
2448                    evt == CSIO_HWE_PCIERR_DETECTED)
2449                        csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2450                else
2451                        csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2452
2453                csio_hw_intr_disable(hw);
2454                csio_hw_mbm_cleanup(hw);
2455                csio_evtq_stop(hw);
2456                csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2457                csio_evtq_flush(hw);
2458                csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2459                csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2460                break;
2461
2462        case CSIO_HWE_FATAL:
2463                csio_set_state(&hw->sm, csio_hws_uninit);
2464                break;
2465
2466        default:
2467                CSIO_INC_STATS(hw, n_evt_unexp);
2468                break;
2469        }
2470}
2471
2472/*
2473 * csio_hws_quiescing - Quiescing state
2474 * @hw - HW module
2475 * @evt - Event
2476 *
2477 */
2478static void
2479csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2480{
2481        hw->prev_evt = hw->cur_evt;
2482        hw->cur_evt = evt;
2483        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2484
2485        switch (evt) {
2486        case CSIO_HWE_QUIESCED:
2487                switch (hw->evtflag) {
2488                case CSIO_HWE_FW_DLOAD:
2489                        csio_set_state(&hw->sm, csio_hws_resetting);
2490                        /* Download firmware */
2491                        /* Fall through */
2492
2493                case CSIO_HWE_HBA_RESET:
2494                        csio_set_state(&hw->sm, csio_hws_resetting);
2495                        /* Start reset of the HBA */
2496                        csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2497                        csio_wr_destroy_queues(hw, false);
2498                        csio_do_reset(hw, false);
2499                        csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2500                        break;
2501
2502                case CSIO_HWE_PCI_REMOVE:
2503                        csio_set_state(&hw->sm, csio_hws_removing);
2504                        csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2505                        csio_wr_destroy_queues(hw, true);
2506                        /* Now send the bye command */
2507                        csio_do_bye(hw);
2508                        break;
2509
2510                case CSIO_HWE_SUSPEND:
2511                        csio_set_state(&hw->sm, csio_hws_quiesced);
2512                        break;
2513
2514                case CSIO_HWE_PCIERR_DETECTED:
2515                        csio_set_state(&hw->sm, csio_hws_pcierr);
2516                        csio_wr_destroy_queues(hw, false);
2517                        break;
2518
2519                default:
2520                        CSIO_INC_STATS(hw, n_evt_unexp);
2521                        break;
2522
2523                }
2524                break;
2525
2526        default:
2527                CSIO_INC_STATS(hw, n_evt_unexp);
2528                break;
2529        }
2530}
2531
2532/*
2533 * csio_hws_quiesced - Quiesced state
2534 * @hw - HW module
2535 * @evt - Event
2536 *
2537 */
2538static void
2539csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2540{
2541        hw->prev_evt = hw->cur_evt;
2542        hw->cur_evt = evt;
2543        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2544
2545        switch (evt) {
2546        case CSIO_HWE_RESUME:
2547                csio_set_state(&hw->sm, csio_hws_configuring);
2548                csio_hw_configure(hw);
2549                break;
2550
2551        default:
2552                CSIO_INC_STATS(hw, n_evt_unexp);
2553                break;
2554        }
2555}
2556
2557/*
2558 * csio_hws_resetting - HW Resetting state
2559 * @hw - HW module
2560 * @evt - Event
2561 *
2562 */
2563static void
2564csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2565{
2566        hw->prev_evt = hw->cur_evt;
2567        hw->cur_evt = evt;
2568        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2569
2570        switch (evt) {
2571        case CSIO_HWE_HBA_RESET_DONE:
2572                csio_evtq_start(hw);
2573                csio_set_state(&hw->sm, csio_hws_configuring);
2574                csio_hw_configure(hw);
2575                break;
2576
2577        default:
2578                CSIO_INC_STATS(hw, n_evt_unexp);
2579                break;
2580        }
2581}
2582
2583/*
2584 * csio_hws_removing - PCI Hotplug removing state
2585 * @hw - HW module
2586 * @evt - Event
2587 *
2588 */
2589static void
2590csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2591{
2592        hw->prev_evt = hw->cur_evt;
2593        hw->cur_evt = evt;
2594        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2595
2596        switch (evt) {
2597        case CSIO_HWE_HBA_RESET:
2598                if (!csio_is_hw_master(hw))
2599                        break;
2600                /*
2601                 * The BYE should have alerady been issued, so we cant
2602                 * use the mailbox interface. Hence we use the PL_RST
2603                 * register directly.
2604                 */
2605                csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2606                csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2607                mdelay(2000);
2608                break;
2609
2610        /* Should never receive any new events */
2611        default:
2612                CSIO_INC_STATS(hw, n_evt_unexp);
2613                break;
2614
2615        }
2616}
2617
2618/*
2619 * csio_hws_pcierr - PCI Error state
2620 * @hw - HW module
2621 * @evt - Event
2622 *
2623 */
2624static void
2625csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2626{
2627        hw->prev_evt = hw->cur_evt;
2628        hw->cur_evt = evt;
2629        CSIO_INC_STATS(hw, n_evt_sm[evt]);
2630
2631        switch (evt) {
2632        case CSIO_HWE_PCIERR_SLOT_RESET:
2633                csio_evtq_start(hw);
2634                csio_set_state(&hw->sm, csio_hws_configuring);
2635                csio_hw_configure(hw);
2636                break;
2637
2638        default:
2639                CSIO_INC_STATS(hw, n_evt_unexp);
2640                break;
2641        }
2642}
2643
2644/*****************************************************************************/
2645/* END: HW SM                                                                */
2646/*****************************************************************************/
2647
2648/*
2649 *      csio_handle_intr_status - table driven interrupt handler
2650 *      @hw: HW instance
2651 *      @reg: the interrupt status register to process
2652 *      @acts: table of interrupt actions
2653 *
2654 *      A table driven interrupt handler that applies a set of masks to an
2655 *      interrupt status word and performs the corresponding actions if the
2656 *      interrupts described by the mask have occured.  The actions include
2657 *      optionally emitting a warning or alert message. The table is terminated
2658 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
2659 *      conditions.
