linux/drivers/staging/rdma/hfi1/pio.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/delay.h>
  49#include "hfi.h"
  50#include "qp.h"
  51#include "trace.h"
  52
  53#define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */
  54
  55#define SC(name) SEND_CTXT_##name
  56/*
  57 * Send Context functions
  58 */
  59static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
  60
  61/*
  62 * Set the CM reset bit and wait for it to clear.  Use the provided
  63 * sendctrl register.  This routine has no locking.
  64 */
  65void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
  66{
  67        write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
  68        while (1) {
  69                udelay(1);
  70                sendctrl = read_csr(dd, SEND_CTRL);
  71                if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
  72                        break;
  73        }
  74}
  75
  76/* defined in header release 48 and higher */
  77#ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT
  78#define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3
  79#define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull
  80#define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \
  81                << SEND_CTRL_UNSUPPORTED_VL_SHIFT)
  82#endif
  83
  84/* global control of PIO send */
  85void pio_send_control(struct hfi1_devdata *dd, int op)
  86{
  87        u64 reg, mask;
  88        unsigned long flags;
  89        int write = 1;  /* write sendctrl back */
  90        int flush = 0;  /* re-read sendctrl to make sure it is flushed */
  91
  92        spin_lock_irqsave(&dd->sendctrl_lock, flags);
  93
  94        reg = read_csr(dd, SEND_CTRL);
  95        switch (op) {
  96        case PSC_GLOBAL_ENABLE:
  97                reg |= SEND_CTRL_SEND_ENABLE_SMASK;
  98        /* Fall through */
  99        case PSC_DATA_VL_ENABLE:
 100                /* Disallow sending on VLs not enabled */
 101                mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
 102                                SEND_CTRL_UNSUPPORTED_VL_SHIFT;
 103                reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
 104                break;
 105        case PSC_GLOBAL_DISABLE:
 106                reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
 107                break;
 108        case PSC_GLOBAL_VLARB_ENABLE:
 109                reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
 110                break;
 111        case PSC_GLOBAL_VLARB_DISABLE:
 112                reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
 113                break;
 114        case PSC_CM_RESET:
 115                __cm_reset(dd, reg);
 116                write = 0; /* CSR already written (and flushed) */
 117                break;
 118        case PSC_DATA_VL_DISABLE:
 119                reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
 120                flush = 1;
 121                break;
 122        default:
 123                dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
 124                break;
 125        }
 126
 127        if (write) {
 128                write_csr(dd, SEND_CTRL, reg);
 129                if (flush)
 130                        (void)read_csr(dd, SEND_CTRL); /* flush write */
 131        }
 132
 133        spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
 134}
 135
 136/* number of send context memory pools */
 137#define NUM_SC_POOLS 2
 138
 139/* Send Context Size (SCS) wildcards */
 140#define SCS_POOL_0 -1
 141#define SCS_POOL_1 -2
 142/* Send Context Count (SCC) wildcards */
 143#define SCC_PER_VL -1
 144#define SCC_PER_CPU  -2
 145
 146#define SCC_PER_KRCVQ  -3
 147#define SCC_ACK_CREDITS  32
 148
 149#define PIO_WAIT_BATCH_SIZE 5
 150
 151/* default send context sizes */
 152static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
 153        [SC_KERNEL] = { .size  = SCS_POOL_0,    /* even divide, pool 0 */
 154                        .count = SCC_PER_VL },/* one per NUMA */
 155        [SC_ACK]    = { .size  = SCC_ACK_CREDITS,
 156                        .count = SCC_PER_KRCVQ },
 157        [SC_USER]   = { .size  = SCS_POOL_0,    /* even divide, pool 0 */
 158                        .count = SCC_PER_CPU }, /* one per CPU */
 159
 160};
 161
 162/* send context memory pool configuration */
 163struct mem_pool_config {
 164        int centipercent;       /* % of memory, in 100ths of 1% */
 165        int absolute_blocks;    /* absolute block count */
 166};
 167
 168/* default memory pool configuration: 100% in pool 0 */
 169static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
 170        /* centi%, abs blocks */
 171        {  10000,     -1 },             /* pool 0 */
 172        {      0,     -1 },             /* pool 1 */
 173};
 174
 175/* memory pool information, used when calculating final sizes */
 176struct mem_pool_info {
 177        int centipercent;       /*
 178                                 * 100th of 1% of memory to use, -1 if blocks
 179                                 * already set
 180                                 */
 181        int count;              /* count of contexts in the pool */
 182        int blocks;             /* block size of the pool */
 183        int size;               /* context size, in blocks */
 184};
 185
 186/*
 187 * Convert a pool wildcard to a valid pool index.  The wildcards
 188 * start at -1 and increase negatively.  Map them as:
 189 *      -1 => 0
 190 *      -2 => 1
 191 *      etc.
 192 *
 193 * Return -1 on non-wildcard input, otherwise convert to a pool number.
 194 */
 195static int wildcard_to_pool(int wc)
 196{
 197        if (wc >= 0)
 198                return -1;      /* non-wildcard */
 199        return -wc - 1;
 200}
 201
 202static const char *sc_type_names[SC_MAX] = {
 203        "kernel",
 204        "ack",
 205        "user"
 206};
 207
 208static const char *sc_type_name(int index)
 209{
 210        if (index < 0 || index >= SC_MAX)
 211                return "unknown";
 212        return sc_type_names[index];
 213}
 214
 215/*
 216 * Read the send context memory pool configuration and send context
 217 * size configuration.  Replace any wildcards and come up with final
 218 * counts and sizes for the send context types.
 219 */
 220int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
 221{
 222        struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
 223        int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1;
 224        int total_contexts = 0;
 225        int fixed_blocks;
 226        int pool_blocks;
 227        int used_blocks;
 228        int cp_total;           /* centipercent total */
 229        int ab_total;           /* absolute block total */
 230        int extra;
 231        int i;
 232
 233        /*
 234         * Step 0:
 235         *      - copy the centipercents/absolute sizes from the pool config
 236         *      - sanity check these values
 237         *      - add up centipercents, then later check for full value
 238         *      - add up absolute blocks, then later check for over-commit
 239         */
 240        cp_total = 0;
 241        ab_total = 0;
 242        for (i = 0; i < NUM_SC_POOLS; i++) {
 243                int cp = sc_mem_pool_config[i].centipercent;
 244                int ab = sc_mem_pool_config[i].absolute_blocks;
 245
 246                /*
 247                 * A negative value is "unused" or "invalid".  Both *can*
 248                 * be valid, but centipercent wins, so check that first
 249                 */
 250                if (cp >= 0) {                  /* centipercent valid */
 251                        cp_total += cp;
 252                } else if (ab >= 0) {           /* absolute blocks valid */
 253                        ab_total += ab;
 254                } else {                        /* neither valid */
 255                        dd_dev_err(
 256                                dd,
 257                                "Send context memory pool %d: both the block count and centipercent are invalid\n",
 258                                i);
 259                        return -EINVAL;
 260                }
 261
 262                mem_pool_info[i].centipercent = cp;
 263                mem_pool_info[i].blocks = ab;
 264        }
 265
 266        /* do not use both % and absolute blocks for different pools */
 267        if (cp_total != 0 && ab_total != 0) {
 268                dd_dev_err(
 269                        dd,
 270                        "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
 271                return -EINVAL;
 272        }
 273
 274        /* if any percentages are present, they must add up to 100% x 100 */
 275        if (cp_total != 0 && cp_total != 10000) {
 276                dd_dev_err(
 277                        dd,
 278                        "Send context memory pool centipercent is %d, expecting 10000\n",
 279                        cp_total);
 280                return -EINVAL;
 281        }
 282
 283        /* the absolute pool total cannot be more than the mem total */
 284        if (ab_total > total_blocks) {
 285                dd_dev_err(
 286                        dd,
 287                        "Send context memory pool absolute block count %d is larger than the memory size %d\n",
 288                        ab_total, total_blocks);
 289                return -EINVAL;
 290        }
 291
 292        /*
 293         * Step 2:
 294         *      - copy from the context size config
 295         *      - replace context type wildcard counts with real values
 296         *      - add up non-memory pool block sizes
 297         *      - add up memory pool user counts
 298         */
 299        fixed_blocks = 0;
 300        for (i = 0; i < SC_MAX; i++) {
 301                int count = sc_config_sizes[i].count;
 302                int size = sc_config_sizes[i].size;
 303                int pool;
 304
 305                /*
 306                 * Sanity check count: Either a positive value or
 307                 * one of the expected wildcards is valid.  The positive
 308                 * value is checked later when we compare against total
 309                 * memory available.
