linux/drivers/spi/spi.c
<<
>>
Prefs
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/spi.h>
  43
  44static void spidev_release(struct device *dev)
  45{
  46        struct spi_device       *spi = to_spi_device(dev);
  47
  48        /* spi masters may cleanup for released devices */
  49        if (spi->master->cleanup)
  50                spi->master->cleanup(spi);
  51
  52        spi_master_put(spi->master);
  53        kfree(spi);
  54}
  55
  56static ssize_t
  57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  58{
  59        const struct spi_device *spi = to_spi_device(dev);
  60        int len;
  61
  62        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  63        if (len != -ENODEV)
  64                return len;
  65
  66        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  67}
  68static DEVICE_ATTR_RO(modalias);
  69
  70#define SPI_STATISTICS_ATTRS(field, file)                               \
  71static ssize_t spi_master_##field##_show(struct device *dev,            \
  72                                         struct device_attribute *attr, \
  73                                         char *buf)                     \
  74{                                                                       \
  75        struct spi_master *master = container_of(dev,                   \
  76                                                 struct spi_master, dev); \
  77        return spi_statistics_##field##_show(&master->statistics, buf); \
  78}                                                                       \
  79static struct device_attribute dev_attr_spi_master_##field = {          \
  80        .attr = { .name = file, .mode = S_IRUGO },                      \
  81        .show = spi_master_##field##_show,                              \
  82};                                                                      \
  83static ssize_t spi_device_##field##_show(struct device *dev,            \
  84                                         struct device_attribute *attr, \
  85                                        char *buf)                      \
  86{                                                                       \
  87        struct spi_device *spi = to_spi_device(dev);                    \
  88        return spi_statistics_##field##_show(&spi->statistics, buf);    \
  89}                                                                       \
  90static struct device_attribute dev_attr_spi_device_##field = {          \
  91        .attr = { .name = file, .mode = S_IRUGO },                      \
  92        .show = spi_device_##field##_show,                              \
  93}
  94
  95#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
  96static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  97                                            char *buf)                  \
  98{                                                                       \
  99        unsigned long flags;                                            \
 100        ssize_t len;                                                    \
 101        spin_lock_irqsave(&stat->lock, flags);                          \
 102        len = sprintf(buf, format_string, stat->field);                 \
 103        spin_unlock_irqrestore(&stat->lock, flags);                     \
 104        return len;                                                     \
 105}                                                                       \
 106SPI_STATISTICS_ATTRS(name, file)
 107
 108#define SPI_STATISTICS_SHOW(field, format_string)                       \
 109        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 110                                 field, format_string)
 111
 112SPI_STATISTICS_SHOW(messages, "%lu");
 113SPI_STATISTICS_SHOW(transfers, "%lu");
 114SPI_STATISTICS_SHOW(errors, "%lu");
 115SPI_STATISTICS_SHOW(timedout, "%lu");
 116
 117SPI_STATISTICS_SHOW(spi_sync, "%lu");
 118SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 119SPI_STATISTICS_SHOW(spi_async, "%lu");
 120
 121SPI_STATISTICS_SHOW(bytes, "%llu");
 122SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 123SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 124
 125#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 126        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 127                                 "transfer_bytes_histo_" number,        \
 128                                 transfer_bytes_histo[index],  "%lu")
 129SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 146
 147SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 148
 149static struct attribute *spi_dev_attrs[] = {
 150        &dev_attr_modalias.attr,
 151        NULL,
 152};
 153
 154static const struct attribute_group spi_dev_group = {
 155        .attrs  = spi_dev_attrs,
 156};
 157
 158static struct attribute *spi_device_statistics_attrs[] = {
 159        &dev_attr_spi_device_messages.attr,
 160        &dev_attr_spi_device_transfers.attr,
 161        &dev_attr_spi_device_errors.attr,
 162        &dev_attr_spi_device_timedout.attr,
 163        &dev_attr_spi_device_spi_sync.attr,
 164        &dev_attr_spi_device_spi_sync_immediate.attr,
 165        &dev_attr_spi_device_spi_async.attr,
 166        &dev_attr_spi_device_bytes.attr,
 167        &dev_attr_spi_device_bytes_rx.attr,
 168        &dev_attr_spi_device_bytes_tx.attr,
 169        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 170        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 171        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 172        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 173        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 174        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 175        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 176        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 177        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 178        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 179        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 180        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 181        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 182        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 183        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 184        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 185        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 186        &dev_attr_spi_device_transfers_split_maxsize.attr,
 187        NULL,
 188};
 189
 190static const struct attribute_group spi_device_statistics_group = {
 191        .name  = "statistics",
 192        .attrs  = spi_device_statistics_attrs,
 193};
 194
 195static const struct attribute_group *spi_dev_groups[] = {
 196        &spi_dev_group,
 197        &spi_device_statistics_group,
 198        NULL,
 199};
 200
 201static struct attribute *spi_master_statistics_attrs[] = {
 202        &dev_attr_spi_master_messages.attr,
 203        &dev_attr_spi_master_transfers.attr,
 204        &dev_attr_spi_master_errors.attr,
 205        &dev_attr_spi_master_timedout.attr,
 206        &dev_attr_spi_master_spi_sync.attr,
 207        &dev_attr_spi_master_spi_sync_immediate.attr,
 208        &dev_attr_spi_master_spi_async.attr,
 209        &dev_attr_spi_master_bytes.attr,
 210        &dev_attr_spi_master_bytes_rx.attr,
 211        &dev_attr_spi_master_bytes_tx.attr,
 212        &dev_attr_spi_master_transfer_bytes_histo0.attr,
 213        &dev_attr_spi_master_transfer_bytes_histo1.attr,
 214        &dev_attr_spi_master_transfer_bytes_histo2.attr,
 215        &dev_attr_spi_master_transfer_bytes_histo3.attr,
 216        &dev_attr_spi_master_transfer_bytes_histo4.attr,
 217        &dev_attr_spi_master_transfer_bytes_histo5.attr,
 218        &dev_attr_spi_master_transfer_bytes_histo6.attr,
 219        &dev_attr_spi_master_transfer_bytes_histo7.attr,
 220        &dev_attr_spi_master_transfer_bytes_histo8.attr,
 221        &dev_attr_spi_master_transfer_bytes_histo9.attr,
 222        &dev_attr_spi_master_transfer_bytes_histo10.attr,
 223        &dev_attr_spi_master_transfer_bytes_histo11.attr,
 224        &dev_attr_spi_master_transfer_bytes_histo12.attr,
 225        &dev_attr_spi_master_transfer_bytes_histo13.attr,
 226        &dev_attr_spi_master_transfer_bytes_histo14.attr,
 227        &dev_attr_spi_master_transfer_bytes_histo15.attr,
 228        &dev_attr_spi_master_transfer_bytes_histo16.attr,
 229        &dev_attr_spi_master_transfers_split_maxsize.attr,
 230        NULL,
 231};
 232
 233static const struct attribute_group spi_master_statistics_group = {
 234        .name  = "statistics",
 235        .attrs  = spi_master_statistics_attrs,
 236};
 237
 238static const struct attribute_group *spi_master_groups[] = {
 239        &spi_master_statistics_group,
 240        NULL,
 241};
 242
 243void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 244                                       struct spi_transfer *xfer,
 245                                       struct spi_master *master)
 246{
 247        unsigned long flags;
 248        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 249
 250        if (l2len < 0)
 251                l2len = 0;
 252
 253        spin_lock_irqsave(&stats->lock, flags);
 254
 255        stats->transfers++;
 256        stats->transfer_bytes_histo[l2len]++;
 257
 258        stats->bytes += xfer->len;
 259        if ((xfer->tx_buf) &&
 260            (xfer->tx_buf != master->dummy_tx))
 261                stats->bytes_tx += xfer->len;
 262        if ((xfer->rx_buf) &&
 263            (xfer->rx_buf != master->dummy_rx))
 264                stats->bytes_rx += xfer->len;
 265
 266        spin_unlock_irqrestore(&stats->lock, flags);
 267}
 268EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 269
 270/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 271 * and the sysfs version makes coldplug work too.
 272 */
 273
 274static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 275                                                const struct spi_device *sdev)
 276{
 277        while (id->name[0]) {
 278                if (!strcmp(sdev->modalias, id->name))
 279                        return id;
 280                id++;
 281        }
 282        return NULL;
 283}
 284
 285const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 286{
 287        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 288
 289        return spi_match_id(sdrv->id_table, sdev);
 290}
 291EXPORT_SYMBOL_GPL(spi_get_device_id);
 292
 293static int spi_match_device(struct device *dev, struct device_driver *drv)
 294{
 295        const struct spi_device *spi = to_spi_device(dev);
 296        const struct spi_driver *sdrv = to_spi_driver(drv);
 297
 298        /* Attempt an OF style match */
 299        if (of_driver_match_device(dev, drv))
 300                return 1;
 301
 302        /* Then try ACPI */
 303        if (acpi_driver_match_device(dev, drv))
 304                return 1;
 305
 306        if (sdrv->id_table)
 307                return !!spi_match_id(sdrv->id_table, spi);
 308
 309        return strcmp(spi->modalias, drv->name) == 0;
 310}
 311
 312static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 313{
 314        const struct spi_device         *spi = to_spi_device(dev);
 315        int rc;
 316
 317        rc = acpi_device_uevent_modalias(dev, env);
 318        if (rc != -ENODEV)
 319                return rc;
 320
 321        add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 322        return 0;
 323}
 324
 325struct bus_type spi_bus_type = {
 326        .name           = "spi",
 327        .dev_groups     = spi_dev_groups,
 328        .match          = spi_match_device,
 329        .uevent         = spi_uevent,
 330};
 331EXPORT_SYMBOL_GPL(spi_bus_type);
 332
 333
 334static int spi_drv_probe(struct device *dev)
 335{
 336        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 337        struct spi_device               *spi = to_spi_device(dev);
 338        int ret;
 339
 340        ret = of_clk_set_defaults(dev->of_node, false);
 341        if (ret)
 342                return ret;
 343
 344        if (dev->of_node) {
 345                spi->irq = of_irq_get(dev->of_node, 0);
 346                if (spi->irq == -EPROBE_DEFER)
 347                        return -EPROBE_DEFER;
 348                if (spi->irq < 0)
 349                        spi->irq = 0;
 350        }
 351
 352        ret = dev_pm_domain_attach(dev, true);
 353        if (ret != -EPROBE_DEFER) {
 354                ret = sdrv->probe(spi);
 355                if (ret)
 356                        dev_pm_domain_detach(dev, true);
 357        }
 358
 359        return ret;
 360}
 361
 362static int spi_drv_remove(struct device *dev)
 363{
 364        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 365        int ret;
 366
 367        ret = sdrv->remove(to_spi_device(dev));
 368        dev_pm_domain_detach(dev, true);
 369
 370        return ret;
 371}
 372
 373static void spi_drv_shutdown(struct device *dev)
 374{
 375        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 376
 377        sdrv->shutdown(to_spi_device(dev));
 378}
 379
 380/**
 381 * __spi_register_driver - register a SPI driver
 382 * @owner: owner module of the driver to register
 383 * @sdrv: the driver to register
 384 * Context: can sleep
 385 *
 386 * Return: zero on success, else a negative error code.
 387 */
 388int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 389{
 390        sdrv->driver.owner = owner;
 391        sdrv->driver.bus = &spi_bus_type;
 392        if (sdrv->probe)
 393                sdrv->driver.probe = spi_drv_probe;
 394        if (sdrv->remove)
 395                sdrv->driver.remove = spi_drv_remove;
 396        if (sdrv->shutdown)
 397                sdrv->driver.shutdown = spi_drv_shutdown;
 398        return driver_register(&sdrv->driver);
 399}
 400EXPORT_SYMBOL_GPL(__spi_register_driver);
 401
 402/*-------------------------------------------------------------------------*/
 403
 404/* SPI devices should normally not be created by SPI device drivers; that
 405 * would make them board-specific.  Similarly with SPI master drivers.
 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 407 * with other readonly (flashable) information about mainboard devices.
