linux/drivers/usb/dwc2/hcd.h
<<
>>
Prefs
   1/*
   2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36#ifndef __DWC2_HCD_H__
  37#define __DWC2_HCD_H__
  38
  39/*
  40 * This file contains the structures, constants, and interfaces for the
  41 * Host Contoller Driver (HCD)
  42 *
  43 * The Host Controller Driver (HCD) is responsible for translating requests
  44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
  45 * It isolates the USBD from the specifics of the controller by providing an
  46 * API to the USBD.
  47 */
  48
  49struct dwc2_qh;
  50
  51/**
  52 * struct dwc2_host_chan - Software host channel descriptor
  53 *
  54 * @hc_num:             Host channel number, used for register address lookup
  55 * @dev_addr:           Address of the device
  56 * @ep_num:             Endpoint of the device
  57 * @ep_is_in:           Endpoint direction
  58 * @speed:              Device speed. One of the following values:
  59 *                       - USB_SPEED_LOW
  60 *                       - USB_SPEED_FULL
  61 *                       - USB_SPEED_HIGH
  62 * @ep_type:            Endpoint type. One of the following values:
  63 *                       - USB_ENDPOINT_XFER_CONTROL: 0
  64 *                       - USB_ENDPOINT_XFER_ISOC:    1
  65 *                       - USB_ENDPOINT_XFER_BULK:    2
  66 *                       - USB_ENDPOINT_XFER_INTR:    3
  67 * @max_packet:         Max packet size in bytes
  68 * @data_pid_start:     PID for initial transaction.
  69 *                       0: DATA0
  70 *                       1: DATA2
  71 *                       2: DATA1
  72 *                       3: MDATA (non-Control EP),
  73 *                          SETUP (Control EP)
  74 * @multi_count:        Number of additional periodic transactions per
  75 *                      (micro)frame
  76 * @xfer_buf:           Pointer to current transfer buffer position
  77 * @xfer_dma:           DMA address of xfer_buf
  78 * @xfer_len:           Total number of bytes to transfer
  79 * @xfer_count:         Number of bytes transferred so far
  80 * @start_pkt_count:    Packet count at start of transfer
  81 * @xfer_started:       True if the transfer has been started
  82 * @ping:               True if a PING request should be issued on this channel
  83 * @error_state:        True if the error count for this transaction is non-zero
  84 * @halt_on_queue:      True if this channel should be halted the next time a
  85 *                      request is queued for the channel. This is necessary in
  86 *                      slave mode if no request queue space is available when
  87 *                      an attempt is made to halt the channel.
  88 * @halt_pending:       True if the host channel has been halted, but the core
  89 *                      is not finished flushing queued requests
  90 * @do_split:           Enable split for the channel
  91 * @complete_split:     Enable complete split
  92 * @hub_addr:           Address of high speed hub for the split
  93 * @hub_port:           Port of the low/full speed device for the split
  94 * @xact_pos:           Split transaction position. One of the following values:
  95 *                       - DWC2_HCSPLT_XACTPOS_MID
  96 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
  97 *                       - DWC2_HCSPLT_XACTPOS_END
  98 *                       - DWC2_HCSPLT_XACTPOS_ALL
  99 * @requests:           Number of requests issued for this channel since it was
 100 *                      assigned to the current transfer (not counting PINGs)
 101 * @schinfo:            Scheduling micro-frame bitmap
 102 * @ntd:                Number of transfer descriptors for the transfer
 103 * @halt_status:        Reason for halting the host channel
 104 * @hcint               Contents of the HCINT register when the interrupt came
 105 * @qh:                 QH for the transfer being processed by this channel
 106 * @hc_list_entry:      For linking to list of host channels
 107 * @desc_list_addr:     Current QH's descriptor list DMA address
 108 * @desc_list_sz:       Current QH's descriptor list size
 109 * @split_order_list_entry: List entry for keeping track of the order of splits
 110 *
 111 * This structure represents the state of a single host channel when acting in
 112 * host mode. It contains the data items needed to transfer packets to an
 113 * endpoint via a host channel.