2660 */
2661int
2662csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2663                                 const struct intr_info *acts)
2664{
2665        int fatal = 0;
2666        unsigned int mask = 0;
2667        unsigned int status = csio_rd_reg32(hw, reg);
2668
2669        for ( ; acts->mask; ++acts) {
2670                if (!(status & acts->mask))
2671                        continue;
2672                if (acts->fatal) {
2673                        fatal++;
2674                        csio_fatal(hw, "Fatal %s (0x%x)\n",
2675                                    acts->msg, status & acts->mask);
2676                } else if (acts->msg)
2677                        csio_info(hw, "%s (0x%x)\n",
2678                                    acts->msg, status & acts->mask);
2679                mask |= acts->mask;
2680        }
2681        status &= mask;
2682        if (status)                           /* clear processed interrupts */
2683                csio_wr_reg32(hw, status, reg);
2684        return fatal;
2685}
2686
2687/*
2688 * TP interrupt handler.
2689 */
2690static void csio_tp_intr_handler(struct csio_hw *hw)
2691{
2692        static struct intr_info tp_intr_info[] = {
2693                { 0x3fffffff, "TP parity error", -1, 1 },
2694                { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2695                { 0, NULL, 0, 0 }
2696        };
2697
2698        if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2699                csio_hw_fatal_err(hw);
2700}
2701
2702/*
2703 * SGE interrupt handler.
2704 */
2705static void csio_sge_intr_handler(struct csio_hw *hw)
2706{
2707        uint64_t v;
2708
2709        static struct intr_info sge_intr_info[] = {
2710                { ERR_CPL_EXCEED_IQE_SIZE_F,
2711                  "SGE received CPL exceeding IQE size", -1, 1 },
2712                { ERR_INVALID_CIDX_INC_F,
2713                  "SGE GTS CIDX increment too large", -1, 0 },
2714                { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2715                { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2716                { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2717                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2718                { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2719                  0 },
2720                { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2721                  0 },
2722                { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2723                  0 },
2724                { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2725                  0 },
2726                { ERR_ING_CTXT_PRIO_F,
2727                  "SGE too many priority ingress contexts", -1, 0 },
2728                { ERR_EGR_CTXT_PRIO_F,
2729                  "SGE too many priority egress contexts", -1, 0 },
2730                { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2731                { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2732                { 0, NULL, 0, 0 }
2733        };
2734
2735        v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2736            ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2737        if (v) {
2738                csio_fatal(hw, "SGE parity error (%#llx)\n",
2739                            (unsigned long long)v);
2740                csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2741                                                SGE_INT_CAUSE1_A);
2742                csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2743        }
2744
2745        v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2746
2747        if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2748            v != 0)
2749                csio_hw_fatal_err(hw);
2750}
2751
2752#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2753                      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2754#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2755                      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2756
2757/*
2758 * CIM interrupt handler.
2759 */
2760static void csio_cim_intr_handler(struct csio_hw *hw)
2761{
2762        static struct intr_info cim_intr_info[] = {
2763                { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2764                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2765                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2766                { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2767                { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2768                { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2769                { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2770                { 0, NULL, 0, 0 }
2771        };
2772        static struct intr_info cim_upintr_info[] = {
2773                { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2774                { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2775                { ILLWRINT_F, "CIM illegal write", -1, 1 },
2776                { ILLRDINT_F, "CIM illegal read", -1, 1 },
2777                { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2778                { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2779                { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2780                { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2781                { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2782                { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2783                { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2784                { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2785                { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2786                { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2787                { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2788                { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2789                { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2790                { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2791                { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2792                { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2793                { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2794                { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2795                { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2796                { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2797                { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2798                { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2799                { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2800                { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2801                { 0, NULL, 0, 0 }
2802        };
2803
2804        int fat;
2805
2806        fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2807                                      cim_intr_info) +
2808              csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2809                                      cim_upintr_info);
2810        if (fat)
2811                csio_hw_fatal_err(hw);
2812}
2813
2814/*
2815 * ULP RX interrupt handler.
2816 */
2817static void csio_ulprx_intr_handler(struct csio_hw *hw)
2818{
2819        static struct intr_info ulprx_intr_info[] = {
2820                { 0x1800000, "ULPRX context error", -1, 1 },
2821                { 0x7fffff, "ULPRX parity error", -1, 1 },
2822                { 0, NULL, 0, 0 }
2823        };
2824
2825        if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2826                csio_hw_fatal_err(hw);
2827}
2828
2829/*
2830 * ULP TX interrupt handler.
2831 */
2832static void csio_ulptx_intr_handler(struct csio_hw *hw)
2833{
2834        static struct intr_info ulptx_intr_info[] = {
2835                { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2836                  0 },
2837                { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2838                  0 },
2839                { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2840                  0 },
2841                { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2842                  0 },
2843                { 0xfffffff, "ULPTX parity error", -1, 1 },
2844                { 0, NULL, 0, 0 }
2845        };
2846
2847        if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2848                csio_hw_fatal_err(hw);
2849}
2850
2851/*
2852 * PM TX interrupt handler.
