linux/drivers/staging/rdma/hfi1/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015, 2016 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <rdma/ib_mad.h>
  49#include <rdma/ib_user_verbs.h>
  50#include <linux/io.h>
  51#include <linux/module.h>
  52#include <linux/utsname.h>
  53#include <linux/rculist.h>
  54#include <linux/mm.h>
  55#include <linux/random.h>
  56#include <linux/vmalloc.h>
  57
  58#include "hfi.h"
  59#include "common.h"
  60#include "device.h"
  61#include "trace.h"
  62#include "qp.h"
  63#include "verbs_txreq.h"
  64
  65static unsigned int hfi1_lkey_table_size = 16;
  66module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  67                   S_IRUGO);
  68MODULE_PARM_DESC(lkey_table_size,
  69                 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  70
  71static unsigned int hfi1_max_pds = 0xFFFF;
  72module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  73MODULE_PARM_DESC(max_pds,
  74                 "Maximum number of protection domains to support");
  75
  76static unsigned int hfi1_max_ahs = 0xFFFF;
  77module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  78MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  79
  80unsigned int hfi1_max_cqes = 0x2FFFF;
  81module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  82MODULE_PARM_DESC(max_cqes,
  83                 "Maximum number of completion queue entries to support");
  84
  85unsigned int hfi1_max_cqs = 0x1FFFF;
  86module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  87MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  88
  89unsigned int hfi1_max_qp_wrs = 0x3FFF;
  90module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  91MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  92
  93unsigned int hfi1_max_qps = 16384;
  94module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
  95MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  96
  97unsigned int hfi1_max_sges = 0x60;
  98module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
  99MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
 100
 101unsigned int hfi1_max_mcast_grps = 16384;
 102module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 103MODULE_PARM_DESC(max_mcast_grps,
 104                 "Maximum number of multicast groups to support");
 105
 106unsigned int hfi1_max_mcast_qp_attached = 16;
 107module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 108                   uint, S_IRUGO);
 109MODULE_PARM_DESC(max_mcast_qp_attached,
 110                 "Maximum number of attached QPs to support");
 111
 112unsigned int hfi1_max_srqs = 1024;
 113module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 114MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 115
 116unsigned int hfi1_max_srq_sges = 128;
 117module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 118MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 119
 120unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 121module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 122MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 123
 124unsigned short piothreshold = 256;
 125module_param(piothreshold, ushort, S_IRUGO);
 126MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 127
 128#define COPY_CACHELESS 1
 129#define COPY_ADAPTIVE  2
 130static unsigned int sge_copy_mode;
 131module_param(sge_copy_mode, uint, S_IRUGO);
 132MODULE_PARM_DESC(sge_copy_mode,
 133                 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 134
 135static void verbs_sdma_complete(
 136        struct sdma_txreq *cookie,
 137        int status);
 138
 139static int pio_wait(struct rvt_qp *qp,
 140                    struct send_context *sc,
 141                    struct hfi1_pkt_state *ps,
 142                    u32 flag);
 143
 144/* Length of buffer to create verbs txreq cache name */
 145#define TXREQ_NAME_LEN 24
 146
 147static uint wss_threshold;
 148module_param(wss_threshold, uint, S_IRUGO);
 149MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 150static uint wss_clean_period = 256;
 151module_param(wss_clean_period, uint, S_IRUGO);
 152MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 153
 154/* memory working set size */
 155struct hfi1_wss {
 156        unsigned long *entries;
 157        atomic_t total_count;
 158        atomic_t clean_counter;
 159        atomic_t clean_entry;
 160
 161        int threshold;
 162        int num_entries;
 163        long pages_mask;
 164};
 165
 166static struct hfi1_wss wss;
 167
 168int hfi1_wss_init(void)
 169{
 170        long llc_size;
 171        long llc_bits;
 172        long table_size;
 173        long table_bits;
 174
 175        /* check for a valid percent range - default to 80 if none or invalid */
 176        if (wss_threshold < 1 || wss_threshold > 100)
 177                wss_threshold = 80;
 178        /* reject a wildly large period */
 179        if (wss_clean_period > 1000000)
 180                wss_clean_period = 256;
 181        /* reject a zero period */
 182        if (wss_clean_period == 0)
 183                wss_clean_period = 1;
 184
 185        /*
 186         * Calculate the table size - the next power of 2 larger than the
 187         * LLC size.  LLC size is in KiB.
 188         */
 189        llc_size = wss_llc_size() * 1024;
 190        table_size = roundup_pow_of_two(llc_size);
 191
 192        /* one bit per page in rounded up table */
 193        llc_bits = llc_size / PAGE_SIZE;
 194        table_bits = table_size / PAGE_SIZE;
 195        wss.pages_mask = table_bits - 1;
 196        wss.num_entries = table_bits / BITS_PER_LONG;
 197
 198        wss.threshold = (llc_bits * wss_threshold) / 100;
 199        if (wss.threshold == 0)
 200                wss.threshold = 1;
 201
 202        atomic_set(&wss.clean_counter, wss_clean_period);
 203
 204        wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
 205                              GFP_KERNEL);
 206        if (!wss.entries) {
 207                hfi1_wss_exit();
 208                return -ENOMEM;
 209        }
 210
 211        return 0;
 212}
 213
 214void hfi1_wss_exit(void)
 215{
 216        /* coded to handle partially initialized and repeat callers */
 217        kfree(wss.entries);
 218        wss.entries = NULL;
 219}
 220
 221/*
 222 * Advance the clean counter.  When the clean period has expired,
 223 * clean an entry.
 224 *
 225 * This is implemented in atomics to avoid locking.  Because multiple
 226 * variables are involved, it can be racy which can lead to slightly
 227 * inaccurate information.  Since this is only a heuristic, this is
 228 * OK.  Any innaccuracies will clean themselves out as the counter
 229 * advances.  That said, it is unlikely the entry clean operation will
 230 * race - the next possible racer will not start until the next clean
 231 * period.
 232 *
 233 * The clean counter is implemented as a decrement to zero.  When zero
 234 * is reached an entry is cleaned.
 235 */
 236static void wss_advance_clean_counter(void)
 237{
 238        int entry;
 239        int weight;
 240        unsigned long bits;
 241
 242        /* become the cleaner if we decrement the counter to zero */
 243        if (atomic_dec_and_test(&wss.clean_counter)) {
 244                /*
 245                 * Set, not add, the clean period.  This avoids an issue
 246                 * where the counter could decrement below the clean period.
 247                 * Doing a set can result in lost decrements, slowing the
 248                 * clean advance.  Since this a heuristic, this possible
 249                 * slowdown is OK.