 408 */
 409
 410struct boardinfo {
 411        struct list_head        list;
 412        struct spi_board_info   board_info;
 413};
 414
 415static LIST_HEAD(board_list);
 416static LIST_HEAD(spi_master_list);
 417
 418/*
 419 * Used to protect add/del opertion for board_info list and
 420 * spi_master list, and their matching process
 421 */
 422static DEFINE_MUTEX(board_lock);
 423
 424/**
 425 * spi_alloc_device - Allocate a new SPI device
 426 * @master: Controller to which device is connected
 427 * Context: can sleep
 428 *
 429 * Allows a driver to allocate and initialize a spi_device without
 430 * registering it immediately.  This allows a driver to directly
 431 * fill the spi_device with device parameters before calling
 432 * spi_add_device() on it.
 433 *
 434 * Caller is responsible to call spi_add_device() on the returned
 435 * spi_device structure to add it to the SPI master.  If the caller
 436 * needs to discard the spi_device without adding it, then it should
 437 * call spi_dev_put() on it.
 438 *
 439 * Return: a pointer to the new device, or NULL.
 440 */
 441struct spi_device *spi_alloc_device(struct spi_master *master)
 442{
 443        struct spi_device       *spi;
 444
 445        if (!spi_master_get(master))
 446                return NULL;
 447
 448        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 449        if (!spi) {
 450                spi_master_put(master);
 451                return NULL;
 452        }
 453
 454        spi->master = master;
 455        spi->dev.parent = &master->dev;
 456        spi->dev.bus = &spi_bus_type;
 457        spi->dev.release = spidev_release;
 458        spi->cs_gpio = -ENOENT;
 459
 460        spin_lock_init(&spi->statistics.lock);
 461
 462        device_initialize(&spi->dev);
 463        return spi;
 464}
 465EXPORT_SYMBOL_GPL(spi_alloc_device);
 466
 467static void spi_dev_set_name(struct spi_device *spi)
 468{
 469        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 470
 471        if (adev) {
 472                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 473                return;
 474        }
 475
 476        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 477                     spi->chip_select);
 478}
 479
 480static int spi_dev_check(struct device *dev, void *data)
 481{
 482        struct spi_device *spi = to_spi_device(dev);
 483        struct spi_device *new_spi = data;
 484
 485        if (spi->master == new_spi->master &&
 486            spi->chip_select == new_spi->chip_select)
 487                return -EBUSY;
 488        return 0;
 489}
 490
 491/**
 492 * spi_add_device - Add spi_device allocated with spi_alloc_device
 493 * @spi: spi_device to register
 494 *
 495 * Companion function to spi_alloc_device.  Devices allocated with
 496 * spi_alloc_device can be added onto the spi bus with this function.
 497 *
 498 * Return: 0 on success; negative errno on failure
 499 */
 500int spi_add_device(struct spi_device *spi)
 501{
 502        static DEFINE_MUTEX(spi_add_lock);
 503        struct spi_master *master = spi->master;
 504        struct device *dev = master->dev.parent;
 505        int status;
 506
 507        /* Chipselects are numbered 0..max; validate. */
 508        if (spi->chip_select >= master->num_chipselect) {
 509                dev_err(dev, "cs%d >= max %d\n",
 510                        spi->chip_select,
 511                        master->num_chipselect);
 512                return -EINVAL;
 513        }
 514
 515        /* Set the bus ID string */
 516        spi_dev_set_name(spi);
 517
 518        /* We need to make sure there's no other device with this
 519         * chipselect **BEFORE** we call setup(), else we'll trash
 520         * its configuration.  Lock against concurrent add() calls.
 521         */
 522        mutex_lock(&spi_add_lock);
 523
 524        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 525        if (status) {
 526                dev_err(dev, "chipselect %d already in use\n",
 527                                spi->chip_select);
 528                goto done;
 529        }
 530
 531        if (master->cs_gpios)
 532                spi->cs_gpio = master->cs_gpios[spi->chip_select];
 533
 534        /* Drivers may modify this initial i/o setup, but will
 535         * normally rely on the device being setup.  Devices
 536         * using SPI_CS_HIGH can't coexist well otherwise...
 537         */
 538        status = spi_setup(spi);
 539        if (status < 0) {
 540                dev_err(dev, "can't setup %s, status %d\n",
 541                                dev_name(&spi->dev), status);
 542                goto done;
 543        }
 544
 545        /* Device may be bound to an active driver when this returns */
 546        status = device_add(&spi->dev);
 547        if (status < 0)
 548                dev_err(dev, "can't add %s, status %d\n",
 549                                dev_name(&spi->dev), status);
 550        else
 551                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 552
 553done:
 554        mutex_unlock(&spi_add_lock);
 555        return status;
 556}
 557EXPORT_SYMBOL_GPL(spi_add_device);
 558
 559/**
 560 * spi_new_device - instantiate one new SPI device
 561 * @master: Controller to which device is connected
 562 * @chip: Describes the SPI device
 563 * Context: can sleep
 564 *
 565 * On typical mainboards, this is purely internal; and it's not needed
 566 * after board init creates the hard-wired devices.  Some development
 567 * platforms may not be able to use spi_register_board_info though, and
 568 * this is exported so that for example a USB or parport based adapter
 569 * driver could add devices (which it would learn about out-of-band).
 570 *
 571 * Return: the new device, or NULL.
 572 */
 573struct spi_device *spi_new_device(struct spi_master *master,
 574                                  struct spi_board_info *chip)
 575{
 576        struct spi_device       *proxy;
 577        int                     status;
 578
 579        /* NOTE:  caller did any chip->bus_num checks necessary.
 580         *
 581         * Also, unless we change the return value convention to use
 582         * error-or-pointer (not NULL-or-pointer), troubleshootability
 583         * suggests syslogged diagnostics are best here (ugh).
 584         */
 585
 586        proxy = spi_alloc_device(master);
 587        if (!proxy)
 588                return NULL;
 589
 590        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 591
 592        proxy->chip_select = chip->chip_select;
 593        proxy->max_speed_hz = chip->max_speed_hz;
 594        proxy->mode = chip->mode;
 595        proxy->irq = chip->irq;
 596        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 597        proxy->dev.platform_data = (void *) chip->platform_data;
 598        proxy->controller_data = chip->controller_data;
 599        proxy->controller_state = NULL;
 600
 601        status = spi_add_device(proxy);
 602        if (status < 0) {
 603                spi_dev_put(proxy);
 604                return NULL;
 605        }
 606
 607        return proxy;
 608}
 609EXPORT_SYMBOL_GPL(spi_new_device);
 610
 611/**
 612 * spi_unregister_device - unregister a single SPI device
 613 * @spi: spi_device to unregister
 614 *
 615 * Start making the passed SPI device vanish. Normally this would be handled
 616 * by spi_unregister_master().
 617 */
 618void spi_unregister_device(struct spi_device *spi)
 619{
 620        if (!spi)
 621                return;
 622
 623        if (spi->dev.of_node)
 624                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 625        device_unregister(&spi->dev);
 626}
 627EXPORT_SYMBOL_GPL(spi_unregister_device);
 628
 629static void spi_match_master_to_boardinfo(struct spi_master *master,
 630                                struct spi_board_info *bi)
 631{
 632        struct spi_device *dev;
 633
 634        if (master->bus_num != bi->bus_num)
 635                return;
 636
 637        dev = spi_new_device(master, bi);
 638        if (!dev)
 639                dev_err(master->dev.parent, "can't create new device for %s\n",
 640                        bi->modalias);
 641}
 642
 643/**
 644 * spi_register_board_info - register SPI devices for a given board
 645 * @info: array of chip descriptors
 646 * @n: how many descriptors are provided
 647 * Context: can sleep
 648 *
 649 * Board-specific early init code calls this (probably during arch_initcall)
 650 * with segments of the SPI device table.  Any device nodes are created later,
 651 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 652 * this table of devices forever, so that reloading a controller driver will
 653 * not make Linux forget about these hard-wired devices.
 654 *
 655 * Other code can also call this, e.g. a particular add-on board might provide
 656 * SPI devices through its expansion connector, so code initializing that board
 657 * would naturally declare its SPI devices.
 658 *
 659 * The board info passed can safely be __initdata ... but be careful of
 660 * any embedded pointers (platform_data, etc), they're copied as-is.
 661 *
 662 * Return: zero on success, else a negative error code.
 663 */
 664int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 665{
 666        struct boardinfo *bi;
 667        int i;
 668
 669        if (!n)
 670                return -EINVAL;
 671
 672        bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 673        if (!bi)
 674                return -ENOMEM;
 675
 676        for (i = 0; i < n; i++, bi++, info++) {
 677                struct spi_master *master;
 678
 679                memcpy(&bi->board_info, info, sizeof(*info));
 680                mutex_lock(&board_lock);
 681                list_add_tail(&bi->list, &board_list);
 682                list_for_each_entry(master, &spi_master_list, list)
 683                        spi_match_master_to_boardinfo(master, &bi->board_info);
 684                mutex_unlock(&board_lock);
 685        }
 686
 687        return 0;
 688}
 689
 690/*-------------------------------------------------------------------------*/
 691
 692static void spi_set_cs(struct spi_device *spi, bool enable)
 693{
 694        if (spi->mode & SPI_CS_HIGH)
 695                enable = !enable;
 696
 697        if (gpio_is_valid(spi->cs_gpio))
 698                gpio_set_value(spi->cs_gpio, !enable);
 699        else if (spi->master->set_cs)
 700                spi->master->set_cs(spi, !enable);
 701}
 702
 703#ifdef CONFIG_HAS_DMA
 704static int spi_map_buf(struct spi_master *master, struct device *dev,
 705                       struct sg_table *sgt, void *buf, size_t len,
 706                       enum dma_data_direction dir)
 707{
 708        const bool vmalloced_buf = is_vmalloc_addr(buf);
 709        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 710        int desc_len;
 711        int sgs;
 712        struct page *vm_page;
 713        void *sg_buf;
 714        size_t min;
 715        int i, ret;
 716
 717        if (vmalloced_buf) {
 718                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 719                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 720        } else {
 721                desc_len = min_t(int, max_seg_size, master->max_dma_len);
 722                sgs = DIV_ROUND_UP(len, desc_len);
 723        }
 724
 725        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 726        if (ret != 0)
 727                return ret;
 728
 729        for (i = 0; i < sgs; i++) {
 730
 731                if (vmalloced_buf) {
 732                        min = min_t(size_t,
 733                                    len, desc_len - offset_in_page(buf));
 734                        vm_page = vmalloc_to_page(buf);
 735                        if (!vm_page) {
 736                                sg_free_table(sgt);
 737                                return -ENOMEM;
 738                        }
 739                        sg_set_page(&sgt->sgl[i], vm_page,
 740                                    min, offset_in_page(buf));
 741                } else {
 742                        min = min_t(size_t, len, desc_len);
 743                        sg_buf = buf;
 744                        sg_set_buf(&sgt->sgl[i], sg_buf, min);
 745                }
 746
 747                buf += min;
 748                len -= min;
 749        }
 750
 751        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 752        if (!ret)
 753                ret = -ENOMEM;
 754        if (ret < 0) {
 755                sg_free_table(sgt);
 756                return ret;
 757        }
 758
 759        sgt->nents = ret;
 760
 761        return 0;
 762}
 763
 764static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 765                          struct sg_table *sgt, enum dma_data_direction dir)
 766{
 767        if (sgt->orig_nents) {
 768                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 769                sg_free_table(sgt);
 770        }
 771}
 772
 773static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 774{
 775        struct device *tx_dev, *rx_dev;
 776        struct spi_transfer *xfer;
 777        int ret;
 778
 779        if (!master->can_dma)
 780                return 0;
 781
 782        if (master->dma_tx)
 783                tx_dev = master->dma_tx->device->dev;
 784        else
 785                tx_dev = &master->dev;
 786
 787        if (master->dma_rx)
 788                rx_dev = master->dma_rx->device->dev;
 789        else
 790                rx_dev = &master->dev;
 791
 792        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 793                if (!master->can_dma(master, msg->spi, xfer))
 794                        continue;
 795
 796                if (xfer->tx_buf != NULL) {
 797                        ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 798                                          (void *)xfer->tx_buf, xfer->len,
 799                                          DMA_TO_DEVICE);
 800                        if (ret != 0)
 801                                return ret;
 802                }
 803
 804                if (xfer->rx_buf != NULL) {
 805                        ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 806                                          xfer->rx_buf, xfer->len,
 807                                          DMA_FROM_DEVICE);
 808                        if (ret != 0) {
 809                                spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 810                                              DMA_TO_DEVICE);
 811                                return ret;
 812                        }
 813                }
 814        }
 815
 816        master->cur_msg_mapped = true;
 817
 818        return 0;
 819}
 820
 821static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 822{
 823        struct spi_transfer *xfer;
 824        struct device *tx_dev, *rx_dev;
 825
 826        if (!master->cur_msg_mapped || !master->can_dma)
 827                return 0;
 828
 829        if (master->dma_tx)
 830                tx_dev = master->dma_tx->device->dev;
 831        else
 832                tx_dev = &master->dev;
 833
 834        if (master->dma_rx)
 835                rx_dev = master->dma_rx->device->dev;
 836        else
 837                rx_dev = &master->dev;
 838
 839        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 840                if (!master->can_dma(master, msg->spi, xfer))
 841                        continue;
 842
 843                spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 844                spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 845        }
 846
 847        return 0;
 848}
 849#else /* !CONFIG_HAS_DMA */
 850static inline int __spi_map_msg(struct spi_master *master,
 851                                struct spi_message *msg)
 852{
 853        return 0;
 854}
 855
 856static inline int __spi_unmap_msg(struct spi_master *master,
 857                                  struct spi_message *msg)
 858{
 859        return 0;
 860}
 861#endif /* !CONFIG_HAS_DMA */
 862
 863static inline int spi_unmap_msg(struct spi_master *master,
 864                                struct spi_message *msg)
 865{
 866        struct spi_transfer *xfer;
 867
 868        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 869                /*
 870                 * Restore the original value of tx_buf or rx_buf if they are
 871                 * NULL.
