linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>
  21#include <linux/delay.h>
  22#include <linux/hardirq.h>
  23#include <linux/scatterlist.h>
  24#include <linux/blk-mq.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42
  43#define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
  44#define SG_MEMPOOL_SIZE         2
  45
  46struct scsi_host_sg_pool {
  47        size_t          size;
  48        char            *name;
  49        struct kmem_cache       *slab;
  50        mempool_t       *pool;
  51};
  52
  53#define SP(x) { .size = x, "sgpool-" __stringify(x) }
  54#if (SCSI_MAX_SG_SEGMENTS < 32)
  55#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  56#endif
  57static struct scsi_host_sg_pool scsi_sg_pools[] = {
  58        SP(8),
  59        SP(16),
  60#if (SCSI_MAX_SG_SEGMENTS > 32)
  61        SP(32),
  62#if (SCSI_MAX_SG_SEGMENTS > 64)
  63        SP(64),
  64#if (SCSI_MAX_SG_SEGMENTS > 128)
  65        SP(128),
  66#if (SCSI_MAX_SG_SEGMENTS > 256)
  67#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  68#endif
  69#endif
  70#endif
  71#endif
  72        SP(SCSI_MAX_SG_SEGMENTS)
  73};
  74#undef SP
  75
  76struct kmem_cache *scsi_sdb_cache;
  77
  78/*
  79 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  80 * not change behaviour from the previous unplug mechanism, experimentation
  81 * may prove this needs changing.
  82 */
  83#define SCSI_QUEUE_DELAY        3
  84
  85static void
  86scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  87{
  88        struct Scsi_Host *host = cmd->device->host;
  89        struct scsi_device *device = cmd->device;
  90        struct scsi_target *starget = scsi_target(device);
  91
  92        /*
  93         * Set the appropriate busy bit for the device/host.
  94         *
  95         * If the host/device isn't busy, assume that something actually
  96         * completed, and that we should be able to queue a command now.
  97         *
  98         * Note that the prior mid-layer assumption that any host could
  99         * always queue at least one command is now broken.  The mid-layer
 100         * will implement a user specifiable stall (see
 101         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 102         * if a command is requeued with no other commands outstanding
 103         * either for the device or for the host.
 104         */
 105        switch (reason) {
 106        case SCSI_MLQUEUE_HOST_BUSY:
 107                atomic_set(&host->host_blocked, host->max_host_blocked);
 108                break;
 109        case SCSI_MLQUEUE_DEVICE_BUSY:
 110        case SCSI_MLQUEUE_EH_RETRY:
 111                atomic_set(&device->device_blocked,
 112                           device->max_device_blocked);
 113                break;
 114        case SCSI_MLQUEUE_TARGET_BUSY:
 115                atomic_set(&starget->target_blocked,
 116                           starget->max_target_blocked);
 117                break;
 118        }
 119}
 120
 121static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 122{
 123        struct scsi_device *sdev = cmd->device;
 124        struct request_queue *q = cmd->request->q;
 125
 126        blk_mq_requeue_request(cmd->request);
 127        blk_mq_kick_requeue_list(q);
 128        put_device(&sdev->sdev_gendev);
 129}
 130
 131/**
 132 * __scsi_queue_insert - private queue insertion
 133 * @cmd: The SCSI command being requeued
 134 * @reason:  The reason for the requeue
 135 * @unbusy: Whether the queue should be unbusied
 136 *
 137 * This is a private queue insertion.  The public interface
 138 * scsi_queue_insert() always assumes the queue should be unbusied
 139 * because it's always called before the completion.  This function is
 140 * for a requeue after completion, which should only occur in this
 141 * file.
 142 */
 143static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 144{
 145        struct scsi_device *device = cmd->device;
 146        struct request_queue *q = device->request_queue;
 147        unsigned long flags;
 148
 149        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 150                "Inserting command %p into mlqueue\n", cmd));
 151
 152        scsi_set_blocked(cmd, reason);
 153
 154        /*
 155         * Decrement the counters, since these commands are no longer
 156         * active on the host/device.
 157         */
 158        if (unbusy)
 159                scsi_device_unbusy(device);
 160
 161        /*
 162         * Requeue this command.  It will go before all other commands
 163         * that are already in the queue. Schedule requeue work under
 164         * lock such that the kblockd_schedule_work() call happens
 165         * before blk_cleanup_queue() finishes.
 166         */
 167        cmd->result = 0;
 168        if (q->mq_ops) {
 169                scsi_mq_requeue_cmd(cmd);
 170                return;
 171        }
 172        spin_lock_irqsave(q->queue_lock, flags);
 173        blk_requeue_request(q, cmd->request);
 174        kblockd_schedule_work(&device->requeue_work);
 175        spin_unlock_irqrestore(q->queue_lock, flags);
 176}
 177
 178/*
 179 * Function:    scsi_queue_insert()
 180 *
 181 * Purpose:     Insert a command in the midlevel queue.
 182 *
 183 * Arguments:   cmd    - command that we are adding to queue.
 184 *              reason - why we are inserting command to queue.
 185 *
 186 * Lock status: Assumed that lock is not held upon entry.
 187 *
 188 * Returns:     Nothing.
 189 *
 190 * Notes:       We do this for one of two cases.  Either the host is busy
 191 *              and it cannot accept any more commands for the time being,
 192 *              or the device returned QUEUE_FULL and can accept no more
 193 *              commands.
 194 * Notes:       This could be called either from an interrupt context or a
 195 *              normal process context.
 196 */
 197void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 198{
 199        __scsi_queue_insert(cmd, reason, 1);
 200}
 201/**
 202 * scsi_execute - insert request and wait for the result
 203 * @sdev:       scsi device
 204 * @cmd:        scsi command
 205 * @data_direction: data direction
 206 * @buffer:     data buffer
 207 * @bufflen:    len of buffer
 208 * @sense:      optional sense buffer
 209 * @timeout:    request timeout in seconds
 210 * @retries:    number of times to retry request
 211 * @flags:      or into request flags;
 212 * @resid:      optional residual length
 213 *
 214 * returns the req->errors value which is the scsi_cmnd result
 215 * field.
 216 */
 217int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 218                 int data_direction, void *buffer, unsigned bufflen,
 219                 unsigned char *sense, int timeout, int retries, u64 flags,
 220                 int *resid)
 221{
 222        struct request *req;
 223        int write = (data_direction == DMA_TO_DEVICE);
 224        int ret = DRIVER_ERROR << 24;
 225
 226        req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
 227        if (IS_ERR(req))
 228                return ret;
 229        blk_rq_set_block_pc(req);
 230
 231        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 232                                        buffer, bufflen, __GFP_RECLAIM))
 233                goto out;
 234
 235        req->cmd_len = COMMAND_SIZE(cmd[0]);
 236        memcpy(req->cmd, cmd, req->cmd_len);
 237        req->sense = sense;
 238        req->sense_len = 0;
 239        req->retries = retries;
 240        req->timeout = timeout;
 241        req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 242
 243        /*
 244         * head injection *required* here otherwise quiesce won't work
 245         */
 246        blk_execute_rq(req->q, NULL, req, 1);
 247
 248        /*
 249         * Some devices (USB mass-storage in particular) may transfer
 250         * garbage data together with a residue indicating that the data
 251         * is invalid.  Prevent the garbage from being misinterpreted
 252         * and prevent security leaks by zeroing out the excess data.
 253         */
 254        if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 255                memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 256
 257        if (resid)
 258                *resid = req->resid_len;
 259        ret = req->errors;
 260 out:
 261        blk_put_request(req);
 262
 263        return ret;
 264}
 265EXPORT_SYMBOL(scsi_execute);
 266
 267int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 268                     int data_direction, void *buffer, unsigned bufflen,
 269                     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 270                     int *resid, u64 flags)
 271{
 272        char *sense = NULL;
 273        int result;
 274        
 275        if (sshdr) {
 276                sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 277                if (!sense)
 278                        return DRIVER_ERROR << 24;
 279        }
 280        result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 281                              sense, timeout, retries, flags, resid);
 282        if (sshdr)
 283                scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 284
 285        kfree(sense);
 286        return result;
 287}
 288EXPORT_SYMBOL(scsi_execute_req_flags);
 289
 290/*
 291 * Function:    scsi_init_cmd_errh()
 292 *
 293 * Purpose:     Initialize cmd fields related to error handling.
 294 *
 295 * Arguments:   cmd     - command that is ready to be queued.
 296 *
 297 * Notes:       This function has the job of initializing a number of
 298 *              fields related to error handling.   Typically this will
 299 *              be called once for each command, as required.
 300 */
 301static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 302{
 303        cmd->serial_number = 0;
 304        scsi_set_resid(cmd, 0);
 305        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 306        if (cmd->cmd_len == 0)
 307                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 308}
 309
 310void scsi_device_unbusy(struct scsi_device *sdev)
 311{
 312        struct Scsi_Host *shost = sdev->host;
 313        struct scsi_target *starget = scsi_target(sdev);
 314        unsigned long flags;
 315
 316        atomic_dec(&shost->host_busy);
 317        if (starget->can_queue > 0)
 318                atomic_dec(&starget->target_busy);
 319
 320        if (unlikely(scsi_host_in_recovery(shost) &&
 321                     (shost->host_failed || shost->host_eh_scheduled))) {
 322                spin_lock_irqsave(shost->host_lock, flags);
 323                scsi_eh_wakeup(shost);
 324                spin_unlock_irqrestore(shost->host_lock, flags);
 325        }
 326
 327        atomic_dec(&sdev->device_busy);
 328}
 329
 330static void scsi_kick_queue(struct request_queue *q)
 331{
 332        if (q->mq_ops)
 333                blk_mq_start_hw_queues(q);
 334        else
 335                blk_run_queue(q);
 336}
 337
 338/*
 339 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 340 * and call blk_run_queue for all the scsi_devices on the target -
 341 * including current_sdev first.
 342 *
 343 * Called with *no* scsi locks held.
 344 */
 345static void scsi_single_lun_run(struct scsi_device *current_sdev)
 346{
 347        struct Scsi_Host *shost = current_sdev->host;
 348        struct scsi_device *sdev, *tmp;
 349        struct scsi_target *starget = scsi_target(current_sdev);
 350        unsigned long flags;
 351
 352        spin_lock_irqsave(shost->host_lock, flags);
 353        starget->starget_sdev_user = NULL;
 354        spin_unlock_irqrestore(shost->host_lock, flags);
 355
 356        /*
 357         * Call blk_run_queue for all LUNs on the target, starting with
 358         * current_sdev. We race with others (to set starget_sdev_user),
 359         * but in most cases, we will be first. Ideally, each LU on the
 360         * target would get some limited time or requests on the target.
 361         */
 362        scsi_kick_queue(current_sdev->request_queue);
 363
 364        spin_lock_irqsave(shost->host_lock, flags);
 365        if (starget->starget_sdev_user)
 366                goto out;
 367        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 368                        same_target_siblings) {
 369                if (sdev == current_sdev)
 370                        continue;
 371                if (scsi_device_get(sdev))
 372                        continue;
 373
 374                spin_unlock_irqrestore(shost->host_lock, flags);
 375                scsi_kick_queue(sdev->request_queue);
 376                spin_lock_irqsave(shost->host_lock, flags);
 377        
 378                scsi_device_put(sdev);
 379        }
 380 out:
 381        spin_unlock_irqrestore(shost->host_lock, flags);
 382}
 383
 384static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 385{
 386        if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 387                return true;
 388        if (atomic_read(&sdev->device_blocked) > 0)
 389                return true;
 390        return false;
 391}
 392
 393static inline bool scsi_target_is_busy(struct scsi_target *starget)
 394{
 395        if (starget->can_queue > 0) {
 396                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 397                        return true;
 398                if (atomic_read(&starget->target_blocked) > 0)
 399                        return true;
 400        }
 401        return false;
 402}
 403
 404static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 405{
 406        if (shost->can_queue > 0 &&
 407            atomic_read(&shost->host_busy) >= shost->can_queue)
 408                return true;
 409        if (atomic_read(&shost->host_blocked) > 0)
 410                return true;
 411        if (shost->host_self_blocked)
 412                return true;
 413        return false;
 414}
 415
 416static void scsi_starved_list_run(struct Scsi_Host *shost)
 417{
 418        LIST_HEAD(starved_list);
 419        struct scsi_device *sdev;
 420        unsigned long flags;
 421
 422        spin_lock_irqsave(shost->host_lock, flags);
 423        list_splice_init(&shost->starved_list, &starved_list);
 424
 425        while (!list_empty(&starved_list)) {
 426                struct request_queue *slq;
 427
 428                /*
 429                 * As long as shost is accepting commands and we have
 430                 * starved queues, call blk_run_queue. scsi_request_fn
 431                 * drops the queue_lock and can add us back to the
 432                 * starved_list.
 433                 *
 434                 * host_lock protects the starved_list and starved_entry.
 435                 * scsi_request_fn must get the host_lock before checking
 436                 * or modifying starved_list or starved_entry.