 250                 *
 251                 * An alternative is to loop, advancing the counter by a
 252                 * clean period until the result is > 0. However, this could
 253                 * lead to several threads keeping another in the clean loop.
 254                 * This could be mitigated by limiting the number of times
 255                 * we stay in the loop.
 256                 */
 257                atomic_set(&wss.clean_counter, wss_clean_period);
 258
 259                /*
 260                 * Uniquely grab the entry to clean and move to next.
 261                 * The current entry is always the lower bits of
 262                 * wss.clean_entry.  The table size, wss.num_entries,
 263                 * is always a power-of-2.
 264                 */
 265                entry = (atomic_inc_return(&wss.clean_entry) - 1)
 266                        & (wss.num_entries - 1);
 267
 268                /* clear the entry and count the bits */
 269                bits = xchg(&wss.entries[entry], 0);
 270                weight = hweight64((u64)bits);
 271                /* only adjust the contended total count if needed */
 272                if (weight)
 273                        atomic_sub(weight, &wss.total_count);
 274        }
 275}
 276
 277/*
 278 * Insert the given address into the working set array.
 279 */
 280static void wss_insert(void *address)
 281{
 282        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
 283        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 284        u32 nr = page & (BITS_PER_LONG - 1);
 285
 286        if (!test_and_set_bit(nr, &wss.entries[entry]))
 287                atomic_inc(&wss.total_count);
 288
 289        wss_advance_clean_counter();
 290}
 291
 292/*
 293 * Is the working set larger than the threshold?
 294 */
 295static inline int wss_exceeds_threshold(void)
 296{
 297        return atomic_read(&wss.total_count) >= wss.threshold;
 298}
 299
 300/*
 301 * Translate ib_wr_opcode into ib_wc_opcode.
 302 */
 303const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
 304        [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
 305        [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
 306        [IB_WR_SEND] = IB_WC_SEND,
 307        [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
 308        [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
 309        [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
 310        [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
 311};
 312
 313/*
 314 * Length of header by opcode, 0 --> not supported
 315 */
 316const u8 hdr_len_by_opcode[256] = {
 317        /* RC */
 318        [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 319        [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 320        [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 321        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 322        [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 323        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 324        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 325        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 326        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 327        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 328        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 329        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 330        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 331        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 332        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 333        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 334        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 335        [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 336        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
 337        [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 338        [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 339        /* UC */
 340        [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 341        [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 342        [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 343        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 344        [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 345        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 346        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 347        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 348        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 349        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 350        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 351        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 352        /* UD */
 353        [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 354        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 355};
 356
 357static const opcode_handler opcode_handler_tbl[256] = {
 358        /* RC */
 359        [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 360        [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 361        [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 362        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 363        [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 364        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 365        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 366        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 367        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 368        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 369        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 370        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 371        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 372        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 373        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 374        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 375        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 376        [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 377        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 378        [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 379        [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 380        /* UC */
 381        [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 382        [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 383        [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 384        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 385        [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 386        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 387        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 388        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 389        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 390        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 391        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 392        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 393        /* UD */
 394        [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 395        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 396        /* CNP */
 397        [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
 398};
 399
 400/*
 401 * System image GUID.
 402 */
 403__be64 ib_hfi1_sys_image_guid;
 404
 405/**
 406 * hfi1_copy_sge - copy data to SGE memory
 407 * @ss: the SGE state
 408 * @data: the data to copy
 409 * @length: the length of the data
 410 * @copy_last: do a separate copy of the last 8 bytes
 411 */
 412void hfi1_copy_sge(
 413        struct rvt_sge_state *ss,
 414        void *data, u32 length,
 415        int release,
 416        int copy_last)
 417{
 418        struct rvt_sge *sge = &ss->sge;
 419        int in_last = 0;
 420        int i;
 421        int cacheless_copy = 0;
 422
 423        if (sge_copy_mode == COPY_CACHELESS) {
 424                cacheless_copy = length >= PAGE_SIZE;
 425        } else if (sge_copy_mode == COPY_ADAPTIVE) {
 426                if (length >= PAGE_SIZE) {
 427                        /*
 428                         * NOTE: this *assumes*:
 429                         * o The first vaddr is the dest.
 430                         * o If multiple pages, then vaddr is sequential.
 431                         */
 432                        wss_insert(sge->vaddr);
 433                        if (length >= (2 * PAGE_SIZE))
 434                                wss_insert(sge->vaddr + PAGE_SIZE);
 435
 436                        cacheless_copy = wss_exceeds_threshold();
 437                } else {
 438                        wss_advance_clean_counter();
 439                }
 440        }
 441        if (copy_last) {
 442                if (length > 8) {
 443                        length -= 8;
 444                } else {
 445                        copy_last = 0;
 446                        in_last = 1;
 447                }
 448        }
 449
 450again:
 451        while (length) {
 452                u32 len = sge->length;
 453
 454                if (len > length)
 455                        len = length;
 456                if (len > sge->sge_length)
 457                        len = sge->sge_length;
 458                WARN_ON_ONCE(len == 0);
 459                if (unlikely(in_last)) {
 460                        /* enforce byte transfer ordering */
 461                        for (i = 0; i < len; i++)
 462                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
 463                } else if (cacheless_copy) {
 464                        cacheless_memcpy(sge->vaddr, data, len);
 465                } else {
 466                        memcpy(sge->vaddr, data, len);
 467                }
 468                sge->vaddr += len;
 469                sge->length -= len;
 470                sge->sge_length -= len;
 471                if (sge->sge_length == 0) {
 472                        if (release)
 473                                rvt_put_mr(sge->mr);
 474                        if (--ss->num_sge)
 475                                *sge = *ss->sg_list++;
 476                } else if (sge->length == 0 && sge->mr->lkey) {
 477                        if (++sge->n >= RVT_SEGSZ) {
 478                                if (++sge->m >= sge->mr->mapsz)
 479                                        break;
 480                                sge->n = 0;
 481                        }
 482                        sge->vaddr =
 483                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 484                        sge->length =
 485                                sge->mr->map[sge->m]->segs[sge->n].length;
 486                }
 487                data += len;
 488                length -= len;
 489        }
 490
 491        if (copy_last) {
 492                copy_last = 0;
 493                in_last = 1;
 494                length = 8;
 495                goto again;
 496        }
 497}
 498
 499/**
 500 * hfi1_skip_sge - skip over SGE memory
 501 * @ss: the SGE state
 502 * @length: the number of bytes to skip
 503 */
 504void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
 505{
 506        struct rvt_sge *sge = &ss->sge;
 507
 508        while (length) {
 509                u32 len = sge->length;
 510
 511                if (len > length)
 512                        len = length;
 513                if (len > sge->sge_length)
 514                        len = sge->sge_length;
 515                WARN_ON_ONCE(len == 0);
 516                sge->vaddr += len;
 517                sge->length -= len;
 518                sge->sge_length -= len;
 519                if (sge->sge_length == 0) {
 520                        if (release)
 521                                rvt_put_mr(sge->mr);
 522                        if (--ss->num_sge)
 523                                *sge = *ss->sg_list++;
 524                } else if (sge->length == 0 && sge->mr->lkey) {
 525                        if (++sge->n >= RVT_SEGSZ) {
 526                                if (++sge->m >= sge->mr->mapsz)
 527                                        break;
 528                                sge->n = 0;
 529                        }
 530                        sge->vaddr =
 531                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 532                        sge->length =
 533                                sge->mr->map[sge->m]->segs[sge->n].length;
 534                }
 535                length -= len;
 536        }
 537}
 538
 539/*
 540 * Make sure the QP is ready and able to accept the given opcode.