 872                 */
 873                if (xfer->tx_buf == master->dummy_tx)
 874                        xfer->tx_buf = NULL;
 875                if (xfer->rx_buf == master->dummy_rx)
 876                        xfer->rx_buf = NULL;
 877        }
 878
 879        return __spi_unmap_msg(master, msg);
 880}
 881
 882static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 883{
 884        struct spi_transfer *xfer;
 885        void *tmp;
 886        unsigned int max_tx, max_rx;
 887
 888        if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 889                max_tx = 0;
 890                max_rx = 0;
 891
 892                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 893                        if ((master->flags & SPI_MASTER_MUST_TX) &&
 894                            !xfer->tx_buf)
 895                                max_tx = max(xfer->len, max_tx);
 896                        if ((master->flags & SPI_MASTER_MUST_RX) &&
 897                            !xfer->rx_buf)
 898                                max_rx = max(xfer->len, max_rx);
 899                }
 900
 901                if (max_tx) {
 902                        tmp = krealloc(master->dummy_tx, max_tx,
 903                                       GFP_KERNEL | GFP_DMA);
 904                        if (!tmp)
 905                                return -ENOMEM;
 906                        master->dummy_tx = tmp;
 907                        memset(tmp, 0, max_tx);
 908                }
 909
 910                if (max_rx) {
 911                        tmp = krealloc(master->dummy_rx, max_rx,
 912                                       GFP_KERNEL | GFP_DMA);
 913                        if (!tmp)
 914                                return -ENOMEM;
 915                        master->dummy_rx = tmp;
 916                }
 917
 918                if (max_tx || max_rx) {
 919                        list_for_each_entry(xfer, &msg->transfers,
 920                                            transfer_list) {
 921                                if (!xfer->tx_buf)
 922                                        xfer->tx_buf = master->dummy_tx;
 923                                if (!xfer->rx_buf)
 924                                        xfer->rx_buf = master->dummy_rx;
 925                        }
 926                }
 927        }
 928
 929        return __spi_map_msg(master, msg);
 930}
 931
 932/*
 933 * spi_transfer_one_message - Default implementation of transfer_one_message()
 934 *
 935 * This is a standard implementation of transfer_one_message() for
 936 * drivers which impelment a transfer_one() operation.  It provides
 937 * standard handling of delays and chip select management.
 938 */
 939static int spi_transfer_one_message(struct spi_master *master,
 940                                    struct spi_message *msg)
 941{
 942        struct spi_transfer *xfer;
 943        bool keep_cs = false;
 944        int ret = 0;
 945        unsigned long ms = 1;
 946        struct spi_statistics *statm = &master->statistics;
 947        struct spi_statistics *stats = &msg->spi->statistics;
 948
 949        spi_set_cs(msg->spi, true);
 950
 951        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 952        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 953
 954        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 955                trace_spi_transfer_start(msg, xfer);
 956
 957                spi_statistics_add_transfer_stats(statm, xfer, master);
 958                spi_statistics_add_transfer_stats(stats, xfer, master);
 959
 960                if (xfer->tx_buf || xfer->rx_buf) {
 961                        reinit_completion(&master->xfer_completion);
 962
 963                        ret = master->transfer_one(master, msg->spi, xfer);
 964                        if (ret < 0) {
 965                                SPI_STATISTICS_INCREMENT_FIELD(statm,
 966                                                               errors);
 967                                SPI_STATISTICS_INCREMENT_FIELD(stats,
 968                                                               errors);
 969                                dev_err(&msg->spi->dev,
 970                                        "SPI transfer failed: %d\n", ret);
 971                                goto out;
 972                        }
 973
 974                        if (ret > 0) {
 975                                ret = 0;
 976                                ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 977                                ms += ms + 100; /* some tolerance */
 978
 979                                ms = wait_for_completion_timeout(&master->xfer_completion,
 980                                                                 msecs_to_jiffies(ms));
 981                        }
 982
 983                        if (ms == 0) {
 984                                SPI_STATISTICS_INCREMENT_FIELD(statm,
 985                                                               timedout);
 986                                SPI_STATISTICS_INCREMENT_FIELD(stats,
 987                                                               timedout);
 988                                dev_err(&msg->spi->dev,
 989                                        "SPI transfer timed out\n");
 990                                msg->status = -ETIMEDOUT;
 991                        }
 992                } else {
 993                        if (xfer->len)
 994                                dev_err(&msg->spi->dev,
 995                                        "Bufferless transfer has length %u\n",
 996                                        xfer->len);
 997                }
 998
 999                trace_spi_transfer_stop(msg, xfer);
1000
1001                if (msg->status != -EINPROGRESS)
1002                        goto out;
1003
1004                if (xfer->delay_usecs)
1005                        udelay(xfer->delay_usecs);
1006
1007                if (xfer->cs_change) {
1008                        if (list_is_last(&xfer->transfer_list,
1009                                         &msg->transfers)) {
1010                                keep_cs = true;
1011                        } else {
1012                                spi_set_cs(msg->spi, false);
1013                                udelay(10);
1014                                spi_set_cs(msg->spi, true);
1015                        }
1016                }
1017
1018                msg->actual_length += xfer->len;
1019        }
1020
1021out:
1022        if (ret != 0 || !keep_cs)
1023                spi_set_cs(msg->spi, false);
1024
1025        if (msg->status == -EINPROGRESS)
1026                msg->status = ret;
1027
1028        if (msg->status && master->handle_err)
1029                master->handle_err(master, msg);
1030
1031        spi_res_release(master, msg);
1032
1033        spi_finalize_current_message(master);
1034
1035        return ret;
1036}
1037
1038/**
1039 * spi_finalize_current_transfer - report completion of a transfer
1040 * @master: the master reporting completion
1041 *
1042 * Called by SPI drivers using the core transfer_one_message()
1043 * implementation to notify it that the current interrupt driven
1044 * transfer has finished and the next one may be scheduled.
1045 */
1046void spi_finalize_current_transfer(struct spi_master *master)
1047{
1048        complete(&master->xfer_completion);
1049}
1050EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051
1052/**
1053 * __spi_pump_messages - function which processes spi message queue
1054 * @master: master to process queue for
1055 * @in_kthread: true if we are in the context of the message pump thread
1056 * @bus_locked: true if the bus mutex is held when calling this function
1057 *
1058 * This function checks if there is any spi message in the queue that
1059 * needs processing and if so call out to the driver to initialize hardware
1060 * and transfer each message.
1061 *
1062 * Note that it is called both from the kthread itself and also from
1063 * inside spi_sync(); the queue extraction handling at the top of the
1064 * function should deal with this safely.
1065 */
1066static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1067                                bool bus_locked)
1068{
1069        unsigned long flags;
1070        bool was_busy = false;
1071        int ret;
1072
1073        /* Lock queue */
1074        spin_lock_irqsave(&master->queue_lock, flags);
1075
1076        /* Make sure we are not already running a message */
1077        if (master->cur_msg) {
1078                spin_unlock_irqrestore(&master->queue_lock, flags);
1079                return;
1080        }
1081
1082        /* If another context is idling the device then defer */
1083        if (master->idling) {
1084                queue_kthread_work(&master->kworker, &master->pump_messages);
1085                spin_unlock_irqrestore(&master->queue_lock, flags);
1086                return;
1087        }
1088
1089        /* Check if the queue is idle */
1090        if (list_empty(&master->queue) || !master->running) {
1091                if (!master->busy) {
1092                        spin_unlock_irqrestore(&master->queue_lock, flags);
1093                        return;
1094                }
1095
1096                /* Only do teardown in the thread */
1097                if (!in_kthread) {
1098                        queue_kthread_work(&master->kworker,
1099                                           &master->pump_messages);
1100                        spin_unlock_irqrestore(&master->queue_lock, flags);
1101                        return;
1102                }
1103
1104                master->busy = false;
1105                master->idling = true;
1106                spin_unlock_irqrestore(&master->queue_lock, flags);
1107
1108                kfree(master->dummy_rx);
1109                master->dummy_rx = NULL;
1110                kfree(master->dummy_tx);
1111                master->dummy_tx = NULL;
1112                if (master->unprepare_transfer_hardware &&
1113                    master->unprepare_transfer_hardware(master))
1114                        dev_err(&master->dev,
1115                                "failed to unprepare transfer hardware\n");
1116                if (master->auto_runtime_pm) {
1117                        pm_runtime_mark_last_busy(master->dev.parent);
1118                        pm_runtime_put_autosuspend(master->dev.parent);
1119                }
1120                trace_spi_master_idle(master);
1121
1122                spin_lock_irqsave(&master->queue_lock, flags);
1123                master->idling = false;
1124                spin_unlock_irqrestore(&master->queue_lock, flags);
1125                return;
1126        }
1127
1128        /* Extract head of queue */
1129        master->cur_msg =
1130                list_first_entry(&master->queue, struct spi_message, queue);
1131
1132        list_del_init(&master->cur_msg->queue);
1133        if (master->busy)
1134                was_busy = true;
1135        else
1136                master->busy = true;
1137        spin_unlock_irqrestore(&master->queue_lock, flags);
1138
1139        if (!was_busy && master->auto_runtime_pm) {
1140                ret = pm_runtime_get_sync(master->dev.parent);
1141                if (ret < 0) {
1142                        dev_err(&master->dev, "Failed to power device: %d\n",
1143                                ret);
1144                        return;
1145                }
1146        }
1147
1148        if (!was_busy)
1149                trace_spi_master_busy(master);
1150
1151        if (!was_busy && master->prepare_transfer_hardware) {
1152                ret = master->prepare_transfer_hardware(master);
1153                if (ret) {
1154                        dev_err(&master->dev,
1155                                "failed to prepare transfer hardware\n");
1156
1157                        if (master->auto_runtime_pm)
1158                                pm_runtime_put(master->dev.parent);
1159                        return;
1160                }
1161        }
1162
1163        if (!bus_locked)
1164                mutex_lock(&master->bus_lock_mutex);
1165
1166        trace_spi_message_start(master->cur_msg);
1167
1168        if (master->prepare_message) {
1169                ret = master->prepare_message(master, master->cur_msg);
1170                if (ret) {
1171                        dev_err(&master->dev,
1172                                "failed to prepare message: %d\n", ret);
1173                        master->cur_msg->status = ret;
1174                        spi_finalize_current_message(master);
1175                        goto out;
1176                }
1177                master->cur_msg_prepared = true;
1178        }
1179
1180        ret = spi_map_msg(master, master->cur_msg);
1181        if (ret) {
1182                master->cur_msg->status = ret;
1183                spi_finalize_current_message(master);
1184                goto out;
1185        }
1186
1187        ret = master->transfer_one_message(master, master->cur_msg);
1188        if (ret) {
1189                dev_err(&master->dev,
1190                        "failed to transfer one message from queue\n");
1191                goto out;
1192        }
1193
1194out:
1195        if (!bus_locked)
1196                mutex_unlock(&master->bus_lock_mutex);
1197
1198        /* Prod the scheduler in case transfer_one() was busy waiting */
1199        if (!ret)
1200                cond_resched();
1201}
1202
1203/**
1204 * spi_pump_messages - kthread work function which processes spi message queue
1205 * @work: pointer to kthread work struct contained in the master struct
1206 */
1207static void spi_pump_messages(struct kthread_work *work)
1208{
1209        struct spi_master *master =
1210                container_of(work, struct spi_master, pump_messages);
1211
1212        __spi_pump_messages(master, true, master->bus_lock_flag);
1213}
1214
1215static int spi_init_queue(struct spi_master *master)
1216{
1217        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1218
1219        master->running = false;
1220        master->busy = false;
1221
1222        init_kthread_worker(&master->kworker);
1223        master->kworker_task = kthread_run(kthread_worker_fn,
1224                                           &master->kworker, "%s",
1225                                           dev_name(&master->dev));
1226        if (IS_ERR(master->kworker_task)) {
1227                dev_err(&master->dev, "failed to create message pump task\n");
1228                return PTR_ERR(master->kworker_task);
1229        }
1230        init_kthread_work(&master->pump_messages, spi_pump_messages);
1231
1232        /*
1233         * Master config will indicate if this controller should run the
1234         * message pump with high (realtime) priority to reduce the transfer
1235         * latency on the bus by minimising the delay between a transfer
1236         * request and the scheduling of the message pump thread. Without this
1237         * setting the message pump thread will remain at default priority.
