linux/drivers/thermal/power_allocator.c
<<
>>
Prefs
   1/*
   2 * A power allocator to manage temperature
   3 *
   4 * Copyright (C) 2014 ARM Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#define pr_fmt(fmt) "Power allocator: " fmt
  17
  18#include <linux/rculist.h>
  19#include <linux/slab.h>
  20#include <linux/thermal.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/thermal_power_allocator.h>
  24
  25#include "thermal_core.h"
  26
  27#define INVALID_TRIP -1
  28
  29#define FRAC_BITS 10
  30#define int_to_frac(x) ((x) << FRAC_BITS)
  31#define frac_to_int(x) ((x) >> FRAC_BITS)
  32
  33/**
  34 * mul_frac() - multiply two fixed-point numbers
  35 * @x:  first multiplicand
  36 * @y:  second multiplicand
  37 *
  38 * Return: the result of multiplying two fixed-point numbers.  The
  39 * result is also a fixed-point number.
  40 */
  41static inline s64 mul_frac(s64 x, s64 y)
  42{
  43        return (x * y) >> FRAC_BITS;
  44}
  45
  46/**
  47 * div_frac() - divide two fixed-point numbers
  48 * @x:  the dividend
  49 * @y:  the divisor
  50 *
  51 * Return: the result of dividing two fixed-point numbers.  The
  52 * result is also a fixed-point number.
  53 */
  54static inline s64 div_frac(s64 x, s64 y)
  55{
  56        return div_s64(x << FRAC_BITS, y);
  57}
  58
  59/**
  60 * struct power_allocator_params - parameters for the power allocator governor
  61 * @allocated_tzp:      whether we have allocated tzp for this thermal zone and
  62 *                      it needs to be freed on unbind
  63 * @err_integral:       accumulated error in the PID controller.
  64 * @prev_err:   error in the previous iteration of the PID controller.
  65 *              Used to calculate the derivative term.
  66 * @trip_switch_on:     first passive trip point of the thermal zone.  The
  67 *                      governor switches on when this trip point is crossed.
  68 *                      If the thermal zone only has one passive trip point,
  69 *                      @trip_switch_on should be INVALID_TRIP.
  70 * @trip_max_desired_temperature:       last passive trip point of the thermal
  71 *                                      zone.  The temperature we are
  72 *                                      controlling for.
  73 */
  74struct power_allocator_params {
  75        bool allocated_tzp;
  76        s64 err_integral;
  77        s32 prev_err;
  78        int trip_switch_on;
  79        int trip_max_desired_temperature;
  80};
  81
  82/**
  83 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
  84 * @tz: thermal zone we are operating in
  85 *
  86 * For thermal zones that don't provide a sustainable_power in their
  87 * thermal_zone_params, estimate one.  Calculate it using the minimum
  88 * power of all the cooling devices as that gives a valid value that
  89 * can give some degree of functionality.  For optimal performance of
  90 * this governor, provide a sustainable_power in the thermal zone's
  91 * thermal_zone_params.
  92 */
  93static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
  94{
  95        u32 sustainable_power = 0;
  96        struct thermal_instance *instance;
  97        struct power_allocator_params *params = tz->governor_data;
  98
  99        list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 100                struct thermal_cooling_device *cdev = instance->cdev;
 101                u32 min_power;
 102
 103                if (instance->trip != params->trip_max_desired_temperature)
 104                        continue;
 105
 106                if (power_actor_get_min_power(cdev, tz, &min_power))
 107                        continue;
 108
 109                sustainable_power += min_power;
 110        }
 111
 112        return sustainable_power;
 113}
 114
 115/**
 116 * estimate_pid_constants() - Estimate the constants for the PID controller
 117 * @tz:         thermal zone for which to estimate the constants
 118 * @sustainable_power:  sustainable power for the thermal zone
 119 * @trip_switch_on:     trip point number for the switch on temperature
 120 * @control_temp:       target temperature for the power allocator governor
 121 * @force:      whether to force the update of the constants
 122 *
 123 * This function is used to update the estimation of the PID
 124 * controller constants in struct thermal_zone_parameters.
 125 * Sustainable power is provided in case it was estimated.  The
 126 * estimated sustainable_power should not be stored in the
 127 * thermal_zone_parameters so it has to be passed explicitly to this
 128 * function.
 129 *
 130 * If @force is not set, the values in the thermal zone's parameters
 131 * are preserved if they are not zero.  If @force is set, the values
 132 * in thermal zone's parameters are overwritten.