 437                 */
 438                if (scsi_host_is_busy(shost))
 439                        break;
 440
 441                sdev = list_entry(starved_list.next,
 442                                  struct scsi_device, starved_entry);
 443                list_del_init(&sdev->starved_entry);
 444                if (scsi_target_is_busy(scsi_target(sdev))) {
 445                        list_move_tail(&sdev->starved_entry,
 446                                       &shost->starved_list);
 447                        continue;
 448                }
 449
 450                /*
 451                 * Once we drop the host lock, a racing scsi_remove_device()
 452                 * call may remove the sdev from the starved list and destroy
 453                 * it and the queue.  Mitigate by taking a reference to the
 454                 * queue and never touching the sdev again after we drop the
 455                 * host lock.  Note: if __scsi_remove_device() invokes
 456                 * blk_cleanup_queue() before the queue is run from this
 457                 * function then blk_run_queue() will return immediately since
 458                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 459                 */
 460                slq = sdev->request_queue;
 461                if (!blk_get_queue(slq))
 462                        continue;
 463                spin_unlock_irqrestore(shost->host_lock, flags);
 464
 465                scsi_kick_queue(slq);
 466                blk_put_queue(slq);
 467
 468                spin_lock_irqsave(shost->host_lock, flags);
 469        }
 470        /* put any unprocessed entries back */
 471        list_splice(&starved_list, &shost->starved_list);
 472        spin_unlock_irqrestore(shost->host_lock, flags);
 473}
 474
 475/*
 476 * Function:   scsi_run_queue()
 477 *
 478 * Purpose:    Select a proper request queue to serve next
 479 *
 480 * Arguments:  q       - last request's queue
 481 *
 482 * Returns:     Nothing
 483 *
 484 * Notes:      The previous command was completely finished, start
 485 *             a new one if possible.
 486 */
 487static void scsi_run_queue(struct request_queue *q)
 488{
 489        struct scsi_device *sdev = q->queuedata;
 490
 491        if (scsi_target(sdev)->single_lun)
 492                scsi_single_lun_run(sdev);
 493        if (!list_empty(&sdev->host->starved_list))
 494                scsi_starved_list_run(sdev->host);
 495
 496        if (q->mq_ops)
 497                blk_mq_start_stopped_hw_queues(q, false);
 498        else
 499                blk_run_queue(q);
 500}
 501
 502void scsi_requeue_run_queue(struct work_struct *work)
 503{
 504        struct scsi_device *sdev;
 505        struct request_queue *q;
 506
 507        sdev = container_of(work, struct scsi_device, requeue_work);
 508        q = sdev->request_queue;
 509        scsi_run_queue(q);
 510}
 511
 512/*
 513 * Function:    scsi_requeue_command()
 514 *
 515 * Purpose:     Handle post-processing of completed commands.
 516 *
 517 * Arguments:   q       - queue to operate on
 518 *              cmd     - command that may need to be requeued.
 519 *
 520 * Returns:     Nothing
 521 *
 522 * Notes:       After command completion, there may be blocks left
 523 *              over which weren't finished by the previous command
 524 *              this can be for a number of reasons - the main one is
 525 *              I/O errors in the middle of the request, in which case
 526 *              we need to request the blocks that come after the bad
 527 *              sector.
 528 * Notes:       Upon return, cmd is a stale pointer.
 529 */
 530static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 531{
 532        struct scsi_device *sdev = cmd->device;
 533        struct request *req = cmd->request;
 534        unsigned long flags;
 535
 536        spin_lock_irqsave(q->queue_lock, flags);
 537        blk_unprep_request(req);
 538        req->special = NULL;
 539        scsi_put_command(cmd);
 540        blk_requeue_request(q, req);
 541        spin_unlock_irqrestore(q->queue_lock, flags);
 542
 543        scsi_run_queue(q);
 544
 545        put_device(&sdev->sdev_gendev);
 546}
 547
 548void scsi_run_host_queues(struct Scsi_Host *shost)
 549{
 550        struct scsi_device *sdev;
 551
 552        shost_for_each_device(sdev, shost)
 553                scsi_run_queue(sdev->request_queue);
 554}
 555
 556static inline unsigned int scsi_sgtable_index(unsigned short nents)
 557{
 558        unsigned int index;
 559
 560        BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 561
 562        if (nents <= 8)
 563                index = 0;
 564        else
 565                index = get_count_order(nents) - 3;
 566
 567        return index;
 568}
 569
 570static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 571{
 572        struct scsi_host_sg_pool *sgp;
 573
 574        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 575        mempool_free(sgl, sgp->pool);
 576}
 577
 578static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 579{
 580        struct scsi_host_sg_pool *sgp;
 581
 582        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 583        return mempool_alloc(sgp->pool, gfp_mask);
 584}
 585
 586static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
 587{
 588        if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
 589                return;
 590        __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
 591}
 592
 593static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
 594{
 595        struct scatterlist *first_chunk = NULL;
 596        int ret;
 597
 598        BUG_ON(!nents);
 599
 600        if (mq) {
 601                if (nents <= SCSI_MAX_SG_SEGMENTS) {
 602                        sdb->table.nents = sdb->table.orig_nents = nents;
 603                        sg_init_table(sdb->table.sgl, nents);
 604                        return 0;
 605                }
 606                first_chunk = sdb->table.sgl;
 607        }
 608
 609        ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 610                               first_chunk, GFP_ATOMIC, scsi_sg_alloc);
 611        if (unlikely(ret))
 612                scsi_free_sgtable(sdb, mq);
 613        return ret;
 614}
 615
 616static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 617{
 618        if (cmd->request->cmd_type == REQ_TYPE_FS) {
 619                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 620
 621                if (drv->uninit_command)
 622                        drv->uninit_command(cmd);
 623        }
 624}
 625
 626static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 627{
 628        if (cmd->sdb.table.nents)
 629                scsi_free_sgtable(&cmd->sdb, true);
 630        if (cmd->request->next_rq && cmd->request->next_rq->special)
 631                scsi_free_sgtable(cmd->request->next_rq->special, true);
 632        if (scsi_prot_sg_count(cmd))
 633                scsi_free_sgtable(cmd->prot_sdb, true);
 634}
 635
 636static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 637{
 638        struct scsi_device *sdev = cmd->device;
 639        struct Scsi_Host *shost = sdev->host;
 640        unsigned long flags;
 641
 642        scsi_mq_free_sgtables(cmd);
 643        scsi_uninit_cmd(cmd);
 644
 645        if (shost->use_cmd_list) {
 646                BUG_ON(list_empty(&cmd->list));
 647                spin_lock_irqsave(&sdev->list_lock, flags);
 648                list_del_init(&cmd->list);
 649                spin_unlock_irqrestore(&sdev->list_lock, flags);
 650        }
 651}
 652
 653/*
 654 * Function:    scsi_release_buffers()
 655 *
 656 * Purpose:     Free resources allocate for a scsi_command.
 657 *
 658 * Arguments:   cmd     - command that we are bailing.
 659 *
 660 * Lock status: Assumed that no lock is held upon entry.
 661 *
 662 * Returns:     Nothing
 663 *
 664 * Notes:       In the event that an upper level driver rejects a
 665 *              command, we must release resources allocated during
 666 *              the __init_io() function.  Primarily this would involve
 667 *              the scatter-gather table.
 668 */
 669static void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671        if (cmd->sdb.table.nents)
 672                scsi_free_sgtable(&cmd->sdb, false);
 673
 674        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 675
 676        if (scsi_prot_sg_count(cmd))
 677                scsi_free_sgtable(cmd->prot_sdb, false);
 678}
 679
 680static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 681{
 682        struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 683
 684        scsi_free_sgtable(bidi_sdb, false);
 685        kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 686        cmd->request->next_rq->special = NULL;
 687}
 688
 689static bool scsi_end_request(struct request *req, int error,
 690                unsigned int bytes, unsigned int bidi_bytes)
 691{
 692        struct scsi_cmnd *cmd = req->special;
 693        struct scsi_device *sdev = cmd->device;
 694        struct request_queue *q = sdev->request_queue;
 695
 696        if (blk_update_request(req, error, bytes))
 697                return true;
 698
 699        /* Bidi request must be completed as a whole */
 700        if (unlikely(bidi_bytes) &&
 701            blk_update_request(req->next_rq, error, bidi_bytes))
 702                return true;
 703
 704        if (blk_queue_add_random(q))
 705                add_disk_randomness(req->rq_disk);
 706
 707        if (req->mq_ctx) {
 708                /*
 709                 * In the MQ case the command gets freed by __blk_mq_end_request,
 710                 * so we have to do all cleanup that depends on it earlier.
 711                 *
 712                 * We also can't kick the queues from irq context, so we
 713                 * will have to defer it to a workqueue.
 714                 */
 715                scsi_mq_uninit_cmd(cmd);
 716
 717                __blk_mq_end_request(req, error);
 718
 719                if (scsi_target(sdev)->single_lun ||
 720                    !list_empty(&sdev->host->starved_list))
 721                        kblockd_schedule_work(&sdev->requeue_work);
 722                else
 723                        blk_mq_start_stopped_hw_queues(q, true);
 724        } else {
 725                unsigned long flags;
 726
 727                if (bidi_bytes)
 728                        scsi_release_bidi_buffers(cmd);
 729
 730                spin_lock_irqsave(q->queue_lock, flags);
 731                blk_finish_request(req, error);
 732                spin_unlock_irqrestore(q->queue_lock, flags);
 733
 734                scsi_release_buffers(cmd);
 735
 736                scsi_put_command(cmd);
 737                scsi_run_queue(q);
 738        }
 739
 740        put_device(&sdev->sdev_gendev);
 741        return false;
 742}
 743
 744/**
 745 * __scsi_error_from_host_byte - translate SCSI error code into errno
 746 * @cmd:        SCSI command (unused)
 747 * @result:     scsi error code
 748 *
 749 * Translate SCSI error code into standard UNIX errno.
 750 * Return values:
 751 * -ENOLINK     temporary transport failure
 752 * -EREMOTEIO   permanent target failure, do not retry
 753 * -EBADE       permanent nexus failure, retry on other path
 754 * -ENOSPC      No write space available
 755 * -ENODATA     Medium error
 756 * -EIO         unspecified I/O error
 757 */
 758static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 759{
 760        int error = 0;
 761
 762        switch(host_byte(result)) {
 763        case DID_TRANSPORT_FAILFAST:
 764                error = -ENOLINK;
 765                break;
 766        case DID_TARGET_FAILURE:
 767                set_host_byte(cmd, DID_OK);
 768                error = -EREMOTEIO;
 769                break;
 770        case DID_NEXUS_FAILURE:
 771                set_host_byte(cmd, DID_OK);
 772                error = -EBADE;
 773                break;
 774        case DID_ALLOC_FAILURE:
 775                set_host_byte(cmd, DID_OK);
 776                error = -ENOSPC;
 777                break;
 778        case DID_MEDIUM_ERROR:
 779                set_host_byte(cmd, DID_OK);
 780                error = -ENODATA;
 781                break;
 782        default:
 783                error = -EIO;
 784                break;
 785        }
 786
 787        return error;
 788}
 789
 790/*
 791 * Function:    scsi_io_completion()
 792 *
 793 * Purpose:     Completion processing for block device I/O requests.
 794 *
 795 * Arguments:   cmd   - command that is finished.
 796 *
 797 * Lock status: Assumed that no lock is held upon entry.
 798 *
 799 * Returns:     Nothing
 800 *
 801 * Notes:       We will finish off the specified number of sectors.  If we
 802 *              are done, the command block will be released and the queue
 803 *              function will be goosed.  If we are not done then we have to
 804 *              figure out what to do next:
 805 *
 806 *              a) We can call scsi_requeue_command().  The request
 807 *                 will be unprepared and put back on the queue.  Then
 808 *                 a new command will be created for it.  This should
 809 *                 be used if we made forward progress, or if we want
 810 *                 to switch from READ(10) to READ(6) for example.
 811 *
 812 *              b) We can call __scsi_queue_insert().  The request will
 813 *                 be put back on the queue and retried using the same
 814 *                 command as before, possibly after a delay.
 815 *
 816 *              c) We can call scsi_end_request() with -EIO to fail
 817 *                 the remainder of the request.
 818 */
 819void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 820{
 821        int result = cmd->result;
 822        struct request_queue *q = cmd->device->request_queue;
 823        struct request *req = cmd->request;
 824        int error = 0;
 825        struct scsi_sense_hdr sshdr;
 826        bool sense_valid = false;
 827        int sense_deferred = 0, level = 0;
 828        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 829              ACTION_DELAYED_RETRY} action;
 830        unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 831
 832        if (result) {
 833                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 834                if (sense_valid)
 835                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 836        }
 837
 838        if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 839                if (result) {
 840                        if (sense_valid && req->sense) {
 841                                /*
 842                                 * SG_IO wants current and deferred errors
 843                                 */
 844                                int len = 8 + cmd->sense_buffer[7];
 845
 846                                if (len > SCSI_SENSE_BUFFERSIZE)
 847                                        len = SCSI_SENSE_BUFFERSIZE;
 848                                memcpy(req->sense, cmd->sense_buffer,  len);
 849                                req->sense_len = len;
 850                        }
 851                        if (!sense_deferred)
 852                                error = __scsi_error_from_host_byte(cmd, result);
 853                }
 854                /*
 855                 * __scsi_error_from_host_byte may have reset the host_byte
 856                 */
 857                req->errors = cmd->result;
 858
 859                req->resid_len = scsi_get_resid(cmd);
 860
 861                if (scsi_bidi_cmnd(cmd)) {
 862                        /*
 863                         * Bidi commands Must be complete as a whole,
 864                         * both sides at once.