 114 */
 115struct dwc2_host_chan {
 116        u8 hc_num;
 117
 118        unsigned dev_addr:7;
 119        unsigned ep_num:4;
 120        unsigned ep_is_in:1;
 121        unsigned speed:4;
 122        unsigned ep_type:2;
 123        unsigned max_packet:11;
 124        unsigned data_pid_start:2;
 125#define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
 126#define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
 127#define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
 128#define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
 129#define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
 130
 131        unsigned multi_count:2;
 132
 133        u8 *xfer_buf;
 134        dma_addr_t xfer_dma;
 135        u32 xfer_len;
 136        u32 xfer_count;
 137        u16 start_pkt_count;
 138        u8 xfer_started;
 139        u8 do_ping;
 140        u8 error_state;
 141        u8 halt_on_queue;
 142        u8 halt_pending;
 143        u8 do_split;
 144        u8 complete_split;
 145        u8 hub_addr;
 146        u8 hub_port;
 147        u8 xact_pos;
 148#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
 149#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
 150#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
 151#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
 152
 153        u8 requests;
 154        u8 schinfo;
 155        u16 ntd;
 156        enum dwc2_halt_status halt_status;
 157        u32 hcint;
 158        struct dwc2_qh *qh;
 159        struct list_head hc_list_entry;
 160        dma_addr_t desc_list_addr;
 161        u32 desc_list_sz;
 162        struct list_head split_order_list_entry;
 163};
 164
 165struct dwc2_hcd_pipe_info {
 166        u8 dev_addr;
 167        u8 ep_num;
 168        u8 pipe_type;
 169        u8 pipe_dir;
 170        u16 mps;
 171};
 172
 173struct dwc2_hcd_iso_packet_desc {
 174        u32 offset;
 175        u32 length;
 176        u32 actual_length;
 177        u32 status;
 178};
 179
 180struct dwc2_qtd;
 181
 182struct dwc2_hcd_urb {
 183        void *priv;
 184        struct dwc2_qtd *qtd;
 185        void *buf;
 186        dma_addr_t dma;
 187        void *setup_packet;
 188        dma_addr_t setup_dma;
 189        u32 length;
 190        u32 actual_length;
 191        u32 status;
 192        u32 error_count;
 193        u32 packet_count;
 194        u32 flags;
 195        u16 interval;
 196        struct dwc2_hcd_pipe_info pipe_info;
 197        struct dwc2_hcd_iso_packet_desc iso_descs[0];
 198};
 199
 200/* Phases for control transfers */
 201enum dwc2_control_phase {
 202        DWC2_CONTROL_SETUP,
 203        DWC2_CONTROL_DATA,
 204        DWC2_CONTROL_STATUS,
 205};
 206
 207/* Transaction types */
 208enum dwc2_transaction_type {
 209        DWC2_TRANSACTION_NONE,
 210        DWC2_TRANSACTION_PERIODIC,
 211        DWC2_TRANSACTION_NON_PERIODIC,
 212        DWC2_TRANSACTION_ALL,
 213};
 214
 215/* The number of elements per LS bitmap (per port on multi_tt) */
 216#define DWC2_ELEMENTS_PER_LS_BITMAP     DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
 217                                                     BITS_PER_LONG)
 218
 219/**
 220 * struct dwc2_tt - dwc2 data associated with a usb_tt
 221 *
 222 * @refcount:           Number of Queue Heads (QHs) holding a reference.
 223 * @usb_tt:             Pointer back to the official usb_tt.
 224 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
 225 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
 226 *                      elements (so sizeof(long) times that in bytes).
 227 *
 228 * This structure is stored in the hcpriv of the official usb_tt.