 133 */
 134static void estimate_pid_constants(struct thermal_zone_device *tz,
 135                                   u32 sustainable_power, int trip_switch_on,
 136                                   int control_temp, bool force)
 137{
 138        int ret;
 139        int switch_on_temp;
 140        u32 temperature_threshold;
 141
 142        ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
 143        if (ret)
 144                switch_on_temp = 0;
 145
 146        temperature_threshold = control_temp - switch_on_temp;
 147        /*
 148         * estimate_pid_constants() tries to find appropriate default
 149         * values for thermal zones that don't provide them. If a
 150         * system integrator has configured a thermal zone with two
 151         * passive trip points at the same temperature, that person
 152         * hasn't put any effort to set up the thermal zone properly
 153         * so just give up.
 154         */
 155        if (!temperature_threshold)
 156                return;
 157
 158        if (!tz->tzp->k_po || force)
 159                tz->tzp->k_po = int_to_frac(sustainable_power) /
 160                        temperature_threshold;
 161
 162        if (!tz->tzp->k_pu || force)
 163                tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
 164                        temperature_threshold;
 165
 166        if (!tz->tzp->k_i || force)
 167                tz->tzp->k_i = int_to_frac(10) / 1000;
 168        /*
 169         * The default for k_d and integral_cutoff is 0, so we can
 170         * leave them as they are.
 171         */
 172}
 173
 174/**
 175 * pid_controller() - PID controller
 176 * @tz: thermal zone we are operating in
 177 * @control_temp:       the target temperature in millicelsius
 178 * @max_allocatable_power:      maximum allocatable power for this thermal zone
 179 *
 180 * This PID controller increases the available power budget so that the
 181 * temperature of the thermal zone gets as close as possible to
 182 * @control_temp and limits the power if it exceeds it.  k_po is the
 183 * proportional term when we are overshooting, k_pu is the
 184 * proportional term when we are undershooting.  integral_cutoff is a
 185 * threshold below which we stop accumulating the error.  The
 186 * accumulated error is only valid if the requested power will make
 187 * the system warmer.  If the system is mostly idle, there's no point
 188 * in accumulating positive error.
 189 *
 190 * Return: The power budget for the next period.
 191 */
 192static u32 pid_controller(struct thermal_zone_device *tz,
 193                          int control_temp,
 194                          u32 max_allocatable_power)
 195{
 196        s64 p, i, d, power_range;
 197        s32 err, max_power_frac;
 198        u32 sustainable_power;
 199        struct power_allocator_params *params = tz->governor_data;
 200
 201        max_power_frac = int_to_frac(max_allocatable_power);
 202
 203        if (tz->tzp->sustainable_power) {
 204                sustainable_power = tz->tzp->sustainable_power;
 205        } else {
 206                sustainable_power = estimate_sustainable_power(tz);
 207                estimate_pid_constants(tz, sustainable_power,
 208                                       params->trip_switch_on, control_temp,
 209                                       true);
 210        }
 211
 212        err = control_temp - tz->temperature;
 213        err = int_to_frac(err);
 214
 215        /* Calculate the proportional term */
 216        p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
 217
 218        /*
 219         * Calculate the integral term
 220         *
 221         * if the error is less than cut off allow integration (but
 222         * the integral is limited to max power)
 223         */
 224        i = mul_frac(tz->tzp->k_i, params->err_integral);
 225
 226        if (err < int_to_frac(tz->tzp->integral_cutoff)) {
 227                s64 i_next = i + mul_frac(tz->tzp->k_i, err);
 228
 229                if (abs(i_next) < max_power_frac) {
 230                        i = i_next;
 231                        params->err_integral += err;
 232                }
 233        }
 234
 235        /*
 236         * Calculate the derivative term
 237         *
 238         * We do err - prev_err, so with a positive k_d, a decreasing
 239         * error (i.e. driving closer to the line) results in less
 240         * power being applied, slowing down the controller)
 241         */
 242        d = mul_frac(tz->tzp->k_d, err - params->prev_err);
 243        d = div_frac(d, tz->passive_delay);
 244        params->prev_err = err;
 245
 246        power_range = p + i + d;
 247
 248        /* feed-forward the known sustainable dissipatable power */
 249        power_range = sustainable_power + frac_to_int(power_range);
 250
 251        power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
 252
 253        trace_thermal_power_allocator_pid(tz, frac_to_int(err),
 254                                          frac_to_int(params->err_integral),
 255                                          frac_to_int(p), frac_to_int(i),
 256                                          frac_to_int(d), power_range);
 257
 258        return power_range;
 259}
 260
 261/**
 262 * divvy_up_power() - divvy the allocated power between the actors
 263 * @req_power:  each actor's requested power
 264 * @max_power:  each actor's maximum available power
 265 * @num_actors: size of the @req_power, @max_power and @granted_power's array
 266 * @total_req_power: sum of @req_power
 267 * @power_range:        total allocated power
 268 * @granted_power:      output array: each actor's granted power
 269 * @extra_actor_power:  an appropriately sized array to be used in the
 270 *                      function as temporary storage of the extra power given
 271 *                      to the actors
 272 *
 273 * This function divides the total allocated power (@power_range)
 274 * fairly between the actors.  It first tries to give each actor a
 275 * share of the @power_range according to how much power it requested
 276 * compared to the rest of the actors.  For example, if only one actor
 277 * requests power, then it receives all the @power_range.  If
 278 * three actors each requests 1mW, each receives a third of the
 279 * @power_range.