 310                 */
 311                if (i == SC_ACK) {
 312                        count = dd->n_krcv_queues;
 313                } else if (i == SC_KERNEL) {
 314                        count = (INIT_SC_PER_VL * num_vls) + 1 /* VL15 */;
 315                } else if (count == SCC_PER_CPU) {
 316                        count = dd->num_rcv_contexts - dd->n_krcv_queues;
 317                } else if (count < 0) {
 318                        dd_dev_err(
 319                                dd,
 320                                "%s send context invalid count wildcard %d\n",
 321                                sc_type_name(i), count);
 322                        return -EINVAL;
 323                }
 324                if (total_contexts + count > dd->chip_send_contexts)
 325                        count = dd->chip_send_contexts - total_contexts;
 326
 327                total_contexts += count;
 328
 329                /*
 330                 * Sanity check pool: The conversion will return a pool
 331                 * number or -1 if a fixed (non-negative) value.  The fixed
 332                 * value is checked later when we compare against
 333                 * total memory available.
 334                 */
 335                pool = wildcard_to_pool(size);
 336                if (pool == -1) {                       /* non-wildcard */
 337                        fixed_blocks += size * count;
 338                } else if (pool < NUM_SC_POOLS) {       /* valid wildcard */
 339                        mem_pool_info[pool].count += count;
 340                } else {                                /* invalid wildcard */
 341                        dd_dev_err(
 342                                dd,
 343                                "%s send context invalid pool wildcard %d\n",
 344                                sc_type_name(i), size);
 345                        return -EINVAL;
 346                }
 347
 348                dd->sc_sizes[i].count = count;
 349                dd->sc_sizes[i].size = size;
 350        }
 351        if (fixed_blocks > total_blocks) {
 352                dd_dev_err(
 353                        dd,
 354                        "Send context fixed block count, %u, larger than total block count %u\n",
 355                        fixed_blocks, total_blocks);
 356                return -EINVAL;
 357        }
 358
 359        /* step 3: calculate the blocks in the pools, and pool context sizes */
 360        pool_blocks = total_blocks - fixed_blocks;
 361        if (ab_total > pool_blocks) {
 362                dd_dev_err(
 363                        dd,
 364                        "Send context fixed pool sizes, %u, larger than pool block count %u\n",
 365                        ab_total, pool_blocks);
 366                return -EINVAL;
 367        }
 368        /* subtract off the fixed pool blocks */
 369        pool_blocks -= ab_total;
 370
 371        for (i = 0; i < NUM_SC_POOLS; i++) {
 372                struct mem_pool_info *pi = &mem_pool_info[i];
 373
 374                /* % beats absolute blocks */
 375                if (pi->centipercent >= 0)
 376                        pi->blocks = (pool_blocks * pi->centipercent) / 10000;
 377
 378                if (pi->blocks == 0 && pi->count != 0) {
 379                        dd_dev_err(
 380                                dd,
 381                                "Send context memory pool %d has %u contexts, but no blocks\n",
 382                                i, pi->count);
 383                        return -EINVAL;
 384                }
 385                if (pi->count == 0) {
 386                        /* warn about wasted blocks */
 387                        if (pi->blocks != 0)
 388                                dd_dev_err(
 389                                        dd,
 390                                        "Send context memory pool %d has %u blocks, but zero contexts\n",
 391                                        i, pi->blocks);
 392                        pi->size = 0;
 393                } else {
 394                        pi->size = pi->blocks / pi->count;
 395                }
 396        }
 397
 398        /* step 4: fill in the context type sizes from the pool sizes */
 399        used_blocks = 0;
 400        for (i = 0; i < SC_MAX; i++) {
 401                if (dd->sc_sizes[i].size < 0) {
 402                        unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
 403
 404                        WARN_ON_ONCE(pool >= NUM_SC_POOLS);
 405                        dd->sc_sizes[i].size = mem_pool_info[pool].size;
 406                }
 407                /* make sure we are not larger than what is allowed by the HW */
 408#define PIO_MAX_BLOCKS 1024
 409                if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
 410                        dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
 411
 412                /* calculate our total usage */
 413                used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
 414        }
 415        extra = total_blocks - used_blocks;
 416        if (extra != 0)
 417                dd_dev_info(dd, "unused send context blocks: %d\n", extra);
 418
 419        return total_contexts;
 420}
 421
 422int init_send_contexts(struct hfi1_devdata *dd)
 423{
 424        u16 base;
 425        int ret, i, j, context;
 426
 427        ret = init_credit_return(dd);
 428        if (ret)
 429                return ret;
 430
 431        dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
 432                                        GFP_KERNEL);
 433        dd->send_contexts = kcalloc(dd->num_send_contexts,
 434                                        sizeof(struct send_context_info),
 435                                        GFP_KERNEL);
 436        if (!dd->send_contexts || !dd->hw_to_sw) {
 437                kfree(dd->hw_to_sw);
 438                kfree(dd->send_contexts);
 439                free_credit_return(dd);
 440                return -ENOMEM;
 441        }
 442
 443        /* hardware context map starts with invalid send context indices */
 444        for (i = 0; i < TXE_NUM_CONTEXTS; i++)
 445                dd->hw_to_sw[i] = INVALID_SCI;
 446
 447        /*
 448         * All send contexts have their credit sizes.  Allocate credits
 449         * for each context one after another from the global space.
 450         */
 451        context = 0;
 452        base = 1;
 453        for (i = 0; i < SC_MAX; i++) {
 454                struct sc_config_sizes *scs = &dd->sc_sizes[i];
 455
 456                for (j = 0; j < scs->count; j++) {
 457                        struct send_context_info *sci =
 458                                                &dd->send_contexts[context];
 459                        sci->type = i;
 460                        sci->base = base;
 461                        sci->credits = scs->size;
 462
 463                        context++;
 464                        base += scs->size;
 465                }
 466        }
 467
 468        return 0;
 469}
 470
 471/*
 472 * Allocate a software index and hardware context of the given type.
 473 *
 474 * Must be called with dd->sc_lock held.
 475 */
 476static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
 477                       u32 *hw_context)
 478{
 479        struct send_context_info *sci;
 480        u32 index;
 481        u32 context;
 482
 483        for (index = 0, sci = &dd->send_contexts[0];
 484                        index < dd->num_send_contexts; index++, sci++) {
 485                if (sci->type == type && sci->allocated == 0) {
 486                        sci->allocated = 1;
 487                        /* use a 1:1 mapping, but make them non-equal */
 488                        context = dd->chip_send_contexts - index - 1;
 489                        dd->hw_to_sw[context] = index;
 490                        *sw_index = index;
 491                        *hw_context = context;
 492                        return 0; /* success */
 493                }
 494        }
 495        dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
 496        return -ENOSPC;
 497}
 498
 499/*
 500 * Free the send context given by its software index.
 501 *
 502 * Must be called with dd->sc_lock held.
 503 */
 504static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
 505{
 506        struct send_context_info *sci;
 507
 508        sci = &dd->send_contexts[sw_index];
 509        if (!sci->allocated) {
 510                dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
 511                           __func__, sw_index, hw_context);
 512        }
 513        sci->allocated = 0;
 514        dd->hw_to_sw[hw_context] = INVALID_SCI;
 515}
 516
 517/* return the base context of a context in a group */
 518static inline u32 group_context(u32 context, u32 group)
 519{
 520        return (context >> group) << group;
 521}
 522
 523/* return the size of a group */
 524static inline u32 group_size(u32 group)
 525{
 526        return 1 << group;
 527}
 528
 529/*
 530 * Obtain the credit return addresses, kernel virtual and physical, for the
 531 * given sc.
 532 *
 533 * To understand this routine:
 534 * o va and pa are arrays of struct credit_return.  One for each physical
 535 *   send context, per NUMA.
 536 * o Each send context always looks in its relative location in a struct
 537 *   credit_return for its credit return.