 865                         */
 866                        req->next_rq->resid_len = scsi_in(cmd)->resid;
 867                        if (scsi_end_request(req, 0, blk_rq_bytes(req),
 868                                        blk_rq_bytes(req->next_rq)))
 869                                BUG();
 870                        return;
 871                }
 872        } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 873                /*
 874                 * Certain non BLOCK_PC requests are commands that don't
 875                 * actually transfer anything (FLUSH), so cannot use
 876                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 877                 * This sets the error explicitly for the problem case.
 878                 */
 879                error = __scsi_error_from_host_byte(cmd, result);
 880        }
 881
 882        /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 883        BUG_ON(blk_bidi_rq(req));
 884
 885        /*
 886         * Next deal with any sectors which we were able to correctly
 887         * handle.
 888         */
 889        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 890                "%u sectors total, %d bytes done.\n",
 891                blk_rq_sectors(req), good_bytes));
 892
 893        /*
 894         * Recovered errors need reporting, but they're always treated
 895         * as success, so fiddle the result code here.  For BLOCK_PC
 896         * we already took a copy of the original into rq->errors which
 897         * is what gets returned to the user
 898         */
 899        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 900                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 901                 * print since caller wants ATA registers. Only occurs on
 902                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 903                 */
 904                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 905                        ;
 906                else if (!(req->cmd_flags & REQ_QUIET))
 907                        scsi_print_sense(cmd);
 908                result = 0;
 909                /* BLOCK_PC may have set error */
 910                error = 0;
 911        }
 912
 913        /*
 914         * If we finished all bytes in the request we are done now.
 915         */
 916        if (!scsi_end_request(req, error, good_bytes, 0))
 917                return;
 918
 919        /*
 920         * Kill remainder if no retrys.
 921         */
 922        if (error && scsi_noretry_cmd(cmd)) {
 923                if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 924                        BUG();
 925                return;
 926        }
 927
 928        /*
 929         * If there had been no error, but we have leftover bytes in the
 930         * requeues just queue the command up again.
 931         */
 932        if (result == 0)
 933                goto requeue;
 934
 935        error = __scsi_error_from_host_byte(cmd, result);
 936
 937        if (host_byte(result) == DID_RESET) {
 938                /* Third party bus reset or reset for error recovery
 939                 * reasons.  Just retry the command and see what
 940                 * happens.
 941                 */
 942                action = ACTION_RETRY;
 943        } else if (sense_valid && !sense_deferred) {
 944                switch (sshdr.sense_key) {
 945                case UNIT_ATTENTION:
 946                        if (cmd->device->removable) {
 947                                /* Detected disc change.  Set a bit
 948                                 * and quietly refuse further access.
 949                                 */
 950                                cmd->device->changed = 1;
 951                                action = ACTION_FAIL;
 952                        } else {
 953                                /* Must have been a power glitch, or a
 954                                 * bus reset.  Could not have been a
 955                                 * media change, so we just retry the
 956                                 * command and see what happens.
 957                                 */
 958                                action = ACTION_RETRY;
 959                        }
 960                        break;
 961                case ILLEGAL_REQUEST:
 962                        /* If we had an ILLEGAL REQUEST returned, then
 963                         * we may have performed an unsupported
 964                         * command.  The only thing this should be
 965                         * would be a ten byte read where only a six
 966                         * byte read was supported.  Also, on a system
 967                         * where READ CAPACITY failed, we may have
 968                         * read past the end of the disk.
 969                         */
 970                        if ((cmd->device->use_10_for_rw &&
 971                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 972                            (cmd->cmnd[0] == READ_10 ||
 973                             cmd->cmnd[0] == WRITE_10)) {
 974                                /* This will issue a new 6-byte command. */
 975                                cmd->device->use_10_for_rw = 0;
 976                                action = ACTION_REPREP;
 977                        } else if (sshdr.asc == 0x10) /* DIX */ {
 978                                action = ACTION_FAIL;
 979                                error = -EILSEQ;
 980                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 981                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 982                                action = ACTION_FAIL;
 983                                error = -EREMOTEIO;
 984                        } else
 985                                action = ACTION_FAIL;
 986                        break;
 987                case ABORTED_COMMAND:
 988                        action = ACTION_FAIL;
 989                        if (sshdr.asc == 0x10) /* DIF */
 990                                error = -EILSEQ;
 991                        break;
 992                case NOT_READY:
 993                        /* If the device is in the process of becoming
 994                         * ready, or has a temporary blockage, retry.
 995                         */
 996                        if (sshdr.asc == 0x04) {
 997                                switch (sshdr.ascq) {
 998                                case 0x01: /* becoming ready */
 999                                case 0x04: /* format in progress */
1000                                case 0x05: /* rebuild in progress */
1001                                case 0x06: /* recalculation in progress */
1002                                case 0x07: /* operation in progress */
1003                                case 0x08: /* Long write in progress */
1004                                case 0x09: /* self test in progress */
1005                                case 0x14: /* space allocation in progress */
1006                                        action = ACTION_DELAYED_RETRY;
1007                                        break;
1008                                default:
1009                                        action = ACTION_FAIL;
1010                                        break;
1011                                }
1012                        } else
1013                                action = ACTION_FAIL;
1014                        break;
1015                case VOLUME_OVERFLOW:
1016                        /* See SSC3rXX or current. */
1017                        action = ACTION_FAIL;
1018                        break;
1019                default:
1020                        action = ACTION_FAIL;
1021                        break;
1022                }
1023        } else
1024                action = ACTION_FAIL;
1025
1026        if (action != ACTION_FAIL &&
1027            time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1028                action = ACTION_FAIL;
1029
1030        switch (action) {
1031        case ACTION_FAIL:
1032                /* Give up and fail the remainder of the request */
1033                if (!(req->cmd_flags & REQ_QUIET)) {
1034                        static DEFINE_RATELIMIT_STATE(_rs,
1035                                        DEFAULT_RATELIMIT_INTERVAL,
1036                                        DEFAULT_RATELIMIT_BURST);
1037
1038                        if (unlikely(scsi_logging_level))
1039                                level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1040                                                       SCSI_LOG_MLCOMPLETE_BITS);
1041
1042                        /*
1043                         * if logging is enabled the failure will be printed
1044                         * in scsi_log_completion(), so avoid duplicate messages
1045                         */
1046                        if (!level && __ratelimit(&_rs)) {
1047                                scsi_print_result(cmd, NULL, FAILED);
1048                                if (driver_byte(result) & DRIVER_SENSE)
1049                                        scsi_print_sense(cmd);
1050                                scsi_print_command(cmd);
1051                        }
1052                }
1053                if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1054                        return;
1055                /*FALLTHRU*/
1056        case ACTION_REPREP:
1057        requeue:
1058                /* Unprep the request and put it back at the head of the queue.
1059                 * A new command will be prepared and issued.
1060                 */
1061                if (q->mq_ops) {
1062                        cmd->request->cmd_flags &= ~REQ_DONTPREP;
1063                        scsi_mq_uninit_cmd(cmd);
1064                        scsi_mq_requeue_cmd(cmd);
1065                } else {
1066                        scsi_release_buffers(cmd);
1067                        scsi_requeue_command(q, cmd);
1068                }
1069                break;
1070        case ACTION_RETRY:
1071                /* Retry the same command immediately */
1072                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1073                break;
1074        case ACTION_DELAYED_RETRY:
1075                /* Retry the same command after a delay */
1076                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1077                break;
1078        }
1079}
1080
1081static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1082{
1083        int count;
1084
1085        /*
1086         * If sg table allocation fails, requeue request later.
1087         */
1088        if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1089                                        req->mq_ctx != NULL)))
1090                return BLKPREP_DEFER;
1091
1092        /* 
1093         * Next, walk the list, and fill in the addresses and sizes of
1094         * each segment.
1095         */
1096        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1097        BUG_ON(count > sdb->table.nents);
1098        sdb->table.nents = count;
1099        sdb->length = blk_rq_bytes(req);
1100        return BLKPREP_OK;
1101}
1102
1103/*
1104 * Function:    scsi_init_io()
1105 *
1106 * Purpose:     SCSI I/O initialize function.
1107 *
1108 * Arguments:   cmd   - Command descriptor we wish to initialize
1109 *
1110 * Returns:     0 on success
1111 *              BLKPREP_DEFER if the failure is retryable
1112 *              BLKPREP_KILL if the failure is fatal
1113 */
1114int scsi_init_io(struct scsi_cmnd *cmd)
1115{
1116        struct scsi_device *sdev = cmd->device;
1117        struct request *rq = cmd->request;
1118        bool is_mq = (rq->mq_ctx != NULL);
1119        int error;
1120
1121        BUG_ON(!rq->nr_phys_segments);
1122
1123        error = scsi_init_sgtable(rq, &cmd->sdb);
1124        if (error)
1125                goto err_exit;
1126
1127        if (blk_bidi_rq(rq)) {
1128                if (!rq->q->mq_ops) {
1129                        struct scsi_data_buffer *bidi_sdb =
1130                                kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1131                        if (!bidi_sdb) {
1132                                error = BLKPREP_DEFER;
1133                                goto err_exit;
1134                        }
1135
1136                        rq->next_rq->special = bidi_sdb;
1137                }
1138
1139                error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1140                if (error)
1141                        goto err_exit;
1142        }
1143
1144        if (blk_integrity_rq(rq)) {
1145                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1146                int ivecs, count;
1147
1148                if (prot_sdb == NULL) {
1149                        /*
1150                         * This can happen if someone (e.g. multipath)
1151                         * queues a command to a device on an adapter
1152                         * that does not support DIX.
1153                         */
1154                        WARN_ON_ONCE(1);
1155                        error = BLKPREP_KILL;
1156                        goto err_exit;
1157                }
1158
1159                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1160
1161                if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1162                        error = BLKPREP_DEFER;
1163                        goto err_exit;
1164                }
1165
1166                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1167                                                prot_sdb->table.sgl);
1168                BUG_ON(unlikely(count > ivecs));
1169                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1170
1171                cmd->prot_sdb = prot_sdb;
1172                cmd->prot_sdb->table.nents = count;
1173        }
1174
1175        return BLKPREP_OK;
1176err_exit:
1177        if (is_mq) {
1178                scsi_mq_free_sgtables(cmd);
1179        } else {
1180                scsi_release_buffers(cmd);
1181                cmd->request->special = NULL;
1182                scsi_put_command(cmd);
1183                put_device(&sdev->sdev_gendev);
1184        }
1185        return error;
1186}
1187EXPORT_SYMBOL(scsi_init_io);
1188
1189static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1190                struct request *req)
1191{
1192        struct scsi_cmnd *cmd;
1193
1194        if (!req->special) {
1195                /* Bail if we can't get a reference to the device */
1196                if (!get_device(&sdev->sdev_gendev))
1197                        return NULL;
1198
1199                cmd = scsi_get_command(sdev, GFP_ATOMIC);
1200                if (unlikely(!cmd)) {
1201                        put_device(&sdev->sdev_gendev);
1202                        return NULL;
1203                }
1204                req->special = cmd;
1205        } else {
1206                cmd = req->special;
1207        }
1208
1209        /* pull a tag out of the request if we have one */
1210        cmd->tag = req->tag;
1211        cmd->request = req;
1212
1213        cmd->cmnd = req->cmd;
1214        cmd->prot_op = SCSI_PROT_NORMAL;
1215
1216        return cmd;
1217}
1218
1219static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1220{
1221        struct scsi_cmnd *cmd = req->special;
1222
1223        /*
1224         * BLOCK_PC requests may transfer data, in which case they must
1225         * a bio attached to them.  Or they might contain a SCSI command
1226         * that does not transfer data, in which case they may optionally
1227         * submit a request without an attached bio.
1228         */
1229        if (req->bio) {
1230                int ret = scsi_init_io(cmd);
1231                if (unlikely(ret))
1232                        return ret;
1233        } else {
1234                BUG_ON(blk_rq_bytes(req));
1235
1236                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237        }
1238
1239        cmd->cmd_len = req->cmd_len;
1240        cmd->transfersize = blk_rq_bytes(req);
1241        cmd->allowed = req->retries;
1242        return BLKPREP_OK;
1243}
1244
1245/*
1246 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1247 * that still need to be translated to SCSI CDBs from the ULD.