 229 */
 230struct dwc2_tt {
 231        int refcount;
 232        struct usb_tt *usb_tt;
 233        unsigned long periodic_bitmaps[];
 234};
 235
 236/**
 237 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
 238 *
 239 * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
 240 *                         the main bus schedule is tightly packed and this
 241 *                         time should be interpreted as tightly packed (so
 242 *                         uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
 243 *                         instead of 125 us).
 244 * @duration_us:           How long this transfer goes.
 245 */
 246
 247struct dwc2_hs_transfer_time {
 248        u32 start_schedule_us;
 249        u16 duration_us;
 250};
 251
 252/**
 253 * struct dwc2_qh - Software queue head structure
 254 *
 255 * @hsotg:              The HCD state structure for the DWC OTG controller
 256 * @ep_type:            Endpoint type. One of the following values:
 257 *                       - USB_ENDPOINT_XFER_CONTROL
 258 *                       - USB_ENDPOINT_XFER_BULK
 259 *                       - USB_ENDPOINT_XFER_INT
 260 *                       - USB_ENDPOINT_XFER_ISOC
 261 * @ep_is_in:           Endpoint direction
 262 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 263 * @dev_speed:          Device speed. One of the following values:
 264 *                       - USB_SPEED_LOW
 265 *                       - USB_SPEED_FULL
 266 *                       - USB_SPEED_HIGH
 267 * @data_toggle:        Determines the PID of the next data packet for
 268 *                      non-controltransfers. Ignored for control transfers.
 269 *                      One of the following values:
 270 *                       - DWC2_HC_PID_DATA0
 271 *                       - DWC2_HC_PID_DATA1
 272 * @ping_state:         Ping state
 273 * @do_split:           Full/low speed endpoint on high-speed hub requires split
 274 * @td_first:           Index of first activated isochronous transfer descriptor
 275 * @td_last:            Index of last activated isochronous transfer descriptor
 276 * @host_us:            Bandwidth in microseconds per transfer as seen by host
 277 * @device_us:          Bandwidth in microseconds per transfer as seen by device
 278 * @host_interval:      Interval between transfers as seen by the host.  If
 279 *                      the host is high speed and the device is low speed this
 280 *                      will be 8 times device interval.
 281 * @device_interval:    Interval between transfers as seen by the device.
 282 *                      interval.
 283 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
 284 *                      the bus.  We'll move the qh to active here.  If the
 285 *                      host is in high speed mode this will be a uframe.  If
 286 *                      the host is in low speed mode this will be a full frame.
 287 * @start_active_frame: If we are partway through a split transfer, this will be
 288 *                      what next_active_frame was when we started.  Otherwise
 289 *                      it should always be the same as next_active_frame.
 290 * @num_hs_transfers:   Number of transfers in hs_transfers.
 291 *                      Normally this is 1 but can be more than one for splits.
 292 *                      Always >= 1 unless the host is in low/full speed mode.
 293 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
 294 *                      bus.  Not used if host is in low or full speed mode (but
 295 *                      note that it IS USED if the device is low or full speed
 296 *                      as long as the HOST is in high speed mode).
 297 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
 298 *                           schedule that's being used by this device.  This
 299 *                           will be on the periodic_bitmap in a
 300 *                           "struct dwc2_tt".  Not used if this device is high
 301 *                           speed.  Note that this is in "schedule slice" which
 302 *                           is tightly packed.
 303 * @ls_duration_us:     Duration on the low speed bus schedule.
 304 * @ntd:                Actual number of transfer descriptors in a list
 305 * @qtd_list:           List of QTDs for this QH
 306 * @channel:            Host channel currently processing transfers for this QH
 307 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
 308 *                      schedule
 309 * @desc_list:          List of transfer descriptors
 310 * @desc_list_dma:      Physical address of desc_list
 311 * @desc_list_sz:       Size of descriptors list
 312 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
 313 *                      descriptor and indicates original XferSize value for the
 314 *                      descriptor
 315 * @unreserve_timer:    Timer for releasing periodic reservation.
