linux/drivers/scsi/libsas/sas_expander.c
<<
>>
Prefs
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39                             u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46        struct sas_task *task = (void *) _task;
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&task->task_state_lock, flags);
  50        if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51                task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52        spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54        complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59        if (!del_timer(&task->slow_task->timer))
  60                return;
  61        complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68                            void *resp, int resp_size)
  69{
  70        int res, retry;
  71        struct sas_task *task = NULL;
  72        struct sas_internal *i =
  73                to_sas_internal(dev->port->ha->core.shost->transportt);
  74
  75        mutex_lock(&dev->ex_dev.cmd_mutex);
  76        for (retry = 0; retry < 3; retry++) {
  77                if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78                        res = -ECOMM;
  79                        break;
  80                }
  81
  82                task = sas_alloc_slow_task(GFP_KERNEL);
  83                if (!task) {
  84                        res = -ENOMEM;
  85                        break;
  86                }
  87                task->dev = dev;
  88                task->task_proto = dev->tproto;
  89                sg_init_one(&task->smp_task.smp_req, req, req_size);
  90                sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92                task->task_done = smp_task_done;
  93
  94                task->slow_task->timer.data = (unsigned long) task;
  95                task->slow_task->timer.function = smp_task_timedout;
  96                task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97                add_timer(&task->slow_task->timer);
  98
  99                res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101                if (res) {
 102                        del_timer(&task->slow_task->timer);
 103                        SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104                        break;
 105                }
 106
 107                wait_for_completion(&task->slow_task->completion);
 108                res = -ECOMM;
 109                if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110                        SAS_DPRINTK("smp task timed out or aborted\n");
 111                        i->dft->lldd_abort_task(task);
 112                        if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113                                SAS_DPRINTK("SMP task aborted and not done\n");
 114                                break;
 115                        }
 116                }
 117                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118                    task->task_status.stat == SAM_STAT_GOOD) {
 119                        res = 0;
 120                        break;
 121                }
 122                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123                    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124                        /* no error, but return the number of bytes of
 125                         * underrun */
 126                        res = task->task_status.residual;
 127                        break;
 128                }
 129                if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130                    task->task_status.stat == SAS_DATA_OVERRUN) {
 131                        res = -EMSGSIZE;
 132                        break;
 133                }
 134                if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135                    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136                        break;
 137                else {
 138                        SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139                                    "status 0x%x\n", __func__,
 140                                    SAS_ADDR(dev->sas_addr),
 141                                    task->task_status.resp,
 142                                    task->task_status.stat);
 143                        sas_free_task(task);
 144                        task = NULL;
 145                }
 146        }
 147        mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149        BUG_ON(retry == 3 && task != NULL);
 150        sas_free_task(task);
 151        return res;
 152}
 153
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158        u8 *p = kzalloc(size, GFP_KERNEL);
 159        if (p)
 160                p[0] = SMP_REQUEST;
 161        return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166        return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171        switch (phy->routing_attr) {
 172        case TABLE_ROUTING:
 173                if (dev->ex_dev.t2t_supp)
 174                        return 'U';
 175                else
 176                        return 'T';
 177        case DIRECT_ROUTING:
 178                return 'D';
 179        case SUBTRACTIVE_ROUTING:
 180                return 'S';
 181        default:
 182                return '?';
 183        }
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188        /* This is detecting a failure to transmit initial dev to host
 189         * FIS as described in section J.5 of sas-2 r16
 190         */
 191        if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192            dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193                return SAS_SATA_PENDING;
 194        else
 195                return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 199{
 200        enum sas_device_type dev_type;
 201        enum sas_linkrate linkrate;
 202        u8 sas_addr[SAS_ADDR_SIZE];
 203        struct smp_resp *resp = rsp;
 204        struct discover_resp *dr = &resp->disc;
 205        struct sas_ha_struct *ha = dev->port->ha;
 206        struct expander_device *ex = &dev->ex_dev;
 207        struct ex_phy *phy = &ex->ex_phy[phy_id];
 208        struct sas_rphy *rphy = dev->rphy;
 209        bool new_phy = !phy->phy;
 210        char *type;
 211
 212        if (new_phy) {
 213                if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214                        return;
 215                phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217                /* FIXME: error_handling */
 218                BUG_ON(!phy->phy);
 219        }
 220
 221        switch (resp->result) {
 222        case SMP_RESP_PHY_VACANT:
 223                phy->phy_state = PHY_VACANT;
 224                break;
 225        default:
 226                phy->phy_state = PHY_NOT_PRESENT;
 227                break;
 228        case SMP_RESP_FUNC_ACC:
 229                phy->phy_state = PHY_EMPTY; /* do not know yet */
 230                break;
 231        }
 232
 233        /* check if anything important changed to squelch debug */
 234        dev_type = phy->attached_dev_type;
 235        linkrate  = phy->linkrate;
 236        memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238        /* Handle vacant phy - rest of dr data is not valid so skip it */
 239        if (phy->phy_state == PHY_VACANT) {
 240                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241                phy->attached_dev_type = SAS_PHY_UNUSED;
 242                if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243                        phy->phy_id = phy_id;
 244                        goto skip;
 245                } else
 246                        goto out;
 247        }
 248
 249        phy->attached_dev_type = to_dev_type(dr);
 250        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251                goto out;
 252        phy->phy_id = phy_id;
 253        phy->linkrate = dr->linkrate;
 254        phy->attached_sata_host = dr->attached_sata_host;
 255        phy->attached_sata_dev  = dr->attached_sata_dev;
 256        phy->attached_sata_ps   = dr->attached_sata_ps;
 257        phy->attached_iproto = dr->iproto << 1;
 258        phy->attached_tproto = dr->tproto << 1;
 259        /* help some expanders that fail to zero sas_address in the 'no
 260         * device' case
 261         */
 262        if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263            phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264                memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265        else
 266                memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267        phy->attached_phy_id = dr->attached_phy_id;
 268        phy->phy_change_count = dr->change_count;
 269        phy->routing_attr = dr->routing_attr;
 270        phy->virtual = dr->virtual;
 271        phy->last_da_index = -1;
 272
 273        phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274        phy->phy->identify.device_type = dr->attached_dev_type;
 275        phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276        phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277        if (!phy->attached_tproto && dr->attached_sata_dev)
 278                phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279        phy->phy->identify.phy_identifier = phy_id;
 280        phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281        phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282        phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283        phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284        phy->phy->negotiated_linkrate = phy->linkrate;