 538 * o Each send context in a group must have its return address CSR programmed
 539 *   with the same value.  Use the address of the first send context in the
 540 *   group.
 541 */
 542static void cr_group_addresses(struct send_context *sc, dma_addr_t *pa)
 543{
 544        u32 gc = group_context(sc->hw_context, sc->group);
 545        u32 index = sc->hw_context & 0x7;
 546
 547        sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
 548        *pa = (unsigned long)
 549               &((struct credit_return *)sc->dd->cr_base[sc->node].pa)[gc];
 550}
 551
 552/*
 553 * Work queue function triggered in error interrupt routine for
 554 * kernel contexts.
 555 */
 556static void sc_halted(struct work_struct *work)
 557{
 558        struct send_context *sc;
 559
 560        sc = container_of(work, struct send_context, halt_work);
 561        sc_restart(sc);
 562}
 563
 564/*
 565 * Calculate PIO block threshold for this send context using the given MTU.
 566 * Trigger a return when one MTU plus optional header of credits remain.
 567 *
 568 * Parameter mtu is in bytes.
 569 * Parameter hdrqentsize is in DWORDs.
 570 *
 571 * Return value is what to write into the CSR: trigger return when
 572 * unreturned credits pass this count.
 573 */
 574u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
 575{
 576        u32 release_credits;
 577        u32 threshold;
 578
 579        /* add in the header size, then divide by the PIO block size */
 580        mtu += hdrqentsize << 2;
 581        release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
 582
 583        /* check against this context's credits */
 584        if (sc->credits <= release_credits)
 585                threshold = 1;
 586        else
 587                threshold = sc->credits - release_credits;
 588
 589        return threshold;
 590}
 591
 592/*
 593 * Calculate credit threshold in terms of percent of the allocated credits.
 594 * Trigger when unreturned credits equal or exceed the percentage of the whole.
 595 *
 596 * Return value is what to write into the CSR: trigger return when
 597 * unreturned credits pass this count.
 598 */
 599static u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
 600{
 601        return (sc->credits * percent) / 100;
 602}
 603
 604/*
 605 * Set the credit return threshold.
 606 */
 607void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
 608{
 609        unsigned long flags;
 610        u32 old_threshold;
 611        int force_return = 0;
 612
 613        spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
 614
 615        old_threshold = (sc->credit_ctrl >>
 616                                SC(CREDIT_CTRL_THRESHOLD_SHIFT))
 617                         & SC(CREDIT_CTRL_THRESHOLD_MASK);
 618
 619        if (new_threshold != old_threshold) {
 620                sc->credit_ctrl =
 621                        (sc->credit_ctrl
 622                                & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
 623                        | ((new_threshold
 624                                & SC(CREDIT_CTRL_THRESHOLD_MASK))
 625                           << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
 626                write_kctxt_csr(sc->dd, sc->hw_context,
 627                                SC(CREDIT_CTRL), sc->credit_ctrl);
 628
 629                /* force a credit return on change to avoid a possible stall */
 630                force_return = 1;
 631        }
 632
 633        spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
 634
 635        if (force_return)
 636                sc_return_credits(sc);
 637}
 638
 639/*
 640 * set_pio_integrity
 641 *
 642 * Set the CHECK_ENABLE register for the send context 'sc'.
 643 */
 644void set_pio_integrity(struct send_context *sc)
 645{
 646        struct hfi1_devdata *dd = sc->dd;
 647        u64 reg = 0;
 648        u32 hw_context = sc->hw_context;
 649        int type = sc->type;
 650
 651        /*
 652         * No integrity checks if HFI1_CAP_NO_INTEGRITY is set, or if
 653         * we're snooping.
 654         */
 655        if (likely(!HFI1_CAP_IS_KSET(NO_INTEGRITY)) &&
 656            dd->hfi1_snoop.mode_flag != HFI1_PORT_SNOOP_MODE)
 657                reg = hfi1_pkt_default_send_ctxt_mask(dd, type);
 658
 659        write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), reg);
 660}
 661
 662static u32 get_buffers_allocated(struct send_context *sc)
 663{
 664        int cpu;
 665        u32 ret = 0;
 666
 667        for_each_possible_cpu(cpu)
 668                ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
 669        return ret;
 670}
 671
 672static void reset_buffers_allocated(struct send_context *sc)
 673{
 674        int cpu;
 675
 676        for_each_possible_cpu(cpu)
 677                (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
 678}
 679
 680/*
 681 * Allocate a NUMA relative send context structure of the given type along
 682 * with a HW context.
 683 */
 684struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
 685                              uint hdrqentsize, int numa)
 686{
 687        struct send_context_info *sci;
 688        struct send_context *sc = NULL;
 689        dma_addr_t pa;
 690        unsigned long flags;
 691        u64 reg;
 692        u32 thresh;
 693        u32 sw_index;
 694        u32 hw_context;
 695        int ret;
 696        u8 opval, opmask;
 697
 698        /* do not allocate while frozen */
 699        if (dd->flags & HFI1_FROZEN)
 700                return NULL;
 701
 702        sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
 703        if (!sc)
 704                return NULL;
 705
 706        sc->buffers_allocated = alloc_percpu(u32);
 707        if (!sc->buffers_allocated) {
 708                kfree(sc);
 709                dd_dev_err(dd,
 710                           "Cannot allocate buffers_allocated per cpu counters\n"
 711                          );
 712                return NULL;
 713        }
 714
 715        spin_lock_irqsave(&dd->sc_lock, flags);
 716        ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
 717        if (ret) {
 718                spin_unlock_irqrestore(&dd->sc_lock, flags);
 719                free_percpu(sc->buffers_allocated);
 720                kfree(sc);
 721                return NULL;
 722        }
 723
 724        sci = &dd->send_contexts[sw_index];
 725        sci->sc = sc;
 726
 727        sc->dd = dd;
 728        sc->node = numa;
 729        sc->type = type;
 730        spin_lock_init(&sc->alloc_lock);
 731        spin_lock_init(&sc->release_lock);
 732        spin_lock_init(&sc->credit_ctrl_lock);
 733        INIT_LIST_HEAD(&sc->piowait);
 734        INIT_WORK(&sc->halt_work, sc_halted);
 735        init_waitqueue_head(&sc->halt_wait);
 736
 737        /* grouping is always single context for now */
 738        sc->group = 0;
 739
 740        sc->sw_index = sw_index;
 741        sc->hw_context = hw_context;
 742        cr_group_addresses(sc, &pa);
 743        sc->credits = sci->credits;
 744
 745/* PIO Send Memory Address details */
 746#define PIO_ADDR_CONTEXT_MASK 0xfful
 747#define PIO_ADDR_CONTEXT_SHIFT 16
 748        sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
 749                                        << PIO_ADDR_CONTEXT_SHIFT);
 750
 751        /* set base and credits */
 752        reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
 753                                        << SC(CTRL_CTXT_DEPTH_SHIFT))
 754                | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
 755                                        << SC(CTRL_CTXT_BASE_SHIFT));
 756        write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
 757
 758        set_pio_integrity(sc);
 759
 760        /* unmask all errors */
 761        write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
 762
 763        /* set the default partition key */
 764        write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
 765                        (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
 766                         DEFAULT_PKEY) <<
 767                        SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
 768
 769        /* per context type checks */
 770        if (type == SC_USER) {
 771                opval = USER_OPCODE_CHECK_VAL;
 772                opmask = USER_OPCODE_CHECK_MASK;
 773        } else {
 774                opval = OPCODE_CHECK_VAL_DISABLED;
 775                opmask = OPCODE_CHECK_MASK_DISABLED;
 776        }
 777
 778        /* set the send context check opcode mask and value */
 779        write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
 780                        ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
 781                        ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
 782
 783        /* set up credit return */
 784        reg = pa & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
 785        write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
 786
 787        /*
 788         * Calculate the initial credit return threshold.
 789         *
 790         * For Ack contexts, set a threshold for half the credits.
 791         * For User contexts use the given percentage.  This has been
 792         * sanitized on driver start-up.
 793         * For Kernel contexts, use the default MTU plus a header.