 541 */
 542static inline int qp_ok(int opcode, struct hfi1_packet *packet)
 543{
 544        struct hfi1_ibport *ibp;
 545
 546        if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 547                goto dropit;
 548        if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
 549            (opcode == IB_OPCODE_CNP))
 550                return 1;
 551dropit:
 552        ibp = &packet->rcd->ppd->ibport_data;
 553        ibp->rvp.n_pkt_drops++;
 554        return 0;
 555}
 556
 557/**
 558 * hfi1_ib_rcv - process an incoming packet
 559 * @packet: data packet information
 560 *
 561 * This is called to process an incoming packet at interrupt level.
 562 *
 563 * Tlen is the length of the header + data + CRC in bytes.
 564 */
 565void hfi1_ib_rcv(struct hfi1_packet *packet)
 566{
 567        struct hfi1_ctxtdata *rcd = packet->rcd;
 568        struct hfi1_ib_header *hdr = packet->hdr;
 569        u32 tlen = packet->tlen;
 570        struct hfi1_pportdata *ppd = rcd->ppd;
 571        struct hfi1_ibport *ibp = &ppd->ibport_data;
 572        struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 573        unsigned long flags;
 574        u32 qp_num;
 575        int lnh;
 576        u8 opcode;
 577        u16 lid;
 578
 579        /* Check for GRH */
 580        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 581        if (lnh == HFI1_LRH_BTH) {
 582                packet->ohdr = &hdr->u.oth;
 583        } else if (lnh == HFI1_LRH_GRH) {
 584                u32 vtf;
 585
 586                packet->ohdr = &hdr->u.l.oth;
 587                if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
 588                        goto drop;
 589                vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
 590                if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 591                        goto drop;
 592                packet->rcv_flags |= HFI1_HAS_GRH;
 593        } else {
 594                goto drop;
 595        }
 596
 597        trace_input_ibhdr(rcd->dd, hdr);
 598
 599        opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 600        inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 601
 602        /* Get the destination QP number. */
 603        qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
 604        lid = be16_to_cpu(hdr->lrh[1]);
 605        if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 606                     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
 607                struct rvt_mcast *mcast;
 608                struct rvt_mcast_qp *p;
 609
 610                if (lnh != HFI1_LRH_GRH)
 611                        goto drop;
 612                mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
 613                if (!mcast)
 614                        goto drop;
 615                list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 616                        packet->qp = p->qp;
 617                        spin_lock_irqsave(&packet->qp->r_lock, flags);
 618                        if (likely((qp_ok(opcode, packet))))
 619                                opcode_handler_tbl[opcode](packet);
 620                        spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 621                }
 622                /*
 623                 * Notify rvt_multicast_detach() if it is waiting for us
 624                 * to finish.
 625                 */
 626                if (atomic_dec_return(&mcast->refcount) <= 1)
 627                        wake_up(&mcast->wait);
 628        } else {
 629                rcu_read_lock();
 630                packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 631                if (!packet->qp) {
 632                        rcu_read_unlock();
 633                        goto drop;
 634                }
 635                spin_lock_irqsave(&packet->qp->r_lock, flags);
 636                if (likely((qp_ok(opcode, packet))))
 637                        opcode_handler_tbl[opcode](packet);
 638                spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 639                rcu_read_unlock();
 640        }
 641        return;
 642
 643drop:
 644        ibp->rvp.n_pkt_drops++;
 645}
 646
 647/*
 648 * This is called from a timer to check for QPs
 649 * which need kernel memory in order to send a packet.
 650 */
 651static void mem_timer(unsigned long data)
 652{
 653        struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
 654        struct list_head *list = &dev->memwait;
 655        struct rvt_qp *qp = NULL;
 656        struct iowait *wait;
 657        unsigned long flags;
 658        struct hfi1_qp_priv *priv;
 659
 660        write_seqlock_irqsave(&dev->iowait_lock, flags);
 661        if (!list_empty(list)) {
 662                wait = list_first_entry(list, struct iowait, list);
 663                qp = iowait_to_qp(wait);
 664                priv = qp->priv;
 665                list_del_init(&priv->s_iowait.list);
 666                /* refcount held until actual wake up */
 667                if (!list_empty(list))
 668                        mod_timer(&dev->mem_timer, jiffies + 1);
 669        }
 670        write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 671
 672        if (qp)
 673                hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 674}
 675
 676void update_sge(struct rvt_sge_state *ss, u32 length)
 677{
 678        struct rvt_sge *sge = &ss->sge;
 679
 680        sge->vaddr += length;
 681        sge->length -= length;
 682        sge->sge_length -= length;
 683        if (sge->sge_length == 0) {
 684                if (--ss->num_sge)
 685                        *sge = *ss->sg_list++;
 686        } else if (sge->length == 0 && sge->mr->lkey) {
 687                if (++sge->n >= RVT_SEGSZ) {
 688                        if (++sge->m >= sge->mr->mapsz)
 689                                return;
 690                        sge->n = 0;
 691                }
 692                sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
 693                sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
 694        }
 695}
 696
 697/*
 698 * This is called with progress side lock held.