 285
 286 skip:
 287        if (new_phy)
 288                if (sas_phy_add(phy->phy)) {
 289                        sas_phy_free(phy->phy);
 290                        return;
 291                }
 292
 293 out:
 294        switch (phy->attached_dev_type) {
 295        case SAS_SATA_PENDING:
 296                type = "stp pending";
 297                break;
 298        case SAS_PHY_UNUSED:
 299                type = "no device";
 300                break;
 301        case SAS_END_DEVICE:
 302                if (phy->attached_iproto) {
 303                        if (phy->attached_tproto)
 304                                type = "host+target";
 305                        else
 306                                type = "host";
 307                } else {
 308                        if (dr->attached_sata_dev)
 309                                type = "stp";
 310                        else
 311                                type = "ssp";
 312                }
 313                break;
 314        case SAS_EDGE_EXPANDER_DEVICE:
 315        case SAS_FANOUT_EXPANDER_DEVICE:
 316                type = "smp";
 317                break;
 318        default:
 319                type = "unknown";
 320        }
 321
 322        /* this routine is polled by libata error recovery so filter
 323         * unimportant messages
 324         */
 325        if (new_phy || phy->attached_dev_type != dev_type ||
 326            phy->linkrate != linkrate ||
 327            SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328                /* pass */;
 329        else
 330                return;
 331
 332        /* if the attached device type changed and ata_eh is active,
 333         * make sure we run revalidation when eh completes (see:
 334         * sas_enable_revalidation)
 335         */
 336        if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337                set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339        SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340                    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341                    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342                    sas_route_char(dev, phy), phy->linkrate,
 343                    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349        struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350        struct domain_device *dev;
 351        struct sas_rphy *rphy;
 352
 353        if (!ex_phy->port)
 354                return NULL;
 355
 356        rphy = ex_phy->port->rphy;
 357        if (!rphy)
 358                return NULL;
 359
 360        dev = sas_find_dev_by_rphy(rphy);
 361
 362        if (dev && dev_is_sata(dev))
 363                return dev;
 364
 365        return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372                                      u8 *disc_resp, int single)
 373{
 374        struct discover_resp *dr;
 375        int res;
 376
 377        disc_req[9] = single;
 378
 379        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380                               disc_resp, DISCOVER_RESP_SIZE);
 381        if (res)
 382                return res;
 383        dr = &((struct smp_resp *)disc_resp)->disc;
 384        if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385                sas_printk("Found loopback topology, just ignore it!\n");
 386                return 0;
 387        }
 388        sas_set_ex_phy(dev, single, disc_resp);
 389        return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394        struct expander_device *ex = &dev->ex_dev;
 395        int  res = 0;
 396        u8   *disc_req;
 397        u8   *disc_resp;
 398
 399        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400        if (!disc_req)
 401                return -ENOMEM;
 402
 403        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404        if (!disc_resp) {
 405                kfree(disc_req);
 406                return -ENOMEM;
 407        }
 408
 409        disc_req[1] = SMP_DISCOVER;
 410
 411        if (0 <= single && single < ex->num_phys) {
 412                res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413        } else {
 414                int i;
 415
 416                for (i = 0; i < ex->num_phys; i++) {
 417                        res = sas_ex_phy_discover_helper(dev, disc_req,
 418                                                         disc_resp, i);
 419                        if (res)
 420                                goto out_err;
 421                }
 422        }
 423out_err:
 424        kfree(disc_resp);
 425        kfree(disc_req);
 426        return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431        struct expander_device *ex = &dev->ex_dev;
 432        int res = -ENOMEM;
 433
 434        ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435        if (!ex->ex_phy)
 436                return -ENOMEM;
 437
 438        res = sas_ex_phy_discover(dev, -1);
 439        if (res)
 440                goto out_err;
 441
 442        return 0;
 443 out_err:
 444        kfree(ex->ex_phy);
 445        ex->ex_phy = NULL;
 446        return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452                                            struct smp_resp *resp)
 453{
 454        struct report_general_resp *rg = &resp->rg;
 455
 456        dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457        dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458        dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459        dev->ex_dev.t2t_supp = rg->t2t_supp;
 460        dev->ex_dev.conf_route_table = rg->conf_route_table;
 461        dev->ex_dev.configuring = rg->configuring;
 462        memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470        u8 *rg_req;
 471        struct smp_resp *rg_resp;
 472        int res;
 473        int i;
 474
 475        rg_req = alloc_smp_req(RG_REQ_SIZE);
 476        if (!rg_req)
 477                return -ENOMEM;
 478
 479        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480        if (!rg_resp) {
 481                kfree(rg_req);
 482                return -ENOMEM;
 483        }
 484
 485        rg_req[1] = SMP_REPORT_GENERAL;
 486
 487        for (i = 0; i < 5; i++) {
 488                res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489                                       RG_RESP_SIZE);
 490
 491                if (res) {
 492                        SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493                                    SAS_ADDR(dev->sas_addr), res);
 494                        goto out;
 495                } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496                        SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497                                    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498                        res = rg_resp->result;
 499                        goto out;
 500                }
 501
 502                ex_assign_report_general(dev, rg_resp);
 503
 504                if (dev->ex_dev.configuring) {
 505                        SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506                                    SAS_ADDR(dev->sas_addr));
 507                        schedule_timeout_interruptible(5*HZ);
 508                } else
 509                        break;
 510        }
 511out:
 512        kfree(rg_req);
 513        kfree(rg_resp);
 514        return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518                                        *_mi_resp)
 519{
 520        u8 *mi_resp = _mi_resp;
 521        struct sas_rphy *rphy = dev->rphy;
 522        struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524        memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525        memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526        memcpy(edev->product_rev, mi_resp + 36,
 527               SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529        if (mi_resp[8] & 1) {
 530                memcpy(edev->component_vendor_id, mi_resp + 40,
 531                       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532                edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533                edev->component_revision_id = mi_resp[50];
 534        }
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542        u8 *mi_req;
 543        u8 *mi_resp;
 544        int res;
 545
 546        mi_req = alloc_smp_req(MI_REQ_SIZE);
 547        if (!mi_req)
 548                return -ENOMEM;
 549
 550        mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551        if (!mi_resp) {
 552                kfree(mi_req);
 553                return -ENOMEM;
 554        }
 555
 556        mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558        res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559        if (res) {
 560                SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561                            SAS_ADDR(dev->sas_addr), res);
 562                goto out;
 563        } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564                SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565                            SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566                goto out;
 567        }
 568
 569        ex_assign_manuf_info(dev, mi_resp);
 570out:
 571        kfree(mi_req);
 572        kfree(mi_resp);
 573        return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580                        enum phy_func phy_func,