 316 * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
 317 * @ttport:             Port number within our tt.
 318 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
 319 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
 320 * @schedule_low_speed: True if we have a low/full speed component (either the
 321 *                      host is in low/full speed mode or do_split).
 322 *
 323 * A Queue Head (QH) holds the static characteristics of an endpoint and
 324 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
 325 * be entered in either the non-periodic or periodic schedule.
 326 */
 327struct dwc2_qh {
 328        struct dwc2_hsotg *hsotg;
 329        u8 ep_type;
 330        u8 ep_is_in;
 331        u16 maxp;
 332        u8 dev_speed;
 333        u8 data_toggle;
 334        u8 ping_state;
 335        u8 do_split;
 336        u8 td_first;
 337        u8 td_last;
 338        u16 host_us;
 339        u16 device_us;
 340        u16 host_interval;
 341        u16 device_interval;
 342        u16 next_active_frame;
 343        u16 start_active_frame;
 344        s16 num_hs_transfers;
 345        struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
 346        u32 ls_start_schedule_slice;
 347        u16 ntd;
 348        struct list_head qtd_list;
 349        struct dwc2_host_chan *channel;
 350        struct list_head qh_list_entry;
 351        struct dwc2_hcd_dma_desc *desc_list;
 352        dma_addr_t desc_list_dma;
 353        u32 desc_list_sz;
 354        u32 *n_bytes;
 355        struct timer_list unreserve_timer;
 356        struct dwc2_tt *dwc_tt;
 357        int ttport;
 358        unsigned tt_buffer_dirty:1;
 359        unsigned unreserve_pending:1;
 360        unsigned schedule_low_speed:1;
 361};
 362
 363/**
 364 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
 365 *
 366 * @control_phase:      Current phase for control transfers (Setup, Data, or
 367 *                      Status)
 368 * @in_process:         Indicates if this QTD is currently processed by HW
 369 * @data_toggle:        Determines the PID of the next data packet for the
 370 *                      data phase of control transfers. Ignored for other
 371 *                      transfer types. One of the following values:
 372 *                       - DWC2_HC_PID_DATA0
 373 *                       - DWC2_HC_PID_DATA1
 374 * @complete_split:     Keeps track of the current split type for FS/LS
 375 *                      endpoints on a HS Hub
 376 * @isoc_split_pos:     Position of the ISOC split in full/low speed
 377 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
 378 *                      transfer. A frame descriptor describes the buffer
 379 *                      position and length of the data to be transferred in the
 380 *                      next scheduled (micro)frame of an isochronous transfer.
 381 *                      It also holds status for that transaction. The frame
 382 *                      index starts at 0.
 383 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
 384 *                      current frame
 385 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
 386 * @error_count:        Holds the number of bus errors that have occurred for
 387 *                      a transaction within this transfer
 388 * @n_desc:             Number of DMA descriptors for this QTD
 389 * @isoc_frame_index_last: Last activated frame (packet) index, used in
 390 *                      descriptor DMA mode only
 391 * @urb:                URB for this transfer
 392 * @qh:                 Queue head for this QTD
 393 * @qtd_list_entry:     For linking to the QH's list of QTDs
 394 *
 395 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
 396 * interrupt, or isochronous transfer. A single QTD is created for each URB
 397 * (of one of these types) submitted to the HCD. The transfer associated with
 398 * a QTD may require one or multiple transactions.
 399 *
 400 * A QTD is linked to a Queue Head, which is entered in either the
 401 * non-periodic or periodic schedule for execution. When a QTD is chosen for
 402 * execution, some or all of its transactions may be executed. After
 403 * execution, the state of the QTD is updated. The QTD may be retired if all
 404 * its transactions are complete or if an error occurred. Otherwise, it
 405 * remains in the schedule so more transactions can be executed later.