1238         */
1239        if (master->rt) {
1240                dev_info(&master->dev,
1241                        "will run message pump with realtime priority\n");
1242                sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1243        }
1244
1245        return 0;
1246}
1247
1248/**
1249 * spi_get_next_queued_message() - called by driver to check for queued
1250 * messages
1251 * @master: the master to check for queued messages
1252 *
1253 * If there are more messages in the queue, the next message is returned from
1254 * this call.
1255 *
1256 * Return: the next message in the queue, else NULL if the queue is empty.
1257 */
1258struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1259{
1260        struct spi_message *next;
1261        unsigned long flags;
1262
1263        /* get a pointer to the next message, if any */
1264        spin_lock_irqsave(&master->queue_lock, flags);
1265        next = list_first_entry_or_null(&master->queue, struct spi_message,
1266                                        queue);
1267        spin_unlock_irqrestore(&master->queue_lock, flags);
1268
1269        return next;
1270}
1271EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1272
1273/**
1274 * spi_finalize_current_message() - the current message is complete
1275 * @master: the master to return the message to
1276 *
1277 * Called by the driver to notify the core that the message in the front of the
1278 * queue is complete and can be removed from the queue.
1279 */
1280void spi_finalize_current_message(struct spi_master *master)
1281{
1282        struct spi_message *mesg;
1283        unsigned long flags;
1284        int ret;
1285
1286        spin_lock_irqsave(&master->queue_lock, flags);
1287        mesg = master->cur_msg;
1288        spin_unlock_irqrestore(&master->queue_lock, flags);
1289
1290        spi_unmap_msg(master, mesg);
1291
1292        if (master->cur_msg_prepared && master->unprepare_message) {
1293                ret = master->unprepare_message(master, mesg);
1294                if (ret) {
1295                        dev_err(&master->dev,
1296                                "failed to unprepare message: %d\n", ret);
1297                }
1298        }
1299
1300        spin_lock_irqsave(&master->queue_lock, flags);
1301        master->cur_msg = NULL;
1302        master->cur_msg_prepared = false;
1303        queue_kthread_work(&master->kworker, &master->pump_messages);
1304        spin_unlock_irqrestore(&master->queue_lock, flags);
1305
1306        trace_spi_message_done(mesg);
1307
1308        mesg->state = NULL;
1309        if (mesg->complete)
1310                mesg->complete(mesg->context);
1311}
1312EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1313
1314static int spi_start_queue(struct spi_master *master)
1315{
1316        unsigned long flags;
1317
1318        spin_lock_irqsave(&master->queue_lock, flags);
1319
1320        if (master->running || master->busy) {
1321                spin_unlock_irqrestore(&master->queue_lock, flags);
1322                return -EBUSY;
1323        }
1324
1325        master->running = true;
1326        master->cur_msg = NULL;
1327        spin_unlock_irqrestore(&master->queue_lock, flags);
1328
1329        queue_kthread_work(&master->kworker, &master->pump_messages);
1330
1331        return 0;
1332}
1333
1334static int spi_stop_queue(struct spi_master *master)
1335{
1336        unsigned long flags;
1337        unsigned limit = 500;
1338        int ret = 0;
1339
1340        spin_lock_irqsave(&master->queue_lock, flags);
1341
1342        /*
1343         * This is a bit lame, but is optimized for the common execution path.
1344         * A wait_queue on the master->busy could be used, but then the common
1345         * execution path (pump_messages) would be required to call wake_up or
1346         * friends on every SPI message. Do this instead.
1347         */
1348        while ((!list_empty(&master->queue) || master->busy) && limit--) {
1349                spin_unlock_irqrestore(&master->queue_lock, flags);
1350                usleep_range(10000, 11000);
1351                spin_lock_irqsave(&master->queue_lock, flags);
1352        }
1353
1354        if (!list_empty(&master->queue) || master->busy)
1355                ret = -EBUSY;
1356        else
1357                master->running = false;
1358
1359        spin_unlock_irqrestore(&master->queue_lock, flags);
1360
1361        if (ret) {
1362                dev_warn(&master->dev,
1363                         "could not stop message queue\n");
1364                return ret;
1365        }
1366        return ret;
1367}
1368
1369static int spi_destroy_queue(struct spi_master *master)
1370{
1371        int ret;
1372
1373        ret = spi_stop_queue(master);
1374
1375        /*
1376         * flush_kthread_worker will block until all work is done.
1377         * If the reason that stop_queue timed out is that the work will never
1378         * finish, then it does no good to call flush/stop thread, so
1379         * return anyway.
1380         */
1381        if (ret) {
1382                dev_err(&master->dev, "problem destroying queue\n");
1383                return ret;
1384        }
1385
1386        flush_kthread_worker(&master->kworker);
1387        kthread_stop(master->kworker_task);
1388
1389        return 0;
1390}
1391
1392static int __spi_queued_transfer(struct spi_device *spi,
1393                                 struct spi_message *msg,
1394                                 bool need_pump)
1395{
1396        struct spi_master *master = spi->master;
1397        unsigned long flags;
1398
1399        spin_lock_irqsave(&master->queue_lock, flags);
1400
1401        if (!master->running) {
1402                spin_unlock_irqrestore(&master->queue_lock, flags);
1403                return -ESHUTDOWN;
1404        }
1405        msg->actual_length = 0;
1406        msg->status = -EINPROGRESS;
1407
1408        list_add_tail(&msg->queue, &master->queue);
1409        if (!master->busy && need_pump)
1410                queue_kthread_work(&master->kworker, &master->pump_messages);
1411
1412        spin_unlock_irqrestore(&master->queue_lock, flags);
1413        return 0;
1414}
1415
1416/**
1417 * spi_queued_transfer - transfer function for queued transfers
1418 * @spi: spi device which is requesting transfer
1419 * @msg: spi message which is to handled is queued to driver queue
1420 *
1421 * Return: zero on success, else a negative error code.
1422 */
1423static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1424{
1425        return __spi_queued_transfer(spi, msg, true);
1426}
1427
1428static int spi_master_initialize_queue(struct spi_master *master)
1429{
1430        int ret;
1431
1432        master->transfer = spi_queued_transfer;
1433        if (!master->transfer_one_message)
1434                master->transfer_one_message = spi_transfer_one_message;
1435
1436        /* Initialize and start queue */
1437        ret = spi_init_queue(master);
1438        if (ret) {
1439                dev_err(&master->dev, "problem initializing queue\n");
1440                goto err_init_queue;
1441        }
1442        master->queued = true;
1443        ret = spi_start_queue(master);
1444        if (ret) {
1445                dev_err(&master->dev, "problem starting queue\n");
1446                goto err_start_queue;
1447        }
1448
1449        return 0;
1450
1451err_start_queue:
1452        spi_destroy_queue(master);
1453err_init_queue:
1454        return ret;
1455}
1456
1457/*-------------------------------------------------------------------------*/
1458
1459#if defined(CONFIG_OF)
1460static struct spi_device *
1461of_register_spi_device(struct spi_master *master, struct device_node *nc)
1462{
1463        struct spi_device *spi;
1464        int rc;
1465        u32 value;
1466
1467        /* Alloc an spi_device */
1468        spi = spi_alloc_device(master);
1469        if (!spi) {
1470                dev_err(&master->dev, "spi_device alloc error for %s\n",
1471                        nc->full_name);
1472                rc = -ENOMEM;
1473                goto err_out;
1474        }
1475
1476        /* Select device driver */
1477        rc = of_modalias_node(nc, spi->modalias,
1478                                sizeof(spi->modalias));
1479        if (rc < 0) {
1480                dev_err(&master->dev, "cannot find modalias for %s\n",
1481                        nc->full_name);
1482                goto err_out;
1483        }
1484
1485        /* Device address */
1486        rc = of_property_read_u32(nc, "reg", &value);
1487        if (rc) {
1488                dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1489                        nc->full_name, rc);
1490                goto err_out;
1491        }
1492        spi->chip_select = value;
1493
1494        /* Mode (clock phase/polarity/etc.) */
1495        if (of_find_property(nc, "spi-cpha", NULL))
1496                spi->mode |= SPI_CPHA;
1497        if (of_find_property(nc, "spi-cpol", NULL))
1498                spi->mode |= SPI_CPOL;
1499        if (of_find_property(nc, "spi-cs-high", NULL))
1500                spi->mode |= SPI_CS_HIGH;
1501        if (of_find_property(nc, "spi-3wire", NULL))
1502                spi->mode |= SPI_3WIRE;
1503        if (of_find_property(nc, "spi-lsb-first", NULL))
1504                spi->mode |= SPI_LSB_FIRST;
1505
1506        /* Device DUAL/QUAD mode */
1507        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1508                switch (value) {
1509                case 1:
1510                        break;
1511                case 2:
1512                        spi->mode |= SPI_TX_DUAL;
1513                        break;
1514                case 4:
1515                        spi->mode |= SPI_TX_QUAD;
1516                        break;
1517                default:
1518                        dev_warn(&master->dev,
1519                                "spi-tx-bus-width %d not supported\n",
1520                                value);
1521                        break;
1522                }
1523        }
1524
1525        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1526                switch (value) {
1527                case 1:
1528                        break;
1529                case 2:
1530                        spi->mode |= SPI_RX_DUAL;
1531                        break;
1532                case 4:
1533                        spi->mode |= SPI_RX_QUAD;
1534                        break;
1535                default:
1536                        dev_warn(&master->dev,
1537                                "spi-rx-bus-width %d not supported\n",
1538                                value);
1539                        break;
1540                }
1541        }
1542
1543        /* Device speed */
1544        rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1545        if (rc) {
1546                dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1547                        nc->full_name, rc);
1548                goto err_out;
1549        }
1550        spi->max_speed_hz = value;
1551
1552        /* Store a pointer to the node in the device structure */
1553        of_node_get(nc);
1554        spi->dev.of_node = nc;
1555
1556        /* Register the new device */
1557        rc = spi_add_device(spi);
1558        if (rc) {
1559                dev_err(&master->dev, "spi_device register error %s\n",
1560                        nc->full_name);
1561                goto err_out;
1562        }
1563
1564        return spi;
1565
1566err_out:
1567        spi_dev_put(spi);
1568        return ERR_PTR(rc);
1569}
1570
1571/**
1572 * of_register_spi_devices() - Register child devices onto the SPI bus
1573 * @master:     Pointer to spi_master device
1574 *
1575 * Registers an spi_device for each child node of master node which has a 'reg'
1576 * property.