 581                        struct sas_phy_linkrates *rates)
 582{
 583        u8 *pc_req;
 584        u8 *pc_resp;
 585        int res;
 586
 587        pc_req = alloc_smp_req(PC_REQ_SIZE);
 588        if (!pc_req)
 589                return -ENOMEM;
 590
 591        pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592        if (!pc_resp) {
 593                kfree(pc_req);
 594                return -ENOMEM;
 595        }
 596
 597        pc_req[1] = SMP_PHY_CONTROL;
 598        pc_req[9] = phy_id;
 599        pc_req[10]= phy_func;
 600        if (rates) {
 601                pc_req[32] = rates->minimum_linkrate << 4;
 602                pc_req[33] = rates->maximum_linkrate << 4;
 603        }
 604
 605        res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 607        kfree(pc_resp);
 608        kfree(pc_req);
 609        return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614        struct expander_device *ex = &dev->ex_dev;
 615        struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617        sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618        phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623        struct expander_device *ex = &dev->ex_dev;
 624        int i;
 625
 626        for (i = 0; i < ex->num_phys; i++) {
 627                struct ex_phy *phy = &ex->ex_phy[i];
 628
 629                if (phy->phy_state == PHY_VACANT ||
 630                    phy->phy_state == PHY_NOT_PRESENT)
 631                        continue;
 632
 633                if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634                        sas_ex_disable_phy(dev, i);
 635        }
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639                                            u8 *sas_addr)
 640{
 641        struct domain_device *dev;
 642
 643        if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644                return 1;
 645        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646                if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647                        return 1;
 648        }
 649        return 0;
 650}
 651
 652#define RPEL_REQ_SIZE   16
 653#define RPEL_RESP_SIZE  32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656        int res;
 657        u8 *req;
 658        u8 *resp;
 659        struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660        struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662        req = alloc_smp_req(RPEL_REQ_SIZE);
 663        if (!req)
 664                return -ENOMEM;
 665
 666        resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667        if (!resp) {
 668                kfree(req);
 669                return -ENOMEM;
 670        }
 671
 672        req[1] = SMP_REPORT_PHY_ERR_LOG;
 673        req[9] = phy->number;
 674
 675        res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676                                    resp, RPEL_RESP_SIZE);
 677
 678        if (!res)
 679                goto out;
 680
 681        phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682        phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683        phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684        phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 687        kfree(resp);
 688        return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698                            struct smp_resp *rps_resp)
 699{
 700        int res;
 701        u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702        u8 *resp = (u8 *)rps_resp;
 703
 704        if (!rps_req)
 705                return -ENOMEM;
 706
 707        rps_req[1] = SMP_REPORT_PHY_SATA;
 708        rps_req[9] = phy_id;
 709
 710        res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711                                    rps_resp, RPS_RESP_SIZE);
 712
 713        /* 0x34 is the FIS type for the D2H fis.  There's a potential
 714         * standards cockup here.  sas-2 explicitly specifies the FIS
 715         * should be encoded so that FIS type is in resp[24].
 716         * However, some expanders endian reverse this.  Undo the
 717         * reversal here */
 718        if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719                int i;
 720
 721                for (i = 0; i < 5; i++) {
 722                        int j = 24 + (i*4);
 723                        u8 a, b;
 724                        a = resp[j + 0];
 725                        b = resp[j + 1];
 726                        resp[j + 0] = resp[j + 3];
 727                        resp[j + 1] = resp[j + 2];
 728                        resp[j + 2] = b;
 729                        resp[j + 3] = a;
 730                }
 731        }
 732
 733        kfree(rps_req);
 734        return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739                                       struct domain_device *child,
 740                                       struct ex_phy *parent_phy)
 741{
 742        struct expander_device *parent_ex = &parent->ex_dev;
 743        struct sas_port *port;
 744        int i;
 745
 746        child->pathways = 0;
 747
 748        port = parent_phy->port;
 749
 750        for (i = 0; i < parent_ex->num_phys; i++) {
 751                struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753                if (phy->phy_state == PHY_VACANT ||
 754                    phy->phy_state == PHY_NOT_PRESENT)
 755                        continue;
 756
 757                if (SAS_ADDR(phy->attached_sas_addr) ==
 758                    SAS_ADDR(child->sas_addr)) {
 759
 760                        child->min_linkrate = min(parent->min_linkrate,
 761                                                  phy->linkrate);
 762                        child->max_linkrate = max(parent->max_linkrate,
 763                                                  phy->linkrate);
 764                        child->pathways++;
 765                        sas_port_add_phy(port, phy->phy);
 766                }
 767        }
 768        child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769        child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 772static struct domain_device *sas_ex_discover_end_dev(
 773        struct domain_device *parent, int phy_id)
 774{
 775        struct expander_device *parent_ex = &parent->ex_dev;
 776        struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777        struct domain_device *child = NULL;
 778        struct sas_rphy *rphy;
 779        int res;
 780
 781        if (phy->attached_sata_host || phy->attached_sata_ps)
 782                return NULL;
 783
 784        child = sas_alloc_device();
 785        if (!child)
 786                return NULL;
 787
 788        kref_get(&parent->kref);
 789        child->parent = parent;
 790        child->port   = parent->port;
 791        child->iproto = phy->attached_iproto;
 792        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794        if (!phy->port) {
 795                phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796                if (unlikely(!phy->port))
 797                        goto out_err;
 798                if (unlikely(sas_port_add(phy->port) != 0)) {
 799                        sas_port_free(phy->port);
 800                        goto out_err;
 801                }
 802        }
 803        sas_ex_get_linkrate(parent, child, phy);
 804        sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807        if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 808                res = sas_get_ata_info(child, phy);
 809                if (res)
 810                        goto out_free;
 811
 812                sas_init_dev(child);
 813                res = sas_ata_init(child);
 814                if (res)
 815                        goto out_free;
 816                rphy = sas_end_device_alloc(phy->port);
 817                if (!rphy)
 818                        goto out_free;
 819
 820                child->rphy = rphy;
 821                get_device(&rphy->dev);
 822
 823                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 824
 825                res = sas_discover_sata(child);
 826                if (res) {
 827                        SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828                                    "%016llx:0x%x returned 0x%x\n",
 829                                    SAS_ADDR(child->sas_addr),
 830                                    SAS_ADDR(parent->sas_addr), phy_id, res);
 831                        goto out_list_del;
 832                }
 833        } else
 834#endif
 835          if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836                child->dev_type = SAS_END_DEVICE;
 837                rphy = sas_end_device_alloc(phy->port);
 838                /* FIXME: error handling */
 839                if (unlikely(!rphy))
 840                        goto out_free;
 841                child->tproto = phy->attached_tproto;
 842                sas_init_dev(child);
 843
 844                child->rphy = rphy;
 845                get_device(&rphy->dev);
 846                sas_fill_in_rphy(child, rphy);
 847
 848                list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 849
 850                res = sas_discover_end_dev(child);
 851                if (res) {
 852                        SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853                                    "at %016llx:0x%x returned 0x%x\n",
 854                                    SAS_ADDR(child->sas_addr),
 855                                    SAS_ADDR(parent->sas_addr), phy_id, res);