2853 */
2854static void csio_pmtx_intr_handler(struct csio_hw *hw)
2855{
2856        static struct intr_info pmtx_intr_info[] = {
2857                { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2858                { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2859                { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2860                { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2861                { 0xffffff0, "PMTX framing error", -1, 1 },
2862                { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2863                { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2864                  1 },
2865                { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2866                { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2867                { 0, NULL, 0, 0 }
2868        };
2869
2870        if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2871                csio_hw_fatal_err(hw);
2872}
2873
2874/*
2875 * PM RX interrupt handler.
2876 */
2877static void csio_pmrx_intr_handler(struct csio_hw *hw)
2878{
2879        static struct intr_info pmrx_intr_info[] = {
2880                { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2881                { 0x3ffff0, "PMRX framing error", -1, 1 },
2882                { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2883                { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2884                  1 },
2885                { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2886                { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2887                { 0, NULL, 0, 0 }
2888        };
2889
2890        if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2891                csio_hw_fatal_err(hw);
2892}
2893
2894/*
2895 * CPL switch interrupt handler.
2896 */
2897static void csio_cplsw_intr_handler(struct csio_hw *hw)
2898{
2899        static struct intr_info cplsw_intr_info[] = {
2900                { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2901                { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2902                { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2903                { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2904                { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2905                { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2906                { 0, NULL, 0, 0 }
2907        };
2908
2909        if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2910                csio_hw_fatal_err(hw);
2911}
2912
2913/*
2914 * LE interrupt handler.
2915 */
2916static void csio_le_intr_handler(struct csio_hw *hw)
2917{
2918        static struct intr_info le_intr_info[] = {
2919                { LIPMISS_F, "LE LIP miss", -1, 0 },
2920                { LIP0_F, "LE 0 LIP error", -1, 0 },
2921                { PARITYERR_F, "LE parity error", -1, 1 },
2922                { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2923                { REQQPARERR_F, "LE request queue parity error", -1, 1 },
2924                { 0, NULL, 0, 0 }
2925        };
2926
2927        if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, le_intr_info))
2928                csio_hw_fatal_err(hw);
2929}
2930
2931/*
2932 * MPS interrupt handler.
2933 */
2934static void csio_mps_intr_handler(struct csio_hw *hw)
2935{
2936        static struct intr_info mps_rx_intr_info[] = {
2937                { 0xffffff, "MPS Rx parity error", -1, 1 },
2938                { 0, NULL, 0, 0 }
2939        };
2940        static struct intr_info mps_tx_intr_info[] = {
2941                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2942                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2943                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2944                  -1, 1 },
2945                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2946                  -1, 1 },
2947                { BUBBLE_F, "MPS Tx underflow", -1, 1 },
2948                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2949                { FRMERR_F, "MPS Tx framing error", -1, 1 },
2950                { 0, NULL, 0, 0 }
2951        };
2952        static struct intr_info mps_trc_intr_info[] = {
2953                { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2954                { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2955                  -1, 1 },
2956                { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2957                { 0, NULL, 0, 0 }
2958        };
2959        static struct intr_info mps_stat_sram_intr_info[] = {
2960                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2961                { 0, NULL, 0, 0 }
2962        };
2963        static struct intr_info mps_stat_tx_intr_info[] = {
2964                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2965                { 0, NULL, 0, 0 }
2966        };
2967        static struct intr_info mps_stat_rx_intr_info[] = {
2968                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2969                { 0, NULL, 0, 0 }
2970        };
2971        static struct intr_info mps_cls_intr_info[] = {
2972                { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2973                { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2974                { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2975                { 0, NULL, 0, 0 }
2976        };
2977
2978        int fat;
2979
2980        fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
2981                                      mps_rx_intr_info) +
2982              csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
2983                                      mps_tx_intr_info) +
2984              csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
2985                                      mps_trc_intr_info) +
2986              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2987                                      mps_stat_sram_intr_info) +
2988              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2989                                      mps_stat_tx_intr_info) +
2990              csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2991                                      mps_stat_rx_intr_info) +
2992              csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
2993                                      mps_cls_intr_info);
2994
2995        csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
2996        csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
2997        if (fat)
2998                csio_hw_fatal_err(hw);
2999}
3000
3001#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3002                      ECC_UE_INT_CAUSE_F)
3003
3004/*
3005 * EDC/MC interrupt handler.
3006 */
3007static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3008{
3009        static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3010
3011        unsigned int addr, cnt_addr, v;
3012
3013        if (idx <= MEM_EDC1) {
3014                addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3015                cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3016        } else {
3017                addr = MC_INT_CAUSE_A;
3018                cnt_addr = MC_ECC_STATUS_A;
3019        }
3020
3021        v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3022        if (v & PERR_INT_CAUSE_F)
3023                csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3024        if (v & ECC_CE_INT_CAUSE_F) {
3025                uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3026
3027                csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3028                csio_warn(hw, "%u %s correctable ECC data error%s\n",
3029                            cnt, name[idx], cnt > 1 ? "s" : "");
3030        }
3031        if (v & ECC_UE_INT_CAUSE_F)
3032                csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3033
3034        csio_wr_reg32(hw, v, addr);
3035        if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3036                csio_hw_fatal_err(hw);
3037}
3038
3039/*
3040 * MA interrupt handler.
3041 */
3042static void csio_ma_intr_handler(struct csio_hw *hw)
3043{
3044        uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3045
3046        if (status & MEM_PERR_INT_CAUSE_F)
3047                csio_fatal(hw, "MA parity error, parity status %#x\n",
3048                            csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3049        if (status & MEM_WRAP_INT_CAUSE_F) {
3050                v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3051                csio_fatal(hw,
3052                   "MA address wrap-around error by client %u to address %#x\n",
3053                   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3054        }
3055        csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3056        csio_hw_fatal_err(hw);
3057}
3058
3059/*
3060 * SMB interrupt handler.