1577 */
1578static void of_register_spi_devices(struct spi_master *master)
1579{
1580        struct spi_device *spi;
1581        struct device_node *nc;
1582
1583        if (!master->dev.of_node)
1584                return;
1585
1586        for_each_available_child_of_node(master->dev.of_node, nc) {
1587                if (of_node_test_and_set_flag(nc, OF_POPULATED))
1588                        continue;
1589                spi = of_register_spi_device(master, nc);
1590                if (IS_ERR(spi))
1591                        dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1592                                nc->full_name);
1593        }
1594}
1595#else
1596static void of_register_spi_devices(struct spi_master *master) { }
1597#endif
1598
1599#ifdef CONFIG_ACPI
1600static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1601{
1602        struct spi_device *spi = data;
1603        struct spi_master *master = spi->master;
1604
1605        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1606                struct acpi_resource_spi_serialbus *sb;
1607
1608                sb = &ares->data.spi_serial_bus;
1609                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1610                        /*
1611                         * ACPI DeviceSelection numbering is handled by the
1612                         * host controller driver in Windows and can vary
1613                         * from driver to driver. In Linux we always expect
1614                         * 0 .. max - 1 so we need to ask the driver to
1615                         * translate between the two schemes.
1616                         */
1617                        if (master->fw_translate_cs) {
1618                                int cs = master->fw_translate_cs(master,
1619                                                sb->device_selection);
1620                                if (cs < 0)
1621                                        return cs;
1622                                spi->chip_select = cs;
1623                        } else {
1624                                spi->chip_select = sb->device_selection;
1625                        }
1626
1627                        spi->max_speed_hz = sb->connection_speed;
1628
1629                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1630                                spi->mode |= SPI_CPHA;
1631                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1632                                spi->mode |= SPI_CPOL;
1633                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1634                                spi->mode |= SPI_CS_HIGH;
1635                }
1636        } else if (spi->irq < 0) {
1637                struct resource r;
1638
1639                if (acpi_dev_resource_interrupt(ares, 0, &r))
1640                        spi->irq = r.start;
1641        }
1642
1643        /* Always tell the ACPI core to skip this resource */
1644        return 1;
1645}
1646
1647static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1648                                       void *data, void **return_value)
1649{
1650        struct spi_master *master = data;
1651        struct list_head resource_list;
1652        struct acpi_device *adev;
1653        struct spi_device *spi;
1654        int ret;
1655
1656        if (acpi_bus_get_device(handle, &adev))
1657                return AE_OK;
1658        if (acpi_bus_get_status(adev) || !adev->status.present)
1659                return AE_OK;
1660
1661        spi = spi_alloc_device(master);
1662        if (!spi) {
1663                dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1664                        dev_name(&adev->dev));
1665                return AE_NO_MEMORY;
1666        }
1667
1668        ACPI_COMPANION_SET(&spi->dev, adev);
1669        spi->irq = -1;
1670
1671        INIT_LIST_HEAD(&resource_list);
1672        ret = acpi_dev_get_resources(adev, &resource_list,
1673                                     acpi_spi_add_resource, spi);
1674        acpi_dev_free_resource_list(&resource_list);
1675
1676        if (ret < 0 || !spi->max_speed_hz) {
1677                spi_dev_put(spi);
1678                return AE_OK;
1679        }
1680
1681        if (spi->irq < 0)
1682                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1683
1684        adev->power.flags.ignore_parent = true;
1685        strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1686        if (spi_add_device(spi)) {
1687                adev->power.flags.ignore_parent = false;
1688                dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1689                        dev_name(&adev->dev));
1690                spi_dev_put(spi);
1691        }
1692
1693        return AE_OK;
1694}
1695
1696static void acpi_register_spi_devices(struct spi_master *master)
1697{
1698        acpi_status status;
1699        acpi_handle handle;
1700
1701        handle = ACPI_HANDLE(master->dev.parent);
1702        if (!handle)
1703                return;
1704
1705        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1706                                     acpi_spi_add_device, NULL,
1707                                     master, NULL);
1708        if (ACPI_FAILURE(status))
1709                dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1710}
1711#else
1712static inline void acpi_register_spi_devices(struct spi_master *master) {}
1713#endif /* CONFIG_ACPI */
1714
1715static void spi_master_release(struct device *dev)
1716{
1717        struct spi_master *master;
1718
1719        master = container_of(dev, struct spi_master, dev);
1720        kfree(master);
1721}
1722
1723static struct class spi_master_class = {
1724        .name           = "spi_master",
1725        .owner          = THIS_MODULE,
1726        .dev_release    = spi_master_release,
1727        .dev_groups     = spi_master_groups,
1728};
1729
1730
1731/**
1732 * spi_alloc_master - allocate SPI master controller
1733 * @dev: the controller, possibly using the platform_bus
1734 * @size: how much zeroed driver-private data to allocate; the pointer to this
1735 *      memory is in the driver_data field of the returned device,
1736 *      accessible with spi_master_get_devdata().
1737 * Context: can sleep
1738 *
1739 * This call is used only by SPI master controller drivers, which are the
1740 * only ones directly touching chip registers.  It's how they allocate
1741 * an spi_master structure, prior to calling spi_register_master().
1742 *
1743 * This must be called from context that can sleep.
1744 *
1745 * The caller is responsible for assigning the bus number and initializing
1746 * the master's methods before calling spi_register_master(); and (after errors
1747 * adding the device) calling spi_master_put() to prevent a memory leak.
1748 *
1749 * Return: the SPI master structure on success, else NULL.
1750 */
1751struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1752{
1753        struct spi_master       *master;
1754
1755        if (!dev)
1756                return NULL;
1757
1758        master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1759        if (!master)
1760                return NULL;
1761
1762        device_initialize(&master->dev);
1763        master->bus_num = -1;
1764        master->num_chipselect = 1;
1765        master->dev.class = &spi_master_class;
1766        master->dev.parent = dev;
1767        spi_master_set_devdata(master, &master[1]);
1768
1769        return master;
1770}
1771EXPORT_SYMBOL_GPL(spi_alloc_master);
1772
1773#ifdef CONFIG_OF
1774static int of_spi_register_master(struct spi_master *master)
1775{
1776        int nb, i, *cs;
1777        struct device_node *np = master->dev.of_node;
1778
1779        if (!np)
1780                return 0;
1781
1782        nb = of_gpio_named_count(np, "cs-gpios");
1783        master->num_chipselect = max_t(int, nb, master->num_chipselect);
1784
1785        /* Return error only for an incorrectly formed cs-gpios property */
1786        if (nb == 0 || nb == -ENOENT)
1787                return 0;
1788        else if (nb < 0)
1789                return nb;
1790
1791        cs = devm_kzalloc(&master->dev,
1792                          sizeof(int) * master->num_chipselect,
1793                          GFP_KERNEL);
1794        master->cs_gpios = cs;
1795
1796        if (!master->cs_gpios)
1797                return -ENOMEM;
1798
1799        for (i = 0; i < master->num_chipselect; i++)
1800                cs[i] = -ENOENT;
1801
1802        for (i = 0; i < nb; i++)
1803                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1804
1805        return 0;
1806}
1807#else
1808static int of_spi_register_master(struct spi_master *master)
1809{
1810        return 0;
1811}
1812#endif
1813
1814/**
1815 * spi_register_master - register SPI master controller
1816 * @master: initialized master, originally from spi_alloc_master()
1817 * Context: can sleep
1818 *
1819 * SPI master controllers connect to their drivers using some non-SPI bus,
1820 * such as the platform bus.  The final stage of probe() in that code
1821 * includes calling spi_register_master() to hook up to this SPI bus glue.
1822 *
1823 * SPI controllers use board specific (often SOC specific) bus numbers,
1824 * and board-specific addressing for SPI devices combines those numbers
1825 * with chip select numbers.  Since SPI does not directly support dynamic
1826 * device identification, boards need configuration tables telling which
1827 * chip is at which address.
1828 *
1829 * This must be called from context that can sleep.  It returns zero on
1830 * success, else a negative error code (dropping the master's refcount).
1831 * After a successful return, the caller is responsible for calling
1832 * spi_unregister_master().
1833 *
1834 * Return: zero on success, else a negative error code.
1835 */
1836int spi_register_master(struct spi_master *master)
1837{
1838        static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1839        struct device           *dev = master->dev.parent;
1840        struct boardinfo        *bi;
1841        int                     status = -ENODEV;
1842        int                     dynamic = 0;
1843
1844        if (!dev)
1845                return -ENODEV;
1846
1847        status = of_spi_register_master(master);
1848        if (status)
1849                return status;
1850
1851        /* even if it's just one always-selected device, there must
1852         * be at least one chipselect
1853         */
1854        if (master->num_chipselect == 0)
1855                return -EINVAL;
1856
1857        if ((master->bus_num < 0) && master->dev.of_node)
1858                master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1859
1860        /* convention:  dynamically assigned bus IDs count down from the max */
1861        if (master->bus_num < 0) {
1862                /* FIXME switch to an IDR based scheme, something like
1863                 * I2C now uses, so we can't run out of "dynamic" IDs
1864                 */
1865                master->bus_num = atomic_dec_return(&dyn_bus_id);
1866                dynamic = 1;
1867        }
1868
1869        INIT_LIST_HEAD(&master->queue);
1870        spin_lock_init(&master->queue_lock);
1871        spin_lock_init(&master->bus_lock_spinlock);
1872        mutex_init(&master->bus_lock_mutex);
1873        master->bus_lock_flag = 0;
1874        init_completion(&master->xfer_completion);
1875        if (!master->max_dma_len)
1876                master->max_dma_len = INT_MAX;
1877
1878        /* register the device, then userspace will see it.
1879         * registration fails if the bus ID is in use.
1880         */
1881        dev_set_name(&master->dev, "spi%u", master->bus_num);
1882        status = device_add(&master->dev);
1883        if (status < 0)
1884                goto done;
1885        dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1886                        dynamic ? " (dynamic)" : "");
1887
1888        /* If we're using a queued driver, start the queue */
1889        if (master->transfer)
1890                dev_info(dev, "master is unqueued, this is deprecated\n");
1891        else {
1892                status = spi_master_initialize_queue(master);
1893                if (status) {
1894                        device_del(&master->dev);
1895                        goto done;
1896                }
1897        }
1898        /* add statistics */
1899        spin_lock_init(&master->statistics.lock);
1900
1901        mutex_lock(&board_lock);
1902        list_add_tail(&master->list, &spi_master_list);
1903        list_for_each_entry(bi, &board_list, list)
1904                spi_match_master_to_boardinfo(master, &bi->board_info);
1905        mutex_unlock(&board_lock);
1906
1907        /* Register devices from the device tree and ACPI */
1908        of_register_spi_devices(master);
1909        acpi_register_spi_devices(master);
1910done:
1911        return status;
1912}
1913EXPORT_SYMBOL_GPL(spi_register_master);
1914
1915static void devm_spi_unregister(struct device *dev, void *res)
1916{
1917        spi_unregister_master(*(struct spi_master **)res);
1918}
1919
1920/**
1921 * dev_spi_register_master - register managed SPI master controller
1922 * @dev:    device managing SPI master
1923 * @master: initialized master, originally from spi_alloc_master()
1924 * Context: can sleep
1925 *
1926 * Register a SPI device as with spi_register_master() which will
1927 * automatically be unregister
1928 *
1929 * Return: zero on success, else a negative error code.
1930 */
1931int devm_spi_register_master(struct device *dev, struct spi_master *master)
1932{
1933        struct spi_master **ptr;
1934        int ret;
1935
1936        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1937        if (!ptr)
1938                return -ENOMEM;
1939
1940        ret = spi_register_master(master);
1941        if (!ret) {
1942                *ptr = master;
1943                devres_add(dev, ptr);
1944        } else {
1945                devres_free(ptr);
1946        }
1947
1948        return ret;
1949}
1950EXPORT_SYMBOL_GPL(devm_spi_register_master);
1951
1952static int __unregister(struct device *dev, void *null)
1953{
1954        spi_unregister_device(to_spi_device(dev));
1955        return 0;
1956}
1957
1958/**
1959 * spi_unregister_master - unregister SPI master controller
1960 * @master: the master being unregistered
1961 * Context: can sleep
1962 *
1963 * This call is used only by SPI master controller drivers, which are the
1964 * only ones directly touching chip registers.
1965 *
1966 * This must be called from context that can sleep.