 856                        goto out_list_del;
 857                }
 858        } else {
 859                SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860                            phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861                            phy_id);
 862                goto out_free;
 863        }
 864
 865        list_add_tail(&child->siblings, &parent_ex->children);
 866        return child;
 867
 868 out_list_del:
 869        sas_rphy_free(child->rphy);
 870        list_del(&child->disco_list_node);
 871        spin_lock_irq(&parent->port->dev_list_lock);
 872        list_del(&child->dev_list_node);
 873        spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875        sas_port_delete(phy->port);
 876 out_err:
 877        phy->port = NULL;
 878        sas_put_device(child);
 879        return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886        int i;
 887
 888        for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889                struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891                if (ephy == phy)
 892                        continue;
 893
 894                if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895                            SAS_ADDR_SIZE) && ephy->port) {
 896                        sas_port_add_phy(ephy->port, phy->phy);
 897                        phy->port = ephy->port;
 898                        phy->phy_state = PHY_DEVICE_DISCOVERED;
 899                        return true;
 900                }
 901        }
 902
 903        return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907        struct domain_device *parent, int phy_id)
 908{
 909        struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910        struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911        struct domain_device *child = NULL;
 912        struct sas_rphy *rphy;
 913        struct sas_expander_device *edev;
 914        struct asd_sas_port *port;
 915        int res;
 916
 917        if (phy->routing_attr == DIRECT_ROUTING) {
 918                SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919                            "allowed\n",
 920                            SAS_ADDR(parent->sas_addr), phy_id,
 921                            SAS_ADDR(phy->attached_sas_addr),
 922                            phy->attached_phy_id);
 923                return NULL;
 924        }
 925        child = sas_alloc_device();
 926        if (!child)
 927                return NULL;
 928
 929        phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930        /* FIXME: better error handling */
 931        BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934        switch (phy->attached_dev_type) {
 935        case SAS_EDGE_EXPANDER_DEVICE:
 936                rphy = sas_expander_alloc(phy->port,
 937                                          SAS_EDGE_EXPANDER_DEVICE);
 938                break;
 939        case SAS_FANOUT_EXPANDER_DEVICE:
 940                rphy = sas_expander_alloc(phy->port,
 941                                          SAS_FANOUT_EXPANDER_DEVICE);
 942                break;
 943        default:
 944                rphy = NULL;    /* shut gcc up */
 945                BUG();
 946        }
 947        port = parent->port;
 948        child->rphy = rphy;
 949        get_device(&rphy->dev);
 950        edev = rphy_to_expander_device(rphy);
 951        child->dev_type = phy->attached_dev_type;
 952        kref_get(&parent->kref);
 953        child->parent = parent;
 954        child->port = port;
 955        child->iproto = phy->attached_iproto;
 956        child->tproto = phy->attached_tproto;
 957        memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958        sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959        sas_ex_get_linkrate(parent, child, phy);
 960        edev->level = parent_ex->level + 1;
 961        parent->port->disc.max_level = max(parent->port->disc.max_level,
 962                                           edev->level);
 963        sas_init_dev(child);
 964        sas_fill_in_rphy(child, rphy);
 965        sas_rphy_add(rphy);
 966
 967        spin_lock_irq(&parent->port->dev_list_lock);
 968        list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969        spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971        res = sas_discover_expander(child);
 972        if (res) {
 973                sas_rphy_delete(rphy);
 974                spin_lock_irq(&parent->port->dev_list_lock);
 975                list_del(&child->dev_list_node);
 976                spin_unlock_irq(&parent->port->dev_list_lock);
 977                sas_put_device(child);
 978                return NULL;
 979        }
 980        list_add_tail(&child->siblings, &parent->ex_dev.children);
 981        return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986        struct expander_device *ex = &dev->ex_dev;
 987        struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988        struct domain_device *child = NULL;
 989        int res = 0;
 990
 991        /* Phy state */
 992        if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993                if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994                        res = sas_ex_phy_discover(dev, phy_id);
 995                if (res)
 996                        return res;
 997        }
 998
 999        /* Parent and domain coherency */
1000        if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001                             SAS_ADDR(dev->port->sas_addr))) {
1002                sas_add_parent_port(dev, phy_id);
1003                return 0;
1004        }
1005        if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006                            SAS_ADDR(dev->parent->sas_addr))) {
1007                sas_add_parent_port(dev, phy_id);
1008                if (ex_phy->routing_attr == TABLE_ROUTING)
1009                        sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010                return 0;
1011        }
1012
1013        if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014                sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016        if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017                if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018                        memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019                        sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020                }
1021                return 0;
1022        } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023                return 0;
1024
1025        if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026            ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027            ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028            ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029                SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030                            "phy 0x%x\n", ex_phy->attached_dev_type,
1031                            SAS_ADDR(dev->sas_addr),
1032                            phy_id);
1033                return 0;
1034        }
1035
1036        res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037        if (res) {
1038                SAS_DPRINTK("configure routing for dev %016llx "
1039                            "reported 0x%x. Forgotten\n",
1040                            SAS_ADDR(ex_phy->attached_sas_addr), res);
1041                sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042                return res;
1043        }
1044
1045        if (sas_ex_join_wide_port(dev, phy_id)) {
1046                SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047                            phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048                return res;
1049        }
1050
1051        switch (ex_phy->attached_dev_type) {
1052        case SAS_END_DEVICE:
1053        case SAS_SATA_PENDING:
1054                child = sas_ex_discover_end_dev(dev, phy_id);
1055                break;
1056        case SAS_FANOUT_EXPANDER_DEVICE:
1057                if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058                        SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059                                    "attached to ex %016llx phy 0x%x\n",
1060                                    SAS_ADDR(ex_phy->attached_sas_addr),
1061                                    ex_phy->attached_phy_id,
1062                                    SAS_ADDR(dev->sas_addr),
1063                                    phy_id);
1064                        sas_ex_disable_phy(dev, phy_id);
1065                        break;
1066                } else
1067                        memcpy(dev->port->disc.fanout_sas_addr,
1068                               ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069                /* fallthrough */
1070        case SAS_EDGE_EXPANDER_DEVICE:
1071                child = sas_ex_discover_expander(dev, phy_id);
1072                break;
1073        default:
1074                break;
1075        }
1076
1077        if (child) {
1078                int i;
1079
1080                for (i = 0; i < ex->num_phys; i++) {
1081                        if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082                            ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083                                continue;
1084                        /*
1085                         * Due to races, the phy might not get added to the
1086                         * wide port, so we add the phy to the wide port here.