3061 */
3062static void csio_smb_intr_handler(struct csio_hw *hw)
3063{
3064        static struct intr_info smb_intr_info[] = {
3065                { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3066                { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3067                { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3068                { 0, NULL, 0, 0 }
3069        };
3070
3071        if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3072                csio_hw_fatal_err(hw);
3073}
3074
3075/*
3076 * NC-SI interrupt handler.
3077 */
3078static void csio_ncsi_intr_handler(struct csio_hw *hw)
3079{
3080        static struct intr_info ncsi_intr_info[] = {
3081                { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3082                { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3083                { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3084                { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3085                { 0, NULL, 0, 0 }
3086        };
3087
3088        if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3089                csio_hw_fatal_err(hw);
3090}
3091
3092/*
3093 * XGMAC interrupt handler.
3094 */
3095static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3096{
3097        uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3098
3099        v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3100        if (!v)
3101                return;
3102
3103        if (v & TXFIFO_PRTY_ERR_F)
3104                csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3105        if (v & RXFIFO_PRTY_ERR_F)
3106                csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3107        csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3108        csio_hw_fatal_err(hw);
3109}
3110
3111/*
3112 * PL interrupt handler.
3113 */
3114static void csio_pl_intr_handler(struct csio_hw *hw)
3115{
3116        static struct intr_info pl_intr_info[] = {
3117                { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3118                { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3119                { 0, NULL, 0, 0 }
3120        };
3121
3122        if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3123                csio_hw_fatal_err(hw);
3124}
3125
3126/*
3127 *      csio_hw_slow_intr_handler - control path interrupt handler
3128 *      @hw: HW module
3129 *
3130 *      Interrupt handler for non-data global interrupt events, e.g., errors.
3131 *      The designation 'slow' is because it involves register reads, while
3132 *      data interrupts typically don't involve any MMIOs.
3133 */
3134int
3135csio_hw_slow_intr_handler(struct csio_hw *hw)
3136{
3137        uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3138
3139        if (!(cause & CSIO_GLBL_INTR_MASK)) {
3140                CSIO_INC_STATS(hw, n_plint_unexp);
3141                return 0;
3142        }
3143
3144        csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3145
3146        CSIO_INC_STATS(hw, n_plint_cnt);
3147
3148        if (cause & CIM_F)
3149                csio_cim_intr_handler(hw);
3150
3151        if (cause & MPS_F)
3152                csio_mps_intr_handler(hw);
3153
3154        if (cause & NCSI_F)
3155                csio_ncsi_intr_handler(hw);
3156
3157        if (cause & PL_F)
3158                csio_pl_intr_handler(hw);
3159
3160        if (cause & SMB_F)
3161                csio_smb_intr_handler(hw);
3162
3163        if (cause & XGMAC0_F)
3164                csio_xgmac_intr_handler(hw, 0);
3165
3166        if (cause & XGMAC1_F)
3167                csio_xgmac_intr_handler(hw, 1);
3168
3169        if (cause & XGMAC_KR0_F)
3170                csio_xgmac_intr_handler(hw, 2);
3171
3172        if (cause & XGMAC_KR1_F)
3173                csio_xgmac_intr_handler(hw, 3);
3174
3175        if (cause & PCIE_F)
3176                hw->chip_ops->chip_pcie_intr_handler(hw);
3177
3178        if (cause & MC_F)
3179                csio_mem_intr_handler(hw, MEM_MC);
3180
3181        if (cause & EDC0_F)
3182                csio_mem_intr_handler(hw, MEM_EDC0);
3183
3184        if (cause & EDC1_F)
3185                csio_mem_intr_handler(hw, MEM_EDC1);
3186
3187        if (cause & LE_F)
3188                csio_le_intr_handler(hw);
3189
3190        if (cause & TP_F)
3191                csio_tp_intr_handler(hw);
3192
3193        if (cause & MA_F)
3194                csio_ma_intr_handler(hw);
3195
3196        if (cause & PM_TX_F)
3197                csio_pmtx_intr_handler(hw);
3198
3199        if (cause & PM_RX_F)
3200                csio_pmrx_intr_handler(hw);
3201
3202        if (cause & ULP_RX_F)
3203                csio_ulprx_intr_handler(hw);
3204
3205        if (cause & CPL_SWITCH_F)
3206                csio_cplsw_intr_handler(hw);
3207
3208        if (cause & SGE_F)
3209                csio_sge_intr_handler(hw);
3210
3211        if (cause & ULP_TX_F)
3212                csio_ulptx_intr_handler(hw);
3213
3214        /* Clear the interrupts just processed for which we are the master. */
3215        csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3216        csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3217
3218        return 1;
3219}
3220
3221/*****************************************************************************
3222 * HW <--> mailbox interfacing routines.
3223 ****************************************************************************/
3224/*
3225 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3226 *
3227 * @data: Private data pointer.
3228 *
3229 * Called from worker thread context.