1248 */
1249static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250{
1251        struct scsi_cmnd *cmd = req->special;
1252
1253        if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1254                int ret = sdev->handler->prep_fn(sdev, req);
1255                if (ret != BLKPREP_OK)
1256                        return ret;
1257        }
1258
1259        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1260        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1261}
1262
1263static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1264{
1265        struct scsi_cmnd *cmd = req->special;
1266
1267        if (!blk_rq_bytes(req))
1268                cmd->sc_data_direction = DMA_NONE;
1269        else if (rq_data_dir(req) == WRITE)
1270                cmd->sc_data_direction = DMA_TO_DEVICE;
1271        else
1272                cmd->sc_data_direction = DMA_FROM_DEVICE;
1273
1274        switch (req->cmd_type) {
1275        case REQ_TYPE_FS:
1276                return scsi_setup_fs_cmnd(sdev, req);
1277        case REQ_TYPE_BLOCK_PC:
1278                return scsi_setup_blk_pc_cmnd(sdev, req);
1279        default:
1280                return BLKPREP_KILL;
1281        }
1282}
1283
1284static int
1285scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1286{
1287        int ret = BLKPREP_OK;
1288
1289        /*
1290         * If the device is not in running state we will reject some
1291         * or all commands.
1292         */
1293        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1294                switch (sdev->sdev_state) {
1295                case SDEV_OFFLINE:
1296                case SDEV_TRANSPORT_OFFLINE:
1297                        /*
1298                         * If the device is offline we refuse to process any
1299                         * commands.  The device must be brought online
1300                         * before trying any recovery commands.
1301                         */
1302                        sdev_printk(KERN_ERR, sdev,
1303                                    "rejecting I/O to offline device\n");
1304                        ret = BLKPREP_KILL;
1305                        break;
1306                case SDEV_DEL:
1307                        /*
1308                         * If the device is fully deleted, we refuse to
1309                         * process any commands as well.
1310                         */
1311                        sdev_printk(KERN_ERR, sdev,
1312                                    "rejecting I/O to dead device\n");
1313                        ret = BLKPREP_KILL;
1314                        break;
1315                case SDEV_BLOCK:
1316                case SDEV_CREATED_BLOCK:
1317                        ret = BLKPREP_DEFER;
1318                        break;
1319                case SDEV_QUIESCE:
1320                        /*
1321                         * If the devices is blocked we defer normal commands.
1322                         */
1323                        if (!(req->cmd_flags & REQ_PREEMPT))
1324                                ret = BLKPREP_DEFER;
1325                        break;
1326                default:
1327                        /*
1328                         * For any other not fully online state we only allow
1329                         * special commands.  In particular any user initiated
1330                         * command is not allowed.
1331                         */
1332                        if (!(req->cmd_flags & REQ_PREEMPT))
1333                                ret = BLKPREP_KILL;
1334                        break;
1335                }
1336        }
1337        return ret;
1338}
1339
1340static int
1341scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1342{
1343        struct scsi_device *sdev = q->queuedata;
1344
1345        switch (ret) {
1346        case BLKPREP_KILL:
1347        case BLKPREP_INVALID:
1348                req->errors = DID_NO_CONNECT << 16;
1349                /* release the command and kill it */
1350                if (req->special) {
1351                        struct scsi_cmnd *cmd = req->special;
1352                        scsi_release_buffers(cmd);
1353                        scsi_put_command(cmd);
1354                        put_device(&sdev->sdev_gendev);
1355                        req->special = NULL;
1356                }
1357                break;
1358        case BLKPREP_DEFER:
1359                /*
1360                 * If we defer, the blk_peek_request() returns NULL, but the
1361                 * queue must be restarted, so we schedule a callback to happen
1362                 * shortly.
1363                 */
1364                if (atomic_read(&sdev->device_busy) == 0)
1365                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1366                break;
1367        default:
1368                req->cmd_flags |= REQ_DONTPREP;
1369        }
1370
1371        return ret;
1372}
1373
1374static int scsi_prep_fn(struct request_queue *q, struct request *req)
1375{
1376        struct scsi_device *sdev = q->queuedata;
1377        struct scsi_cmnd *cmd;
1378        int ret;
1379
1380        ret = scsi_prep_state_check(sdev, req);
1381        if (ret != BLKPREP_OK)
1382                goto out;
1383
1384        cmd = scsi_get_cmd_from_req(sdev, req);
1385        if (unlikely(!cmd)) {
1386                ret = BLKPREP_DEFER;
1387                goto out;
1388        }
1389
1390        ret = scsi_setup_cmnd(sdev, req);
1391out:
1392        return scsi_prep_return(q, req, ret);
1393}
1394
1395static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1396{
1397        scsi_uninit_cmd(req->special);
1398}
1399
1400/*
1401 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1402 * return 0.
1403 *
1404 * Called with the queue_lock held.
1405 */
1406static inline int scsi_dev_queue_ready(struct request_queue *q,
1407                                  struct scsi_device *sdev)
1408{
1409        unsigned int busy;
1410
1411        busy = atomic_inc_return(&sdev->device_busy) - 1;
1412        if (atomic_read(&sdev->device_blocked)) {
1413                if (busy)
1414                        goto out_dec;
1415
1416                /*
1417                 * unblock after device_blocked iterates to zero
1418                 */
1419                if (atomic_dec_return(&sdev->device_blocked) > 0) {
1420                        /*
1421                         * For the MQ case we take care of this in the caller.
1422                         */
1423                        if (!q->mq_ops)
1424                                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1425                        goto out_dec;
1426                }
1427                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1428                                   "unblocking device at zero depth\n"));
1429        }
1430
1431        if (busy >= sdev->queue_depth)
1432                goto out_dec;
1433
1434        return 1;
1435out_dec:
1436        atomic_dec(&sdev->device_busy);
1437        return 0;
1438}
1439
1440/*
1441 * scsi_target_queue_ready: checks if there we can send commands to target
1442 * @sdev: scsi device on starget to check.
1443 */
1444static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1445                                           struct scsi_device *sdev)
1446{
1447        struct scsi_target *starget = scsi_target(sdev);
1448        unsigned int busy;
1449
1450        if (starget->single_lun) {
1451                spin_lock_irq(shost->host_lock);
1452                if (starget->starget_sdev_user &&
1453                    starget->starget_sdev_user != sdev) {
1454                        spin_unlock_irq(shost->host_lock);
1455                        return 0;
1456                }
1457                starget->starget_sdev_user = sdev;
1458                spin_unlock_irq(shost->host_lock);
1459        }
1460
1461        if (starget->can_queue <= 0)
1462                return 1;
1463
1464        busy = atomic_inc_return(&starget->target_busy) - 1;
1465        if (atomic_read(&starget->target_blocked) > 0) {
1466                if (busy)
1467                        goto starved;
1468
1469                /*
1470                 * unblock after target_blocked iterates to zero
1471                 */
1472                if (atomic_dec_return(&starget->target_blocked) > 0)
1473                        goto out_dec;
1474
1475                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1476                                 "unblocking target at zero depth\n"));
1477        }
1478
1479        if (busy >= starget->can_queue)
1480                goto starved;
1481
1482        return 1;
1483
1484starved:
1485        spin_lock_irq(shost->host_lock);
1486        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1487        spin_unlock_irq(shost->host_lock);
1488out_dec:
1489        if (starget->can_queue > 0)
1490                atomic_dec(&starget->target_busy);
1491        return 0;
1492}
1493
1494/*
1495 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1496 * return 0. We must end up running the queue again whenever 0 is
1497 * returned, else IO can hang.
1498 */
1499static inline int scsi_host_queue_ready(struct request_queue *q,
1500                                   struct Scsi_Host *shost,
1501                                   struct scsi_device *sdev)
1502{
1503        unsigned int busy;
1504
1505        if (scsi_host_in_recovery(shost))
1506                return 0;
1507
1508        busy = atomic_inc_return(&shost->host_busy) - 1;
1509        if (atomic_read(&shost->host_blocked) > 0) {
1510                if (busy)
1511                        goto starved;
1512
1513                /*
1514                 * unblock after host_blocked iterates to zero
1515                 */
1516                if (atomic_dec_return(&shost->host_blocked) > 0)
1517                        goto out_dec;
1518
1519                SCSI_LOG_MLQUEUE(3,
1520                        shost_printk(KERN_INFO, shost,
1521                                     "unblocking host at zero depth\n"));
1522        }
1523
1524        if (shost->can_queue > 0 && busy >= shost->can_queue)
1525                goto starved;
1526        if (shost->host_self_blocked)
1527                goto starved;
1528
1529        /* We're OK to process the command, so we can't be starved */
1530        if (!list_empty(&sdev->starved_entry)) {
1531                spin_lock_irq(shost->host_lock);
1532                if (!list_empty(&sdev->starved_entry))
1533                        list_del_init(&sdev->starved_entry);
1534                spin_unlock_irq(shost->host_lock);
1535        }
1536
1537        return 1;
1538
1539starved:
1540        spin_lock_irq(shost->host_lock);
1541        if (list_empty(&sdev->starved_entry))
1542                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1543        spin_unlock_irq(shost->host_lock);
1544out_dec:
1545        atomic_dec(&shost->host_busy);
1546        return 0;
1547}
1548
1549/*
1550 * Busy state exporting function for request stacking drivers.
1551 *
1552 * For efficiency, no lock is taken to check the busy state of
1553 * shost/starget/sdev, since the returned value is not guaranteed and
1554 * may be changed after request stacking drivers call the function,
1555 * regardless of taking lock or not.
1556 *
1557 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1558 * needs to return 'not busy'. Otherwise, request stacking drivers
1559 * may hold requests forever.
1560 */
1561static int scsi_lld_busy(struct request_queue *q)
1562{
1563        struct scsi_device *sdev = q->queuedata;
1564        struct Scsi_Host *shost;
1565
1566        if (blk_queue_dying(q))
1567                return 0;
1568
1569        shost = sdev->host;
1570
1571        /*
1572         * Ignore host/starget busy state.
1573         * Since block layer does not have a concept of fairness across
1574         * multiple queues, congestion of host/starget needs to be handled
1575         * in SCSI layer.
1576         */
1577        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1578                return 1;
1579
1580        return 0;
1581}
1582
1583/*
1584 * Kill a request for a dead device
1585 */
1586static void scsi_kill_request(struct request *req, struct request_queue *q)
1587{
1588        struct scsi_cmnd *cmd = req->special;
1589        struct scsi_device *sdev;
1590        struct scsi_target *starget;
1591        struct Scsi_Host *shost;
1592
1593        blk_start_request(req);
1594
1595        scmd_printk(KERN_INFO, cmd, "killing request\n");
1596
1597        sdev = cmd->device;
1598        starget = scsi_target(sdev);
1599        shost = sdev->host;
1600        scsi_init_cmd_errh(cmd);
1601        cmd->result = DID_NO_CONNECT << 16;
1602        atomic_inc(&cmd->device->iorequest_cnt);
1603
1604        /*
1605         * SCSI request completion path will do scsi_device_unbusy(),
1606         * bump busy counts.  To bump the counters, we need to dance
1607         * with the locks as normal issue path does.
1608         */
1609        atomic_inc(&sdev->device_busy);
1610        atomic_inc(&shost->host_busy);
1611        if (starget->can_queue > 0)
1612                atomic_inc(&starget->target_busy);
1613
1614        blk_complete_request(req);
1615}
1616
1617static void scsi_softirq_done(struct request *rq)
1618{
1619        struct scsi_cmnd *cmd = rq->special;
1620        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1621        int disposition;
1622
1623        INIT_LIST_HEAD(&cmd->eh_entry);
1624
1625        atomic_inc(&cmd->device->iodone_cnt);
1626        if (cmd->result)
1627                atomic_inc(&cmd->device->ioerr_cnt);
1628
1629        disposition = scsi_decide_disposition(cmd);
1630        if (disposition != SUCCESS &&
1631            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1632                sdev_printk(KERN_ERR, cmd->device,
1633                            "timing out command, waited %lus\n",
1634                            wait_for/HZ);
1635                disposition = SUCCESS;
1636        }
1637
1638        scsi_log_completion(cmd, disposition);
1639
1640        switch (disposition) {
1641                case SUCCESS:
1642                        scsi_finish_command(cmd);
1643                        break;
1644                case NEEDS_RETRY:
1645                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1646                        break;
1647                case ADD_TO_MLQUEUE:
1648                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1649                        break;
1650                default:
1651                        if (!scsi_eh_scmd_add(cmd, 0))
1652                                scsi_finish_command(cmd);
1653        }
1654}
1655
1656/**
1657 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1658 * @cmd: command block we are dispatching.
1659 *
1660 * Return: nonzero return request was rejected and device's queue needs to be
1661 * plugged.
1662 */
1663static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1664{
1665        struct Scsi_Host *host = cmd->device->host;
1666        int rtn = 0;
1667
1668        atomic_inc(&cmd->device->iorequest_cnt);
1669
1670        /* check if the device is still usable */
1671        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1672                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1673                 * returns an immediate error upwards, and signals
1674                 * that the device is no longer present */
1675                cmd->result = DID_NO_CONNECT << 16;
1676                goto done;
1677        }
1678
1679        /* Check to see if the scsi lld made this device blocked. */
1680        if (unlikely(scsi_device_blocked(cmd->device))) {
1681                /*
1682                 * in blocked state, the command is just put back on
1683                 * the device queue.  The suspend state has already
1684                 * blocked the queue so future requests should not
1685                 * occur until the device transitions out of the
1686                 * suspend state.