 699 */
 700/* New API */
 701static void verbs_sdma_complete(
 702        struct sdma_txreq *cookie,
 703        int status)
 704{
 705        struct verbs_txreq *tx =
 706                container_of(cookie, struct verbs_txreq, txreq);
 707        struct rvt_qp *qp = tx->qp;
 708
 709        spin_lock(&qp->s_lock);
 710        if (tx->wqe) {
 711                hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 712        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
 713                struct hfi1_ib_header *hdr;
 714
 715                hdr = &tx->phdr.hdr;
 716                hfi1_rc_send_complete(qp, hdr);
 717        }
 718        spin_unlock(&qp->s_lock);
 719
 720        hfi1_put_txreq(tx);
 721}
 722
 723static int wait_kmem(struct hfi1_ibdev *dev,
 724                     struct rvt_qp *qp,
 725                     struct hfi1_pkt_state *ps)
 726{
 727        struct hfi1_qp_priv *priv = qp->priv;
 728        unsigned long flags;
 729        int ret = 0;
 730
 731        spin_lock_irqsave(&qp->s_lock, flags);
 732        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 733                write_seqlock(&dev->iowait_lock);
 734                list_add_tail(&ps->s_txreq->txreq.list,
 735                              &priv->s_iowait.tx_head);
 736                if (list_empty(&priv->s_iowait.list)) {
 737                        if (list_empty(&dev->memwait))
 738                                mod_timer(&dev->mem_timer, jiffies + 1);
 739                        qp->s_flags |= RVT_S_WAIT_KMEM;
 740                        list_add_tail(&priv->s_iowait.list, &dev->memwait);
 741                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 742                        atomic_inc(&qp->refcount);
 743                }
 744                write_sequnlock(&dev->iowait_lock);
 745                qp->s_flags &= ~RVT_S_BUSY;
 746                ret = -EBUSY;
 747        }
 748        spin_unlock_irqrestore(&qp->s_lock, flags);
 749
 750        return ret;
 751}
 752
 753/*
 754 * This routine calls txadds for each sg entry.
 755 *
 756 * Add failures will revert the sge cursor
 757 */
 758static noinline int build_verbs_ulp_payload(
 759        struct sdma_engine *sde,
 760        struct rvt_sge_state *ss,
 761        u32 length,
 762        struct verbs_txreq *tx)
 763{
 764        struct rvt_sge *sg_list = ss->sg_list;
 765        struct rvt_sge sge = ss->sge;
 766        u8 num_sge = ss->num_sge;
 767        u32 len;
 768        int ret = 0;
 769
 770        while (length) {
 771                len = ss->sge.length;
 772                if (len > length)
 773                        len = length;
 774                if (len > ss->sge.sge_length)
 775                        len = ss->sge.sge_length;
 776                WARN_ON_ONCE(len == 0);
 777                ret = sdma_txadd_kvaddr(
 778                        sde->dd,
 779                        &tx->txreq,
 780                        ss->sge.vaddr,
 781                        len);
 782                if (ret)
 783                        goto bail_txadd;
 784                update_sge(ss, len);
 785                length -= len;
 786        }
 787        return ret;
 788bail_txadd:
 789        /* unwind cursor */
 790        ss->sge = sge;
 791        ss->num_sge = num_sge;
 792        ss->sg_list = sg_list;
 793        return ret;
 794}
 795
 796/*
 797 * Build the number of DMA descriptors needed to send length bytes of data.
 798 *
 799 * NOTE: DMA mapping is held in the tx until completed in the ring or
 800 *       the tx desc is freed without having been submitted to the ring
 801 *
 802 * This routine ensures all the helper routine calls succeed.
 803 */
 804/* New API */
 805static int build_verbs_tx_desc(
 806        struct sdma_engine *sde,
 807        struct rvt_sge_state *ss,
 808        u32 length,
 809        struct verbs_txreq *tx,
 810        struct ahg_ib_header *ahdr,
 811        u64 pbc)
 812{
 813        int ret = 0;
 814        struct hfi1_pio_header *phdr = &tx->phdr;
 815        u16 hdrbytes = tx->hdr_dwords << 2;
 816
 817        if (!ahdr->ahgcount) {
 818                ret = sdma_txinit_ahg(
 819                        &tx->txreq,
 820                        ahdr->tx_flags,
 821                        hdrbytes + length,
 822                        ahdr->ahgidx,
 823                        0,
 824                        NULL,
 825                        0,
 826                        verbs_sdma_complete);
 827                if (ret)
 828                        goto bail_txadd;
 829                phdr->pbc = cpu_to_le64(pbc);
 830                ret = sdma_txadd_kvaddr(
 831                        sde->dd,
 832                        &tx->txreq,
 833                        phdr,
 834                        hdrbytes);
 835                if (ret)
 836                        goto bail_txadd;
 837        } else {
 838                ret = sdma_txinit_ahg(
 839                        &tx->txreq,
 840                        ahdr->tx_flags,
 841                        length,
 842                        ahdr->ahgidx,
 843                        ahdr->ahgcount,
 844                        ahdr->ahgdesc,
 845                        hdrbytes,
 846                        verbs_sdma_complete);
 847                if (ret)
 848                        goto bail_txadd;
 849        }
 850
 851        /* add the ulp payload - if any.  ss can be NULL for acks */
 852        if (ss)
 853                ret = build_verbs_ulp_payload(sde, ss, length, tx);
 854bail_txadd:
 855        return ret;
 856}
 857
 858int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 859                        u64 pbc)
 860{
 861        struct hfi1_qp_priv *priv = qp->priv;
 862        struct ahg_ib_header *ahdr = priv->s_hdr;
 863        u32 hdrwords = qp->s_hdrwords;
 864        struct rvt_sge_state *ss = qp->s_cur_sge;
 865        u32 len = qp->s_cur_size;
 866        u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
 867        struct hfi1_ibdev *dev = ps->dev;
 868        struct hfi1_pportdata *ppd = ps->ppd;
 869        struct verbs_txreq *tx;
 870        u64 pbc_flags = 0;
 871        u8 sc5 = priv->s_sc;
 872
 873        int ret;
 874
 875        tx = ps->s_txreq;
 876        if (!sdma_txreq_built(&tx->txreq)) {
 877                if (likely(pbc == 0)) {
 878                        u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 879                        /* No vl15 here */
 880                        /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
 881                        pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
 882
 883                        pbc = create_pbc(ppd,
 884                                         pbc_flags,
 885                                         qp->srate_mbps,
 886                                         vl,
 887                                         plen);
 888                }
 889                tx->wqe = qp->s_wqe;
 890                ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
 891                if (unlikely(ret))
 892                        goto bail_build;
 893        }
 894        ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
 895        if (unlikely(ret < 0)) {
 896                if (ret == -ECOMM)
 897                        goto bail_ecomm;
 898                return ret;
 899        }
 900        trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 901                                &ps->s_txreq->phdr.hdr);
 902        return ret;
 903
 904bail_ecomm:
 905        /* The current one got "sent" */
 906        return 0;
 907bail_build:
 908        ret = wait_kmem(dev, qp, ps);
 909        if (!ret) {
 910                /* free txreq - bad state */
 911                hfi1_put_txreq(ps->s_txreq);
 912                ps->s_txreq = NULL;
 913        }
 914        return ret;
 915}
 916
 917/*
 918 * If we are now in the error state, return zero to flush the
 919 * send work request.