3230 */
3231static void
3232csio_mberr_worker(void *data)
3233{
3234        struct csio_hw *hw = (struct csio_hw *)data;
3235        struct csio_mbm *mbm = &hw->mbm;
3236        LIST_HEAD(cbfn_q);
3237        struct csio_mb *mbp_next;
3238        int rv;
3239
3240        del_timer_sync(&mbm->timer);
3241
3242        spin_lock_irq(&hw->lock);
3243        if (list_empty(&mbm->cbfn_q)) {
3244                spin_unlock_irq(&hw->lock);
3245                return;
3246        }
3247
3248        list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3249        mbm->stats.n_cbfnq = 0;
3250
3251        /* Try to start waiting mailboxes */
3252        if (!list_empty(&mbm->req_q)) {
3253                mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3254                list_del_init(&mbp_next->list);
3255
3256                rv = csio_mb_issue(hw, mbp_next);
3257                if (rv != 0)
3258                        list_add_tail(&mbp_next->list, &mbm->req_q);
3259                else
3260                        CSIO_DEC_STATS(mbm, n_activeq);
3261        }
3262        spin_unlock_irq(&hw->lock);
3263
3264        /* Now callback completions */
3265        csio_mb_completions(hw, &cbfn_q);
3266}
3267
3268/*
3269 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3270 *
3271 * @data: private data pointer
3272 *
3273 **/
3274static void
3275csio_hw_mb_timer(uintptr_t data)
3276{
3277        struct csio_hw *hw = (struct csio_hw *)data;
3278        struct csio_mb *mbp = NULL;
3279
3280        spin_lock_irq(&hw->lock);
3281        mbp = csio_mb_tmo_handler(hw);
3282        spin_unlock_irq(&hw->lock);
3283
3284        /* Call back the function for the timed-out Mailbox */
3285        if (mbp)
3286                mbp->mb_cbfn(hw, mbp);
3287
3288}
3289
3290/*
3291 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3292 * @hw: HW module
3293 *
3294 * Called with lock held, should exit with lock held.
3295 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3296 * into a local queue. Drops lock and calls the completions. Holds
3297 * lock and returns.
3298 */
3299static void
3300csio_hw_mbm_cleanup(struct csio_hw *hw)
3301{
3302        LIST_HEAD(cbfn_q);
3303
3304        csio_mb_cancel_all(hw, &cbfn_q);
3305
3306        spin_unlock_irq(&hw->lock);
3307        csio_mb_completions(hw, &cbfn_q);
3308        spin_lock_irq(&hw->lock);
3309}
3310
3311/*****************************************************************************
3312 * Event handling
3313 ****************************************************************************/
3314int
3315csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3316                        uint16_t len)
3317{
3318        struct csio_evt_msg *evt_entry = NULL;
3319
3320        if (type >= CSIO_EVT_MAX)
3321                return -EINVAL;
3322
3323        if (len > CSIO_EVT_MSG_SIZE)
3324                return -EINVAL;
3325
3326        if (hw->flags & CSIO_HWF_FWEVT_STOP)
3327                return -EINVAL;
3328
3329        if (list_empty(&hw->evt_free_q)) {
3330                csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3331                         type, len);
3332                return -ENOMEM;
3333        }
3334
3335        evt_entry = list_first_entry(&hw->evt_free_q,
3336                                     struct csio_evt_msg, list);
3337        list_del_init(&evt_entry->list);
3338
3339        /* copy event msg and queue the event */
3340        evt_entry->type = type;
3341        memcpy((void *)evt_entry->data, evt_msg, len);
3342        list_add_tail(&evt_entry->list, &hw->evt_active_q);
3343
3344        CSIO_DEC_STATS(hw, n_evt_freeq);
3345        CSIO_INC_STATS(hw, n_evt_activeq);
3346
3347        return 0;
3348}
3349
3350static int
3351csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3352                        uint16_t len, bool msg_sg)
3353{
3354        struct csio_evt_msg *evt_entry = NULL;
3355        struct csio_fl_dma_buf *fl_sg;
3356        uint32_t off = 0;
3357        unsigned long flags;
3358        int n, ret = 0;
3359
3360        if (type >= CSIO_EVT_MAX)
3361                return -EINVAL;
3362
3363        if (len > CSIO_EVT_MSG_SIZE)
3364                return -EINVAL;
3365
3366        spin_lock_irqsave(&hw->lock, flags);
3367        if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3368                ret = -EINVAL;
3369                goto out;
3370        }
3371
3372        if (list_empty(&hw->evt_free_q)) {
3373                csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3374                         type, len);
3375                ret = -ENOMEM;
3376                goto out;
3377        }
3378
3379        evt_entry = list_first_entry(&hw->evt_free_q,
3380                                     struct csio_evt_msg, list);
3381        list_del_init(&evt_entry->list);
3382
3383        /* copy event msg and queue the event */
3384        evt_entry->type = type;
3385
3386        /* If Payload in SG list*/
3387        if (msg_sg) {
3388                fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3389                for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3390                        memcpy((void *)((uintptr_t)evt_entry->data + off),
3391                                fl_sg->flbufs[n].vaddr,
3392                                fl_sg->flbufs[n].len);
3393                        off += fl_sg->flbufs[n].len;
3394                }
3395        } else
3396                memcpy((void *)evt_entry->data, evt_msg, len);
3397
3398        list_add_tail(&evt_entry->list, &hw->evt_active_q);
3399        CSIO_DEC_STATS(hw, n_evt_freeq);
3400        CSIO_INC_STATS(hw, n_evt_activeq);
3401out:
3402        spin_unlock_irqrestore(&hw->lock, flags);
3403        return ret;
3404}
3405
3406static void
3407csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3408{
3409        if (evt_entry) {
3410                spin_lock_irq(&hw->lock);
3411                list_del_init(&evt_entry->list);
3412                list_add_tail(&evt_entry->list, &hw->evt_free_q);
3413                CSIO_DEC_STATS(hw, n_evt_activeq);
3414                CSIO_INC_STATS(hw, n_evt_freeq);
3415                spin_unlock_irq(&hw->lock);
3416        }
3417}
3418
3419void
3420csio_evtq_flush(struct csio_hw *hw)
3421{
3422        uint32_t count;
3423        count = 30;
3424        while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3425                spin_unlock_irq(&hw->lock);
3426                msleep(2000);
3427                spin_lock_irq(&hw->lock);
3428        }
3429
3430        CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3431}
3432
3433static void
3434csio_evtq_stop(struct csio_hw *hw)
3435{
3436        hw->flags |= CSIO_HWF_FWEVT_STOP;
3437}
3438
3439static void
3440csio_evtq_start(struct csio_hw *hw)
3441{
3442        hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3443}
3444
3445static void
3446csio_evtq_cleanup(struct csio_hw *hw)
3447{
3448        struct list_head *evt_entry, *next_entry;