 794         */
 795        if (type == SC_ACK) {
 796                thresh = sc_percent_to_threshold(sc, 50);
 797        } else if (type == SC_USER) {
 798                thresh = sc_percent_to_threshold(sc,
 799                                                 user_credit_return_threshold);
 800        } else { /* kernel */
 801                thresh = sc_mtu_to_threshold(sc, hfi1_max_mtu, hdrqentsize);
 802        }
 803        reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
 804        /* add in early return */
 805        if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
 806                reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
 807        else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
 808                reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
 809
 810        /* set up write-through credit_ctrl */
 811        sc->credit_ctrl = reg;
 812        write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
 813
 814        /* User send contexts should not allow sending on VL15 */
 815        if (type == SC_USER) {
 816                reg = 1ULL << 15;
 817                write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
 818        }
 819
 820        spin_unlock_irqrestore(&dd->sc_lock, flags);
 821
 822        /*
 823         * Allocate shadow ring to track outstanding PIO buffers _after_
 824         * unlocking.  We don't know the size until the lock is held and
 825         * we can't allocate while the lock is held.  No one is using
 826         * the context yet, so allocate it now.
 827         *
 828         * User contexts do not get a shadow ring.
 829         */
 830        if (type != SC_USER) {
 831                /*
 832                 * Size the shadow ring 1 larger than the number of credits
 833                 * so head == tail can mean empty.
 834                 */
 835                sc->sr_size = sci->credits + 1;
 836                sc->sr = kzalloc_node(sizeof(union pio_shadow_ring) *
 837                                sc->sr_size, GFP_KERNEL, numa);
 838                if (!sc->sr) {
 839                        sc_free(sc);
 840                        return NULL;
 841                }
 842        }
 843
 844        hfi1_cdbg(PIO,
 845                  "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
 846                  sw_index,
 847                  hw_context,
 848                  sc_type_name(type),
 849                  sc->group,
 850                  sc->credits,
 851                  sc->credit_ctrl,
 852                  thresh);
 853
 854        return sc;
 855}
 856
 857/* free a per-NUMA send context structure */
 858void sc_free(struct send_context *sc)
 859{
 860        struct hfi1_devdata *dd;
 861        unsigned long flags;
 862        u32 sw_index;
 863        u32 hw_context;
 864
 865        if (!sc)
 866                return;
 867
 868        sc->flags |= SCF_IN_FREE;       /* ensure no restarts */
 869        dd = sc->dd;
 870        if (!list_empty(&sc->piowait))
 871                dd_dev_err(dd, "piowait list not empty!\n");
 872        sw_index = sc->sw_index;
 873        hw_context = sc->hw_context;
 874        sc_disable(sc); /* make sure the HW is disabled */
 875        flush_work(&sc->halt_work);
 876
 877        spin_lock_irqsave(&dd->sc_lock, flags);
 878        dd->send_contexts[sw_index].sc = NULL;
 879
 880        /* clear/disable all registers set in sc_alloc */
 881        write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
 882        write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
 883        write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
 884        write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
 885        write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
 886        write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
 887        write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
 888
 889        /* release the index and context for re-use */
 890        sc_hw_free(dd, sw_index, hw_context);
 891        spin_unlock_irqrestore(&dd->sc_lock, flags);
 892
 893        kfree(sc->sr);
 894        free_percpu(sc->buffers_allocated);
 895        kfree(sc);
 896}
 897
 898/* disable the context */
 899void sc_disable(struct send_context *sc)
 900{
 901        u64 reg;
 902        unsigned long flags;
 903        struct pio_buf *pbuf;
 904
 905        if (!sc)
 906                return;
 907
 908        /* do all steps, even if already disabled */
 909        spin_lock_irqsave(&sc->alloc_lock, flags);
 910        reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
 911        reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
 912        sc->flags &= ~SCF_ENABLED;
 913        sc_wait_for_packet_egress(sc, 1);
 914        write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
 915        spin_unlock_irqrestore(&sc->alloc_lock, flags);
 916
 917        /*
 918         * Flush any waiters.  Once the context is disabled,
 919         * credit return interrupts are stopped (although there
 920         * could be one in-process when the context is disabled).
 921         * Wait one microsecond for any lingering interrupts, then
 922         * proceed with the flush.
 923         */
 924        udelay(1);
 925        spin_lock_irqsave(&sc->release_lock, flags);
 926        if (sc->sr) {   /* this context has a shadow ring */
 927                while (sc->sr_tail != sc->sr_head) {
 928                        pbuf = &sc->sr[sc->sr_tail].pbuf;
 929                        if (pbuf->cb)
 930                                (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
 931                        sc->sr_tail++;
 932                        if (sc->sr_tail >= sc->sr_size)
 933                                sc->sr_tail = 0;
 934                }
 935        }
 936        spin_unlock_irqrestore(&sc->release_lock, flags);
 937}
 938
 939/* return SendEgressCtxtStatus.PacketOccupancy */
 940#define packet_occupancy(r) \
 941        (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\
 942        >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT)
 943
 944/* is egress halted on the context? */
 945#define egress_halted(r) \
 946        ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK)
 947
 948/* wait for packet egress, optionally pause for credit return  */
 949static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
 950{
 951        struct hfi1_devdata *dd = sc->dd;
 952        u64 reg = 0;
 953        u64 reg_prev;
 954        u32 loop = 0;
 955
 956        while (1) {
 957                reg_prev = reg;
 958                reg = read_csr(dd, sc->hw_context * 8 +
 959                               SEND_EGRESS_CTXT_STATUS);
 960                /* done if egress is stopped */
 961                if (egress_halted(reg))
 962                        break;
 963                reg = packet_occupancy(reg);
 964                if (reg == 0)
 965                        break;
 966                /* counter is reset if occupancy count changes */
 967                if (reg != reg_prev)
 968                        loop = 0;
 969                if (loop > 500) {
 970                        /* timed out - bounce the link */
 971                        dd_dev_err(dd,
 972                                   "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 973                                   __func__, sc->sw_index,
 974                                   sc->hw_context, (u32)reg);
 975                        queue_work(dd->pport->hfi1_wq,
 976                                   &dd->pport->link_bounce_work);
 977                        break;
 978                }
 979                loop++;
 980                udelay(1);
 981        }
 982
 983        if (pause)
 984                /* Add additional delay to ensure chip returns all credits */
 985                pause_for_credit_return(dd);
 986}
 987
 988void sc_wait(struct hfi1_devdata *dd)
 989{
 990        int i;
 991
 992        for (i = 0; i < dd->num_send_contexts; i++) {
 993                struct send_context *sc = dd->send_contexts[i].sc;
 994
 995                if (!sc)
 996                        continue;
 997                sc_wait_for_packet_egress(sc, 0);
 998        }
 999}
1000
1001/*
1002 * Restart a context after it has been halted due to error.
1003 *
1004 * If the first step fails - wait for the halt to be asserted, return early.
1005 * Otherwise complain about timeouts but keep going.
1006 *
1007 * It is expected that allocations (enabled flag bit) have been shut off
1008 * already (only applies to kernel contexts).
1009 */
1010int sc_restart(struct send_context *sc)
1011{
1012        struct hfi1_devdata *dd = sc->dd;
1013        u64 reg;
1014        u32 loop;
1015        int count;
1016
1017        /* bounce off if not halted, or being free'd */
1018        if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1019                return -EINVAL;
1020
1021        dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1022                    sc->hw_context);
1023
1024        /*
1025         * Step 1: Wait for the context to actually halt.
1026         *
1027         * The error interrupt is asynchronous to actually setting halt
1028         * on the context.
1029         */
1030        loop = 0;
1031        while (1) {
1032                reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1033                if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1034                        break;
1035                if (loop > 100) {
1036                        dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1037                                   __func__, sc->sw_index, sc->hw_context);
1038                        return -ETIME;
1039                }
1040                loop++;
1041                udelay(1);
1042        }
1043
1044        /*
1045         * Step 2: Ensure no users are still trying to write to PIO.
1046         *
1047         * For kernel contexts, we have already turned off buffer allocation.
1048         * Now wait for the buffer count to go to zero.
1049         *
1050         * For user contexts, the user handling code has cut off write access
1051         * to the context's PIO pages before calling this routine and will
1052         * restore write access after this routine returns.