 280 *
 281 * If any actor received more than their maximum power, then that
 282 * surplus is re-divvied among the actors based on how far they are
 283 * from their respective maximums.
 284 *
 285 * Granted power for each actor is written to @granted_power, which
 286 * should've been allocated by the calling function.
 287 */
 288static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
 289                           u32 total_req_power, u32 power_range,
 290                           u32 *granted_power, u32 *extra_actor_power)
 291{
 292        u32 extra_power, capped_extra_power;
 293        int i;
 294
 295        /*
 296         * Prevent division by 0 if none of the actors request power.
 297         */
 298        if (!total_req_power)
 299                total_req_power = 1;
 300
 301        capped_extra_power = 0;
 302        extra_power = 0;
 303        for (i = 0; i < num_actors; i++) {
 304                u64 req_range = (u64)req_power[i] * power_range;
 305
 306                granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
 307                                                         total_req_power);
 308
 309                if (granted_power[i] > max_power[i]) {
 310                        extra_power += granted_power[i] - max_power[i];
 311                        granted_power[i] = max_power[i];
 312                }
 313
 314                extra_actor_power[i] = max_power[i] - granted_power[i];
 315                capped_extra_power += extra_actor_power[i];
 316        }
 317
 318        if (!extra_power)
 319                return;
 320
 321        /*
 322         * Re-divvy the reclaimed extra among actors based on
 323         * how far they are from the max
 324         */
 325        extra_power = min(extra_power, capped_extra_power);
 326        if (capped_extra_power > 0)
 327                for (i = 0; i < num_actors; i++)
 328                        granted_power[i] += (extra_actor_power[i] *
 329                                        extra_power) / capped_extra_power;
 330}
 331
 332static int allocate_power(struct thermal_zone_device *tz,
 333                          int control_temp)
 334{
 335        struct thermal_instance *instance;
 336        struct power_allocator_params *params = tz->governor_data;
 337        u32 *req_power, *max_power, *granted_power, *extra_actor_power;
 338        u32 *weighted_req_power;
 339        u32 total_req_power, max_allocatable_power, total_weighted_req_power;
 340        u32 total_granted_power, power_range;
 341        int i, num_actors, total_weight, ret = 0;
 342        int trip_max_desired_temperature = params->trip_max_desired_temperature;
 343
 344        mutex_lock(&tz->lock);
 345
 346        num_actors = 0;
 347        total_weight = 0;
 348        list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 349                if ((instance->trip == trip_max_desired_temperature) &&
 350                    cdev_is_power_actor(instance->cdev)) {
 351                        num_actors++;
 352                        total_weight += instance->weight;
 353                }
 354        }
 355
 356        if (!num_actors) {
 357                ret = -ENODEV;
 358                goto unlock;
 359        }
 360
 361        /*
 362         * We need to allocate five arrays of the same size:
 363         * req_power, max_power, granted_power, extra_actor_power and
 364         * weighted_req_power.  They are going to be needed until this
 365         * function returns.  Allocate them all in one go to simplify
 366         * the allocation and deallocation logic.