1087                         */
1088                        if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089                            SAS_ADDR(child->sas_addr)) {
1090                                ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091                                if (sas_ex_join_wide_port(dev, i))
1092                                        SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093                                                    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095                        }
1096                }
1097        }
1098
1099        return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104        struct expander_device *ex = &dev->ex_dev;
1105        int i;
1106
1107        for (i = 0; i < ex->num_phys; i++) {
1108                struct ex_phy *phy = &ex->ex_phy[i];
1109
1110                if (phy->phy_state == PHY_VACANT ||
1111                    phy->phy_state == PHY_NOT_PRESENT)
1112                        continue;
1113
1114                if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115                     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118                        memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120                        return 1;
1121                }
1122        }
1123        return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128        struct expander_device *ex = &dev->ex_dev;
1129        struct domain_device *child;
1130        u8 sub_addr[8] = {0, };
1131
1132        list_for_each_entry(child, &ex->children, siblings) {
1133                if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134                    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135                        continue;
1136                if (sub_addr[0] == 0) {
1137                        sas_find_sub_addr(child, sub_addr);
1138                        continue;
1139                } else {
1140                        u8 s2[8];
1141
1142                        if (sas_find_sub_addr(child, s2) &&
1143                            (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145                                SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146                                            "diverges from subtractive "
1147                                            "boundary %016llx\n",
1148                                            SAS_ADDR(dev->sas_addr),
1149                                            SAS_ADDR(child->sas_addr),
1150                                            SAS_ADDR(s2),
1151                                            SAS_ADDR(sub_addr));
1152
1153                                sas_ex_disable_port(child, s2);
1154                        }
1155                }
1156        }
1157        return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169        struct expander_device *ex = &dev->ex_dev;
1170        int i = 0, end = ex->num_phys;
1171        int res = 0;
1172
1173        if (0 <= single && single < end) {
1174                i = single;
1175                end = i+1;
1176        }
1177
1178        for ( ; i < end; i++) {
1179                struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181                if (ex_phy->phy_state == PHY_VACANT ||
1182                    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183                    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184                        continue;
1185
1186                switch (ex_phy->linkrate) {
1187                case SAS_PHY_DISABLED:
1188                case SAS_PHY_RESET_PROBLEM:
1189                case SAS_SATA_PORT_SELECTOR:
1190                        continue;
1191                default:
1192                        res = sas_ex_discover_dev(dev, i);
1193                        if (res)
1194                                break;
1195                        continue;
1196                }
1197        }
1198
1199        if (!res)
1200                sas_check_level_subtractive_boundary(dev);
1201
1202        return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207        struct expander_device *ex = &dev->ex_dev;
1208        int i;
1209        u8  *sub_sas_addr = NULL;
1210
1211        if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212                return 0;
1213
1214        for (i = 0; i < ex->num_phys; i++) {
1215                struct ex_phy *phy = &ex->ex_phy[i];
1216
1217                if (phy->phy_state == PHY_VACANT ||
1218                    phy->phy_state == PHY_NOT_PRESENT)
1219                        continue;
1220
1221                if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222                     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223                    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225                        if (!sub_sas_addr)
1226                                sub_sas_addr = &phy->attached_sas_addr[0];
1227                        else if (SAS_ADDR(sub_sas_addr) !=
1228                                 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230                                SAS_DPRINTK("ex %016llx phy 0x%x "
1231                                            "diverges(%016llx) on subtractive "
1232                                            "boundary(%016llx). Disabled\n",
1233                                            SAS_ADDR(dev->sas_addr), i,
1234                                            SAS_ADDR(phy->attached_sas_addr),
1235                                            SAS_ADDR(sub_sas_addr));
1236                                sas_ex_disable_phy(dev, i);
1237                        }
1238                }
1239        }
1240        return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244                                                 struct ex_phy *parent_phy,
1245                                                 struct ex_phy *child_phy)
1246{
1247        static const char *ex_type[] = {
1248                [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249                [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250        };
1251        struct domain_device *parent = child->parent;
1252
1253        sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254                   "phy 0x%x has %c:%c routing link!\n",
1255
1256                   ex_type[parent->dev_type],
1257                   SAS_ADDR(parent->sas_addr),
1258                   parent_phy->phy_id,
1259
1260                   ex_type[child->dev_type],
1261                   SAS_ADDR(child->sas_addr),
1262                   child_phy->phy_id,
1263
1264                   sas_route_char(parent, parent_phy),
1265                   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269                                 struct ex_phy *parent_phy,
1270                                 struct ex_phy *child_phy)
1271{
1272        int res = 0;
1273        struct domain_device *parent = child->parent;
1274
1275        if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276                res = -ENODEV;
1277                SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278                            "phy S:0x%x, while there is a fanout ex %016llx\n",
1279                            SAS_ADDR(parent->sas_addr),
1280                            parent_phy->phy_id,
1281                            SAS_ADDR(child->sas_addr),
1282                            child_phy->phy_id,
1283                            SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284        } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285                memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286                       SAS_ADDR_SIZE);
1287                memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288                       SAS_ADDR_SIZE);
1289        } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290                    SAS_ADDR(parent->sas_addr)) ||
1291                   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292                    SAS_ADDR(child->sas_addr)))
1293                   &&
1294                   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295                     SAS_ADDR(parent->sas_addr)) ||
1296                    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297                     SAS_ADDR(child->sas_addr))))
1298                ;
1299        else {
1300                res = -ENODEV;
1301                SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302                            "phy 0x%x link forms a third EEDS!\n",
1303                            SAS_ADDR(parent->sas_addr),
1304                            parent_phy->phy_id,
1305                            SAS_ADDR(child->sas_addr),
1306                            child_phy->phy_id);
1307        }
1308
1309        return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316        struct expander_device *child_ex = &child->ex_dev;
1317        struct expander_device *parent_ex;
1318        int i;
1319        int res = 0;
1320
1321        if (!child->parent)
1322                return 0;
1323
1324        if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325            child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326                return 0;
1327
1328        parent_ex = &child->parent->ex_dev;
1329
1330        for (i = 0; i < parent_ex->num_phys; i++) {
1331                struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332                struct ex_phy *child_phy;
1333
1334                if (parent_phy->phy_state == PHY_VACANT ||
1335                    parent_phy->phy_state == PHY_NOT_PRESENT)