 406 */
 407struct dwc2_qtd {
 408        enum dwc2_control_phase control_phase;
 409        u8 in_process;
 410        u8 data_toggle;
 411        u8 complete_split;
 412        u8 isoc_split_pos;
 413        u16 isoc_frame_index;
 414        u16 isoc_split_offset;
 415        u16 isoc_td_last;
 416        u16 isoc_td_first;
 417        u32 ssplit_out_xfer_count;
 418        u8 error_count;
 419        u8 n_desc;
 420        u16 isoc_frame_index_last;
 421        struct dwc2_hcd_urb *urb;
 422        struct dwc2_qh *qh;
 423        struct list_head qtd_list_entry;
 424};
 425
 426#ifdef DEBUG
 427struct hc_xfer_info {
 428        struct dwc2_hsotg *hsotg;
 429        struct dwc2_host_chan *chan;
 430};
 431#endif
 432
 433u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
 434
 435/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
 436static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
 437{
 438        return (struct usb_hcd *)hsotg->priv;
 439}
 440
 441/*
 442 * Inline used to disable one channel interrupt. Channel interrupts are
 443 * disabled when the channel is halted or released by the interrupt handler.
 444 * There is no need to handle further interrupts of that type until the
 445 * channel is re-assigned. In fact, subsequent handling may cause crashes
 446 * because the channel structures are cleaned up when the channel is released.
 447 */
 448static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
 449{
 450        u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
 451
 452        mask &= ~intr;
 453        dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
 454}
 455
 456void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
 457void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 458                  enum dwc2_halt_status halt_status);
 459void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
 460                                 struct dwc2_host_chan *chan);
 461
 462/*
 463 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
 464 * are read as 1, they won't clear when written back.
 465 */
 466static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
 467{
 468        u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 469
 470        hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
 471        return hprt0;
 472}
 473
 474static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
 475{
 476        return pipe->ep_num;
 477}
 478
 479static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
 480{
 481        return pipe->pipe_type;
 482}
 483
 484static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
 485{
 486        return pipe->mps;
 487}
 488
 489static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
 490{
 491        return pipe->dev_addr;
 492}
 493
 494static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
 495{
 496        return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
 497}
 498
 499static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
 500{
 501        return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
 502}
 503
 504static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
 505{
 506        return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
 507}
 508
 509static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
 510{
 511        return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
 512}
 513
 514static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
 515{
 516        return pipe->pipe_dir == USB_DIR_IN;
 517}
 518
 519static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
 520{
 521        return !dwc2_hcd_is_pipe_in(pipe);
 522}
 523
 524extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
 525extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
 526
 527/* Transaction Execution Functions */
 528extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
 529                                                struct dwc2_hsotg *hsotg);
 530extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
 531                                        enum dwc2_transaction_type tr_type);
 532
 533/* Schedule Queue Functions */
 534/* Implemented in hcd_queue.c */
 535extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
 536                                          struct dwc2_hcd_urb *urb,
 537                                          gfp_t mem_flags);
 538extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 539extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 540extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 541extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 542                                   int sched_csplit);
 543
 544extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
 545extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 546                            struct dwc2_qh *qh);
 547
 548/* Unlinks and frees a QTD */
 549static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
 550                                                struct dwc2_qtd *qtd,
 551                                                struct dwc2_qh *qh)
 552{
 553        list_del(&qtd->qtd_list_entry);
 554        kfree(qtd);
 555}
 556
 557/* Descriptor DMA support functions */
 558extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
 559                                     struct dwc2_qh *qh);
 560extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
 561                                        struct dwc2_host_chan *chan, int chnum,
 562                                        enum dwc2_halt_status halt_status);
 563
 564extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 565                                 gfp_t mem_flags);
 566extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 567
 568/* Check if QH is non-periodic */
 569#define dwc2_qh_is_non_per(_qh_ptr_) \
 570        ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
 571         (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
 572
 573#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
 574static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
 575static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
 576static inline bool dbg_urb(struct urb *urb) { return true; }
 577static inline bool dbg_perio(void) { return true; }
 578#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
 579static inline bool dbg_hc(struct dwc2_host_chan *hc)
 580{
 581        return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
 582               hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
 583}
 584
 585static inline bool dbg_qh(struct dwc2_qh *qh)
 586{
 587        return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
 588               qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
 589}
 590
 591static inline bool dbg_urb(struct urb *urb)
 592{
 593        return usb_pipetype(urb->pipe) == PIPE_BULK ||
 594               usb_pipetype(urb->pipe) == PIPE_CONTROL;
 595}
 596
 597static inline bool dbg_perio(void) { return false; }
 598#endif
 599
 600/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
 601#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
 602
 603/* Packet size for any kind of endpoint descriptor */
 604#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
 605
 606/*
 607 * Returns true if frame1 index is greater than frame2 index. The comparison
 608 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
 609 * frame number when the max index frame number is reached.