 920 */
 921static int pio_wait(struct rvt_qp *qp,
 922                    struct send_context *sc,
 923                    struct hfi1_pkt_state *ps,
 924                    u32 flag)
 925{
 926        struct hfi1_qp_priv *priv = qp->priv;
 927        struct hfi1_devdata *dd = sc->dd;
 928        struct hfi1_ibdev *dev = &dd->verbs_dev;
 929        unsigned long flags;
 930        int ret = 0;
 931
 932        /*
 933         * Note that as soon as want_buffer() is called and
 934         * possibly before it returns, sc_piobufavail()
 935         * could be called. Therefore, put QP on the I/O wait list before
 936         * enabling the PIO avail interrupt.
 937         */
 938        spin_lock_irqsave(&qp->s_lock, flags);
 939        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 940                write_seqlock(&dev->iowait_lock);
 941                list_add_tail(&ps->s_txreq->txreq.list,
 942                              &priv->s_iowait.tx_head);
 943                if (list_empty(&priv->s_iowait.list)) {
 944                        struct hfi1_ibdev *dev = &dd->verbs_dev;
 945                        int was_empty;
 946
 947                        dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 948                        dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
 949                        dev->n_piowait++;
 950                        qp->s_flags |= flag;
 951                        was_empty = list_empty(&sc->piowait);
 952                        list_add_tail(&priv->s_iowait.list, &sc->piowait);
 953                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 954                        atomic_inc(&qp->refcount);
 955                        /* counting: only call wantpiobuf_intr if first user */
 956                        if (was_empty)
 957                                hfi1_sc_wantpiobuf_intr(sc, 1);
 958                }
 959                write_sequnlock(&dev->iowait_lock);
 960                qp->s_flags &= ~RVT_S_BUSY;
 961                ret = -EBUSY;
 962        }
 963        spin_unlock_irqrestore(&qp->s_lock, flags);
 964        return ret;
 965}
 966
 967static void verbs_pio_complete(void *arg, int code)
 968{
 969        struct rvt_qp *qp = (struct rvt_qp *)arg;
 970        struct hfi1_qp_priv *priv = qp->priv;
 971
 972        if (iowait_pio_dec(&priv->s_iowait))
 973                iowait_drain_wakeup(&priv->s_iowait);
 974}
 975
 976int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 977                        u64 pbc)
 978{
 979        struct hfi1_qp_priv *priv = qp->priv;
 980        u32 hdrwords = qp->s_hdrwords;
 981        struct rvt_sge_state *ss = qp->s_cur_sge;
 982        u32 len = qp->s_cur_size;
 983        u32 dwords = (len + 3) >> 2;
 984        u32 plen = hdrwords + dwords + 2; /* includes pbc */
 985        struct hfi1_pportdata *ppd = ps->ppd;
 986        u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
 987        u64 pbc_flags = 0;
 988        u8 sc5;
 989        unsigned long flags = 0;
 990        struct send_context *sc;
 991        struct pio_buf *pbuf;
 992        int wc_status = IB_WC_SUCCESS;
 993        int ret = 0;
 994        pio_release_cb cb = NULL;
 995
 996        /* only RC/UC use complete */
 997        switch (qp->ibqp.qp_type) {
 998        case IB_QPT_RC:
 999        case IB_QPT_UC:
1000                cb = verbs_pio_complete;
1001                break;
1002        default:
1003                break;
1004        }
1005
1006        /* vl15 special case taken care of in ud.c */
1007        sc5 = priv->s_sc;
1008        sc = ps->s_txreq->psc;
1009
1010        if (likely(pbc == 0)) {
1011                u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1012                /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1013                pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1014                pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1015        }
1016        if (cb)
1017                iowait_pio_inc(&priv->s_iowait);
1018        pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1019        if (unlikely(!pbuf)) {
1020                if (cb)
1021                        verbs_pio_complete(qp, 0);
1022                if (ppd->host_link_state != HLS_UP_ACTIVE) {
1023                        /*
1024                         * If we have filled the PIO buffers to capacity and are
1025                         * not in an active state this request is not going to
1026                         * go out to so just complete it with an error or else a
1027                         * ULP or the core may be stuck waiting.
1028                         */
1029                        hfi1_cdbg(
1030                                PIO,
1031                                "alloc failed. state not active, completing");
1032                        wc_status = IB_WC_GENERAL_ERR;
1033                        goto pio_bail;
1034                } else {
1035                        /*
1036                         * This is a normal occurrence. The PIO buffs are full
1037                         * up but we are still happily sending, well we could be
1038                         * so lets continue to queue the request.
1039                         */
1040                        hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1041                        ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1042                        if (!ret)
1043                                /* txreq not queued - free */
1044                                goto bail;
1045                        /* tx consumed in wait */
1046                        return ret;
1047                }
1048        }
1049
1050        if (len == 0) {
1051                pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1052        } else {
1053                if (ss) {
1054                        seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1055                        while (len) {
1056                                void *addr = ss->sge.vaddr;
1057                                u32 slen = ss->sge.length;
1058
1059                                if (slen > len)
1060                                        slen = len;
1061                                update_sge(ss, slen);
1062                                seg_pio_copy_mid(pbuf, addr, slen);
1063                                len -= slen;
1064                        }
1065                        seg_pio_copy_end(pbuf);
1066                }
1067        }
1068
1069        trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1070                               &ps->s_txreq->phdr.hdr);
1071
1072pio_bail:
1073        if (qp->s_wqe) {
1074                spin_lock_irqsave(&qp->s_lock, flags);
1075                hfi1_send_complete(qp, qp->s_wqe, wc_status);
1076                spin_unlock_irqrestore(&qp->s_lock, flags);
1077        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1078                spin_lock_irqsave(&qp->s_lock, flags);
1079                hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1080                spin_unlock_irqrestore(&qp->s_lock, flags);
1081        }
1082
1083        ret = 0;
1084
1085bail:
1086        hfi1_put_txreq(ps->s_txreq);
1087        return ret;
1088}
1089
1090/*
1091 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1092 * being an entry from the ingress partition key table), return 0
1093 * otherwise. Use the matching criteria for egress partition keys
1094 * specified in the OPAv1 spec., section 9.1l.7.