1687                 */
1688                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1689                        "queuecommand : device blocked\n"));
1690                return SCSI_MLQUEUE_DEVICE_BUSY;
1691        }
1692
1693        /* Store the LUN value in cmnd, if needed. */
1694        if (cmd->device->lun_in_cdb)
1695                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1696                               (cmd->device->lun << 5 & 0xe0);
1697
1698        scsi_log_send(cmd);
1699
1700        /*
1701         * Before we queue this command, check if the command
1702         * length exceeds what the host adapter can handle.
1703         */
1704        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1705                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1706                               "queuecommand : command too long. "
1707                               "cdb_size=%d host->max_cmd_len=%d\n",
1708                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1709                cmd->result = (DID_ABORT << 16);
1710                goto done;
1711        }
1712
1713        if (unlikely(host->shost_state == SHOST_DEL)) {
1714                cmd->result = (DID_NO_CONNECT << 16);
1715                goto done;
1716
1717        }
1718
1719        trace_scsi_dispatch_cmd_start(cmd);
1720        rtn = host->hostt->queuecommand(host, cmd);
1721        if (rtn) {
1722                trace_scsi_dispatch_cmd_error(cmd, rtn);
1723                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1724                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1725                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1726
1727                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1728                        "queuecommand : request rejected\n"));
1729        }
1730
1731        return rtn;
1732 done:
1733        cmd->scsi_done(cmd);
1734        return 0;
1735}
1736
1737/**
1738 * scsi_done - Invoke completion on finished SCSI command.
1739 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1740 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1741 *
1742 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1743 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1744 * calls blk_complete_request() for further processing.
1745 *
1746 * This function is interrupt context safe.
1747 */
1748static void scsi_done(struct scsi_cmnd *cmd)
1749{
1750        trace_scsi_dispatch_cmd_done(cmd);
1751        blk_complete_request(cmd->request);
1752}
1753
1754/*
1755 * Function:    scsi_request_fn()
1756 *
1757 * Purpose:     Main strategy routine for SCSI.
1758 *
1759 * Arguments:   q       - Pointer to actual queue.
1760 *
1761 * Returns:     Nothing
1762 *
1763 * Lock status: IO request lock assumed to be held when called.
1764 */
1765static void scsi_request_fn(struct request_queue *q)
1766        __releases(q->queue_lock)
1767        __acquires(q->queue_lock)
1768{
1769        struct scsi_device *sdev = q->queuedata;
1770        struct Scsi_Host *shost;
1771        struct scsi_cmnd *cmd;
1772        struct request *req;
1773
1774        /*
1775         * To start with, we keep looping until the queue is empty, or until
1776         * the host is no longer able to accept any more requests.
1777         */
1778        shost = sdev->host;
1779        for (;;) {
1780                int rtn;
1781                /*
1782                 * get next queueable request.  We do this early to make sure
1783                 * that the request is fully prepared even if we cannot
1784                 * accept it.
1785                 */
1786                req = blk_peek_request(q);
1787                if (!req)
1788                        break;
1789
1790                if (unlikely(!scsi_device_online(sdev))) {
1791                        sdev_printk(KERN_ERR, sdev,
1792                                    "rejecting I/O to offline device\n");
1793                        scsi_kill_request(req, q);
1794                        continue;
1795                }
1796
1797                if (!scsi_dev_queue_ready(q, sdev))
1798                        break;
1799
1800                /*
1801                 * Remove the request from the request list.
1802                 */
1803                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1804                        blk_start_request(req);
1805
1806                spin_unlock_irq(q->queue_lock);
1807                cmd = req->special;
1808                if (unlikely(cmd == NULL)) {
1809                        printk(KERN_CRIT "impossible request in %s.\n"
1810                                         "please mail a stack trace to "
1811                                         "linux-scsi@vger.kernel.org\n",
1812                                         __func__);
1813                        blk_dump_rq_flags(req, "foo");
1814                        BUG();
1815                }
1816
1817                /*
1818                 * We hit this when the driver is using a host wide
1819                 * tag map. For device level tag maps the queue_depth check
1820                 * in the device ready fn would prevent us from trying
1821                 * to allocate a tag. Since the map is a shared host resource
1822                 * we add the dev to the starved list so it eventually gets
1823                 * a run when a tag is freed.
1824                 */
1825                if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1826                        spin_lock_irq(shost->host_lock);
1827                        if (list_empty(&sdev->starved_entry))
1828                                list_add_tail(&sdev->starved_entry,
1829                                              &shost->starved_list);
1830                        spin_unlock_irq(shost->host_lock);
1831                        goto not_ready;
1832                }
1833
1834                if (!scsi_target_queue_ready(shost, sdev))
1835                        goto not_ready;
1836
1837                if (!scsi_host_queue_ready(q, shost, sdev))
1838                        goto host_not_ready;
1839        
1840                if (sdev->simple_tags)
1841                        cmd->flags |= SCMD_TAGGED;
1842                else
1843                        cmd->flags &= ~SCMD_TAGGED;
1844
1845                /*
1846                 * Finally, initialize any error handling parameters, and set up
1847                 * the timers for timeouts.
1848                 */
1849                scsi_init_cmd_errh(cmd);
1850
1851                /*
1852                 * Dispatch the command to the low-level driver.
1853                 */
1854                cmd->scsi_done = scsi_done;
1855                rtn = scsi_dispatch_cmd(cmd);
1856                if (rtn) {
1857                        scsi_queue_insert(cmd, rtn);
1858                        spin_lock_irq(q->queue_lock);
1859                        goto out_delay;
1860                }
1861                spin_lock_irq(q->queue_lock);
1862        }
1863
1864        return;
1865
1866 host_not_ready:
1867        if (scsi_target(sdev)->can_queue > 0)
1868                atomic_dec(&scsi_target(sdev)->target_busy);
1869 not_ready:
1870        /*
1871         * lock q, handle tag, requeue req, and decrement device_busy. We
1872         * must return with queue_lock held.
1873         *
1874         * Decrementing device_busy without checking it is OK, as all such
1875         * cases (host limits or settings) should run the queue at some
1876         * later time.
1877         */
1878        spin_lock_irq(q->queue_lock);
1879        blk_requeue_request(q, req);
1880        atomic_dec(&sdev->device_busy);
1881out_delay:
1882        if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1883                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1884}
1885
1886static inline int prep_to_mq(int ret)
1887{
1888        switch (ret) {
1889        case BLKPREP_OK:
1890                return 0;
1891        case BLKPREP_DEFER:
1892                return BLK_MQ_RQ_QUEUE_BUSY;
1893        default:
1894                return BLK_MQ_RQ_QUEUE_ERROR;
1895        }
1896}
1897
1898static int scsi_mq_prep_fn(struct request *req)
1899{
1900        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901        struct scsi_device *sdev = req->q->queuedata;
1902        struct Scsi_Host *shost = sdev->host;
1903        unsigned char *sense_buf = cmd->sense_buffer;
1904        struct scatterlist *sg;
1905
1906        memset(cmd, 0, sizeof(struct scsi_cmnd));
1907
1908        req->special = cmd;
1909
1910        cmd->request = req;
1911        cmd->device = sdev;
1912        cmd->sense_buffer = sense_buf;
1913
1914        cmd->tag = req->tag;
1915
1916        cmd->cmnd = req->cmd;
1917        cmd->prot_op = SCSI_PROT_NORMAL;
1918
1919        INIT_LIST_HEAD(&cmd->list);
1920        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1921        cmd->jiffies_at_alloc = jiffies;
1922
1923        if (shost->use_cmd_list) {
1924                spin_lock_irq(&sdev->list_lock);
1925                list_add_tail(&cmd->list, &sdev->cmd_list);
1926                spin_unlock_irq(&sdev->list_lock);
1927        }
1928
1929        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1930        cmd->sdb.table.sgl = sg;
1931
1932        if (scsi_host_get_prot(shost)) {
1933                cmd->prot_sdb = (void *)sg +
1934                        min_t(unsigned int,
1935                              shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1936                        sizeof(struct scatterlist);
1937                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1938
1939                cmd->prot_sdb->table.sgl =
1940                        (struct scatterlist *)(cmd->prot_sdb + 1);
1941        }
1942
1943        if (blk_bidi_rq(req)) {
1944                struct request *next_rq = req->next_rq;
1945                struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1946
1947                memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1948                bidi_sdb->table.sgl =
1949                        (struct scatterlist *)(bidi_sdb + 1);
1950
1951                next_rq->special = bidi_sdb;
1952        }
1953
1954        blk_mq_start_request(req);
1955
1956        return scsi_setup_cmnd(sdev, req);
1957}
1958
1959static void scsi_mq_done(struct scsi_cmnd *cmd)
1960{
1961        trace_scsi_dispatch_cmd_done(cmd);
1962        blk_mq_complete_request(cmd->request, cmd->request->errors);
1963}
1964
1965static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1966                         const struct blk_mq_queue_data *bd)
1967{
1968        struct request *req = bd->rq;
1969        struct request_queue *q = req->q;
1970        struct scsi_device *sdev = q->queuedata;
1971        struct Scsi_Host *shost = sdev->host;
1972        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1973        int ret;
1974        int reason;
1975
1976        ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1977        if (ret)
1978                goto out;
1979
1980        ret = BLK_MQ_RQ_QUEUE_BUSY;
1981        if (!get_device(&sdev->sdev_gendev))
1982                goto out;
1983
1984        if (!scsi_dev_queue_ready(q, sdev))
1985                goto out_put_device;
1986        if (!scsi_target_queue_ready(shost, sdev))
1987                goto out_dec_device_busy;
1988        if (!scsi_host_queue_ready(q, shost, sdev))
1989                goto out_dec_target_busy;
1990
1991
1992        if (!(req->cmd_flags & REQ_DONTPREP)) {
1993                ret = prep_to_mq(scsi_mq_prep_fn(req));
1994                if (ret)
1995                        goto out_dec_host_busy;
1996                req->cmd_flags |= REQ_DONTPREP;
1997        } else {
1998                blk_mq_start_request(req);
1999        }
2000
2001        if (sdev->simple_tags)
2002                cmd->flags |= SCMD_TAGGED;
2003        else
2004                cmd->flags &= ~SCMD_TAGGED;
2005
2006        scsi_init_cmd_errh(cmd);
2007        cmd->scsi_done = scsi_mq_done;
2008
2009        reason = scsi_dispatch_cmd(cmd);
2010        if (reason) {
2011                scsi_set_blocked(cmd, reason);
2012                ret = BLK_MQ_RQ_QUEUE_BUSY;
2013                goto out_dec_host_busy;
2014        }
2015
2016        return BLK_MQ_RQ_QUEUE_OK;
2017
2018out_dec_host_busy:
2019        atomic_dec(&shost->host_busy);
2020out_dec_target_busy:
2021        if (scsi_target(sdev)->can_queue > 0)
2022                atomic_dec(&scsi_target(sdev)->target_busy);
2023out_dec_device_busy:
2024        atomic_dec(&sdev->device_busy);
2025out_put_device:
2026        put_device(&sdev->sdev_gendev);
2027out:
2028        switch (ret) {
2029        case BLK_MQ_RQ_QUEUE_BUSY:
2030                blk_mq_stop_hw_queue(hctx);
2031                if (atomic_read(&sdev->device_busy) == 0 &&
2032                    !scsi_device_blocked(sdev))
2033                        blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2034                break;
2035        case BLK_MQ_RQ_QUEUE_ERROR:
2036                /*
2037                 * Make sure to release all allocated ressources when
2038                 * we hit an error, as we will never see this command
2039                 * again.
2040                 */
2041                if (req->cmd_flags & REQ_DONTPREP)
2042                        scsi_mq_uninit_cmd(cmd);
2043                break;
2044        default:
2045                break;
2046        }
2047        return ret;
2048}
2049
2050static enum blk_eh_timer_return scsi_timeout(struct request *req,
2051                bool reserved)
2052{
2053        if (reserved)
2054                return BLK_EH_RESET_TIMER;
2055        return scsi_times_out(req);
2056}
2057
2058static int scsi_init_request(void *data, struct request *rq,
2059                unsigned int hctx_idx, unsigned int request_idx,
2060                unsigned int numa_node)
2061{
2062        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2063
2064        cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2065                        numa_node);
2066        if (!cmd->sense_buffer)
2067                return -ENOMEM;
2068        return 0;
2069}
2070
2071static void scsi_exit_request(void *data, struct request *rq,
2072                unsigned int hctx_idx, unsigned int request_idx)
2073{
2074        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2075
2076        kfree(cmd->sense_buffer);
2077}
2078
2079static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2080{
2081        struct device *host_dev;
2082        u64 bounce_limit = 0xffffffff;
2083
2084        if (shost->unchecked_isa_dma)
2085                return BLK_BOUNCE_ISA;
2086        /*
2087         * Platforms with virtual-DMA translation
2088         * hardware have no practical limit.