 610 */
 611static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
 612{
 613        u16 diff = fr_idx1 - fr_idx2;
 614        u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
 615
 616        return diff && !sign;
 617}
 618
 619/*
 620 * Returns true if frame1 is less than or equal to frame2. The comparison is
 621 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
 622 * frame number when the max frame number is reached.
 623 */
 624static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
 625{
 626        return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
 627}
 628
 629/*
 630 * Returns true if frame1 is greater than frame2. The comparison is done
 631 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
 632 * number when the max frame number is reached.
 633 */
 634static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
 635{
 636        return (frame1 != frame2) &&
 637               ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
 638}
 639
 640/*
 641 * Increments frame by the amount specified by inc. The addition is done
 642 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
 643 */
 644static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
 645{
 646        return (frame + inc) & HFNUM_MAX_FRNUM;
 647}
 648
 649static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
 650{
 651        return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
 652}
 653
 654static inline u16 dwc2_full_frame_num(u16 frame)
 655{
 656        return (frame & HFNUM_MAX_FRNUM) >> 3;
 657}
 658
 659static inline u16 dwc2_micro_frame_num(u16 frame)
 660{
 661        return frame & 0x7;
 662}
 663
 664/*
 665 * Returns the Core Interrupt Status register contents, ANDed with the Core
 666 * Interrupt Mask register contents
 667 */
 668static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
 669{
 670        return dwc2_readl(hsotg->regs + GINTSTS) &
 671               dwc2_readl(hsotg->regs + GINTMSK);
 672}
 673
 674static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
 675{
 676        return dwc2_urb->status;
 677}
 678
 679static inline u32 dwc2_hcd_urb_get_actual_length(
 680                struct dwc2_hcd_urb *dwc2_urb)
 681{
 682        return dwc2_urb->actual_length;
 683}
 684
 685static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
 686{
 687        return dwc2_urb->error_count;
 688}
 689
 690static inline void dwc2_hcd_urb_set_iso_desc_params(
 691                struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
 692                u32 length)
 693{
 694        dwc2_urb->iso_descs[desc_num].offset = offset;
 695        dwc2_urb->iso_descs[desc_num].length = length;
 696}
 697
 698static inline u32 dwc2_hcd_urb_get_iso_desc_status(
 699                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 700{
 701        return dwc2_urb->iso_descs[desc_num].status;
 702}
 703
 704static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
 705                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 706{
 707        return dwc2_urb->iso_descs[desc_num].actual_length;
 708}
 709
 710static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
 711                                                  struct usb_host_endpoint *ep)
 712{
 713        struct dwc2_qh *qh = ep->hcpriv;
 714
 715        if (qh && !list_empty(&qh->qh_list_entry))
 716                return 1;
 717
 718        return 0;
 719}
 720
 721static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
 722                                            struct usb_host_endpoint *ep)
 723{
 724        struct dwc2_qh *qh = ep->hcpriv;
 725
 726        if (!qh) {
 727                WARN_ON(1);
 728                return 0;
 729        }
 730
 731        return qh->host_us;
 732}
 733
 734extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
 735                                      struct dwc2_host_chan *chan, int chnum,
 736                                      struct dwc2_qtd *qtd);
 737
 738/* HCD Core API */
 739
 740/**
 741 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
 742 *
 743 * @hsotg: The DWC2 HCD
 744 *
 745 * Returns IRQ_HANDLED if interrupt is handled
 746 * Return IRQ_NONE if interrupt is not handled
 747 */
 748extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
 749
 750/**
 751 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
 752 *
 753 * @hsotg: The DWC2 HCD
 754 */
 755extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
 756
 757/**
 758 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
 759 * and 0 otherwise
 760 *
 761 * @hsotg: The DWC2 HCD