1053         */
1054        if (sc->type != SC_USER) {
1055                /* kernel context */
1056                loop = 0;
1057                while (1) {
1058                        count = get_buffers_allocated(sc);
1059                        if (count == 0)
1060                                break;
1061                        if (loop > 100) {
1062                                dd_dev_err(dd,
1063                                           "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1064                                           __func__, sc->sw_index,
1065                                           sc->hw_context, count);
1066                        }
1067                        loop++;
1068                        udelay(1);
1069                }
1070        }
1071
1072        /*
1073         * Step 3: Wait for all packets to egress.
1074         * This is done while disabling the send context
1075         *
1076         * Step 4: Disable the context
1077         *
1078         * This is a superset of the halt.  After the disable, the
1079         * errors can be cleared.
1080         */
1081        sc_disable(sc);
1082
1083        /*
1084         * Step 5: Enable the context
1085         *
1086         * This enable will clear the halted flag and per-send context
1087         * error flags.
1088         */
1089        return sc_enable(sc);
1090}
1091
1092/*
1093 * PIO freeze processing.  To be called after the TXE block is fully frozen.
1094 * Go through all frozen send contexts and disable them.  The contexts are
1095 * already stopped by the freeze.
1096 */
1097void pio_freeze(struct hfi1_devdata *dd)
1098{
1099        struct send_context *sc;
1100        int i;
1101
1102        for (i = 0; i < dd->num_send_contexts; i++) {
1103                sc = dd->send_contexts[i].sc;
1104                /*
1105                 * Don't disable unallocated, unfrozen, or user send contexts.
1106                 * User send contexts will be disabled when the process
1107                 * calls into the driver to reset its context.
1108                 */
1109                if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1110                        continue;
1111
1112                /* only need to disable, the context is already stopped */
1113                sc_disable(sc);
1114        }
1115}
1116
1117/*
1118 * Unfreeze PIO for kernel send contexts.  The precondition for calling this
1119 * is that all PIO send contexts have been disabled and the SPC freeze has
1120 * been cleared.  Now perform the last step and re-enable each kernel context.
1121 * User (PSM) processing will occur when PSM calls into the kernel to
1122 * acknowledge the freeze.
1123 */
1124void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1125{
1126        struct send_context *sc;
1127        int i;
1128
1129        for (i = 0; i < dd->num_send_contexts; i++) {
1130                sc = dd->send_contexts[i].sc;
1131                if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1132                        continue;
1133
1134                sc_enable(sc);  /* will clear the sc frozen flag */
1135        }
1136}
1137
1138/*
1139 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1140 * Returns:
1141 *      -ETIMEDOUT - if we wait too long
1142 *      -EIO       - if there was an error
1143 */
1144static int pio_init_wait_progress(struct hfi1_devdata *dd)
1145{
1146        u64 reg;
1147        int max, count = 0;
1148
1149        /* max is the longest possible HW init time / delay */
1150        max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1151        while (1) {
1152                reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1153                if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1154                        break;
1155                if (count >= max)
1156                        return -ETIMEDOUT;
1157                udelay(5);
1158                count++;
1159        }
1160
1161        return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1162}
1163
1164/*
1165 * Reset all of the send contexts to their power-on state.  Used
1166 * only during manual init - no lock against sc_enable needed.
1167 */
1168void pio_reset_all(struct hfi1_devdata *dd)
1169{
1170        int ret;
1171
1172        /* make sure the init engine is not busy */
1173        ret = pio_init_wait_progress(dd);
1174        /* ignore any timeout */
1175        if (ret == -EIO) {
1176                /* clear the error */
1177                write_csr(dd, SEND_PIO_ERR_CLEAR,
1178                          SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1179        }
1180
1181        /* reset init all */
1182        write_csr(dd, SEND_PIO_INIT_CTXT,
1183                  SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1184        udelay(2);
1185        ret = pio_init_wait_progress(dd);
1186        if (ret < 0) {
1187                dd_dev_err(dd,
1188                           "PIO send context init %s while initializing all PIO blocks\n",
1189                           ret == -ETIMEDOUT ? "is stuck" : "had an error");
1190        }
1191}
1192
1193/* enable the context */
1194int sc_enable(struct send_context *sc)
1195{
1196        u64 sc_ctrl, reg, pio;
1197        struct hfi1_devdata *dd;
1198        unsigned long flags;
1199        int ret = 0;
1200
1201        if (!sc)
1202                return -EINVAL;
1203        dd = sc->dd;
1204
1205        /*
1206         * Obtain the allocator lock to guard against any allocation
1207         * attempts (which should not happen prior to context being
1208         * enabled). On the release/disable side we don't need to
1209         * worry about locking since the releaser will not do anything
1210         * if the context accounting values have not changed.
1211         */
1212        spin_lock_irqsave(&sc->alloc_lock, flags);
1213        sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1214        if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1215                goto unlock; /* already enabled */
1216
1217        /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1218
1219        *sc->hw_free = 0;
1220        sc->free = 0;
1221        sc->alloc_free = 0;
1222        sc->fill = 0;
1223        sc->sr_head = 0;
1224        sc->sr_tail = 0;
1225        sc->flags = 0;
1226        /* the alloc lock insures no fast path allocation */
1227        reset_buffers_allocated(sc);
1228
1229        /*
1230         * Clear all per-context errors.  Some of these will be set when
1231         * we are re-enabling after a context halt.  Now that the context
1232         * is disabled, the halt will not clear until after the PIO init
1233         * engine runs below.
1234         */
1235        reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1236        if (reg)
1237                write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1238
1239        /*
1240         * The HW PIO initialization engine can handle only one init
1241         * request at a time. Serialize access to each device's engine.
1242         */
1243        spin_lock(&dd->sc_init_lock);
1244        /*
1245         * Since access to this code block is serialized and
1246         * each access waits for the initialization to complete
1247         * before releasing the lock, the PIO initialization engine
1248         * should not be in use, so we don't have to wait for the
1249         * InProgress bit to go down.
1250         */
1251        pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1252               SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1253                SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1254        write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1255        /*
1256         * Wait until the engine is done.  Give the chip the required time
1257         * so, hopefully, we read the register just once.
1258         */
1259        udelay(2);
1260        ret = pio_init_wait_progress(dd);
1261        spin_unlock(&dd->sc_init_lock);
1262        if (ret) {
1263                dd_dev_err(dd,
1264                           "sctxt%u(%u): Context not enabled due to init failure %d\n",
1265                           sc->sw_index, sc->hw_context, ret);
1266                goto unlock;
1267        }
1268
1269        /*
1270         * All is well. Enable the context.
1271         */
1272        sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1273        write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1274        /*
1275         * Read SendCtxtCtrl to force the write out and prevent a timing
1276         * hazard where a PIO write may reach the context before the enable.
1277         */
1278        read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1279        sc->flags |= SCF_ENABLED;
1280
1281unlock:
1282        spin_unlock_irqrestore(&sc->alloc_lock, flags);
1283
1284        return ret;
1285}
1286
1287/* force a credit return on the context */
1288void sc_return_credits(struct send_context *sc)
1289{
1290        if (!sc)
1291                return;
1292
1293        /* a 0->1 transition schedules a credit return */
1294        write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1295                        SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1296        /*
1297         * Ensure that the write is flushed and the credit return is
1298         * scheduled. We care more about the 0 -> 1 transition.
1299         */
1300        read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1301        /* set back to 0 for next time */
1302        write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1303}
1304
1305/* allow all in-flight packets to drain on the context */
1306void sc_flush(struct send_context *sc)
1307{
1308        if (!sc)
1309                return;
1310
1311        sc_wait_for_packet_egress(sc, 1);
1312}
1313
1314/* drop all packets on the context, no waiting until they are sent */
1315void sc_drop(struct send_context *sc)
1316{
1317        if (!sc)
1318                return;
1319
1320        dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1321                    __func__, sc->sw_index, sc->hw_context);
1322}
1323
1324/*
1325 * Start the software reaction to a context halt or SPC freeze:
1326 *      - mark the context as halted or frozen
1327 *      - stop buffer allocations
1328 *
1329 * Called from the error interrupt.  Other work is deferred until
1330 * out of the interrupt.