 367         */
 368        BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
 369        BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
 370        BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
 371        BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
 372        req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
 373        if (!req_power) {
 374                ret = -ENOMEM;
 375                goto unlock;
 376        }
 377
 378        max_power = &req_power[num_actors];
 379        granted_power = &req_power[2 * num_actors];
 380        extra_actor_power = &req_power[3 * num_actors];
 381        weighted_req_power = &req_power[4 * num_actors];
 382
 383        i = 0;
 384        total_weighted_req_power = 0;
 385        total_req_power = 0;
 386        max_allocatable_power = 0;
 387
 388        list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 389                int weight;
 390                struct thermal_cooling_device *cdev = instance->cdev;
 391
 392                if (instance->trip != trip_max_desired_temperature)
 393                        continue;
 394
 395                if (!cdev_is_power_actor(cdev))
 396                        continue;
 397
 398                if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
 399                        continue;
 400
 401                if (!total_weight)
 402                        weight = 1 << FRAC_BITS;
 403                else
 404                        weight = instance->weight;
 405
 406                weighted_req_power[i] = frac_to_int(weight * req_power[i]);
 407
 408                if (power_actor_get_max_power(cdev, tz, &max_power[i]))
 409                        continue;
 410
 411                total_req_power += req_power[i];
 412                max_allocatable_power += max_power[i];
 413                total_weighted_req_power += weighted_req_power[i];
 414
 415                i++;
 416        }
 417
 418        power_range = pid_controller(tz, control_temp, max_allocatable_power);
 419
 420        divvy_up_power(weighted_req_power, max_power, num_actors,
 421                       total_weighted_req_power, power_range, granted_power,
 422                       extra_actor_power);
 423
 424        total_granted_power = 0;
 425        i = 0;
 426        list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 427                if (instance->trip != trip_max_desired_temperature)
 428                        continue;
 429
 430                if (!cdev_is_power_actor(instance->cdev))
 431                        continue;
 432
 433                power_actor_set_power(instance->cdev, instance,
 434                                      granted_power[i]);
 435                total_granted_power += granted_power[i];
 436
 437                i++;
 438        }
 439
 440        trace_thermal_power_allocator(tz, req_power, total_req_power,
 441                                      granted_power, total_granted_power,
 442                                      num_actors, power_range,
 443                                      max_allocatable_power, tz->temperature,
 444                                      control_temp - tz->temperature);
 445
 446        kfree(req_power);
 447unlock:
 448        mutex_unlock(&tz->lock);
 449
 450        return ret;
 451}
 452
 453/**
 454 * get_governor_trips() - get the number of the two trip points that are key for this governor
 455 * @tz: thermal zone to operate on
 456 * @params:     pointer to private data for this governor
 457 *
 458 * The power allocator governor works optimally with two trips points:
 459 * a "switch on" trip point and a "maximum desired temperature".  These
 460 * are defined as the first and last passive trip points.
 461 *
 462 * If there is only one trip point, then that's considered to be the
 463 * "maximum desired temperature" trip point and the governor is always
 464 * on.  If there are no passive or active trip points, then the
 465 * governor won't do anything.  In fact, its throttle function
 466 * won't be called at all.
 467 */
 468static void get_governor_trips(struct thermal_zone_device *tz,
 469                               struct power_allocator_params *params)
 470{
 471        int i, last_active, last_passive;
 472        bool found_first_passive;
 473
 474        found_first_passive = false;
 475        last_active = INVALID_TRIP;
 476        last_passive = INVALID_TRIP;
 477
 478        for (i = 0; i < tz->trips; i++) {
 479                enum thermal_trip_type type;
 480                int ret;
 481
 482                ret = tz->ops->get_trip_type(tz, i, &type);
 483                if (ret) {
 484                        dev_warn(&tz->device,
 485                                 "Failed to get trip point %d type: %d\n", i,
 486                                 ret);
 487                        continue;
 488                }
 489
 490                if (type == THERMAL_TRIP_PASSIVE) {
 491                        if (!found_first_passive) {
 492                                params->trip_switch_on = i;
 493                                found_first_passive = true;
 494                        } else  {
 495                                last_passive = i;
 496                        }
 497                } else if (type == THERMAL_TRIP_ACTIVE) {
 498                        last_active = i;
 499                } else {
 500                        break;
 501                }
 502        }
 503
 504        if (last_passive != INVALID_TRIP) {
 505                params->trip_max_desired_temperature = last_passive;
 506        } else if (found_first_passive) {
 507                params->trip_max_desired_temperature = params->trip_switch_on;
 508                params->trip_switch_on = INVALID_TRIP;
 509        } else {
 510                params->trip_switch_on = INVALID_TRIP;
 511                params->trip_max_desired_temperature = last_active;
 512        }
 513}
 514
 515static void reset_pid_controller(struct power_allocator_params *params)
 516{
 517        params->err_integral = 0;
 518        params->prev_err = 0;
 519}
 520
 521static void allow_maximum_power(struct thermal_zone_device *tz)
 522{
 523        struct thermal_instance *instance;
 524        struct power_allocator_params *params = tz->governor_data;
 525
 526        list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 527                if ((instance->trip != params->trip_max_desired_temperature) ||
 528                    (!cdev_is_power_actor(instance->cdev)))
 529                        continue;
 530
 531                instance->target = 0;
 532                instance->cdev->updated = false;
 533                thermal_cdev_update(instance->cdev);
 534        }
 535}
 536
 537/**
 538 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
 539 * @tz: thermal zone to bind it to
 540 *
 541 * Initialize the PID controller parameters and bind it to the thermal
 542 * zone.