1336                        continue;
1337
1338                if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339                        continue;
1340
1341                child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343                switch (child->parent->dev_type) {
1344                case SAS_EDGE_EXPANDER_DEVICE:
1345                        if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346                                if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347                                    child_phy->routing_attr != TABLE_ROUTING) {
1348                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349                                        res = -ENODEV;
1350                                }
1351                        } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353                                        res = sas_check_eeds(child, parent_phy, child_phy);
1354                                } else if (child_phy->routing_attr != TABLE_ROUTING) {
1355                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356                                        res = -ENODEV;
1357                                }
1358                        } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359                                if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360                                    (child_phy->routing_attr == TABLE_ROUTING &&
1361                                     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362                                        /* All good */;
1363                                } else {
1364                                        sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365                                        res = -ENODEV;
1366                                }
1367                        }
1368                        break;
1369                case SAS_FANOUT_EXPANDER_DEVICE:
1370                        if (parent_phy->routing_attr != TABLE_ROUTING ||
1371                            child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372                                sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373                                res = -ENODEV;
1374                        }
1375                        break;
1376                default:
1377                        break;
1378                }
1379        }
1380
1381        return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388                                 u8 *sas_addr, int *index, int *present)
1389{
1390        int i, res = 0;
1391        struct expander_device *ex = &dev->ex_dev;
1392        struct ex_phy *phy = &ex->ex_phy[phy_id];
1393        u8 *rri_req;
1394        u8 *rri_resp;
1395
1396        *present = 0;
1397        *index = 0;
1398
1399        rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400        if (!rri_req)
1401                return -ENOMEM;
1402
1403        rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404        if (!rri_resp) {
1405                kfree(rri_req);
1406                return -ENOMEM;
1407        }
1408
1409        rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410        rri_req[9] = phy_id;
1411
1412        for (i = 0; i < ex->max_route_indexes ; i++) {
1413                *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414                res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415                                       RRI_RESP_SIZE);
1416                if (res)
1417                        goto out;
1418                res = rri_resp[2];
1419                if (res == SMP_RESP_NO_INDEX) {
1420                        SAS_DPRINTK("overflow of indexes: dev %016llx "
1421                                    "phy 0x%x index 0x%x\n",
1422                                    SAS_ADDR(dev->sas_addr), phy_id, i);
1423                        goto out;
1424                } else if (res != SMP_RESP_FUNC_ACC) {
1425                        SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426                                    "result 0x%x\n", __func__,
1427                                    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428                        goto out;
1429                }
1430                if (SAS_ADDR(sas_addr) != 0) {
1431                        if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432                                *index = i;
1433                                if ((rri_resp[12] & 0x80) == 0x80)
1434                                        *present = 0;
1435                                else
1436                                        *present = 1;
1437                                goto out;
1438                        } else if (SAS_ADDR(rri_resp+16) == 0) {
1439                                *index = i;
1440                                *present = 0;
1441                                goto out;
1442                        }
1443                } else if (SAS_ADDR(rri_resp+16) == 0 &&
1444                           phy->last_da_index < i) {
1445                        phy->last_da_index = i;
1446                        *index = i;
1447                        *present = 0;
1448                        goto out;
1449                }
1450        }
1451        res = -1;
1452out:
1453        kfree(rri_req);
1454        kfree(rri_resp);
1455        return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462                             u8 *sas_addr, int index, int include)
1463{
1464        int res;
1465        u8 *cri_req;
1466        u8 *cri_resp;
1467
1468        cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469        if (!cri_req)
1470                return -ENOMEM;
1471
1472        cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473        if (!cri_resp) {
1474                kfree(cri_req);
1475                return -ENOMEM;
1476        }
1477
1478        cri_req[1] = SMP_CONF_ROUTE_INFO;
1479        *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480        cri_req[9] = phy_id;
1481        if (SAS_ADDR(sas_addr) == 0 || !include)
1482                cri_req[12] |= 0x80;
1483        memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485        res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486                               CRI_RESP_SIZE);
1487        if (res)
1488                goto out;
1489        res = cri_resp[2];
1490        if (res == SMP_RESP_NO_INDEX) {
1491                SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492                            "index 0x%x\n",
1493                            SAS_ADDR(dev->sas_addr), phy_id, index);
1494        }
1495out:
1496        kfree(cri_req);
1497        kfree(cri_resp);
1498        return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502                                    u8 *sas_addr, int include)
1503{
1504        int index;
1505        int present;
1506        int res;
1507
1508        res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509        if (res)
1510                return res;
1511        if (include ^ present)
1512                return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514        return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524                                struct domain_device *child,
1525                                u8 *sas_addr, int include)
1526{
1527        struct expander_device *ex_parent = &parent->ex_dev;
1528        int res = 0;
1529        int i;
1530
1531        if (parent->parent) {
1532                res = sas_configure_parent(parent->parent, parent, sas_addr,
1533                                           include);
1534                if (res)
1535                        return res;
1536        }
1537
1538        if (ex_parent->conf_route_table == 0) {
1539                SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540                            SAS_ADDR(parent->sas_addr));
1541                return 0;
1542        }
1543
1544        for (i = 0; i < ex_parent->num_phys; i++) {
1545                struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547                if ((phy->routing_attr == TABLE_ROUTING) &&
1548                    (SAS_ADDR(phy->attached_sas_addr) ==
1549                     SAS_ADDR(child->sas_addr))) {
1550                        res = sas_configure_phy(parent, i, sas_addr, include);
1551                        if (res)
1552                                return res;
1553                }
1554        }
1555
1556        return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566        if (dev->parent)
1567                return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568        return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573        if (dev->parent)
1574                return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575        return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586        int res;
1587
1588        res = sas_notify_lldd_dev_found(dev);
1589        if (res)
1590                return res;
1591
1592        res = sas_ex_general(dev);
1593        if (res)
1594                goto out_err;
1595        res = sas_ex_manuf_info(dev);
1596        if (res)
1597                goto out_err;
1598
1599        res = sas_expander_discover(dev);
1600        if (res) {
1601                SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602                            SAS_ADDR(dev->sas_addr), res);
1603                goto out_err;
1604        }
1605
1606        sas_check_ex_subtractive_boundary(dev);
1607        res = sas_check_parent_topology(dev);