3449
3450        /* Release outstanding events from activeq to freeq*/
3451        if (!list_empty(&hw->evt_active_q))
3452                list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3453
3454        hw->stats.n_evt_activeq = 0;
3455        hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3456
3457        /* Freeup event entry */
3458        list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3459                kfree(evt_entry);
3460                CSIO_DEC_STATS(hw, n_evt_freeq);
3461        }
3462
3463        hw->stats.n_evt_freeq = 0;
3464}
3465
3466
3467static void
3468csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3469                          struct csio_fl_dma_buf *flb, void *priv)
3470{
3471        __u8 op;
3472        void *msg = NULL;
3473        uint32_t msg_len = 0;
3474        bool msg_sg = 0;
3475
3476        op = ((struct rss_header *) wr)->opcode;
3477        if (op == CPL_FW6_PLD) {
3478                CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3479                if (!flb || !flb->totlen) {
3480                        CSIO_INC_STATS(hw, n_cpl_unexp);
3481                        return;
3482                }
3483
3484                msg = (void *) flb;
3485                msg_len = flb->totlen;
3486                msg_sg = 1;
3487        } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3488
3489                CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3490                /* skip RSS header */
3491                msg = (void *)((uintptr_t)wr + sizeof(__be64));
3492                msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3493                           sizeof(struct cpl_fw4_msg);
3494        } else {
3495                csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3496                CSIO_INC_STATS(hw, n_cpl_unexp);
3497                return;
3498        }
3499
3500        /*
3501         * Enqueue event to EventQ. Events processing happens
3502         * in Event worker thread context
3503         */
3504        if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3505                                  (uint16_t)msg_len, msg_sg))
3506                CSIO_INC_STATS(hw, n_evt_drop);
3507}
3508
3509void
3510csio_evtq_worker(struct work_struct *work)
3511{
3512        struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3513        struct list_head *evt_entry, *next_entry;
3514        LIST_HEAD(evt_q);
3515        struct csio_evt_msg     *evt_msg;
3516        struct cpl_fw6_msg *msg;
3517        struct csio_rnode *rn;
3518        int rv = 0;
3519        uint8_t evtq_stop = 0;
3520
3521        csio_dbg(hw, "event worker thread active evts#%d\n",
3522                 hw->stats.n_evt_activeq);
3523
3524        spin_lock_irq(&hw->lock);
3525        while (!list_empty(&hw->evt_active_q)) {
3526                list_splice_tail_init(&hw->evt_active_q, &evt_q);
3527                spin_unlock_irq(&hw->lock);
3528
3529                list_for_each_safe(evt_entry, next_entry, &evt_q) {
3530                        evt_msg = (struct csio_evt_msg *) evt_entry;
3531
3532                        /* Drop events if queue is STOPPED */
3533                        spin_lock_irq(&hw->lock);
3534                        if (hw->flags & CSIO_HWF_FWEVT_STOP)
3535                                evtq_stop = 1;
3536                        spin_unlock_irq(&hw->lock);
3537                        if (evtq_stop) {
3538                                CSIO_INC_STATS(hw, n_evt_drop);
3539                                goto free_evt;
3540                        }
3541
3542                        switch (evt_msg->type) {
3543                        case CSIO_EVT_FW:
3544                                msg = (struct cpl_fw6_msg *)(evt_msg->data);
3545
3546                                if ((msg->opcode == CPL_FW6_MSG ||
3547                                     msg->opcode == CPL_FW4_MSG) &&
3548                                    !msg->type) {
3549                                        rv = csio_mb_fwevt_handler(hw,
3550                                                                msg->data);
3551                                        if (!rv)
3552                                                break;
3553                                        /* Handle any remaining fw events */
3554                                        csio_fcoe_fwevt_handler(hw,
3555                                                        msg->opcode, msg->data);
3556                                } else if (msg->opcode == CPL_FW6_PLD) {
3557
3558                                        csio_fcoe_fwevt_handler(hw,
3559                                                        msg->opcode, msg->data);
3560                                } else {
3561                                        csio_warn(hw,
3562                                             "Unhandled FW msg op %x type %x\n",
3563                                                  msg->opcode, msg->type);
3564                                        CSIO_INC_STATS(hw, n_evt_drop);
3565                                }
3566                                break;
3567
3568                        case CSIO_EVT_MBX:
3569                                csio_mberr_worker(hw);
3570                                break;
3571
3572                        case CSIO_EVT_DEV_LOSS:
3573                                memcpy(&rn, evt_msg->data, sizeof(rn));
3574                                csio_rnode_devloss_handler(rn);
3575                                break;
3576
3577                        default:
3578                                csio_warn(hw, "Unhandled event %x on evtq\n",
3579                                          evt_msg->type);
3580                                CSIO_INC_STATS(hw, n_evt_unexp);
3581                                break;
3582                        }
3583free_evt:
3584                        csio_free_evt(hw, evt_msg);
3585                }
3586
3587                spin_lock_irq(&hw->lock);
3588        }
3589        hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3590        spin_unlock_irq(&hw->lock);
3591}
3592
3593int
3594csio_fwevtq_handler(struct csio_hw *hw)
3595{
3596        int rv;
3597
3598        if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3599                CSIO_INC_STATS(hw, n_int_stray);
3600                return -EINVAL;
3601        }
3602
3603        rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3604                           csio_process_fwevtq_entry, NULL);
3605        return rv;
3606}
3607
3608/****************************************************************************
3609 * Entry points
3610 ****************************************************************************/
3611
3612/* Management module */
3613/*
3614 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3615 * mgmt - mgmt module
3616 * @io_req - io request
3617 *
3618 * Return - 0:if given IO Req exists in active Q.