1967 */
1968void spi_unregister_master(struct spi_master *master)
1969{
1970        int dummy;
1971
1972        if (master->queued) {
1973                if (spi_destroy_queue(master))
1974                        dev_err(&master->dev, "queue remove failed\n");
1975        }
1976
1977        mutex_lock(&board_lock);
1978        list_del(&master->list);
1979        mutex_unlock(&board_lock);
1980
1981        dummy = device_for_each_child(&master->dev, NULL, __unregister);
1982        device_unregister(&master->dev);
1983}
1984EXPORT_SYMBOL_GPL(spi_unregister_master);
1985
1986int spi_master_suspend(struct spi_master *master)
1987{
1988        int ret;
1989
1990        /* Basically no-ops for non-queued masters */
1991        if (!master->queued)
1992                return 0;
1993
1994        ret = spi_stop_queue(master);
1995        if (ret)
1996                dev_err(&master->dev, "queue stop failed\n");
1997
1998        return ret;
1999}
2000EXPORT_SYMBOL_GPL(spi_master_suspend);
2001
2002int spi_master_resume(struct spi_master *master)
2003{
2004        int ret;
2005
2006        if (!master->queued)
2007                return 0;
2008
2009        ret = spi_start_queue(master);
2010        if (ret)
2011                dev_err(&master->dev, "queue restart failed\n");
2012
2013        return ret;
2014}
2015EXPORT_SYMBOL_GPL(spi_master_resume);
2016
2017static int __spi_master_match(struct device *dev, const void *data)
2018{
2019        struct spi_master *m;
2020        const u16 *bus_num = data;
2021
2022        m = container_of(dev, struct spi_master, dev);
2023        return m->bus_num == *bus_num;
2024}
2025
2026/**
2027 * spi_busnum_to_master - look up master associated with bus_num
2028 * @bus_num: the master's bus number
2029 * Context: can sleep
2030 *
2031 * This call may be used with devices that are registered after
2032 * arch init time.  It returns a refcounted pointer to the relevant
2033 * spi_master (which the caller must release), or NULL if there is
2034 * no such master registered.
2035 *
2036 * Return: the SPI master structure on success, else NULL.
2037 */
2038struct spi_master *spi_busnum_to_master(u16 bus_num)
2039{
2040        struct device           *dev;
2041        struct spi_master       *master = NULL;
2042
2043        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2044                                __spi_master_match);
2045        if (dev)
2046                master = container_of(dev, struct spi_master, dev);
2047        /* reference got in class_find_device */
2048        return master;
2049}
2050EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2051
2052/*-------------------------------------------------------------------------*/
2053
2054/* Core methods for SPI resource management */
2055
2056/**
2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058 *                 during the processing of a spi_message while using
2059 *                 spi_transfer_one
2060 * @spi:     the spi device for which we allocate memory
2061 * @release: the release code to execute for this resource
2062 * @size:    size to alloc and return
2063 * @gfp:     GFP allocation flags
2064 *
2065 * Return: the pointer to the allocated data
2066 *
2067 * This may get enhanced in the future to allocate from a memory pool
2068 * of the @spi_device or @spi_master to avoid repeated allocations.
2069 */
2070void *spi_res_alloc(struct spi_device *spi,
2071                    spi_res_release_t release,
2072                    size_t size, gfp_t gfp)
2073{
2074        struct spi_res *sres;
2075
2076        sres = kzalloc(sizeof(*sres) + size, gfp);
2077        if (!sres)
2078                return NULL;
2079
2080        INIT_LIST_HEAD(&sres->entry);
2081        sres->release = release;
2082
2083        return sres->data;
2084}
2085EXPORT_SYMBOL_GPL(spi_res_alloc);
2086
2087/**
2088 * spi_res_free - free an spi resource
2089 * @res: pointer to the custom data of a resource
2090 *
2091 */
2092void spi_res_free(void *res)
2093{
2094        struct spi_res *sres = container_of(res, struct spi_res, data);
2095
2096        if (!res)
2097                return;
2098
2099        WARN_ON(!list_empty(&sres->entry));
2100        kfree(sres);
2101}
2102EXPORT_SYMBOL_GPL(spi_res_free);
2103
2104/**
2105 * spi_res_add - add a spi_res to the spi_message
2106 * @message: the spi message
2107 * @res:     the spi_resource
2108 */
2109void spi_res_add(struct spi_message *message, void *res)
2110{
2111        struct spi_res *sres = container_of(res, struct spi_res, data);
2112
2113        WARN_ON(!list_empty(&sres->entry));
2114        list_add_tail(&sres->entry, &message->resources);
2115}
2116EXPORT_SYMBOL_GPL(spi_res_add);
2117
2118/**
2119 * spi_res_release - release all spi resources for this message
2120 * @master:  the @spi_master
2121 * @message: the @spi_message
2122 */
2123void spi_res_release(struct spi_master *master,
2124                     struct spi_message *message)
2125{
2126        struct spi_res *res;
2127
2128        while (!list_empty(&message->resources)) {
2129                res = list_last_entry(&message->resources,
2130                                      struct spi_res, entry);
2131
2132                if (res->release)
2133                        res->release(master, message, res->data);
2134
2135                list_del(&res->entry);
2136
2137                kfree(res);
2138        }
2139}
2140EXPORT_SYMBOL_GPL(spi_res_release);
2141
2142/*-------------------------------------------------------------------------*/
2143
2144/* Core methods for spi_message alterations */
2145
2146static void __spi_replace_transfers_release(struct spi_master *master,
2147                                            struct spi_message *msg,
2148                                            void *res)
2149{
2150        struct spi_replaced_transfers *rxfer = res;
2151        size_t i;
2152
2153        /* call extra callback if requested */
2154        if (rxfer->release)
2155                rxfer->release(master, msg, res);
2156
2157        /* insert replaced transfers back into the message */
2158        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2159
2160        /* remove the formerly inserted entries */
2161        for (i = 0; i < rxfer->inserted; i++)
2162                list_del(&rxfer->inserted_transfers[i].transfer_list);
2163}
2164
2165/**
2166 * spi_replace_transfers - replace transfers with several transfers
2167 *                         and register change with spi_message.resources
2168 * @msg:           the spi_message we work upon
2169 * @xfer_first:    the first spi_transfer we want to replace
2170 * @remove:        number of transfers to remove
2171 * @insert:        the number of transfers we want to insert instead
2172 * @release:       extra release code necessary in some circumstances
2173 * @extradatasize: extra data to allocate (with alignment guarantees
2174 *                 of struct @spi_transfer)
2175 * @gfp:           gfp flags
2176 *
2177 * Returns: pointer to @spi_replaced_transfers,
2178 *          PTR_ERR(...) in case of errors.
2179 */
2180struct spi_replaced_transfers *spi_replace_transfers(
2181        struct spi_message *msg,
2182        struct spi_transfer *xfer_first,
2183        size_t remove,
2184        size_t insert,
2185        spi_replaced_release_t release,
2186        size_t extradatasize,
2187        gfp_t gfp)
2188{
2189        struct spi_replaced_transfers *rxfer;
2190        struct spi_transfer *xfer;
2191        size_t i;
2192
2193        /* allocate the structure using spi_res */
2194        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2195                              insert * sizeof(struct spi_transfer)
2196                              + sizeof(struct spi_replaced_transfers)
2197                              + extradatasize,
2198                              gfp);
2199        if (!rxfer)
2200                return ERR_PTR(-ENOMEM);
2201
2202        /* the release code to invoke before running the generic release */
2203        rxfer->release = release;
2204
2205        /* assign extradata */
2206        if (extradatasize)
2207                rxfer->extradata =
2208                        &rxfer->inserted_transfers[insert];
2209
2210        /* init the replaced_transfers list */
2211        INIT_LIST_HEAD(&rxfer->replaced_transfers);
2212
2213        /* assign the list_entry after which we should reinsert
2214         * the @replaced_transfers - it may be spi_message.messages!
2215         */
2216        rxfer->replaced_after = xfer_first->transfer_list.prev;
2217
2218        /* remove the requested number of transfers */
2219        for (i = 0; i < remove; i++) {
2220                /* if the entry after replaced_after it is msg->transfers
2221                 * then we have been requested to remove more transfers
2222                 * than are in the list
2223                 */
2224                if (rxfer->replaced_after->next == &msg->transfers) {
2225                        dev_err(&msg->spi->dev,
2226                                "requested to remove more spi_transfers than are available\n");
2227                        /* insert replaced transfers back into the message */
2228                        list_splice(&rxfer->replaced_transfers,
2229                                    rxfer->replaced_after);
2230
2231                        /* free the spi_replace_transfer structure */
2232                        spi_res_free(rxfer);
2233
2234                        /* and return with an error */
2235                        return ERR_PTR(-EINVAL);
2236                }
2237
2238                /* remove the entry after replaced_after from list of
2239                 * transfers and add it to list of replaced_transfers
2240                 */
2241                list_move_tail(rxfer->replaced_after->next,
2242                               &rxfer->replaced_transfers);
2243        }
2244
2245        /* create copy of the given xfer with identical settings
2246         * based on the first transfer to get removed
2247         */
2248        for (i = 0; i < insert; i++) {
2249                /* we need to run in reverse order */
2250                xfer = &rxfer->inserted_transfers[insert - 1 - i];
2251
2252                /* copy all spi_transfer data */
2253                memcpy(xfer, xfer_first, sizeof(*xfer));
2254
2255                /* add to list */
2256                list_add(&xfer->transfer_list, rxfer->replaced_after);
2257
2258                /* clear cs_change and delay_usecs for all but the last */
2259                if (i) {
2260                        xfer->cs_change = false;
2261                        xfer->delay_usecs = 0;
2262                }
2263        }
2264
2265        /* set up inserted */
2266        rxfer->inserted = insert;
2267
2268        /* and register it with spi_res/spi_message */
2269        spi_res_add(msg, rxfer);
2270
2271        return rxfer;
2272}
2273EXPORT_SYMBOL_GPL(spi_replace_transfers);
2274
2275static int __spi_split_transfer_maxsize(struct spi_master *master,
2276                                        struct spi_message *msg,
2277                                        struct spi_transfer **xferp,
2278                                        size_t maxsize,
2279                                        gfp_t gfp)
2280{
2281        struct spi_transfer *xfer = *xferp, *xfers;
2282        struct spi_replaced_transfers *srt;
2283        size_t offset;
2284        size_t count, i;
2285
2286        /* warn once about this fact that we are splitting a transfer */
2287        dev_warn_once(&msg->spi->dev,
2288                      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289                      xfer->len, maxsize);
2290
2291        /* calculate how many we have to replace */
2292        count = DIV_ROUND_UP(xfer->len, maxsize);
2293
2294        /* create replacement */
2295        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2296        if (IS_ERR(srt))
2297                return PTR_ERR(srt);
2298        xfers = srt->inserted_transfers;
2299
2300        /* now handle each of those newly inserted spi_transfers
2301         * note that the replacements spi_transfers all are preset
2302         * to the same values as *xferp, so tx_buf, rx_buf and len
2303         * are all identical (as well as most others)
2304         * so we just have to fix up len and the pointers.
2305         *
2306         * this also includes support for the depreciated
2307         * spi_message.is_dma_mapped interface
2308         */
2309
2310        /* the first transfer just needs the length modified, so we
2311         * run it outside the loop
2312         */
2313        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2314
2315        /* all the others need rx_buf/tx_buf also set */
2316        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2317                /* update rx_buf, tx_buf and dma */
2318                if (xfers[i].rx_buf)
2319                        xfers[i].rx_buf += offset;
2320                if (xfers[i].rx_dma)
2321                        xfers[i].rx_dma += offset;
2322                if (xfers[i].tx_buf)
2323                        xfers[i].tx_buf += offset;
2324                if (xfers[i].tx_dma)
2325                        xfers[i].tx_dma += offset;
2326
2327                /* update length */
2328                xfers[i].len = min(maxsize, xfers[i].len - offset);
2329        }
2330
2331        /* we set up xferp to the last entry we have inserted,
2332         * so that we skip those already split transfers
2333         */
2334        *xferp = &xfers[count - 1];
2335
2336        /* increment statistics counters */
2337        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2338                                       transfers_split_maxsize);
2339        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2340                                       transfers_split_maxsize);
2341
2342        return 0;
2343}
2344
2345/**
2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347 *                              when an individual transfer exceeds a
2348 *                              certain size
2349 * @master:    the @spi_master for this transfer
2350 * @msg:   the @spi_message to transform
2351 * @maxsize:  the maximum when to apply this
2352 * @gfp: GFP allocation flags
2353 *
2354 * Return: status of transformation
2355 */
2356int spi_split_transfers_maxsize(struct spi_master *master,
2357                                struct spi_message *msg,
2358                                size_t maxsize,
2359                                gfp_t gfp)
2360{
2361        struct spi_transfer *xfer;
2362        int ret;
2363
2364        /* iterate over the transfer_list,
2365         * but note that xfer is advanced to the last transfer inserted
2366         * to avoid checking sizes again unnecessarily (also xfer does
2367         * potentiall belong to a different list by the time the
2368         * replacement has happened
2369         */
2370        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2371                if (xfer->len > maxsize) {
2372                        ret = __spi_split_transfer_maxsize(
2373                                master, msg, &xfer, maxsize, gfp);
2374                        if (ret)
2375                                return ret;
2376                }
2377        }
2378
2379        return 0;
2380}
2381EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2382
2383/*-------------------------------------------------------------------------*/
2384
2385/* Core methods for SPI master protocol drivers.  Some of the
2386 * other core methods are currently defined as inline functions.