1608        if (res)
1609                goto out_err;
1610        return 0;
1611out_err:
1612        sas_notify_lldd_dev_gone(dev);
1613        return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618        int res = 0;
1619        struct domain_device *dev;
1620
1621        list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622                if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623                    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624                        struct sas_expander_device *ex =
1625                                rphy_to_expander_device(dev->rphy);
1626
1627                        if (level == ex->level)
1628                                res = sas_ex_discover_devices(dev, -1);
1629                        else if (level > 0)
1630                                res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632                }
1633        }
1634
1635        return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640        int res;
1641        int level;
1642
1643        do {
1644                level = port->disc.max_level;
1645                res = sas_ex_level_discovery(port, level);
1646                mb();
1647        } while (level < port->disc.max_level);
1648
1649        return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654        int res;
1655        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657        res = sas_rphy_add(dev->rphy);
1658        if (res)
1659                goto out_err;
1660
1661        ex->level = dev->port->disc.max_level; /* 0 */
1662        res = sas_discover_expander(dev);
1663        if (res)
1664                goto out_err2;
1665
1666        sas_ex_bfs_disc(dev->port);
1667
1668        return res;
1669
1670out_err2:
1671        sas_rphy_remove(dev->rphy);
1672out_err:
1673        return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679                                int phy_id, struct smp_resp *disc_resp)
1680{
1681        int res;
1682        u8 *disc_req;
1683
1684        disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685        if (!disc_req)
1686                return -ENOMEM;
1687
1688        disc_req[1] = SMP_DISCOVER;
1689        disc_req[9] = phy_id;
1690
1691        res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692                               disc_resp, DISCOVER_RESP_SIZE);
1693        if (res)
1694                goto out;
1695        else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696                res = disc_resp->result;
1697                goto out;
1698        }
1699out:
1700        kfree(disc_req);
1701        return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705                                    int phy_id, int *pcc)
1706{
1707        int res;
1708        struct smp_resp *disc_resp;
1709
1710        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711        if (!disc_resp)
1712                return -ENOMEM;
1713
1714        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715        if (!res)
1716                *pcc = disc_resp->disc.change_count;
1717
1718        kfree(disc_resp);
1719        return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723                                    u8 *sas_addr, enum sas_device_type *type)
1724{
1725        int res;
1726        struct smp_resp *disc_resp;
1727        struct discover_resp *dr;
1728
1729        disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730        if (!disc_resp)
1731                return -ENOMEM;
1732        dr = &disc_resp->disc;
1733
1734        res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735        if (res == 0) {
1736                memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737                *type = to_dev_type(dr);
1738                if (*type == 0)
1739                        memset(sas_addr, 0, 8);
1740        }
1741        kfree(disc_resp);
1742        return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746                              int from_phy, bool update)
1747{
1748        struct expander_device *ex = &dev->ex_dev;
1749        int res = 0;
1750        int i;
1751
1752        for (i = from_phy; i < ex->num_phys; i++) {
1753                int phy_change_count = 0;
1754
1755                res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756                switch (res) {
1757                case SMP_RESP_PHY_VACANT:
1758                case SMP_RESP_NO_PHY:
1759                        continue;
1760                case SMP_RESP_FUNC_ACC:
1761                        break;
1762                default:
1763                        return res;
1764                }
1765
1766                if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767                        if (update)
1768                                ex->ex_phy[i].phy_change_count =
1769                                        phy_change_count;
1770                        *phy_id = i;
1771                        return 0;
1772                }
1773        }
1774        return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779        int res;
1780        u8  *rg_req;
1781        struct smp_resp  *rg_resp;
1782
1783        rg_req = alloc_smp_req(RG_REQ_SIZE);
1784        if (!rg_req)
1785                return -ENOMEM;
1786
1787        rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788        if (!rg_resp) {
1789                kfree(rg_req);
1790                return -ENOMEM;
1791        }
1792
1793        rg_req[1] = SMP_REPORT_GENERAL;
1794
1795        res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796                               RG_RESP_SIZE);
1797        if (res)
1798                goto out;
1799        if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800                res = rg_resp->result;
1801                goto out;
1802        }
1803
1804        *ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806        kfree(rg_resp);
1807        kfree(rg_req);
1808        return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826                              struct domain_device **src_dev)
1827{
1828        struct expander_device *ex = &dev->ex_dev;
1829        int ex_change_count = -1;
1830        int phy_id = -1;
1831        int res;
1832        struct domain_device *ch;
1833
1834        res = sas_get_ex_change_count(dev, &ex_change_count);
1835        if (res)
1836                goto out;
1837        if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838                /* Just detect if this expander phys phy change count changed,
1839                * in order to determine if this expander originate BROADCAST,
1840                * and do not update phy change count field in our structure.
1841                */
1842                res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843                if (phy_id != -1) {
1844                        *src_dev = dev;
1845                        ex->ex_change_count = ex_change_count;
1846                        SAS_DPRINTK("Expander phy change count has changed\n");
1847                        return res;
1848                } else
1849                        SAS_DPRINTK("Expander phys DID NOT change\n");
1850        }
1851        list_for_each_entry(ch, &ex->children, siblings) {
1852                if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853                        res = sas_find_bcast_dev(ch, src_dev);
1854                        if (*src_dev)
1855                                return res;
1856                }
1857        }
1858out:
1859        return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864        struct expander_device *ex = &dev->ex_dev;
1865        struct domain_device *child, *n;
1866
1867        list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868                set_bit(SAS_DEV_GONE, &child->state);
1869                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871                        sas_unregister_ex_tree(port, child);
1872                else
1873                        sas_unregister_dev(port, child);
1874        }
1875        sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879                                         int phy_id, bool last)
1880{
1881        struct expander_device *ex_dev = &parent->ex_dev;
1882        struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883        struct domain_device *child, *n, *found = NULL;
1884        if (last) {
1885                list_for_each_entry_safe(child, n,
1886                        &ex_dev->children, siblings) {
1887                        if (SAS_ADDR(child->sas_addr) ==
1888                            SAS_ADDR(phy->attached_sas_addr)) {
1889                                set_bit(SAS_DEV_GONE, &child->state);
1890                                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891                                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892                                        sas_unregister_ex_tree(parent->port, child);
1893                                else
1894                                        sas_unregister_dev(parent->port, child);
1895                                found = child;
1896                                break;
1897                        }
1898                }
1899                sas_disable_routing(parent, phy->attached_sas_addr);
1900        }
1901        memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902        if (phy->port) {
1903                sas_port_delete_phy(phy->port, phy->phy);
1904                sas_device_set_phy(found, phy->port);
1905                if (phy->port->num_phys == 0)