1095 */
1096static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1097{
1098        u16 mkey = pkey & PKEY_LOW_15_MASK;
1099        u16 ment = ent & PKEY_LOW_15_MASK;
1100
1101        if (mkey == ment) {
1102                /*
1103                 * If pkey[15] is set (full partition member),
1104                 * is bit 15 in the corresponding table element
1105                 * clear (limited member)?
1106                 */
1107                if (pkey & PKEY_MEMBER_MASK)
1108                        return !!(ent & PKEY_MEMBER_MASK);
1109                return 1;
1110        }
1111        return 0;
1112}
1113
1114/*
1115 * egress_pkey_check - return 0 if hdr's pkey matches according to the
1116 * criteria in the OPAv1 spec., section 9.11.7.
1117 */
1118static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1119                                    struct hfi1_ib_header *hdr,
1120                                    struct rvt_qp *qp)
1121{
1122        struct hfi1_qp_priv *priv = qp->priv;
1123        struct hfi1_other_headers *ohdr;
1124        struct hfi1_devdata *dd;
1125        int i = 0;
1126        u16 pkey;
1127        u8 lnh, sc5 = priv->s_sc;
1128
1129        if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1130                return 0;
1131
1132        /* locate the pkey within the headers */
1133        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1134        if (lnh == HFI1_LRH_GRH)
1135                ohdr = &hdr->u.l.oth;
1136        else
1137                ohdr = &hdr->u.oth;
1138
1139        pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1140
1141        /* If SC15, pkey[0:14] must be 0x7fff */
1142        if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1143                goto bad;
1144
1145        /* Is the pkey = 0x0, or 0x8000? */
1146        if ((pkey & PKEY_LOW_15_MASK) == 0)
1147                goto bad;
1148
1149        /* The most likely matching pkey has index qp->s_pkey_index */
1150        if (unlikely(!egress_pkey_matches_entry(pkey,
1151                                                ppd->pkeys
1152                                                [qp->s_pkey_index]))) {
1153                /* no match - try the entire table */
1154                for (; i < MAX_PKEY_VALUES; i++) {
1155                        if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1156                                break;
1157                }
1158        }
1159
1160        if (i < MAX_PKEY_VALUES)
1161                return 0;
1162bad:
1163        incr_cntr64(&ppd->port_xmit_constraint_errors);
1164        dd = ppd->dd;
1165        if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1166                u16 slid = be16_to_cpu(hdr->lrh[3]);
1167
1168                dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1169                dd->err_info_xmit_constraint.slid = slid;
1170                dd->err_info_xmit_constraint.pkey = pkey;
1171        }
1172        return 1;
1173}
1174
1175/**
1176 * get_send_routine - choose an egress routine
1177 *
1178 * Choose an egress routine based on QP type
1179 * and size
1180 */
1181static inline send_routine get_send_routine(struct rvt_qp *qp,
1182                                            struct verbs_txreq *tx)
1183{
1184        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1185        struct hfi1_qp_priv *priv = qp->priv;
1186        struct hfi1_ib_header *h = &tx->phdr.hdr;
1187
1188        if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1189                return dd->process_pio_send;
1190        switch (qp->ibqp.qp_type) {
1191        case IB_QPT_SMI:
1192                return dd->process_pio_send;
1193        case IB_QPT_GSI:
1194        case IB_QPT_UD:
1195                break;
1196        case IB_QPT_RC:
1197                if (piothreshold &&
1198                    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1199                    (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1200                    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1201                    !sdma_txreq_built(&tx->txreq))
1202                        return dd->process_pio_send;
1203                break;
1204        case IB_QPT_UC:
1205                if (piothreshold &&
1206                    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1207                    (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1208                    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1209                    !sdma_txreq_built(&tx->txreq))
1210                        return dd->process_pio_send;
1211                break;
1212        default:
1213                break;
1214        }
1215        return dd->process_dma_send;
1216}
1217
1218/**
1219 * hfi1_verbs_send - send a packet
1220 * @qp: the QP to send on
1221 * @ps: the state of the packet to send
1222 *
1223 * Return zero if packet is sent or queued OK.
1224 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1225 */
1226int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1227{
1228        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1229        struct hfi1_qp_priv *priv = qp->priv;
1230        send_routine sr;
1231        int ret;
1232
1233        sr = get_send_routine(qp, ps->s_txreq);
1234        ret = egress_pkey_check(dd->pport, &ps->s_txreq->phdr.hdr, qp);
1235        if (unlikely(ret)) {
1236                /*
1237                 * The value we are returning here does not get propagated to
1238                 * the verbs caller. Thus we need to complete the request with
1239                 * error otherwise the caller could be sitting waiting on the
1240                 * completion event. Only do this for PIO. SDMA has its own
1241                 * mechanism for handling the errors. So for SDMA we can just
1242                 * return.
1243                 */
1244                if (sr == dd->process_pio_send) {
1245                        unsigned long flags;
1246
1247                        hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1248                                  __func__);
1249                        spin_lock_irqsave(&qp->s_lock, flags);
1250                        hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1251                        spin_unlock_irqrestore(&qp->s_lock, flags);
1252                }
1253                return -EINVAL;
1254        }
1255        if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1256                return pio_wait(qp,
1257                                ps->s_txreq->psc,
1258                                ps,
1259                                RVT_S_WAIT_PIO_DRAIN);
1260        return sr(qp, ps, 0);
1261}
1262
1263/**
1264 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1265 * @dd: the device data structure
1266 */
1267static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1268{
1269        struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1270
1271        memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1272
1273        rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1274                        IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1275                        IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1276                        IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1277        rdi->dparms.props.page_size_cap = PAGE_SIZE;
1278        rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1279        rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1280        rdi->dparms.props.hw_ver = dd->minrev;
1281        rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1282        rdi->dparms.props.max_mr_size = ~0ULL;
1283        rdi->dparms.props.max_qp = hfi1_max_qps;
1284        rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1285        rdi->dparms.props.max_sge = hfi1_max_sges;
1286        rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1287        rdi->dparms.props.max_cq = hfi1_max_cqs;
1288        rdi->dparms.props.max_ah = hfi1_max_ahs;
1289        rdi->dparms.props.max_cqe = hfi1_max_cqes;
1290        rdi->dparms.props.max_mr = rdi->lkey_table.max;
1291        rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1292        rdi->dparms.props.max_map_per_fmr = 32767;
1293        rdi->dparms.props.max_pd = hfi1_max_pds;
1294        rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1295        rdi->dparms.props.max_qp_init_rd_atom = 255;
1296        rdi->dparms.props.max_srq = hfi1_max_srqs;
1297        rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1298        rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1299        rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1300        rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1301        rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1302        rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1303        rdi->dparms.props.max_total_mcast_qp_attach =
1304                                        rdi->dparms.props.max_mcast_qp_attach *
1305                                        rdi->dparms.props.max_mcast_grp;
1306}
1307
1308static inline u16 opa_speed_to_ib(u16 in)
1309{
1310        u16 out = 0;
1311
1312        if (in & OPA_LINK_SPEED_25G)
1313                out |= IB_SPEED_EDR;
1314        if (in & OPA_LINK_SPEED_12_5G)
1315                out |= IB_SPEED_FDR;
1316
1317        return out;
1318}
1319
1320/*
1321 * Convert a single OPA link width (no multiple flags) to an IB value.