3619 *          -EINVAL  :if lookup fails.
3620 */
3621int
3622csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3623{
3624        struct list_head *tmp;
3625
3626        /* Lookup ioreq in the ACTIVEQ */
3627        list_for_each(tmp, &mgmtm->active_q) {
3628                if (io_req == (struct csio_ioreq *)tmp)
3629                        return 0;
3630        }
3631        return -EINVAL;
3632}
3633
3634#define ECM_MIN_TMO     1000    /* Minimum timeout value for req */
3635
3636/*
3637 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3638 * @data - Event data.
3639 *
3640 * Return - none.
3641 */
3642static void
3643csio_mgmt_tmo_handler(uintptr_t data)
3644{
3645        struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3646        struct list_head *tmp;
3647        struct csio_ioreq *io_req;
3648
3649        csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3650
3651        spin_lock_irq(&mgmtm->hw->lock);
3652
3653        list_for_each(tmp, &mgmtm->active_q) {
3654                io_req = (struct csio_ioreq *) tmp;
3655                io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3656
3657                if (!io_req->tmo) {
3658                        /* Dequeue the request from retry Q. */
3659                        tmp = csio_list_prev(tmp);
3660                        list_del_init(&io_req->sm.sm_list);
3661                        if (io_req->io_cbfn) {
3662                                /* io_req will be freed by completion handler */
3663                                io_req->wr_status = -ETIMEDOUT;
3664                                io_req->io_cbfn(mgmtm->hw, io_req);
3665                        } else {
3666                                CSIO_DB_ASSERT(0);
3667                        }
3668                }
3669        }
3670
3671        /* If retry queue is not empty, re-arm timer */
3672        if (!list_empty(&mgmtm->active_q))
3673                mod_timer(&mgmtm->mgmt_timer,
3674                          jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3675        spin_unlock_irq(&mgmtm->hw->lock);
3676}
3677
3678static void
3679csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3680{
3681        struct csio_hw *hw = mgmtm->hw;
3682        struct csio_ioreq *io_req;
3683        struct list_head *tmp;
3684        uint32_t count;
3685
3686        count = 30;
3687        /* Wait for all outstanding req to complete gracefully */
3688        while ((!list_empty(&mgmtm->active_q)) && count--) {
3689                spin_unlock_irq(&hw->lock);
3690                msleep(2000);
3691                spin_lock_irq(&hw->lock);
3692        }
3693
3694        /* release outstanding req from ACTIVEQ */
3695        list_for_each(tmp, &mgmtm->active_q) {
3696                io_req = (struct csio_ioreq *) tmp;
3697                tmp = csio_list_prev(tmp);
3698                list_del_init(&io_req->sm.sm_list);
3699                mgmtm->stats.n_active--;
3700                if (io_req->io_cbfn) {
3701                        /* io_req will be freed by completion handler */
3702                        io_req->wr_status = -ETIMEDOUT;
3703                        io_req->io_cbfn(mgmtm->hw, io_req);
3704                }
3705        }
3706}
3707
3708/*
3709 * csio_mgmt_init - Mgmt module init entry point
3710 * @mgmtsm - mgmt module
3711 * @hw   - HW module
3712 *
3713 * Initialize mgmt timer, resource wait queue, active queue,
3714 * completion q. Allocate Egress and Ingress
3715 * WR queues and save off the queue index returned by the WR
3716 * module for future use. Allocate and save off mgmt reqs in the
3717 * mgmt_req_freelist for future use. Make sure their SM is initialized
3718 * to uninit state.
3719 * Returns: 0 - on success
3720 *          -ENOMEM   - on error.
3721 */
3722static int
3723csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3724{
3725        struct timer_list *timer = &mgmtm->mgmt_timer;
3726
3727        init_timer(timer);
3728        timer->function = csio_mgmt_tmo_handler;
3729        timer->data = (unsigned long)mgmtm;
3730
3731        INIT_LIST_HEAD(&mgmtm->active_q);
3732        INIT_LIST_HEAD(&mgmtm->cbfn_q);
3733
3734        mgmtm->hw = hw;
3735        /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3736
3737        return 0;
3738}
3739
3740/*
3741 * csio_mgmtm_exit - MGMT module exit entry point
3742 * @mgmtsm - mgmt module
3743 *
3744 * This function called during MGMT module uninit.
3745 * Stop timers, free ioreqs allocated.
3746 * Returns: None
3747 *
3748 */
3749static void
3750csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3751{
3752        del_timer_sync(&mgmtm->mgmt_timer);
3753}
3754
3755
3756/**
3757 * csio_hw_start - Kicks off the HW State machine
3758 * @hw:         Pointer to HW module.
3759 *
3760 * It is assumed that the initialization is a synchronous operation.
3761 * So when we return afer posting the event, the HW SM should be in
3762 * the ready state, if there were no errors during init.
3763 */
3764int
3765csio_hw_start(struct csio_hw *hw)
3766{
3767        spin_lock_irq(&hw->lock);
3768        csio_post_event(&hw->sm, CSIO_HWE_CFG);
3769        spin_unlock_irq(&hw->lock);
3770
3771        if (csio_is_hw_ready(hw))
3772                return 0;
3773        else
3774                return -EINVAL;
3775}
3776
3777int
3778csio_hw_stop(struct csio_hw *hw)
3779{
3780        csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3781
3782        if (csio_is_hw_removing(hw))
3783                return 0;
3784        else
3785                return -EINVAL;
3786}
3787
3788/* Max reset retries */
3789#define CSIO_MAX_RESET_RETRIES  3
3790
3791/**
3792 * csio_hw_reset - Reset the hardware
3793 * @hw:         HW module.