1331 */
1332void sc_stop(struct send_context *sc, int flag)
1333{
1334        unsigned long flags;
1335
1336        /* mark the context */
1337        sc->flags |= flag;
1338
1339        /* stop buffer allocations */
1340        spin_lock_irqsave(&sc->alloc_lock, flags);
1341        sc->flags &= ~SCF_ENABLED;
1342        spin_unlock_irqrestore(&sc->alloc_lock, flags);
1343        wake_up(&sc->halt_wait);
1344}
1345
1346#define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1347#define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1348
1349/*
1350 * The send context buffer "allocator".
1351 *
1352 * @sc: the PIO send context we are allocating from
1353 * @len: length of whole packet - including PBC - in dwords
1354 * @cb: optional callback to call when the buffer is finished sending
1355 * @arg: argument for cb
1356 *
1357 * Return a pointer to a PIO buffer if successful, NULL if not enough room.
1358 */
1359struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1360                                pio_release_cb cb, void *arg)
1361{
1362        struct pio_buf *pbuf = NULL;
1363        unsigned long flags;
1364        unsigned long avail;
1365        unsigned long blocks = dwords_to_blocks(dw_len);
1366        unsigned long start_fill;
1367        int trycount = 0;
1368        u32 head, next;
1369
1370        spin_lock_irqsave(&sc->alloc_lock, flags);
1371        if (!(sc->flags & SCF_ENABLED)) {
1372                spin_unlock_irqrestore(&sc->alloc_lock, flags);
1373                goto done;
1374        }
1375
1376retry:
1377        avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1378        if (blocks > avail) {
1379                /* not enough room */
1380                if (unlikely(trycount)) { /* already tried to get more room */
1381                        spin_unlock_irqrestore(&sc->alloc_lock, flags);
1382                        goto done;
1383                }
1384                /* copy from receiver cache line and recalculate */
1385                sc->alloc_free = ACCESS_ONCE(sc->free);
1386                avail =
1387                        (unsigned long)sc->credits -
1388                        (sc->fill - sc->alloc_free);
1389                if (blocks > avail) {
1390                        /* still no room, actively update */
1391                        spin_unlock_irqrestore(&sc->alloc_lock, flags);
1392                        sc_release_update(sc);
1393                        spin_lock_irqsave(&sc->alloc_lock, flags);
1394                        sc->alloc_free = ACCESS_ONCE(sc->free);
1395                        trycount++;
1396                        goto retry;
1397                }
1398        }
1399
1400        /* there is enough room */
1401
1402        preempt_disable();
1403        this_cpu_inc(*sc->buffers_allocated);
1404
1405        /* read this once */
1406        head = sc->sr_head;
1407
1408        /* "allocate" the buffer */
1409        start_fill = sc->fill;
1410        sc->fill += blocks;
1411
1412        /*
1413         * Fill the parts that the releaser looks at before moving the head.
1414         * The only necessary piece is the sent_at field.  The credits
1415         * we have just allocated cannot have been returned yet, so the
1416         * cb and arg will not be looked at for a "while".  Put them
1417         * on this side of the memory barrier anyway.
1418         */
1419        pbuf = &sc->sr[head].pbuf;
1420        pbuf->sent_at = sc->fill;
1421        pbuf->cb = cb;
1422        pbuf->arg = arg;
1423        pbuf->sc = sc;  /* could be filled in at sc->sr init time */
1424        /* make sure this is in memory before updating the head */
1425
1426        /* calculate next head index, do not store */
1427        next = head + 1;
1428        if (next >= sc->sr_size)
1429                next = 0;
1430        /*
1431         * update the head - must be last! - the releaser can look at fields
1432         * in pbuf once we move the head
1433         */
1434        smp_wmb();
1435        sc->sr_head = next;
1436        spin_unlock_irqrestore(&sc->alloc_lock, flags);
1437
1438        /* finish filling in the buffer outside the lock */
1439        pbuf->start = sc->base_addr + ((start_fill % sc->credits)
1440                                                        * PIO_BLOCK_SIZE);
1441        pbuf->size = sc->credits * PIO_BLOCK_SIZE;
1442        pbuf->end = sc->base_addr + pbuf->size;
1443        pbuf->block_count = blocks;
1444        pbuf->qw_written = 0;
1445        pbuf->carry_bytes = 0;
1446        pbuf->carry.val64 = 0;
1447done:
1448        return pbuf;
1449}
1450
1451/*
1452 * There are at least two entities that can turn on credit return
1453 * interrupts and they can overlap.  Avoid problems by implementing
1454 * a count scheme that is enforced by a lock.  The lock is needed because
1455 * the count and CSR write must be paired.
1456 */
1457
1458/*
1459 * Start credit return interrupts.  This is managed by a count.  If already
1460 * on, just increment the count.
1461 */
1462void sc_add_credit_return_intr(struct send_context *sc)
1463{
1464        unsigned long flags;
1465
1466        /* lock must surround both the count change and the CSR update */
1467        spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1468        if (sc->credit_intr_count == 0) {
1469                sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1470                write_kctxt_csr(sc->dd, sc->hw_context,
1471                                SC(CREDIT_CTRL), sc->credit_ctrl);
1472        }
1473        sc->credit_intr_count++;
1474        spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1475}
1476
1477/*
1478 * Stop credit return interrupts.  This is managed by a count.  Decrement the
1479 * count, if the last user, then turn the credit interrupts off.
1480 */
1481void sc_del_credit_return_intr(struct send_context *sc)
1482{
1483        unsigned long flags;
1484
1485        WARN_ON(sc->credit_intr_count == 0);
1486
1487        /* lock must surround both the count change and the CSR update */
1488        spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1489        sc->credit_intr_count--;
1490        if (sc->credit_intr_count == 0) {
1491                sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1492                write_kctxt_csr(sc->dd, sc->hw_context,
1493                                SC(CREDIT_CTRL), sc->credit_ctrl);
1494        }
1495        spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1496}
1497
1498/*
1499 * The caller must be careful when calling this.  All needint calls
1500 * must be paired with !needint.
1501 */
1502void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1503{
1504        if (needint)
1505                sc_add_credit_return_intr(sc);
1506        else
1507                sc_del_credit_return_intr(sc);
1508        trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1509        if (needint) {
1510                mmiowb();
1511                sc_return_credits(sc);
1512        }
1513}
1514
1515/**
1516 * sc_piobufavail - callback when a PIO buffer is available
1517 * @sc: the send context
1518 *
1519 * This is called from the interrupt handler when a PIO buffer is
1520 * available after hfi1_verbs_send() returned an error that no buffers were
1521 * available. Disable the interrupt if there are no more QPs waiting.
1522 */
1523static void sc_piobufavail(struct send_context *sc)
1524{
1525        struct hfi1_devdata *dd = sc->dd;
1526        struct hfi1_ibdev *dev = &dd->verbs_dev;
1527        struct list_head *list;
1528        struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1529        struct rvt_qp *qp;
1530        struct hfi1_qp_priv *priv;
1531        unsigned long flags;
1532        unsigned i, n = 0;
1533
1534        if (dd->send_contexts[sc->sw_index].type != SC_KERNEL)
1535                return;
1536        list = &sc->piowait;
1537        /*
1538         * Note: checking that the piowait list is empty and clearing
1539         * the buffer available interrupt needs to be atomic or we
1540         * could end up with QPs on the wait list with the interrupt
1541         * disabled.
1542         */
1543        write_seqlock_irqsave(&dev->iowait_lock, flags);
1544        while (!list_empty(list)) {
1545                struct iowait *wait;
1546
1547                if (n == ARRAY_SIZE(qps))
1548                        break;
1549                wait = list_first_entry(list, struct iowait, list);
1550                qp = iowait_to_qp(wait);
1551                priv = qp->priv;
1552                list_del_init(&priv->s_iowait.list);
1553                /* refcount held until actual wake up */
1554                qps[n++] = qp;
1555        }
1556        /*
1557         * If there had been waiters and there are more
1558         * insure that we redo the force to avoid a potential hang.