1322 * A zero OPA link width means link down, which means the IB width value
1323 * is a don't care.
1324 */
1325static inline u16 opa_width_to_ib(u16 in)
1326{
1327        switch (in) {
1328        case OPA_LINK_WIDTH_1X:
1329        /* map 2x and 3x to 1x as they don't exist in IB */
1330        case OPA_LINK_WIDTH_2X:
1331        case OPA_LINK_WIDTH_3X:
1332                return IB_WIDTH_1X;
1333        default: /* link down or unknown, return our largest width */
1334        case OPA_LINK_WIDTH_4X:
1335                return IB_WIDTH_4X;
1336        }
1337}
1338
1339static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1340                      struct ib_port_attr *props)
1341{
1342        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1343        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1344        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1345        u16 lid = ppd->lid;
1346
1347        props->lid = lid ? lid : 0;
1348        props->lmc = ppd->lmc;
1349        /* OPA logical states match IB logical states */
1350        props->state = driver_lstate(ppd);
1351        props->phys_state = hfi1_ibphys_portstate(ppd);
1352        props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1353        props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1354        /* see rate_show() in ib core/sysfs.c */
1355        props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1356        props->max_vl_num = ppd->vls_supported;
1357
1358        /* Once we are a "first class" citizen and have added the OPA MTUs to
1359         * the core we can advertise the larger MTU enum to the ULPs, for now
1360         * advertise only 4K.
1361         *
1362         * Those applications which are either OPA aware or pass the MTU enum
1363         * from the Path Records to us will get the new 8k MTU.  Those that
1364         * attempt to process the MTU enum may fail in various ways.
1365         */
1366        props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1367                                      4096 : hfi1_max_mtu), IB_MTU_4096);
1368        props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1369                mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1370
1371        return 0;
1372}
1373
1374static int modify_device(struct ib_device *device,
1375                         int device_modify_mask,
1376                         struct ib_device_modify *device_modify)
1377{
1378        struct hfi1_devdata *dd = dd_from_ibdev(device);
1379        unsigned i;
1380        int ret;
1381
1382        if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1383                                   IB_DEVICE_MODIFY_NODE_DESC)) {
1384                ret = -EOPNOTSUPP;
1385                goto bail;
1386        }
1387
1388        if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1389                memcpy(device->node_desc, device_modify->node_desc, 64);
1390                for (i = 0; i < dd->num_pports; i++) {
1391                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1392
1393                        hfi1_node_desc_chg(ibp);
1394                }
1395        }
1396
1397        if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1398                ib_hfi1_sys_image_guid =
1399                        cpu_to_be64(device_modify->sys_image_guid);
1400                for (i = 0; i < dd->num_pports; i++) {
1401                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1402
1403                        hfi1_sys_guid_chg(ibp);
1404                }
1405        }
1406
1407        ret = 0;
1408
1409bail:
1410        return ret;
1411}
1412
1413static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1414{
1415        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1416        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1417        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1418        int ret;
1419
1420        set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1421                             OPA_LINKDOWN_REASON_UNKNOWN);
1422        ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1423        return ret;
1424}
1425
1426static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1427                            int guid_index, __be64 *guid)
1428{
1429        struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1430        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1431
1432        if (guid_index == 0)
1433                *guid = cpu_to_be64(ppd->guid);
1434        else if (guid_index < HFI1_GUIDS_PER_PORT)
1435                *guid = ibp->guids[guid_index - 1];
1436        else
1437                return -EINVAL;
1438
1439        return 0;
1440}
1441
1442/*
1443 * convert ah port,sl to sc
1444 */
1445u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1446{
1447        struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1448
1449        return ibp->sl_to_sc[ah->sl];
1450}
1451
1452static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1453{
1454        struct hfi1_ibport *ibp;
1455        struct hfi1_pportdata *ppd;
1456        struct hfi1_devdata *dd;
1457        u8 sc5;
1458
1459        /* test the mapping for validity */
1460        ibp = to_iport(ibdev, ah_attr->port_num);
1461        ppd = ppd_from_ibp(ibp);
1462        sc5 = ibp->sl_to_sc[ah_attr->sl];
1463        dd = dd_from_ppd(ppd);
1464        if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1465                return -EINVAL;
1466        return 0;
1467}
1468
1469static void hfi1_notify_new_ah(struct ib_device *ibdev,
1470                               struct ib_ah_attr *ah_attr,
1471                               struct rvt_ah *ah)
1472{
1473        struct hfi1_ibport *ibp;
1474        struct hfi1_pportdata *ppd;
1475        struct hfi1_devdata *dd;
1476        u8 sc5;
1477
1478        /*
1479         * Do not trust reading anything from rvt_ah at this point as it is not
1480         * done being setup. We can however modify things which we need to set.
1481         */
1482
1483        ibp = to_iport(ibdev, ah_attr->port_num);
1484        ppd = ppd_from_ibp(ibp);
1485        sc5 = ibp->sl_to_sc[ah->attr.sl];
1486        dd = dd_from_ppd(ppd);
1487        ah->vl = sc_to_vlt(dd, sc5);
1488        if (ah->vl < num_vls || ah->vl == 15)
1489                ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1490}
1491
1492struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1493{
1494        struct ib_ah_attr attr;
1495        struct ib_ah *ah = ERR_PTR(-EINVAL);
1496        struct rvt_qp *qp0;
1497
1498        memset(&attr, 0, sizeof(attr));
1499        attr.dlid = dlid;
1500        attr.port_num = ppd_from_ibp(ibp)->port;
1501        rcu_read_lock();
1502        qp0 = rcu_dereference(ibp->rvp.qp[0]);
1503        if (qp0)
1504                ah = ib_create_ah(qp0->ibqp.pd, &attr);
1505        rcu_read_unlock();
1506        return ah;
1507}
1508
1509/**
1510 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1511 * @dd: the hfi1_ib device
1512 */
1513unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1514{
1515        return ARRAY_SIZE(dd->pport[0].pkeys);
1516}
1517
1518static void init_ibport(struct hfi1_pportdata *ppd)
1519{
1520        struct hfi1_ibport *ibp = &ppd->ibport_data;
1521        size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1522        int i;
1523
1524        for (i = 0; i < sz; i++) {
1525                ibp->sl_to_sc[i] = i;
1526                ibp->sc_to_sl[i] = i;
1527        }
1528
1529        spin_lock_init(&ibp->rvp.lock);
1530        /* Set the prefix to the default value (see ch. 4.1.1) */
1531        ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1532        ibp->rvp.sm_lid = 0;
1533        /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1534        ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1535                IB_PORT_CAP_MASK_NOTICE_SUP;
1536        ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1537        ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1538        ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1539        ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1540        ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1541
1542        RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1543        RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1544}
1545
1546/**
1547 * hfi1_register_ib_device - register our device with the infiniband core
1548 * @dd: the device data structure
1549 * Return 0 if successful, errno if unsuccessful.