3794 *
3795 * Caller should hold lock across this function.
3796 */
3797int
3798csio_hw_reset(struct csio_hw *hw)
3799{
3800        if (!csio_is_hw_master(hw))
3801                return -EPERM;
3802
3803        if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3804                csio_dbg(hw, "Max hw reset attempts reached..");
3805                return -EINVAL;
3806        }
3807
3808        hw->rst_retries++;
3809        csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3810
3811        if (csio_is_hw_ready(hw)) {
3812                hw->rst_retries = 0;
3813                hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3814                return 0;
3815        } else
3816                return -EINVAL;
3817}
3818
3819/*
3820 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3821 * @hw: HW module.
3822 */
3823static void
3824csio_hw_get_device_id(struct csio_hw *hw)
3825{
3826        /* Is the adapter device id cached already ?*/
3827        if (csio_is_dev_id_cached(hw))
3828                return;
3829
3830        /* Get the PCI vendor & device id */
3831        pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3832                             &hw->params.pci.vendor_id);
3833        pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3834                             &hw->params.pci.device_id);
3835
3836        csio_dev_id_cached(hw);
3837        hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3838
3839} /* csio_hw_get_device_id */
3840
3841/*
3842 * csio_hw_set_description - Set the model, description of the hw.
3843 * @hw: HW module.
3844 * @ven_id: PCI Vendor ID
3845 * @dev_id: PCI Device ID
3846 */
3847static void
3848csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3849{
3850        uint32_t adap_type, prot_type;
3851
3852        if (ven_id == CSIO_VENDOR_ID) {
3853                prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3854                adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3855
3856                if (prot_type == CSIO_T5_FCOE_ASIC) {
3857                        memcpy(hw->hw_ver,
3858                               csio_t5_fcoe_adapters[adap_type].model_no, 16);
3859                        memcpy(hw->model_desc,
3860                               csio_t5_fcoe_adapters[adap_type].description,
3861                               32);
3862                } else {
3863                        char tempName[32] = "Chelsio FCoE Controller";
3864                        memcpy(hw->model_desc, tempName, 32);
3865                }
3866        }
3867} /* csio_hw_set_description */
3868
3869/**
3870 * csio_hw_init - Initialize HW module.
3871 * @hw:         Pointer to HW module.
3872 *
3873 * Initialize the members of the HW module.
3874 */
3875int
3876csio_hw_init(struct csio_hw *hw)
3877{
3878        int rv = -EINVAL;
3879        uint32_t i;
3880        uint16_t ven_id, dev_id;
3881        struct csio_evt_msg     *evt_entry;
3882
3883        INIT_LIST_HEAD(&hw->sm.sm_list);
3884        csio_init_state(&hw->sm, csio_hws_uninit);
3885        spin_lock_init(&hw->lock);
3886        INIT_LIST_HEAD(&hw->sln_head);
3887
3888        /* Get the PCI vendor & device id */
3889        csio_hw_get_device_id(hw);
3890
3891        strcpy(hw->name, CSIO_HW_NAME);
3892
3893        /* Initialize the HW chip ops T5 specific ops */
3894        hw->chip_ops = &t5_ops;
3895
3896        /* Set the model & its description */
3897
3898        ven_id = hw->params.pci.vendor_id;
3899        dev_id = hw->params.pci.device_id;
3900
3901        csio_hw_set_description(hw, ven_id, dev_id);
3902
3903        /* Initialize default log level */
3904        hw->params.log_level = (uint32_t) csio_dbg_level;
3905
3906        csio_set_fwevt_intr_idx(hw, -1);
3907        csio_set_nondata_intr_idx(hw, -1);
3908
3909        /* Init all the modules: Mailbox, WorkRequest and Transport */
3910        if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3911                goto err;
3912
3913        rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3914        if (rv)
3915                goto err_mbm_exit;
3916
3917        rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3918        if (rv)
3919                goto err_wrm_exit;
3920
3921        rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3922        if (rv)
3923                goto err_scsim_exit;
3924        /* Pre-allocate evtq and initialize them */
3925        INIT_LIST_HEAD(&hw->evt_active_q);
3926        INIT_LIST_HEAD(&hw->evt_free_q);
3927        for (i = 0; i < csio_evtq_sz; i++) {
3928
3929                evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3930                if (!evt_entry) {
3931                        rv = -ENOMEM;
3932                        csio_err(hw, "Failed to initialize eventq");
3933                        goto err_evtq_cleanup;
3934                }
3935
3936                list_add_tail(&evt_entry->list, &hw->evt_free_q);
3937                CSIO_INC_STATS(hw, n_evt_freeq);
3938        }
3939
3940        hw->dev_num = dev_num;
3941        dev_num++;
3942
3943        return 0;
3944
3945err_evtq_cleanup:
3946        csio_evtq_cleanup(hw);
3947        csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3948err_scsim_exit:
3949        csio_scsim_exit(csio_hw_to_scsim(hw));
3950err_wrm_exit:
3951        csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3952err_mbm_exit:
3953        csio_mbm_exit(csio_hw_to_mbm(hw));
3954err:
3955        return rv;
3956}
3957
3958/**
3959 * csio_hw_exit - Un-initialize HW module.
3960 * @hw:         Pointer to HW module.
3961 *
3962 */
3963void
3964csio_hw_exit(struct csio_hw *hw)
3965{
3966        csio_evtq_cleanup(hw);
3967        csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3968        csio_scsim_exit(csio_hw_to_scsim(hw));
3969        csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3970        csio_mbm_exit(csio_hw_to_mbm(hw));
3971}
3972