 762 */
 763extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
 764
 765/**
 766 * dwc2_hcd_dump_state() - Dumps hsotg state
 767 *
 768 * @hsotg: The DWC2 HCD
 769 *
 770 * NOTE: This function will be removed once the peripheral controller code
 771 * is integrated and the driver is stable
 772 */
 773extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 774
 775/**
 776 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
 777 *
 778 * @hsotg: The DWC2 HCD
 779 *
 780 * This can be used to determine average interrupt latency. Frame remaining is
 781 * also shown for start transfer and two additional sample points.
 782 *
 783 * NOTE: This function will be removed once the peripheral controller code
 784 * is integrated and the driver is stable
 785 */
 786extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
 787
 788/* URB interface */
 789
 790/* Transfer flags */
 791#define URB_GIVEBACK_ASAP       0x1
 792#define URB_SEND_ZERO_PACKET    0x2
 793
 794/* Host driver callbacks */
 795
 796extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
 797extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
 798extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 799                               int *hub_addr, int *hub_port);
 800extern struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
 801                                             void *context, gfp_t mem_flags,
 802                                             int *ttport);
 803
 804extern void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
 805                                  struct dwc2_tt *dwc_tt);
 806extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
 807extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 808                               int status);
 809
 810#ifdef DEBUG
 811/*
 812 * Macro to sample the remaining PHY clocks left in the current frame. This
 813 * may be used during debugging to determine the average time it takes to
 814 * execute sections of code. There are two possible sample points, "a" and
 815 * "b", so the _letter_ argument must be one of these values.
 816 *
 817 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
 818 * example, "cat /sys/devices/lm0/hcd_frrem".
 819 */
 820#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)                        \
 821do {                                                                    \
 822        struct hfnum_data _hfnum_;                                      \
 823        struct dwc2_qtd *_qtd_;                                         \
 824                                                                        \
 825        _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,      \
 826                           qtd_list_entry);                             \
 827        if (usb_pipeint(_qtd_->urb->pipe) &&                            \
 828            (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
 829                _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);        \
 830                switch (_hfnum_.b.frnum & 0x7) {                        \
 831                case 7:                                                 \
 832                        (_hcd_)->hfnum_7_samples_##_letter_++;          \
 833                        (_hcd_)->hfnum_7_frrem_accum_##_letter_ +=      \
 834                                _hfnum_.b.frrem;                        \
 835                        break;                                          \
 836                case 0:                                                 \
 837                        (_hcd_)->hfnum_0_samples_##_letter_++;          \
 838                        (_hcd_)->hfnum_0_frrem_accum_##_letter_ +=      \
 839                                _hfnum_.b.frrem;                        \
 840                        break;                                          \
 841                default:                                                \
 842                        (_hcd_)->hfnum_other_samples_##_letter_++;      \
 843                        (_hcd_)->hfnum_other_frrem_accum_##_letter_ +=  \
 844                                _hfnum_.b.frrem;                        \
 845                        break;                                          \
 846                }                                                       \
 847        }                                                               \
 848} while (0)
 849#else
 850#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)        do {} while (0)
 851#endif
 852
 853#endif /* __DWC2_HCD_H__ */
 854