1550 */
1551int hfi1_register_ib_device(struct hfi1_devdata *dd)
1552{
1553        struct hfi1_ibdev *dev = &dd->verbs_dev;
1554        struct ib_device *ibdev = &dev->rdi.ibdev;
1555        struct hfi1_pportdata *ppd = dd->pport;
1556        unsigned i;
1557        int ret;
1558        size_t lcpysz = IB_DEVICE_NAME_MAX;
1559
1560        for (i = 0; i < dd->num_pports; i++)
1561                init_ibport(ppd + i);
1562
1563        /* Only need to initialize non-zero fields. */
1564
1565        setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1566
1567        seqlock_init(&dev->iowait_lock);
1568        INIT_LIST_HEAD(&dev->txwait);
1569        INIT_LIST_HEAD(&dev->memwait);
1570
1571        ret = verbs_txreq_init(dev);
1572        if (ret)
1573                goto err_verbs_txreq;
1574
1575        /*
1576         * The system image GUID is supposed to be the same for all
1577         * HFIs in a single system but since there can be other
1578         * device types in the system, we can't be sure this is unique.
1579         */
1580        if (!ib_hfi1_sys_image_guid)
1581                ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1582        lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1583        strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1584        ibdev->owner = THIS_MODULE;
1585        ibdev->node_guid = cpu_to_be64(ppd->guid);
1586        ibdev->phys_port_cnt = dd->num_pports;
1587        ibdev->dma_device = &dd->pcidev->dev;
1588        ibdev->modify_device = modify_device;
1589
1590        /* keep process mad in the driver */
1591        ibdev->process_mad = hfi1_process_mad;
1592
1593        strncpy(ibdev->node_desc, init_utsname()->nodename,
1594                sizeof(ibdev->node_desc));
1595
1596        /*
1597         * Fill in rvt info object.
1598         */
1599        dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1600        dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1601        dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1602        dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1603        dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1604        dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1605        dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1606        dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1607        dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1608        /*
1609         * Fill in rvt info device attributes.
1610         */
1611        hfi1_fill_device_attr(dd);
1612
1613        /* queue pair */
1614        dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1615        dd->verbs_dev.rdi.dparms.qpn_start = 0;
1616        dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1617        dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1618        dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1619        dd->verbs_dev.rdi.dparms.qpn_res_end =
1620        dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1621        dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1622        dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1623        dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1624        dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1625        dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1626        dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1627
1628        dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1629        dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1630        dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1631        dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1632        dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1633        dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1634        dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1635        dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1636        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1637        dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1638        dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1639        dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1640        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1641        dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1642        dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1643        dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1644        dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1645        dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1646
1647        /* completeion queue */
1648        snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1649                 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1650                 "hfi1_cq%d", dd->unit);
1651        dd->verbs_dev.rdi.dparms.node = dd->node;
1652
1653        /* misc settings */
1654        dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1655        dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1656        dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1657        dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1658
1659        ppd = dd->pport;
1660        for (i = 0; i < dd->num_pports; i++, ppd++)
1661                rvt_init_port(&dd->verbs_dev.rdi,
1662                              &ppd->ibport_data.rvp,
1663                              i,
1664                              ppd->pkeys);
1665
1666        ret = rvt_register_device(&dd->verbs_dev.rdi);
1667        if (ret)
1668                goto err_verbs_txreq;
1669
1670        ret = hfi1_verbs_register_sysfs(dd);
1671        if (ret)
1672                goto err_class;
1673
1674        return ret;
1675
1676err_class:
1677        rvt_unregister_device(&dd->verbs_dev.rdi);
1678err_verbs_txreq:
1679        verbs_txreq_exit(dev);
1680        dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1681        return ret;
1682}
1683
1684void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1685{
1686        struct hfi1_ibdev *dev = &dd->verbs_dev;
1687
1688        hfi1_verbs_unregister_sysfs(dd);
1689
1690        rvt_unregister_device(&dd->verbs_dev.rdi);
1691
1692        if (!list_empty(&dev->txwait))
1693                dd_dev_err(dd, "txwait list not empty!\n");
1694        if (!list_empty(&dev->memwait))
1695                dd_dev_err(dd, "memwait list not empty!\n");
1696
1697        del_timer_sync(&dev->mem_timer);
1698        verbs_txreq_exit(dev);
1699}
1700
1701void hfi1_cnp_rcv(struct hfi1_packet *packet)
1702{
1703        struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1704        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1705        struct hfi1_ib_header *hdr = packet->hdr;
1706        struct rvt_qp *qp = packet->qp;
1707        u32 lqpn, rqpn = 0;
1708        u16 rlid = 0;
1709        u8 sl, sc5, sc4_bit, svc_type;
1710        bool sc4_set = has_sc4_bit(packet);
1711
1712        switch (packet->qp->ibqp.qp_type) {
1713        case IB_QPT_UC:
1714                rlid = qp->remote_ah_attr.dlid;
1715                rqpn = qp->remote_qpn;
1716                svc_type = IB_CC_SVCTYPE_UC;
1717                break;
1718        case IB_QPT_RC:
1719                rlid = qp->remote_ah_attr.dlid;
1720                rqpn = qp->remote_qpn;
1721                svc_type = IB_CC_SVCTYPE_RC;
1722                break;
1723        case IB_QPT_SMI:
1724        case IB_QPT_GSI:
1725        case IB_QPT_UD:
1726                svc_type = IB_CC_SVCTYPE_UD;
1727                break;
1728        default:
1729                ibp->rvp.n_pkt_drops++;
1730                return;
1731        }
1732
1733        sc4_bit = sc4_set << 4;
1734        sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1735        sc5 |= sc4_bit;
1736        sl = ibp->sc_to_sl[sc5];
1737        lqpn = qp->ibqp.qp_num;
1738
1739        process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1740}
1741