2387 */
2388
2389static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2390{
2391        if (master->bits_per_word_mask) {
2392                /* Only 32 bits fit in the mask */
2393                if (bits_per_word > 32)
2394                        return -EINVAL;
2395                if (!(master->bits_per_word_mask &
2396                                SPI_BPW_MASK(bits_per_word)))
2397                        return -EINVAL;
2398        }
2399
2400        return 0;
2401}
2402
2403/**
2404 * spi_setup - setup SPI mode and clock rate
2405 * @spi: the device whose settings are being modified
2406 * Context: can sleep, and no requests are queued to the device
2407 *
2408 * SPI protocol drivers may need to update the transfer mode if the
2409 * device doesn't work with its default.  They may likewise need
2410 * to update clock rates or word sizes from initial values.  This function
2411 * changes those settings, and must be called from a context that can sleep.
2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413 * effect the next time the device is selected and data is transferred to
2414 * or from it.  When this function returns, the spi device is deselected.
2415 *
2416 * Note that this call will fail if the protocol driver specifies an option
2417 * that the underlying controller or its driver does not support.  For
2418 * example, not all hardware supports wire transfers using nine bit words,
2419 * LSB-first wire encoding, or active-high chipselects.
2420 *
2421 * Return: zero on success, else a negative error code.
2422 */
2423int spi_setup(struct spi_device *spi)
2424{
2425        unsigned        bad_bits, ugly_bits;
2426        int             status;
2427
2428        /* check mode to prevent that DUAL and QUAD set at the same time
2429         */
2430        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2431                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2432                dev_err(&spi->dev,
2433                "setup: can not select dual and quad at the same time\n");
2434                return -EINVAL;
2435        }
2436        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2437         */
2438        if ((spi->mode & SPI_3WIRE) && (spi->mode &
2439                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2440                return -EINVAL;
2441        /* help drivers fail *cleanly* when they need options
2442         * that aren't supported with their current master
2443         */
2444        bad_bits = spi->mode & ~spi->master->mode_bits;
2445        ugly_bits = bad_bits &
2446                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2447        if (ugly_bits) {
2448                dev_warn(&spi->dev,
2449                         "setup: ignoring unsupported mode bits %x\n",
2450                         ugly_bits);
2451                spi->mode &= ~ugly_bits;
2452                bad_bits &= ~ugly_bits;
2453        }
2454        if (bad_bits) {
2455                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2456                        bad_bits);
2457                return -EINVAL;
2458        }
2459
2460        if (!spi->bits_per_word)
2461                spi->bits_per_word = 8;
2462
2463        status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2464        if (status)
2465                return status;
2466
2467        if (!spi->max_speed_hz)
2468                spi->max_speed_hz = spi->master->max_speed_hz;
2469
2470        if (spi->master->setup)
2471                status = spi->master->setup(spi);
2472
2473        spi_set_cs(spi, false);
2474
2475        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2477                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2478                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2479                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2480                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
2481                        spi->bits_per_word, spi->max_speed_hz,
2482                        status);
2483
2484        return status;
2485}
2486EXPORT_SYMBOL_GPL(spi_setup);
2487
2488static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2489{
2490        struct spi_master *master = spi->master;
2491        struct spi_transfer *xfer;
2492        int w_size;
2493
2494        if (list_empty(&message->transfers))
2495                return -EINVAL;
2496
2497        /* Half-duplex links include original MicroWire, and ones with
2498         * only one data pin like SPI_3WIRE (switches direction) or where
2499         * either MOSI or MISO is missing.  They can also be caused by
2500         * software limitations.
2501         */
2502        if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2503                        || (spi->mode & SPI_3WIRE)) {
2504                unsigned flags = master->flags;
2505
2506                list_for_each_entry(xfer, &message->transfers, transfer_list) {
2507                        if (xfer->rx_buf && xfer->tx_buf)
2508                                return -EINVAL;
2509                        if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2510                                return -EINVAL;
2511                        if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2512                                return -EINVAL;
2513                }
2514        }
2515
2516        /**
2517         * Set transfer bits_per_word and max speed as spi device default if
2518         * it is not set for this transfer.
2519         * Set transfer tx_nbits and rx_nbits as single transfer default
2520         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2521         */
2522        message->frame_length = 0;
2523        list_for_each_entry(xfer, &message->transfers, transfer_list) {
2524                message->frame_length += xfer->len;
2525                if (!xfer->bits_per_word)
2526                        xfer->bits_per_word = spi->bits_per_word;
2527
2528                if (!xfer->speed_hz)
2529                        xfer->speed_hz = spi->max_speed_hz;
2530                if (!xfer->speed_hz)
2531                        xfer->speed_hz = master->max_speed_hz;
2532
2533                if (master->max_speed_hz &&
2534                    xfer->speed_hz > master->max_speed_hz)
2535                        xfer->speed_hz = master->max_speed_hz;
2536
2537                if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2538                        return -EINVAL;
2539
2540                /*
2541                 * SPI transfer length should be multiple of SPI word size
2542                 * where SPI word size should be power-of-two multiple
2543                 */
2544                if (xfer->bits_per_word <= 8)
2545                        w_size = 1;
2546                else if (xfer->bits_per_word <= 16)
2547                        w_size = 2;
2548                else
2549                        w_size = 4;
2550
2551                /* No partial transfers accepted */
2552                if (xfer->len % w_size)
2553                        return -EINVAL;
2554
2555                if (xfer->speed_hz && master->min_speed_hz &&
2556                    xfer->speed_hz < master->min_speed_hz)
2557                        return -EINVAL;
2558
2559                if (xfer->tx_buf && !xfer->tx_nbits)
2560                        xfer->tx_nbits = SPI_NBITS_SINGLE;
2561                if (xfer->rx_buf && !xfer->rx_nbits)
2562                        xfer->rx_nbits = SPI_NBITS_SINGLE;
2563                /* check transfer tx/rx_nbits:
2564                 * 1. check the value matches one of single, dual and quad
2565                 * 2. check tx/rx_nbits match the mode in spi_device
2566                 */
2567                if (xfer->tx_buf) {
2568                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2569                                xfer->tx_nbits != SPI_NBITS_DUAL &&
2570                                xfer->tx_nbits != SPI_NBITS_QUAD)
2571                                return -EINVAL;
2572                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2573                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2574                                return -EINVAL;
2575                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2576                                !(spi->mode & SPI_TX_QUAD))
2577                                return -EINVAL;
2578                }
2579                /* check transfer rx_nbits */
2580                if (xfer->rx_buf) {
2581                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2582                                xfer->rx_nbits != SPI_NBITS_DUAL &&
2583                                xfer->rx_nbits != SPI_NBITS_QUAD)
2584                                return -EINVAL;
2585                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2586                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2587                                return -EINVAL;
2588                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2589                                !(spi->mode & SPI_RX_QUAD))
2590                                return -EINVAL;
2591                }
2592        }
2593
2594        message->status = -EINPROGRESS;
2595
2596        return 0;
2597}
2598
2599static int __spi_async(struct spi_device *spi, struct spi_message *message)
2600{
2601        struct spi_master *master = spi->master;
2602
2603        message->spi = spi;
2604
2605        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2606        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2607
2608        trace_spi_message_submit(message);
2609
2610        return master->transfer(spi, message);
2611}
2612
2613/**
2614 * spi_async - asynchronous SPI transfer
2615 * @spi: device with which data will be exchanged
2616 * @message: describes the data transfers, including completion callback
2617 * Context: any (irqs may be blocked, etc)
2618 *
2619 * This call may be used in_irq and other contexts which can't sleep,
2620 * as well as from task contexts which can sleep.
2621 *
2622 * The completion callback is invoked in a context which can't sleep.
2623 * Before that invocation, the value of message->status is undefined.
2624 * When the callback is issued, message->status holds either zero (to
2625 * indicate complete success) or a negative error code.  After that
2626 * callback returns, the driver which issued the transfer request may
2627 * deallocate the associated memory; it's no longer in use by any SPI
2628 * core or controller driver code.
2629 *
2630 * Note that although all messages to a spi_device are handled in
2631 * FIFO order, messages may go to different devices in other orders.
2632 * Some device might be higher priority, or have various "hard" access
2633 * time requirements, for example.
2634 *
2635 * On detection of any fault during the transfer, processing of
2636 * the entire message is aborted, and the device is deselected.
2637 * Until returning from the associated message completion callback,
2638 * no other spi_message queued to that device will be processed.
2639 * (This rule applies equally to all the synchronous transfer calls,
2640 * which are wrappers around this core asynchronous primitive.)
2641 *
2642 * Return: zero on success, else a negative error code.
2643 */
2644int spi_async(struct spi_device *spi, struct spi_message *message)
2645{
2646        struct spi_master *master = spi->master;
2647        int ret;
2648        unsigned long flags;
2649
2650        ret = __spi_validate(spi, message);
2651        if (ret != 0)
2652                return ret;
2653
2654        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2655
2656        if (master->bus_lock_flag)
2657                ret = -EBUSY;
2658        else
2659                ret = __spi_async(spi, message);
2660
2661        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2662
2663        return ret;
2664}
2665EXPORT_SYMBOL_GPL(spi_async);
2666
2667/**
2668 * spi_async_locked - version of spi_async with exclusive bus usage
2669 * @spi: device with which data will be exchanged
2670 * @message: describes the data transfers, including completion callback
2671 * Context: any (irqs may be blocked, etc)
2672 *
2673 * This call may be used in_irq and other contexts which can't sleep,
2674 * as well as from task contexts which can sleep.
2675 *
2676 * The completion callback is invoked in a context which can't sleep.
2677 * Before that invocation, the value of message->status is undefined.
2678 * When the callback is issued, message->status holds either zero (to
2679 * indicate complete success) or a negative error code.  After that
2680 * callback returns, the driver which issued the transfer request may
2681 * deallocate the associated memory; it's no longer in use by any SPI
2682 * core or controller driver code.
2683 *
2684 * Note that although all messages to a spi_device are handled in
2685 * FIFO order, messages may go to different devices in other orders.
2686 * Some device might be higher priority, or have various "hard" access
2687 * time requirements, for example.
2688 *
2689 * On detection of any fault during the transfer, processing of
2690 * the entire message is aborted, and the device is deselected.
2691 * Until returning from the associated message completion callback,
2692 * no other spi_message queued to that device will be processed.
2693 * (This rule applies equally to all the synchronous transfer calls,
2694 * which are wrappers around this core asynchronous primitive.)
2695 *
2696 * Return: zero on success, else a negative error code.
2697 */
2698int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2699{
2700        struct spi_master *master = spi->master;
2701        int ret;
2702        unsigned long flags;
2703
2704        ret = __spi_validate(spi, message);
2705        if (ret != 0)
2706                return ret;
2707
2708        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2709
2710        ret = __spi_async(spi, message);
2711
2712        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713
2714        return ret;
2715
2716}
2717EXPORT_SYMBOL_GPL(spi_async_locked);
2718
2719
2720int spi_flash_read(struct spi_device *spi,
2721                   struct spi_flash_read_message *msg)
2722
2723{
2724        struct spi_master *master = spi->master;
2725        int ret;
2726
2727        if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2728             msg->addr_nbits == SPI_NBITS_DUAL) &&
2729            !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2730                return -EINVAL;
2731        if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2732             msg->addr_nbits == SPI_NBITS_QUAD) &&
2733            !(spi->mode & SPI_TX_QUAD))
2734                return -EINVAL;
2735        if (msg->data_nbits == SPI_NBITS_DUAL &&
2736            !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2737                return -EINVAL;
2738        if (msg->data_nbits == SPI_NBITS_QUAD &&
2739            !(spi->mode &  SPI_RX_QUAD))
2740                return -EINVAL;
2741
2742        if (master->auto_runtime_pm) {
2743                ret = pm_runtime_get_sync(master->dev.parent);
2744                if (ret < 0) {
2745                        dev_err(&master->dev, "Failed to power device: %d\n",
2746                                ret);
2747                        return ret;
2748                }
2749        }
2750        mutex_lock(&master->bus_lock_mutex);
2751        ret = master->spi_flash_read(spi, msg);
2752        mutex_unlock(&master->bus_lock_mutex);
2753        if (master->auto_runtime_pm)
2754                pm_runtime_put(master->dev.parent);
2755
2756        return ret;
2757}
2758EXPORT_SYMBOL_GPL(spi_flash_read);
2759
2760/*-------------------------------------------------------------------------*/
2761
2762/* Utility methods for SPI master protocol drivers, layered on
2763 * top of the core.  Some other utility methods are defined as
2764 * inline functions.