1906                        sas_port_delete(phy->port);
1907                phy->port = NULL;
1908        }
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912                                          const int level)
1913{
1914        struct expander_device *ex_root = &root->ex_dev;
1915        struct domain_device *child;
1916        int res = 0;
1917
1918        list_for_each_entry(child, &ex_root->children, siblings) {
1919                if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920                    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921                        struct sas_expander_device *ex =
1922                                rphy_to_expander_device(child->rphy);
1923
1924                        if (level > ex->level)
1925                                res = sas_discover_bfs_by_root_level(child,
1926                                                                     level);
1927                        else if (level == ex->level)
1928                                res = sas_ex_discover_devices(child, -1);
1929                }
1930        }
1931        return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936        int res;
1937        struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938        int level = ex->level+1;
1939
1940        res = sas_ex_discover_devices(dev, -1);
1941        if (res)
1942                goto out;
1943        do {
1944                res = sas_discover_bfs_by_root_level(dev, level);
1945                mb();
1946                level += 1;
1947        } while (level <= dev->port->disc.max_level);
1948out:
1949        return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954        struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955        struct domain_device *child;
1956        int res;
1957
1958        SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959                    SAS_ADDR(dev->sas_addr), phy_id);
1960        res = sas_ex_phy_discover(dev, phy_id);
1961        if (res)
1962                return res;
1963
1964        if (sas_ex_join_wide_port(dev, phy_id))
1965                return 0;
1966
1967        res = sas_ex_discover_devices(dev, phy_id);
1968        if (res)
1969                return res;
1970        list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971                if (SAS_ADDR(child->sas_addr) ==
1972                    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973                        if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974                            child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975                                res = sas_discover_bfs_by_root(child);
1976                        break;
1977                }
1978        }
1979        return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984        if (old == new)
1985                return true;
1986
1987        /* treat device directed resets as flutter, if we went
1988         * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989         */
1990        if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991            (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992                return true;
1993
1994        return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998{
1999        struct expander_device *ex = &dev->ex_dev;
2000        struct ex_phy *phy = &ex->ex_phy[phy_id];
2001        enum sas_device_type type = SAS_PHY_UNUSED;
2002        u8 sas_addr[8];
2003        int res;
2004
2005        memset(sas_addr, 0, 8);
2006        res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007        switch (res) {
2008        case SMP_RESP_NO_PHY:
2009                phy->phy_state = PHY_NOT_PRESENT;
2010                sas_unregister_devs_sas_addr(dev, phy_id, last);
2011                return res;
2012        case SMP_RESP_PHY_VACANT:
2013                phy->phy_state = PHY_VACANT;
2014                sas_unregister_devs_sas_addr(dev, phy_id, last);
2015                return res;
2016        case SMP_RESP_FUNC_ACC:
2017                break;
2018        case -ECOMM:
2019                break;
2020        default:
2021                return res;
2022        }
2023
2024        if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025                phy->phy_state = PHY_EMPTY;
2026                sas_unregister_devs_sas_addr(dev, phy_id, last);
2027                return res;
2028        } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029                   dev_type_flutter(type, phy->attached_dev_type)) {
2030                struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031                char *action = "";
2032
2033                sas_ex_phy_discover(dev, phy_id);
2034
2035                if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036                        action = ", needs recovery";
2037                SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038                            SAS_ADDR(dev->sas_addr), phy_id, action);
2039                return res;
2040        }
2041
2042        /* delete the old link */
2043        if (SAS_ADDR(phy->attached_sas_addr) &&
2044            SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045                SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046                            SAS_ADDR(dev->sas_addr), phy_id,
2047                            SAS_ADDR(phy->attached_sas_addr));
2048                sas_unregister_devs_sas_addr(dev, phy_id, last);
2049        }
2050
2051        return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070        struct expander_device *ex = &dev->ex_dev;
2071        struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072        int res = 0;
2073        int i;
2074        bool last = true;       /* is this the last phy of the port */
2075
2076        SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077                    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079        if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080                for (i = 0; i < ex->num_phys; i++) {
2081                        struct ex_phy *phy = &ex->ex_phy[i];
2082
2083                        if (i == phy_id)
2084                                continue;
2085                        if (SAS_ADDR(phy->attached_sas_addr) ==
2086                            SAS_ADDR(changed_phy->attached_sas_addr)) {
2087                                SAS_DPRINTK("phy%d part of wide port with "
2088                                            "phy%d\n", phy_id, i);
2089                                last = false;
2090                                break;
2091                        }
2092                }
2093                res = sas_rediscover_dev(dev, phy_id, last);
2094        } else
2095                res = sas_discover_new(dev, phy_id);
2096        return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110        int res;
2111        struct domain_device *dev = NULL;
2112
2113        res = sas_find_bcast_dev(port_dev, &dev);
2114        while (res == 0 && dev) {
2115                struct expander_device *ex = &dev->ex_dev;
2116                int i = 0, phy_id;
2117
2118                do {
2119                        phy_id = -1;
2120                        res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121                        if (phy_id == -1)
2122                                break;
2123                        res = sas_rediscover(dev, phy_id);
2124                        i = phy_id + 1;
2125                } while (i < ex->num_phys);
2126
2127                dev = NULL;
2128                res = sas_find_bcast_dev(port_dev, &dev);
2129        }
2130        return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134                    struct request *req)
2135{
2136        struct domain_device *dev;
2137        int ret, type;
2138        struct request *rsp = req->next_rq;
2139
2140        if (!rsp) {
2141                printk("%s: space for a smp response is missing\n",
2142                       __func__);
2143                return -EINVAL;
2144        }
2145
2146        /* no rphy means no smp target support (ie aic94xx host) */
2147        if (!rphy)
2148                return sas_smp_host_handler(shost, req, rsp);
2149
2150        type = rphy->identify.device_type;
2151
2152        if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153            type != SAS_FANOUT_EXPANDER_DEVICE) {
2154                printk("%s: can we send a smp request to a device?\n",
2155                       __func__);
2156                return -EINVAL;
2157        }
2158
2159        dev = sas_find_dev_by_rphy(rphy);
2160        if (!dev) {
2161                printk("%s: fail to find a domain_device?\n", __func__);
2162                return -EINVAL;
2163        }
2164
2165        /* do we need to support multiple segments? */
2166        if (bio_multiple_segments(req->bio) ||
2167            bio_multiple_segments(rsp->bio)) {
2168                printk("%s: multiple segments req %u, rsp %u\n",
2169                       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170                return -EINVAL;
2171        }
2172
2173        ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174                               bio_data(rsp->bio), blk_rq_bytes(rsp));
2175        if (ret > 0) {
2176                /* positive number is the untransferred residual */
2177                rsp->resid_len = ret;
2178                req->resid_len = 0;
2179                ret = 0;
2180        } else if (ret == 0) {
2181                rsp->resid_len = 0;
2182                req->resid_len = 0;
2183        }
2184
2185        return ret;
2186}
2187