2089         */
2090        if (!PCI_DMA_BUS_IS_PHYS)
2091                return BLK_BOUNCE_ANY;
2092
2093        host_dev = scsi_get_device(shost);
2094        if (host_dev && host_dev->dma_mask)
2095                bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2096
2097        return bounce_limit;
2098}
2099
2100static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2101{
2102        struct device *dev = shost->dma_dev;
2103
2104        /*
2105         * this limit is imposed by hardware restrictions
2106         */
2107        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2108                                        SCSI_MAX_SG_CHAIN_SEGMENTS));
2109
2110        if (scsi_host_prot_dma(shost)) {
2111                shost->sg_prot_tablesize =
2112                        min_not_zero(shost->sg_prot_tablesize,
2113                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2114                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2115                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2116        }
2117
2118        blk_queue_max_hw_sectors(q, shost->max_sectors);
2119        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2120        blk_queue_segment_boundary(q, shost->dma_boundary);
2121        dma_set_seg_boundary(dev, shost->dma_boundary);
2122
2123        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2124
2125        if (!shost->use_clustering)
2126                q->limits.cluster = 0;
2127
2128        /*
2129         * set a reasonable default alignment on word boundaries: the
2130         * host and device may alter it using
2131         * blk_queue_update_dma_alignment() later.
2132         */
2133        blk_queue_dma_alignment(q, 0x03);
2134}
2135
2136struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2137                                         request_fn_proc *request_fn)
2138{
2139        struct request_queue *q;
2140
2141        q = blk_init_queue(request_fn, NULL);
2142        if (!q)
2143                return NULL;
2144        __scsi_init_queue(shost, q);
2145        return q;
2146}
2147EXPORT_SYMBOL(__scsi_alloc_queue);
2148
2149struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2150{
2151        struct request_queue *q;
2152
2153        q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2154        if (!q)
2155                return NULL;
2156
2157        blk_queue_prep_rq(q, scsi_prep_fn);
2158        blk_queue_unprep_rq(q, scsi_unprep_fn);
2159        blk_queue_softirq_done(q, scsi_softirq_done);
2160        blk_queue_rq_timed_out(q, scsi_times_out);
2161        blk_queue_lld_busy(q, scsi_lld_busy);
2162        return q;
2163}
2164
2165static struct blk_mq_ops scsi_mq_ops = {
2166        .map_queue      = blk_mq_map_queue,
2167        .queue_rq       = scsi_queue_rq,
2168        .complete       = scsi_softirq_done,
2169        .timeout        = scsi_timeout,
2170        .init_request   = scsi_init_request,
2171        .exit_request   = scsi_exit_request,
2172};
2173
2174struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2175{
2176        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2177        if (IS_ERR(sdev->request_queue))
2178                return NULL;
2179
2180        sdev->request_queue->queuedata = sdev;
2181        __scsi_init_queue(sdev->host, sdev->request_queue);
2182        return sdev->request_queue;
2183}
2184
2185int scsi_mq_setup_tags(struct Scsi_Host *shost)
2186{
2187        unsigned int cmd_size, sgl_size, tbl_size;
2188
2189        tbl_size = shost->sg_tablesize;
2190        if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2191                tbl_size = SCSI_MAX_SG_SEGMENTS;
2192        sgl_size = tbl_size * sizeof(struct scatterlist);
2193        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2194        if (scsi_host_get_prot(shost))
2195                cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2196
2197        memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2198        shost->tag_set.ops = &scsi_mq_ops;
2199        shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2200        shost->tag_set.queue_depth = shost->can_queue;
2201        shost->tag_set.cmd_size = cmd_size;
2202        shost->tag_set.numa_node = NUMA_NO_NODE;
2203        shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2204        shost->tag_set.flags |=
2205                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2206        shost->tag_set.driver_data = shost;
2207
2208        return blk_mq_alloc_tag_set(&shost->tag_set);
2209}
2210
2211void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2212{
2213        blk_mq_free_tag_set(&shost->tag_set);
2214}
2215
2216/*
2217 * Function:    scsi_block_requests()
2218 *
2219 * Purpose:     Utility function used by low-level drivers to prevent further
2220 *              commands from being queued to the device.
2221 *
2222 * Arguments:   shost       - Host in question
2223 *
2224 * Returns:     Nothing
2225 *
2226 * Lock status: No locks are assumed held.
2227 *
2228 * Notes:       There is no timer nor any other means by which the requests
2229 *              get unblocked other than the low-level driver calling
2230 *              scsi_unblock_requests().
2231 */
2232void scsi_block_requests(struct Scsi_Host *shost)
2233{
2234        shost->host_self_blocked = 1;
2235}
2236EXPORT_SYMBOL(scsi_block_requests);
2237
2238/*
2239 * Function:    scsi_unblock_requests()
2240 *
2241 * Purpose:     Utility function used by low-level drivers to allow further
2242 *              commands from being queued to the device.
2243 *
2244 * Arguments:   shost       - Host in question
2245 *
2246 * Returns:     Nothing
2247 *
2248 * Lock status: No locks are assumed held.
2249 *
2250 * Notes:       There is no timer nor any other means by which the requests
2251 *              get unblocked other than the low-level driver calling
2252 *              scsi_unblock_requests().
2253 *
2254 *              This is done as an API function so that changes to the
2255 *              internals of the scsi mid-layer won't require wholesale
2256 *              changes to drivers that use this feature.
2257 */
2258void scsi_unblock_requests(struct Scsi_Host *shost)
2259{
2260        shost->host_self_blocked = 0;
2261        scsi_run_host_queues(shost);
2262}
2263EXPORT_SYMBOL(scsi_unblock_requests);
2264
2265int __init scsi_init_queue(void)
2266{
2267        int i;
2268
2269        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2270                                           sizeof(struct scsi_data_buffer),
2271                                           0, 0, NULL);
2272        if (!scsi_sdb_cache) {
2273                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2274                return -ENOMEM;
2275        }
2276
2277        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2278                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2279                int size = sgp->size * sizeof(struct scatterlist);
2280
2281                sgp->slab = kmem_cache_create(sgp->name, size, 0,
2282                                SLAB_HWCACHE_ALIGN, NULL);
2283                if (!sgp->slab) {
2284                        printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2285                                        sgp->name);
2286                        goto cleanup_sdb;
2287                }
2288
2289                sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2290                                                     sgp->slab);
2291                if (!sgp->pool) {
2292                        printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2293                                        sgp->name);
2294                        goto cleanup_sdb;
2295                }
2296        }
2297
2298        return 0;
2299
2300cleanup_sdb:
2301        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2302                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2303                if (sgp->pool)
2304                        mempool_destroy(sgp->pool);
2305                if (sgp->slab)
2306                        kmem_cache_destroy(sgp->slab);
2307        }
2308        kmem_cache_destroy(scsi_sdb_cache);
2309
2310        return -ENOMEM;
2311}
2312
2313void scsi_exit_queue(void)
2314{
2315        int i;
2316
2317        kmem_cache_destroy(scsi_sdb_cache);
2318
2319        for (i = 0; i < SG_MEMPOOL_NR; i++) {
2320                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2321                mempool_destroy(sgp->pool);
2322                kmem_cache_destroy(sgp->slab);
2323        }
2324}
2325
2326/**
2327 *      scsi_mode_select - issue a mode select
2328 *      @sdev:  SCSI device to be queried
2329 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2330 *      @sp:    Save page bit (0 == don't save, 1 == save)
2331 *      @modepage: mode page being requested
2332 *      @buffer: request buffer (may not be smaller than eight bytes)
2333 *      @len:   length of request buffer.
2334 *      @timeout: command timeout
2335 *      @retries: number of retries before failing
2336 *      @data: returns a structure abstracting the mode header data
2337 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2338 *              must be SCSI_SENSE_BUFFERSIZE big.
2339 *
2340 *      Returns zero if successful; negative error number or scsi
2341 *      status on error
2342 *
2343 */
2344int
2345scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2346                 unsigned char *buffer, int len, int timeout, int retries,
2347                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2348{
2349        unsigned char cmd[10];
2350        unsigned char *real_buffer;
2351        int ret;
2352
2353        memset(cmd, 0, sizeof(cmd));
2354        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2355
2356        if (sdev->use_10_for_ms) {
2357                if (len > 65535)
2358                        return -EINVAL;
2359                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2360                if (!real_buffer)
2361                        return -ENOMEM;
2362                memcpy(real_buffer + 8, buffer, len);
2363                len += 8;
2364                real_buffer[0] = 0;
2365                real_buffer[1] = 0;
2366                real_buffer[2] = data->medium_type;
2367                real_buffer[3] = data->device_specific;
2368                real_buffer[4] = data->longlba ? 0x01 : 0;
2369                real_buffer[5] = 0;
2370                real_buffer[6] = data->block_descriptor_length >> 8;
2371                real_buffer[7] = data->block_descriptor_length;
2372
2373                cmd[0] = MODE_SELECT_10;
2374                cmd[7] = len >> 8;
2375                cmd[8] = len;
2376        } else {
2377                if (len > 255 || data->block_descriptor_length > 255 ||
2378                    data->longlba)
2379                        return -EINVAL;
2380
2381                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2382                if (!real_buffer)
2383                        return -ENOMEM;
2384                memcpy(real_buffer + 4, buffer, len);
2385                len += 4;
2386                real_buffer[0] = 0;
2387                real_buffer[1] = data->medium_type;
2388                real_buffer[2] = data->device_specific;
2389                real_buffer[3] = data->block_descriptor_length;
2390                
2391
2392                cmd[0] = MODE_SELECT;
2393                cmd[4] = len;
2394        }
2395
2396        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2397                               sshdr, timeout, retries, NULL);
2398        kfree(real_buffer);
2399        return ret;
2400}
2401EXPORT_SYMBOL_GPL(scsi_mode_select);
2402
2403/**
2404 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2405 *      @sdev:  SCSI device to be queried
2406 *      @dbd:   set if mode sense will allow block descriptors to be returned
2407 *      @modepage: mode page being requested
2408 *      @buffer: request buffer (may not be smaller than eight bytes)
2409 *      @len:   length of request buffer.
2410 *      @timeout: command timeout
2411 *      @retries: number of retries before failing
2412 *      @data: returns a structure abstracting the mode header data
2413 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2414 *              must be SCSI_SENSE_BUFFERSIZE big.
2415 *
2416 *      Returns zero if unsuccessful, or the header offset (either 4
2417 *      or 8 depending on whether a six or ten byte command was
2418 *      issued) if successful.
2419 */
2420int
2421scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2422                  unsigned char *buffer, int len, int timeout, int retries,
2423                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2424{
2425        unsigned char cmd[12];
2426        int use_10_for_ms;
2427        int header_length;
2428        int result, retry_count = retries;
2429        struct scsi_sense_hdr my_sshdr;
2430
2431        memset(data, 0, sizeof(*data));
2432        memset(&cmd[0], 0, 12);
2433        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2434        cmd[2] = modepage;
2435
2436        /* caller might not be interested in sense, but we need it */
2437        if (!sshdr)
2438                sshdr = &my_sshdr;
2439
2440 retry:
2441        use_10_for_ms = sdev->use_10_for_ms;
2442
2443        if (use_10_for_ms) {
2444                if (len < 8)
2445                        len = 8;
2446
2447                cmd[0] = MODE_SENSE_10;
2448                cmd[8] = len;
2449                header_length = 8;
2450        } else {
2451                if (len < 4)
2452                        len = 4;
2453
2454                cmd[0] = MODE_SENSE;
2455                cmd[4] = len;
2456                header_length = 4;
2457        }
2458
2459        memset(buffer, 0, len);
2460
2461        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2462                                  sshdr, timeout, retries, NULL);
2463
2464        /* This code looks awful: what it's doing is making sure an
2465         * ILLEGAL REQUEST sense return identifies the actual command
2466         * byte as the problem.  MODE_SENSE commands can return
2467         * ILLEGAL REQUEST if the code page isn't supported */
2468
2469        if (use_10_for_ms && !scsi_status_is_good(result) &&
2470            (driver_byte(result) & DRIVER_SENSE)) {
2471                if (scsi_sense_valid(sshdr)) {
2472                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2473                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2474                                /* 
2475                                 * Invalid command operation code
2476                                 */
2477                                sdev->use_10_for_ms = 0;
2478                                goto retry;
2479                        }
2480                }
2481        }
2482
2483        if(scsi_status_is_good(result)) {
2484                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2485                             (modepage == 6 || modepage == 8))) {
2486                        /* Initio breakage? */
2487                        header_length = 0;
2488                        data->length = 13;
2489                        data->medium_type = 0;
2490                        data->device_specific = 0;
2491                        data->longlba = 0;
2492                        data->block_descriptor_length = 0;
2493                } else if(use_10_for_ms) {
2494                        data->length = buffer[0]*256 + buffer[1] + 2;
2495                        data->medium_type = buffer[2];
2496                        data->device_specific = buffer[3];
2497                        data->longlba = buffer[4] & 0x01;
2498                        data->block_descriptor_length = buffer[6]*256
2499                                + buffer[7];
2500                } else {
2501                        data->length = buffer[0] + 1;
2502                        data->medium_type = buffer[1];
2503                        data->device_specific = buffer[2];
2504                        data->block_descriptor_length = buffer[3];
2505                }
2506                data->header_length = header_length;
2507        } else if ((status_byte(result) == CHECK_CONDITION) &&
2508                   scsi_sense_valid(sshdr) &&
2509                   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2510                retry_count--;
2511                goto retry;
2512        }
2513
2514        return result;
2515}
2516EXPORT_SYMBOL(scsi_mode_sense);
2517
2518/**
2519 *      scsi_test_unit_ready - test if unit is ready
2520 *      @sdev:  scsi device to change the state of.