2765 */
2766
2767static void spi_complete(void *arg)
2768{
2769        complete(arg);
2770}
2771
2772static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2773                      int bus_locked)
2774{
2775        DECLARE_COMPLETION_ONSTACK(done);
2776        int status;
2777        struct spi_master *master = spi->master;
2778        unsigned long flags;
2779
2780        status = __spi_validate(spi, message);
2781        if (status != 0)
2782                return status;
2783
2784        message->complete = spi_complete;
2785        message->context = &done;
2786        message->spi = spi;
2787
2788        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2789        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2790
2791        if (!bus_locked)
2792                mutex_lock(&master->bus_lock_mutex);
2793
2794        /* If we're not using the legacy transfer method then we will
2795         * try to transfer in the calling context so special case.
2796         * This code would be less tricky if we could remove the
2797         * support for driver implemented message queues.
2798         */
2799        if (master->transfer == spi_queued_transfer) {
2800                spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2801
2802                trace_spi_message_submit(message);
2803
2804                status = __spi_queued_transfer(spi, message, false);
2805
2806                spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2807        } else {
2808                status = spi_async_locked(spi, message);
2809        }
2810
2811        if (!bus_locked)
2812                mutex_unlock(&master->bus_lock_mutex);
2813
2814        if (status == 0) {
2815                /* Push out the messages in the calling context if we
2816                 * can.
2817                 */
2818                if (master->transfer == spi_queued_transfer) {
2819                        SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2820                                                       spi_sync_immediate);
2821                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2822                                                       spi_sync_immediate);
2823                        __spi_pump_messages(master, false, bus_locked);
2824                }
2825
2826                wait_for_completion(&done);
2827                status = message->status;
2828        }
2829        message->context = NULL;
2830        return status;
2831}
2832
2833/**
2834 * spi_sync - blocking/synchronous SPI data transfers
2835 * @spi: device with which data will be exchanged
2836 * @message: describes the data transfers
2837 * Context: can sleep
2838 *
2839 * This call may only be used from a context that may sleep.  The sleep
2840 * is non-interruptible, and has no timeout.  Low-overhead controller
2841 * drivers may DMA directly into and out of the message buffers.
2842 *
2843 * Note that the SPI device's chip select is active during the message,
2844 * and then is normally disabled between messages.  Drivers for some
2845 * frequently-used devices may want to minimize costs of selecting a chip,
2846 * by leaving it selected in anticipation that the next message will go
2847 * to the same chip.  (That may increase power usage.)
2848 *
2849 * Also, the caller is guaranteeing that the memory associated with the
2850 * message will not be freed before this call returns.
2851 *
2852 * Return: zero on success, else a negative error code.
2853 */
2854int spi_sync(struct spi_device *spi, struct spi_message *message)
2855{
2856        return __spi_sync(spi, message, spi->master->bus_lock_flag);
2857}
2858EXPORT_SYMBOL_GPL(spi_sync);
2859
2860/**
2861 * spi_sync_locked - version of spi_sync with exclusive bus usage
2862 * @spi: device with which data will be exchanged
2863 * @message: describes the data transfers
2864 * Context: can sleep
2865 *
2866 * This call may only be used from a context that may sleep.  The sleep
2867 * is non-interruptible, and has no timeout.  Low-overhead controller
2868 * drivers may DMA directly into and out of the message buffers.
2869 *
2870 * This call should be used by drivers that require exclusive access to the
2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872 * be released by a spi_bus_unlock call when the exclusive access is over.
2873 *
2874 * Return: zero on success, else a negative error code.
2875 */
2876int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2877{
2878        return __spi_sync(spi, message, 1);
2879}
2880EXPORT_SYMBOL_GPL(spi_sync_locked);
2881
2882/**
2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884 * @master: SPI bus master that should be locked for exclusive bus access
2885 * Context: can sleep
2886 *
2887 * This call may only be used from a context that may sleep.  The sleep
2888 * is non-interruptible, and has no timeout.
2889 *
2890 * This call should be used by drivers that require exclusive access to the
2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892 * exclusive access is over. Data transfer must be done by spi_sync_locked
2893 * and spi_async_locked calls when the SPI bus lock is held.
2894 *
2895 * Return: always zero.
2896 */
2897int spi_bus_lock(struct spi_master *master)
2898{
2899        unsigned long flags;
2900
2901        mutex_lock(&master->bus_lock_mutex);
2902
2903        spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2904        master->bus_lock_flag = 1;
2905        spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2906
2907        /* mutex remains locked until spi_bus_unlock is called */
2908
2909        return 0;
2910}
2911EXPORT_SYMBOL_GPL(spi_bus_lock);
2912
2913/**
2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915 * @master: SPI bus master that was locked for exclusive bus access
2916 * Context: can sleep
2917 *
2918 * This call may only be used from a context that may sleep.  The sleep
2919 * is non-interruptible, and has no timeout.
2920 *
2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2922 * call.
2923 *
2924 * Return: always zero.
2925 */
2926int spi_bus_unlock(struct spi_master *master)
2927{
2928        master->bus_lock_flag = 0;
2929
2930        mutex_unlock(&master->bus_lock_mutex);
2931
2932        return 0;
2933}
2934EXPORT_SYMBOL_GPL(spi_bus_unlock);
2935
2936/* portable code must never pass more than 32 bytes */
2937#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
2938
2939static u8       *buf;
2940
2941/**
2942 * spi_write_then_read - SPI synchronous write followed by read
2943 * @spi: device with which data will be exchanged
2944 * @txbuf: data to be written (need not be dma-safe)
2945 * @n_tx: size of txbuf, in bytes
2946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947 * @n_rx: size of rxbuf, in bytes
2948 * Context: can sleep
2949 *
2950 * This performs a half duplex MicroWire style transaction with the
2951 * device, sending txbuf and then reading rxbuf.  The return value
2952 * is zero for success, else a negative errno status code.
2953 * This call may only be used from a context that may sleep.
2954 *
2955 * Parameters to this routine are always copied using a small buffer;
2956 * portable code should never use this for more than 32 bytes.
2957 * Performance-sensitive or bulk transfer code should instead use
2958 * spi_{async,sync}() calls with dma-safe buffers.
2959 *
2960 * Return: zero on success, else a negative error code.
2961 */
2962int spi_write_then_read(struct spi_device *spi,
2963                const void *txbuf, unsigned n_tx,
2964                void *rxbuf, unsigned n_rx)
2965{
2966        static DEFINE_MUTEX(lock);
2967
2968        int                     status;
2969        struct spi_message      message;
2970        struct spi_transfer     x[2];
2971        u8                      *local_buf;
2972
2973        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
2974         * copying here, (as a pure convenience thing), but we can
2975         * keep heap costs out of the hot path unless someone else is
2976         * using the pre-allocated buffer or the transfer is too large.
2977         */
2978        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2979                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2980                                    GFP_KERNEL | GFP_DMA);
2981                if (!local_buf)
2982                        return -ENOMEM;
2983        } else {
2984                local_buf = buf;
2985        }
2986
2987        spi_message_init(&message);
2988        memset(x, 0, sizeof(x));
2989        if (n_tx) {
2990                x[0].len = n_tx;
2991                spi_message_add_tail(&x[0], &message);
2992        }
2993        if (n_rx) {
2994                x[1].len = n_rx;
2995                spi_message_add_tail(&x[1], &message);
2996        }
2997
2998        memcpy(local_buf, txbuf, n_tx);
2999        x[0].tx_buf = local_buf;
3000        x[1].rx_buf = local_buf + n_tx;
3001
3002        /* do the i/o */
3003        status = spi_sync(spi, &message);
3004        if (status == 0)
3005                memcpy(rxbuf, x[1].rx_buf, n_rx);
3006
3007        if (x[0].tx_buf == buf)
3008                mutex_unlock(&lock);
3009        else
3010                kfree(local_buf);
3011
3012        return status;
3013}
3014EXPORT_SYMBOL_GPL(spi_write_then_read);
3015
3016/*-------------------------------------------------------------------------*/
3017
3018#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019static int __spi_of_device_match(struct device *dev, void *data)
3020{
3021        return dev->of_node == data;
3022}
3023
3024/* must call put_device() when done with returned spi_device device */
3025static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3026{
3027        struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3028                                                __spi_of_device_match);
3029        return dev ? to_spi_device(dev) : NULL;
3030}
3031
3032static int __spi_of_master_match(struct device *dev, const void *data)
3033{
3034        return dev->of_node == data;
3035}
3036
3037/* the spi masters are not using spi_bus, so we find it with another way */
3038static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3039{
3040        struct device *dev;
3041
3042        dev = class_find_device(&spi_master_class, NULL, node,
3043                                __spi_of_master_match);
3044        if (!dev)
3045                return NULL;
3046
3047        /* reference got in class_find_device */
3048        return container_of(dev, struct spi_master, dev);
3049}
3050
3051static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3052                         void *arg)
3053{
3054        struct of_reconfig_data *rd = arg;
3055        struct spi_master *master;
3056        struct spi_device *spi;
3057
3058        switch (of_reconfig_get_state_change(action, arg)) {
3059        case OF_RECONFIG_CHANGE_ADD:
3060                master = of_find_spi_master_by_node(rd->dn->parent);
3061                if (master == NULL)
3062                        return NOTIFY_OK;       /* not for us */
3063
3064                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3065                        put_device(&master->dev);
3066                        return NOTIFY_OK;
3067                }
3068
3069                spi = of_register_spi_device(master, rd->dn);
3070                put_device(&master->dev);
3071
3072                if (IS_ERR(spi)) {
3073                        pr_err("%s: failed to create for '%s'\n",
3074                                        __func__, rd->dn->full_name);
3075                        return notifier_from_errno(PTR_ERR(spi));
3076                }
3077                break;
3078
3079        case OF_RECONFIG_CHANGE_REMOVE:
3080                /* already depopulated? */
3081                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3082                        return NOTIFY_OK;
3083
3084                /* find our device by node */
3085                spi = of_find_spi_device_by_node(rd->dn);
3086                if (spi == NULL)
3087                        return NOTIFY_OK;       /* no? not meant for us */
3088
3089                /* unregister takes one ref away */
3090                spi_unregister_device(spi);
3091
3092                /* and put the reference of the find */
3093                put_device(&spi->dev);
3094                break;
3095        }
3096
3097        return NOTIFY_OK;
3098}
3099
3100static struct notifier_block spi_of_notifier = {
3101        .notifier_call = of_spi_notify,
3102};
3103#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104extern struct notifier_block spi_of_notifier;
3105#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3106
3107static int __init spi_init(void)
3108{
3109        int     status;
3110
3111        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3112        if (!buf) {
3113                status = -ENOMEM;
3114                goto err0;
3115        }
3116
3117        status = bus_register(&spi_bus_type);
3118        if (status < 0)
3119                goto err1;
3120
3121        status = class_register(&spi_master_class);
3122        if (status < 0)
3123                goto err2;
3124
3125        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3126                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3127
3128        return 0;
3129
3130err2:
3131        bus_unregister(&spi_bus_type);
3132err1:
3133        kfree(buf);
3134        buf = NULL;
3135err0:
3136        return status;
3137}
3138
3139/* board_info is normally registered in arch_initcall(),
3140 * but even essential drivers wait till later
3141 *
3142 * REVISIT only boardinfo really needs static linking. the rest (device and
3143 * driver registration) _could_ be dynamically linked (modular) ... costs
3144 * include needing to have boardinfo data structures be much more public.
3145 */
3146postcore_initcall(spi_init);
3147
3148