1559         */
1560        if (n) {
1561                hfi1_sc_wantpiobuf_intr(sc, 0);
1562                if (!list_empty(list))
1563                        hfi1_sc_wantpiobuf_intr(sc, 1);
1564        }
1565        write_sequnlock_irqrestore(&dev->iowait_lock, flags);
1566
1567        for (i = 0; i < n; i++)
1568                hfi1_qp_wakeup(qps[i],
1569                               RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN);
1570}
1571
1572/* translate a send credit update to a bit code of reasons */
1573static inline int fill_code(u64 hw_free)
1574{
1575        int code = 0;
1576
1577        if (hw_free & CR_STATUS_SMASK)
1578                code |= PRC_STATUS_ERR;
1579        if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1580                code |= PRC_PBC;
1581        if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1582                code |= PRC_THRESHOLD;
1583        if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1584                code |= PRC_FILL_ERR;
1585        if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1586                code |= PRC_SC_DISABLE;
1587        return code;
1588}
1589
1590/* use the jiffies compare to get the wrap right */
1591#define sent_before(a, b) time_before(a, b)     /* a < b */
1592
1593/*
1594 * The send context buffer "releaser".
1595 */
1596void sc_release_update(struct send_context *sc)
1597{
1598        struct pio_buf *pbuf;
1599        u64 hw_free;
1600        u32 head, tail;
1601        unsigned long old_free;
1602        unsigned long free;
1603        unsigned long extra;
1604        unsigned long flags;
1605        int code;
1606
1607        if (!sc)
1608                return;
1609
1610        spin_lock_irqsave(&sc->release_lock, flags);
1611        /* update free */
1612        hw_free = le64_to_cpu(*sc->hw_free);            /* volatile read */
1613        old_free = sc->free;
1614        extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1615                        - (old_free & CR_COUNTER_MASK))
1616                                & CR_COUNTER_MASK;
1617        free = old_free + extra;
1618        trace_hfi1_piofree(sc, extra);
1619
1620        /* call sent buffer callbacks */
1621        code = -1;                              /* code not yet set */
1622        head = ACCESS_ONCE(sc->sr_head);        /* snapshot the head */
1623        tail = sc->sr_tail;
1624        while (head != tail) {
1625                pbuf = &sc->sr[tail].pbuf;
1626
1627                if (sent_before(free, pbuf->sent_at)) {
1628                        /* not sent yet */
1629                        break;
1630                }
1631                if (pbuf->cb) {
1632                        if (code < 0) /* fill in code on first user */
1633                                code = fill_code(hw_free);
1634                        (*pbuf->cb)(pbuf->arg, code);
1635                }
1636
1637                tail++;
1638                if (tail >= sc->sr_size)
1639                        tail = 0;
1640        }
1641        sc->sr_tail = tail;
1642        /* make sure tail is updated before free */
1643        smp_wmb();
1644        sc->free = free;
1645        spin_unlock_irqrestore(&sc->release_lock, flags);
1646        sc_piobufavail(sc);
1647}
1648
1649/*
1650 * Send context group releaser.  Argument is the send context that caused
1651 * the interrupt.  Called from the send context interrupt handler.
1652 *
1653 * Call release on all contexts in the group.
1654 *
1655 * This routine takes the sc_lock without an irqsave because it is only
1656 * called from an interrupt handler.  Adjust if that changes.
1657 */
1658void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1659{
1660        struct send_context *sc;
1661        u32 sw_index;
1662        u32 gc, gc_end;
1663
1664        spin_lock(&dd->sc_lock);
1665        sw_index = dd->hw_to_sw[hw_context];
1666        if (unlikely(sw_index >= dd->num_send_contexts)) {
1667                dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1668                           __func__, hw_context, sw_index);
1669                goto done;
1670        }
1671        sc = dd->send_contexts[sw_index].sc;
1672        if (unlikely(!sc))
1673                goto done;
1674
1675        gc = group_context(hw_context, sc->group);
1676        gc_end = gc + group_size(sc->group);
1677        for (; gc < gc_end; gc++) {
1678                sw_index = dd->hw_to_sw[gc];
1679                if (unlikely(sw_index >= dd->num_send_contexts)) {
1680                        dd_dev_err(dd,
1681                                   "%s: invalid hw (%u) to sw (%u) mapping\n",
1682                                   __func__, hw_context, sw_index);
1683                        continue;
1684                }
1685                sc_release_update(dd->send_contexts[sw_index].sc);
1686        }
1687done:
1688        spin_unlock(&dd->sc_lock);
1689}
1690
1691/*
1692 * pio_select_send_context_vl() - select send context
1693 * @dd: devdata
1694 * @selector: a spreading factor
1695 * @vl: this vl
1696 *
1697 * This function returns a send context based on the selector and a vl.
1698 * The mapping fields are protected by RCU
1699 */
1700struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1701                                                u32 selector, u8 vl)
1702{
1703        struct pio_vl_map *m;
1704        struct pio_map_elem *e;
1705        struct send_context *rval;
1706
1707        /*
1708         * NOTE This should only happen if SC->VL changed after the initial
1709         * checks on the QP/AH
1710         * Default will return VL0's send context below
1711         */
1712        if (unlikely(vl >= num_vls)) {
1713                rval = NULL;
1714                goto done;
1715        }
1716
1717        rcu_read_lock();
1718        m = rcu_dereference(dd->pio_map);
1719        if (unlikely(!m)) {
1720                rcu_read_unlock();
1721                return dd->vld[0].sc;
1722        }
1723        e = m->map[vl & m->mask];
1724        rval = e->ksc[selector & e->mask];
1725        rcu_read_unlock();
1726
1727done:
1728        rval = !rval ? dd->vld[0].sc : rval;
1729        return rval;
1730}
1731
1732/*
1733 * pio_select_send_context_sc() - select send context
1734 * @dd: devdata
1735 * @selector: a spreading factor
1736 * @sc5: the 5 bit sc
1737 *
1738 * This function returns an send context based on the selector and an sc
1739 */
1740struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1741                                                u32 selector, u8 sc5)
1742{
1743        u8 vl = sc_to_vlt(dd, sc5);
1744
1745        return pio_select_send_context_vl(dd, selector, vl);
1746}
1747
1748/*
1749 * Free the indicated map struct
1750 */
1751static void pio_map_free(struct pio_vl_map *m)
1752{
1753        int i;
1754
1755        for (i = 0; m && i < m->actual_vls; i++)
1756                kfree(m->map[i]);
1757        kfree(m);
1758}
1759
1760/*
1761 * Handle RCU callback
1762 */
1763static void pio_map_rcu_callback(struct rcu_head *list)
1764{
1765        struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1766
1767        pio_map_free(m);
1768}
1769
1770/*
1771 * pio_map_init - called when #vls change
1772 * @dd: hfi1_devdata
1773 * @port: port number
1774 * @num_vls: number of vls
1775 * @vl_scontexts: per vl send context mapping (optional)
1776 *
1777 * This routine changes the mapping based on the number of vls.
1778 *
1779 * vl_scontexts is used to specify a non-uniform vl/send context
1780 * loading. NULL implies auto computing the loading and giving each
1781 * VL an uniform distribution of send contexts per VL.
1782 *
1783 * The auto algorithm computers the sc_per_vl and the number of extra
1784 * send contexts. Any extra send contexts are added from the last VL
1785 * on down
1786 *
1787 * rcu locking is used here to control access to the mapping fields.
1788 *
1789 * If either the num_vls or num_send_contexts are non-power of 2, the
1790 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1791 * rounded up to the next highest power of 2 and the first entry is
1792 * reused in a round robin fashion.
1793 *
1794 * If an error occurs the map change is not done and the mapping is not
1795 * chaged.