2521 *      @timeout: command timeout
2522 *      @retries: number of retries before failing
2523 *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2524 *              returning sense. Make sure that this is cleared before passing
2525 *              in.
2526 *
2527 *      Returns zero if unsuccessful or an error if TUR failed.  For
2528 *      removable media, UNIT_ATTENTION sets ->changed flag.
2529 **/
2530int
2531scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2532                     struct scsi_sense_hdr *sshdr_external)
2533{
2534        char cmd[] = {
2535                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2536        };
2537        struct scsi_sense_hdr *sshdr;
2538        int result;
2539
2540        if (!sshdr_external)
2541                sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2542        else
2543                sshdr = sshdr_external;
2544
2545        /* try to eat the UNIT_ATTENTION if there are enough retries */
2546        do {
2547                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2548                                          timeout, retries, NULL);
2549                if (sdev->removable && scsi_sense_valid(sshdr) &&
2550                    sshdr->sense_key == UNIT_ATTENTION)
2551                        sdev->changed = 1;
2552        } while (scsi_sense_valid(sshdr) &&
2553                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2554
2555        if (!sshdr_external)
2556                kfree(sshdr);
2557        return result;
2558}
2559EXPORT_SYMBOL(scsi_test_unit_ready);
2560
2561/**
2562 *      scsi_device_set_state - Take the given device through the device state model.
2563 *      @sdev:  scsi device to change the state of.
2564 *      @state: state to change to.
2565 *
2566 *      Returns zero if unsuccessful or an error if the requested 
2567 *      transition is illegal.
2568 */
2569int
2570scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2571{
2572        enum scsi_device_state oldstate = sdev->sdev_state;
2573
2574        if (state == oldstate)
2575                return 0;
2576
2577        switch (state) {
2578        case SDEV_CREATED:
2579                switch (oldstate) {
2580                case SDEV_CREATED_BLOCK:
2581                        break;
2582                default:
2583                        goto illegal;
2584                }
2585                break;
2586                        
2587        case SDEV_RUNNING:
2588                switch (oldstate) {
2589                case SDEV_CREATED:
2590                case SDEV_OFFLINE:
2591                case SDEV_TRANSPORT_OFFLINE:
2592                case SDEV_QUIESCE:
2593                case SDEV_BLOCK:
2594                        break;
2595                default:
2596                        goto illegal;
2597                }
2598                break;
2599
2600        case SDEV_QUIESCE:
2601                switch (oldstate) {
2602                case SDEV_RUNNING:
2603                case SDEV_OFFLINE:
2604                case SDEV_TRANSPORT_OFFLINE:
2605                        break;
2606                default:
2607                        goto illegal;
2608                }
2609                break;
2610
2611        case SDEV_OFFLINE:
2612        case SDEV_TRANSPORT_OFFLINE:
2613                switch (oldstate) {
2614                case SDEV_CREATED:
2615                case SDEV_RUNNING:
2616                case SDEV_QUIESCE:
2617                case SDEV_BLOCK:
2618                        break;
2619                default:
2620                        goto illegal;
2621                }
2622                break;
2623
2624        case SDEV_BLOCK:
2625                switch (oldstate) {
2626                case SDEV_RUNNING:
2627                case SDEV_CREATED_BLOCK:
2628                        break;
2629                default:
2630                        goto illegal;
2631                }
2632                break;
2633
2634        case SDEV_CREATED_BLOCK:
2635                switch (oldstate) {
2636                case SDEV_CREATED:
2637                        break;
2638                default:
2639                        goto illegal;
2640                }
2641                break;
2642
2643        case SDEV_CANCEL:
2644                switch (oldstate) {
2645                case SDEV_CREATED:
2646                case SDEV_RUNNING:
2647                case SDEV_QUIESCE:
2648                case SDEV_OFFLINE:
2649                case SDEV_TRANSPORT_OFFLINE:
2650                case SDEV_BLOCK:
2651                        break;
2652                default:
2653                        goto illegal;
2654                }
2655                break;
2656
2657        case SDEV_DEL:
2658                switch (oldstate) {
2659                case SDEV_CREATED:
2660                case SDEV_RUNNING:
2661                case SDEV_OFFLINE:
2662                case SDEV_TRANSPORT_OFFLINE:
2663                case SDEV_CANCEL:
2664                case SDEV_CREATED_BLOCK:
2665                        break;
2666                default:
2667                        goto illegal;
2668                }
2669                break;
2670
2671        }
2672        sdev->sdev_state = state;
2673        return 0;
2674
2675 illegal:
2676        SCSI_LOG_ERROR_RECOVERY(1,
2677                                sdev_printk(KERN_ERR, sdev,
2678                                            "Illegal state transition %s->%s",
2679                                            scsi_device_state_name(oldstate),
2680                                            scsi_device_state_name(state))
2681                                );
2682        return -EINVAL;
2683}
2684EXPORT_SYMBOL(scsi_device_set_state);
2685
2686/**
2687 *      sdev_evt_emit - emit a single SCSI device uevent
2688 *      @sdev: associated SCSI device
2689 *      @evt: event to emit
2690 *
2691 *      Send a single uevent (scsi_event) to the associated scsi_device.
2692 */
2693static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2694{
2695        int idx = 0;
2696        char *envp[3];
2697
2698        switch (evt->evt_type) {
2699        case SDEV_EVT_MEDIA_CHANGE:
2700                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2701                break;
2702        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2703                scsi_rescan_device(&sdev->sdev_gendev);
2704                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2705                break;
2706        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2707                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2708                break;
2709        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2710               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2711                break;
2712        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2713                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2714                break;
2715        case SDEV_EVT_LUN_CHANGE_REPORTED:
2716                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2717                break;
2718        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2719                envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2720                break;
2721        default:
2722                /* do nothing */
2723                break;
2724        }
2725
2726        envp[idx++] = NULL;
2727
2728        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2729}
2730
2731/**
2732 *      sdev_evt_thread - send a uevent for each scsi event
2733 *      @work: work struct for scsi_device
2734 *
2735 *      Dispatch queued events to their associated scsi_device kobjects
2736 *      as uevents.
2737 */
2738void scsi_evt_thread(struct work_struct *work)
2739{
2740        struct scsi_device *sdev;
2741        enum scsi_device_event evt_type;
2742        LIST_HEAD(event_list);
2743
2744        sdev = container_of(work, struct scsi_device, event_work);
2745
2746        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2747                if (test_and_clear_bit(evt_type, sdev->pending_events))
2748                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2749
2750        while (1) {
2751                struct scsi_event *evt;
2752                struct list_head *this, *tmp;
2753                unsigned long flags;
2754
2755                spin_lock_irqsave(&sdev->list_lock, flags);
2756                list_splice_init(&sdev->event_list, &event_list);
2757                spin_unlock_irqrestore(&sdev->list_lock, flags);
2758
2759                if (list_empty(&event_list))
2760                        break;
2761
2762                list_for_each_safe(this, tmp, &event_list) {
2763                        evt = list_entry(this, struct scsi_event, node);
2764                        list_del(&evt->node);
2765                        scsi_evt_emit(sdev, evt);
2766                        kfree(evt);
2767                }
2768        }
2769}
2770
2771/**
2772 *      sdev_evt_send - send asserted event to uevent thread
2773 *      @sdev: scsi_device event occurred on
2774 *      @evt: event to send
2775 *
2776 *      Assert scsi device event asynchronously.
2777 */
2778void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2779{
2780        unsigned long flags;
2781
2782#if 0
2783        /* FIXME: currently this check eliminates all media change events
2784         * for polled devices.  Need to update to discriminate between AN
2785         * and polled events */
2786        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2787                kfree(evt);
2788                return;
2789        }
2790#endif
2791
2792        spin_lock_irqsave(&sdev->list_lock, flags);
2793        list_add_tail(&evt->node, &sdev->event_list);
2794        schedule_work(&sdev->event_work);
2795        spin_unlock_irqrestore(&sdev->list_lock, flags);
2796}
2797EXPORT_SYMBOL_GPL(sdev_evt_send);
2798
2799/**
2800 *      sdev_evt_alloc - allocate a new scsi event
2801 *      @evt_type: type of event to allocate
2802 *      @gfpflags: GFP flags for allocation
2803 *
2804 *      Allocates and returns a new scsi_event.
2805 */
2806struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2807                                  gfp_t gfpflags)
2808{
2809        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2810        if (!evt)
2811                return NULL;
2812
2813        evt->evt_type = evt_type;
2814        INIT_LIST_HEAD(&evt->node);
2815
2816        /* evt_type-specific initialization, if any */
2817        switch (evt_type) {
2818        case SDEV_EVT_MEDIA_CHANGE:
2819        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2820        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2821        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2822        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2823        case SDEV_EVT_LUN_CHANGE_REPORTED:
2824        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2825        default:
2826                /* do nothing */
2827                break;
2828        }
2829
2830        return evt;
2831}
2832EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2833
2834/**
2835 *      sdev_evt_send_simple - send asserted event to uevent thread
2836 *      @sdev: scsi_device event occurred on
2837 *      @evt_type: type of event to send
2838 *      @gfpflags: GFP flags for allocation
2839 *
2840 *      Assert scsi device event asynchronously, given an event type.
2841 */
2842void sdev_evt_send_simple(struct scsi_device *sdev,
2843                          enum scsi_device_event evt_type, gfp_t gfpflags)
2844{
2845        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2846        if (!evt) {
2847                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2848                            evt_type);
2849                return;
2850        }
2851
2852        sdev_evt_send(sdev, evt);
2853}
2854EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2855
2856/**
2857 *      scsi_device_quiesce - Block user issued commands.
2858 *      @sdev:  scsi device to quiesce.
2859 *
2860 *      This works by trying to transition to the SDEV_QUIESCE state
2861 *      (which must be a legal transition).  When the device is in this
2862 *      state, only special requests will be accepted, all others will
2863 *      be deferred.  Since special requests may also be requeued requests,
2864 *      a successful return doesn't guarantee the device will be 
2865 *      totally quiescent.
2866 *
2867 *      Must be called with user context, may sleep.
2868 *
2869 *      Returns zero if unsuccessful or an error if not.
2870 */
2871int
2872scsi_device_quiesce(struct scsi_device *sdev)
2873{
2874        int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875        if (err)
2876                return err;
2877
2878        scsi_run_queue(sdev->request_queue);
2879        while (atomic_read(&sdev->device_busy)) {
2880                msleep_interruptible(200);
2881                scsi_run_queue(sdev->request_queue);
2882        }
2883        return 0;
2884}
2885EXPORT_SYMBOL(scsi_device_quiesce);
2886
2887/**
2888 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2889 *      @sdev:  scsi device to resume.
2890 *
2891 *      Moves the device from quiesced back to running and restarts the
2892 *      queues.
2893 *
2894 *      Must be called with user context, may sleep.
2895 */
2896void scsi_device_resume(struct scsi_device *sdev)
2897{
2898        /* check if the device state was mutated prior to resume, and if
2899         * so assume the state is being managed elsewhere (for example
2900         * device deleted during suspend)
2901         */
2902        if (sdev->sdev_state != SDEV_QUIESCE ||
2903            scsi_device_set_state(sdev, SDEV_RUNNING))
2904                return;
2905        scsi_run_queue(sdev->request_queue);
2906}
2907EXPORT_SYMBOL(scsi_device_resume);
2908
2909static void
2910device_quiesce_fn(struct scsi_device *sdev, void *data)
2911{
2912        scsi_device_quiesce(sdev);
2913}
2914
2915void
2916scsi_target_quiesce(struct scsi_target *starget)
2917{
2918        starget_for_each_device(starget, NULL, device_quiesce_fn);
2919}
2920EXPORT_SYMBOL(scsi_target_quiesce);
2921
2922static void
2923device_resume_fn(struct scsi_device *sdev, void *data)
2924{
2925        scsi_device_resume(sdev);
2926}
2927
2928void
2929scsi_target_resume(struct scsi_target *starget)
2930{
2931        starget_for_each_device(starget, NULL, device_resume_fn);
2932}
2933EXPORT_SYMBOL(scsi_target_resume);
2934
2935/**
2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937 * @sdev:       device to block
2938 *
2939 * Block request made by scsi lld's to temporarily stop all
2940 * scsi commands on the specified device.  Called from interrupt
2941 * or normal process context.