 543 *
 544 * Return: 0 on success, or -ENOMEM if we ran out of memory.
 545 */
 546static int power_allocator_bind(struct thermal_zone_device *tz)
 547{
 548        int ret;
 549        struct power_allocator_params *params;
 550        int control_temp;
 551
 552        params = kzalloc(sizeof(*params), GFP_KERNEL);
 553        if (!params)
 554                return -ENOMEM;
 555
 556        if (!tz->tzp) {
 557                tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
 558                if (!tz->tzp) {
 559                        ret = -ENOMEM;
 560                        goto free_params;
 561                }
 562
 563                params->allocated_tzp = true;
 564        }
 565
 566        if (!tz->tzp->sustainable_power)
 567                dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
 568
 569        get_governor_trips(tz, params);
 570
 571        if (tz->trips > 0) {
 572                ret = tz->ops->get_trip_temp(tz,
 573                                        params->trip_max_desired_temperature,
 574                                        &control_temp);
 575                if (!ret)
 576                        estimate_pid_constants(tz, tz->tzp->sustainable_power,
 577                                               params->trip_switch_on,
 578                                               control_temp, false);
 579        }
 580
 581        reset_pid_controller(params);
 582
 583        tz->governor_data = params;
 584
 585        return 0;
 586
 587free_params:
 588        kfree(params);
 589
 590        return ret;
 591}
 592
 593static void power_allocator_unbind(struct thermal_zone_device *tz)
 594{
 595        struct power_allocator_params *params = tz->governor_data;
 596
 597        dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
 598
 599        if (params->allocated_tzp) {
 600                kfree(tz->tzp);
 601                tz->tzp = NULL;
 602        }
 603
 604        kfree(tz->governor_data);
 605        tz->governor_data = NULL;
 606}
 607
 608static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
 609{
 610        int ret;
 611        int switch_on_temp, control_temp;
 612        struct power_allocator_params *params = tz->governor_data;
 613
 614        /*
 615         * We get called for every trip point but we only need to do
 616         * our calculations once
 617         */
 618        if (trip != params->trip_max_desired_temperature)
 619                return 0;
 620
 621        ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
 622                                     &switch_on_temp);
 623        if (!ret && (tz->temperature < switch_on_temp)) {
 624                tz->passive = 0;
 625                reset_pid_controller(params);
 626                allow_maximum_power(tz);
 627                return 0;
 628        }
 629
 630        tz->passive = 1;
 631
 632        ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
 633                                &control_temp);
 634        if (ret) {
 635                dev_warn(&tz->device,
 636                         "Failed to get the maximum desired temperature: %d\n",
 637                         ret);
 638                return ret;
 639        }
 640
 641        return allocate_power(tz, control_temp);
 642}
 643
 644static struct thermal_governor thermal_gov_power_allocator = {
 645        .name           = "power_allocator",
 646        .bind_to_tz     = power_allocator_bind,
 647        .unbind_from_tz = power_allocator_unbind,
 648        .throttle       = power_allocator_throttle,
 649};
 650
 651int thermal_gov_power_allocator_register(void)
 652{
 653        return thermal_register_governor(&thermal_gov_power_allocator);
 654}
 655
 656void thermal_gov_power_allocator_unregister(void)
 657{
 658        thermal_unregister_governor(&thermal_gov_power_allocator);
 659}
 660