1796 *
1797 */
1798int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1799{
1800        int i, j;
1801        int extra, sc_per_vl;
1802        int scontext = 1;
1803        int num_kernel_send_contexts = 0;
1804        u8 lvl_scontexts[OPA_MAX_VLS];
1805        struct pio_vl_map *oldmap, *newmap;
1806
1807        if (!vl_scontexts) {
1808                /* send context 0 reserved for VL15 */
1809                for (i = 1; i < dd->num_send_contexts; i++)
1810                        if (dd->send_contexts[i].type == SC_KERNEL)
1811                                num_kernel_send_contexts++;
1812                /* truncate divide */
1813                sc_per_vl = num_kernel_send_contexts / num_vls;
1814                /* extras */
1815                extra = num_kernel_send_contexts % num_vls;
1816                vl_scontexts = lvl_scontexts;
1817                /* add extras from last vl down */
1818                for (i = num_vls - 1; i >= 0; i--, extra--)
1819                        vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1820        }
1821        /* build new map */
1822        newmap = kzalloc(sizeof(*newmap) +
1823                         roundup_pow_of_two(num_vls) *
1824                         sizeof(struct pio_map_elem *),
1825                         GFP_KERNEL);
1826        if (!newmap)
1827                goto bail;
1828        newmap->actual_vls = num_vls;
1829        newmap->vls = roundup_pow_of_two(num_vls);
1830        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1831        for (i = 0; i < newmap->vls; i++) {
1832                /* save for wrap around */
1833                int first_scontext = scontext;
1834
1835                if (i < newmap->actual_vls) {
1836                        int sz = roundup_pow_of_two(vl_scontexts[i]);
1837
1838                        /* only allocate once */
1839                        newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1840                                                 sz * sizeof(struct
1841                                                             send_context *),
1842                                                 GFP_KERNEL);
1843                        if (!newmap->map[i])
1844                                goto bail;
1845                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1846                        /* assign send contexts */
1847                        for (j = 0; j < sz; j++) {
1848                                if (dd->kernel_send_context[scontext])
1849                                        newmap->map[i]->ksc[j] =
1850                                        dd->kernel_send_context[scontext];
1851                                if (++scontext >= first_scontext +
1852                                                  vl_scontexts[i])
1853                                        /* wrap back to first send context */
1854                                        scontext = first_scontext;
1855                        }
1856                } else {
1857                        /* just re-use entry without allocating */
1858                        newmap->map[i] = newmap->map[i % num_vls];
1859                }
1860                scontext = first_scontext + vl_scontexts[i];
1861        }
1862        /* newmap in hand, save old map */
1863        spin_lock_irq(&dd->pio_map_lock);
1864        oldmap = rcu_dereference_protected(dd->pio_map,
1865                                           lockdep_is_held(&dd->pio_map_lock));
1866
1867        /* publish newmap */
1868        rcu_assign_pointer(dd->pio_map, newmap);
1869
1870        spin_unlock_irq(&dd->pio_map_lock);
1871        /* success, free any old map after grace period */
1872        if (oldmap)
1873                call_rcu(&oldmap->list, pio_map_rcu_callback);
1874        return 0;
1875bail:
1876        /* free any partial allocation */
1877        pio_map_free(newmap);
1878        return -ENOMEM;
1879}
1880
1881void free_pio_map(struct hfi1_devdata *dd)
1882{
1883        /* Free PIO map if allocated */
1884        if (rcu_access_pointer(dd->pio_map)) {
1885                spin_lock_irq(&dd->pio_map_lock);
1886                pio_map_free(rcu_access_pointer(dd->pio_map));
1887                RCU_INIT_POINTER(dd->pio_map, NULL);
1888                spin_unlock_irq(&dd->pio_map_lock);
1889                synchronize_rcu();
1890        }
1891        kfree(dd->kernel_send_context);
1892        dd->kernel_send_context = NULL;
1893}
1894
1895int init_pervl_scs(struct hfi1_devdata *dd)
1896{
1897        int i;
1898        u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1899        u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1900        u32 ctxt;
1901        struct hfi1_pportdata *ppd = dd->pport;
1902
1903        dd->vld[15].sc = sc_alloc(dd, SC_KERNEL,
1904                                  dd->rcd[0]->rcvhdrqentsize, dd->node);
1905        if (!dd->vld[15].sc)
1906                goto nomem;
1907        hfi1_init_ctxt(dd->vld[15].sc);
1908        dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1909
1910        dd->kernel_send_context = kmalloc_node(dd->num_send_contexts *
1911                                        sizeof(struct send_context *),
1912                                        GFP_KERNEL, dd->node);
1913        dd->kernel_send_context[0] = dd->vld[15].sc;
1914
1915        for (i = 0; i < num_vls; i++) {
1916                /*
1917                 * Since this function does not deal with a specific
1918                 * receive context but we need the RcvHdrQ entry size,
1919                 * use the size from rcd[0]. It is guaranteed to be
1920                 * valid at this point and will remain the same for all
1921                 * receive contexts.
1922                 */
1923                dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
1924                                         dd->rcd[0]->rcvhdrqentsize, dd->node);
1925                if (!dd->vld[i].sc)
1926                        goto nomem;
1927                dd->kernel_send_context[i + 1] = dd->vld[i].sc;
1928                hfi1_init_ctxt(dd->vld[i].sc);
1929                /* non VL15 start with the max MTU */
1930                dd->vld[i].mtu = hfi1_max_mtu;
1931        }
1932        for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
1933                dd->kernel_send_context[i + 1] =
1934                sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
1935                if (!dd->kernel_send_context[i + 1])
1936                        goto nomem;
1937                hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
1938        }
1939
1940        sc_enable(dd->vld[15].sc);
1941        ctxt = dd->vld[15].sc->hw_context;
1942        mask = all_vl_mask & ~(1LL << 15);
1943        write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1944        dd_dev_info(dd,
1945                    "Using send context %u(%u) for VL15\n",
1946                    dd->vld[15].sc->sw_index, ctxt);
1947
1948        for (i = 0; i < num_vls; i++) {
1949                sc_enable(dd->vld[i].sc);
1950                ctxt = dd->vld[i].sc->hw_context;
1951                mask = all_vl_mask & ~(data_vls_mask);
1952                write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1953        }
1954        for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
1955                sc_enable(dd->kernel_send_context[i + 1]);
1956                ctxt = dd->kernel_send_context[i + 1]->hw_context;
1957                mask = all_vl_mask & ~(data_vls_mask);
1958                write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1959        }
1960
1961        if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
1962                goto nomem;
1963        return 0;
1964nomem:
1965        sc_free(dd->vld[15].sc);
1966        for (i = 0; i < num_vls; i++)
1967                sc_free(dd->vld[i].sc);
1968        for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
1969                sc_free(dd->kernel_send_context[i + 1]);
1970        return -ENOMEM;
1971}
1972
1973int init_credit_return(struct hfi1_devdata *dd)
1974{
1975        int ret;
1976        int num_numa;
1977        int i;
1978
1979        num_numa = num_online_nodes();
1980        /* enforce the expectation that the numas are compact */
1981        for (i = 0; i < num_numa; i++) {
1982                if (!node_online(i)) {
1983                        dd_dev_err(dd, "NUMA nodes are not compact\n");
1984                        ret = -EINVAL;
1985                        goto done;
1986                }
1987        }
1988
1989        dd->cr_base = kcalloc(
1990                num_numa,
1991                sizeof(struct credit_return_base),
1992                GFP_KERNEL);
1993        if (!dd->cr_base) {
1994                dd_dev_err(dd, "Unable to allocate credit return base\n");
1995                ret = -ENOMEM;
1996                goto done;
1997        }
1998        for (i = 0; i < num_numa; i++) {
1999                int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2000
2001                set_dev_node(&dd->pcidev->dev, i);
2002                dd->cr_base[i].va = dma_zalloc_coherent(
2003                                        &dd->pcidev->dev,
2004                                        bytes,
2005                                        &dd->cr_base[i].pa,
2006                                        GFP_KERNEL);
2007                if (!dd->cr_base[i].va) {
2008                        set_dev_node(&dd->pcidev->dev, dd->node);
2009                        dd_dev_err(dd,
2010                                   "Unable to allocate credit return DMA range for NUMA %d\n",
2011                                   i);
2012                        ret = -ENOMEM;
2013                        goto done;
2014                }
2015        }
2016        set_dev_node(&dd->pcidev->dev, dd->node);
2017
2018        ret = 0;
2019done:
2020        return ret;
2021}
2022
2023void free_credit_return(struct hfi1_devdata *dd)
2024{
2025        int num_numa;
2026        int i;
2027
2028        if (!dd->cr_base)
2029                return;
2030
2031        num_numa = num_online_nodes();
2032        for (i = 0; i < num_numa; i++) {
2033                if (dd->cr_base[i].va) {
2034                        dma_free_coherent(&dd->pcidev->dev,
2035                                          TXE_NUM_CONTEXTS *
2036                                          sizeof(struct credit_return),
2037                                          dd->cr_base[i].va,
2038                                          dd->cr_base[i].pa);
2039                }
2040        }
2041        kfree(dd->cr_base);
2042        dd->cr_base = NULL;
2043}
2044