2942 *
2943 * Returns zero if successful or error if not
2944 *
2945 * Notes:       
2946 *      This routine transitions the device to the SDEV_BLOCK state
2947 *      (which must be a legal transition).  When the device is in this
2948 *      state, all commands are deferred until the scsi lld reenables
2949 *      the device with scsi_device_unblock or device_block_tmo fires.
2950 */
2951int
2952scsi_internal_device_block(struct scsi_device *sdev)
2953{
2954        struct request_queue *q = sdev->request_queue;
2955        unsigned long flags;
2956        int err = 0;
2957
2958        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2959        if (err) {
2960                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2961
2962                if (err)
2963                        return err;
2964        }
2965
2966        /* 
2967         * The device has transitioned to SDEV_BLOCK.  Stop the
2968         * block layer from calling the midlayer with this device's
2969         * request queue. 
2970         */
2971        if (q->mq_ops) {
2972                blk_mq_stop_hw_queues(q);
2973        } else {
2974                spin_lock_irqsave(q->queue_lock, flags);
2975                blk_stop_queue(q);
2976                spin_unlock_irqrestore(q->queue_lock, flags);
2977        }
2978
2979        return 0;
2980}
2981EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2982 
2983/**
2984 * scsi_internal_device_unblock - resume a device after a block request
2985 * @sdev:       device to resume
2986 * @new_state:  state to set devices to after unblocking
2987 *
2988 * Called by scsi lld's or the midlayer to restart the device queue
2989 * for the previously suspended scsi device.  Called from interrupt or
2990 * normal process context.
2991 *
2992 * Returns zero if successful or error if not.
2993 *
2994 * Notes:       
2995 *      This routine transitions the device to the SDEV_RUNNING state
2996 *      or to one of the offline states (which must be a legal transition)
2997 *      allowing the midlayer to goose the queue for this device.
2998 */
2999int
3000scsi_internal_device_unblock(struct scsi_device *sdev,
3001                             enum scsi_device_state new_state)
3002{
3003        struct request_queue *q = sdev->request_queue; 
3004        unsigned long flags;
3005
3006        /*
3007         * Try to transition the scsi device to SDEV_RUNNING or one of the
3008         * offlined states and goose the device queue if successful.
3009         */
3010        if ((sdev->sdev_state == SDEV_BLOCK) ||
3011            (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3012                sdev->sdev_state = new_state;
3013        else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3014                if (new_state == SDEV_TRANSPORT_OFFLINE ||
3015                    new_state == SDEV_OFFLINE)
3016                        sdev->sdev_state = new_state;
3017                else
3018                        sdev->sdev_state = SDEV_CREATED;
3019        } else if (sdev->sdev_state != SDEV_CANCEL &&
3020                 sdev->sdev_state != SDEV_OFFLINE)
3021                return -EINVAL;
3022
3023        if (q->mq_ops) {
3024                blk_mq_start_stopped_hw_queues(q, false);
3025        } else {
3026                spin_lock_irqsave(q->queue_lock, flags);
3027                blk_start_queue(q);
3028                spin_unlock_irqrestore(q->queue_lock, flags);
3029        }
3030
3031        return 0;
3032}
3033EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3034
3035static void
3036device_block(struct scsi_device *sdev, void *data)
3037{
3038        scsi_internal_device_block(sdev);
3039}
3040
3041static int
3042target_block(struct device *dev, void *data)
3043{
3044        if (scsi_is_target_device(dev))
3045                starget_for_each_device(to_scsi_target(dev), NULL,
3046                                        device_block);
3047        return 0;
3048}
3049
3050void
3051scsi_target_block(struct device *dev)
3052{
3053        if (scsi_is_target_device(dev))
3054                starget_for_each_device(to_scsi_target(dev), NULL,
3055                                        device_block);
3056        else
3057                device_for_each_child(dev, NULL, target_block);
3058}
3059EXPORT_SYMBOL_GPL(scsi_target_block);
3060
3061static void
3062device_unblock(struct scsi_device *sdev, void *data)
3063{
3064        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3065}
3066
3067static int
3068target_unblock(struct device *dev, void *data)
3069{
3070        if (scsi_is_target_device(dev))
3071                starget_for_each_device(to_scsi_target(dev), data,
3072                                        device_unblock);
3073        return 0;
3074}
3075
3076void
3077scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3078{
3079        if (scsi_is_target_device(dev))
3080                starget_for_each_device(to_scsi_target(dev), &new_state,
3081                                        device_unblock);
3082        else
3083                device_for_each_child(dev, &new_state, target_unblock);
3084}
3085EXPORT_SYMBOL_GPL(scsi_target_unblock);
3086
3087/**
3088 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3089 * @sgl:        scatter-gather list
3090 * @sg_count:   number of segments in sg
3091 * @offset:     offset in bytes into sg, on return offset into the mapped area
3092 * @len:        bytes to map, on return number of bytes mapped
3093 *
3094 * Returns virtual address of the start of the mapped page
3095 */
3096void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3097                          size_t *offset, size_t *len)
3098{
3099        int i;
3100        size_t sg_len = 0, len_complete = 0;
3101        struct scatterlist *sg;
3102        struct page *page;
3103
3104        WARN_ON(!irqs_disabled());
3105
3106        for_each_sg(sgl, sg, sg_count, i) {
3107                len_complete = sg_len; /* Complete sg-entries */
3108                sg_len += sg->length;
3109                if (sg_len > *offset)
3110                        break;
3111        }
3112
3113        if (unlikely(i == sg_count)) {
3114                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3115                        "elements %d\n",
3116                       __func__, sg_len, *offset, sg_count);
3117                WARN_ON(1);
3118                return NULL;
3119        }
3120
3121        /* Offset starting from the beginning of first page in this sg-entry */
3122        *offset = *offset - len_complete + sg->offset;
3123
3124        /* Assumption: contiguous pages can be accessed as "page + i" */
3125        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3126        *offset &= ~PAGE_MASK;
3127
3128        /* Bytes in this sg-entry from *offset to the end of the page */
3129        sg_len = PAGE_SIZE - *offset;
3130        if (*len > sg_len)
3131                *len = sg_len;
3132
3133        return kmap_atomic(page);
3134}
3135EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3136
3137/**
3138 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3139 * @virt:       virtual address to be unmapped
3140 */
3141void scsi_kunmap_atomic_sg(void *virt)
3142{
3143        kunmap_atomic(virt);
3144}
3145EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3146
3147void sdev_disable_disk_events(struct scsi_device *sdev)
3148{
3149        atomic_inc(&sdev->disk_events_disable_depth);
3150}
3151EXPORT_SYMBOL(sdev_disable_disk_events);
3152
3153void sdev_enable_disk_events(struct scsi_device *sdev)
3154{
3155        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3156                return;
3157        atomic_dec(&sdev->disk_events_disable_depth);
3158}
3159EXPORT_SYMBOL(sdev_enable_disk_events);
3160
3161/**
3162 * scsi_vpd_lun_id - return a unique device identification
3163 * @sdev: SCSI device
3164 * @id:   buffer for the identification
3165 * @id_len:  length of the buffer
3166 *
3167 * Copies a unique device identification into @id based
3168 * on the information in the VPD page 0x83 of the device.
3169 * The string will be formatted as a SCSI name string.
3170 *
3171 * Returns the length of the identification or error on failure.
3172 * If the identifier is longer than the supplied buffer the actual
3173 * identifier length is returned and the buffer is not zero-padded.
3174 */
3175int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3176{
3177        u8 cur_id_type = 0xff;
3178        u8 cur_id_size = 0;
3179        unsigned char *d, *cur_id_str;
3180        unsigned char __rcu *vpd_pg83;
3181        int id_size = -EINVAL;
3182
3183        rcu_read_lock();
3184        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3185        if (!vpd_pg83) {
3186                rcu_read_unlock();
3187                return -ENXIO;
3188        }
3189
3190        /*
3191         * Look for the correct descriptor.
3192         * Order of preference for lun descriptor:
3193         * - SCSI name string
3194         * - NAA IEEE Registered Extended
3195         * - EUI-64 based 16-byte
3196         * - EUI-64 based 12-byte
3197         * - NAA IEEE Registered
3198         * - NAA IEEE Extended
3199         * as longer descriptors reduce the likelyhood
3200         * of identification clashes.
3201         */
3202
3203        /* The id string must be at least 20 bytes + terminating NULL byte */
3204        if (id_len < 21) {
3205                rcu_read_unlock();
3206                return -EINVAL;
3207        }
3208
3209        memset(id, 0, id_len);
3210        d = vpd_pg83 + 4;
3211        while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3212                /* Skip designators not referring to the LUN */
3213                if ((d[1] & 0x30) != 0x00)
3214                        goto next_desig;
3215
3216                switch (d[1] & 0xf) {
3217                case 0x2:
3218                        /* EUI-64 */
3219                        if (cur_id_size > d[3])
3220                                break;
3221                        /* Prefer NAA IEEE Registered Extended */
3222                        if (cur_id_type == 0x3 &&
3223                            cur_id_size == d[3])
3224                                break;
3225                        cur_id_size = d[3];
3226                        cur_id_str = d + 4;
3227                        cur_id_type = d[1] & 0xf;
3228                        switch (cur_id_size) {
3229                        case 8:
3230                                id_size = snprintf(id, id_len,
3231                                                   "eui.%8phN",
3232                                                   cur_id_str);
3233                                break;
3234                        case 12:
3235                                id_size = snprintf(id, id_len,
3236                                                   "eui.%12phN",
3237                                                   cur_id_str);
3238                                break;
3239                        case 16:
3240                                id_size = snprintf(id, id_len,
3241                                                   "eui.%16phN",
3242                                                   cur_id_str);
3243                                break;
3244                        default:
3245                                cur_id_size = 0;
3246                                break;
3247                        }
3248                        break;
3249                case 0x3:
3250                        /* NAA */
3251                        if (cur_id_size > d[3])
3252                                break;
3253                        cur_id_size = d[3];
3254                        cur_id_str = d + 4;
3255                        cur_id_type = d[1] & 0xf;
3256                        switch (cur_id_size) {
3257                        case 8:
3258                                id_size = snprintf(id, id_len,
3259                                                   "naa.%8phN",
3260                                                   cur_id_str);
3261                                break;
3262                        case 16:
3263                                id_size = snprintf(id, id_len,
3264                                                   "naa.%16phN",
3265                                                   cur_id_str);
3266                                break;
3267                        default:
3268                                cur_id_size = 0;
3269                                break;
3270                        }
3271                        break;
3272                case 0x8:
3273                        /* SCSI name string */
3274                        if (cur_id_size + 4 > d[3])
3275                                break;
3276                        /* Prefer others for truncated descriptor */
3277                        if (cur_id_size && d[3] > id_len)
3278                                break;
3279                        cur_id_size = id_size = d[3];
3280                        cur_id_str = d + 4;
3281                        cur_id_type = d[1] & 0xf;
3282                        if (cur_id_size >= id_len)
3283                                cur_id_size = id_len - 1;
3284                        memcpy(id, cur_id_str, cur_id_size);
3285                        /* Decrease priority for truncated descriptor */
3286                        if (cur_id_size != id_size)
3287                                cur_id_size = 6;
3288                        break;
3289                default:
3290                        break;
3291                }
3292next_desig:
3293                d += d[3] + 4;
3294        }
3295        rcu_read_unlock();
3296
3297        return id_size;
3298}
3299EXPORT_SYMBOL(scsi_vpd_lun_id);
3300
3301/*
3302 * scsi_vpd_tpg_id - return a target port group identifier
3303 * @sdev: SCSI device
3304 *
3305 * Returns the Target Port Group identifier from the information
3306 * froom VPD page 0x83 of the device.
3307 *
3308 * Returns the identifier or error on failure.
3309 */
3310int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3311{
3312        unsigned char *d;
3313        unsigned char __rcu *vpd_pg83;
3314        int group_id = -EAGAIN, rel_port = -1;
3315
3316        rcu_read_lock();
3317        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3318        if (!vpd_pg83) {
3319                rcu_read_unlock();
3320                return -ENXIO;
3321        }
3322
3323        d = sdev->vpd_pg83 + 4;
3324        while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3325                switch (d[1] & 0xf) {
3326                case 0x4:
3327                        /* Relative target port */
3328                        rel_port = get_unaligned_be16(&d[6]);
3329                        break;
3330                case 0x5:
3331                        /* Target port group */
3332                        group_id = get_unaligned_be16(&d[6]);
3333                        break;
3334                default:
3335                        break;
3336                }
3337                d += d[3] + 4;
3338        }
3339        rcu_read_unlock();
3340
3341        if (group_id >= 0 && rel_id && rel_port != -1)
3342                *rel_id = rel_port;
3343
3344        return group_id;
3345}
3346EXPORT_SYMBOL(scsi_vpd_tpg_id);
3347