linux/drivers/usb/dwc2/hcd_queue.c
<<
>>
Prefs
   1/*
   2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37/*
  38 * This file contains the functions to manage Queue Heads and Queue
  39 * Transfer Descriptors for Host mode
  40 */
  41#include <linux/gcd.h>
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/dma-mapping.h>
  47#include <linux/io.h>
  48#include <linux/slab.h>
  49#include <linux/usb.h>
  50
  51#include <linux/usb/hcd.h>
  52#include <linux/usb/ch11.h>
  53
  54#include "core.h"
  55#include "hcd.h"
  56
  57/* Wait this long before releasing periodic reservation */
  58#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
  59
  60/**
  61 * dwc2_periodic_channel_available() - Checks that a channel is available for a
  62 * periodic transfer
  63 *
  64 * @hsotg: The HCD state structure for the DWC OTG controller
  65 *
  66 * Return: 0 if successful, negative error code otherwise
  67 */
  68static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
  69{
  70        /*
  71         * Currently assuming that there is a dedicated host channel for
  72         * each periodic transaction plus at least one host channel for
  73         * non-periodic transactions
  74         */
  75        int status;
  76        int num_channels;
  77
  78        num_channels = hsotg->core_params->host_channels;
  79        if (hsotg->periodic_channels + hsotg->non_periodic_channels <
  80                                                                num_channels
  81            && hsotg->periodic_channels < num_channels - 1) {
  82                status = 0;
  83        } else {
  84                dev_dbg(hsotg->dev,
  85                        "%s: Total channels: %d, Periodic: %d, "
  86                        "Non-periodic: %d\n", __func__, num_channels,
  87                        hsotg->periodic_channels, hsotg->non_periodic_channels);
  88                status = -ENOSPC;
  89        }
  90
  91        return status;
  92}
  93
  94/**
  95 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
  96 * for the specified QH in the periodic schedule
  97 *
  98 * @hsotg: The HCD state structure for the DWC OTG controller
  99 * @qh:    QH containing periodic bandwidth required
 100 *
 101 * Return: 0 if successful, negative error code otherwise
 102 *
 103 * For simplicity, this calculation assumes that all the transfers in the
 104 * periodic schedule may occur in the same (micro)frame
 105 */
 106static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
 107                                         struct dwc2_qh *qh)
 108{
 109        int status;
 110        s16 max_claimed_usecs;
 111
 112        status = 0;
 113
 114        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
 115                /*
 116                 * High speed mode
 117                 * Max periodic usecs is 80% x 125 usec = 100 usec
 118                 */
 119                max_claimed_usecs = 100 - qh->host_us;
 120        } else {
 121                /*
 122                 * Full speed mode
 123                 * Max periodic usecs is 90% x 1000 usec = 900 usec
 124                 */
 125                max_claimed_usecs = 900 - qh->host_us;
 126        }
 127
 128        if (hsotg->periodic_usecs > max_claimed_usecs) {
 129                dev_err(hsotg->dev,
 130                        "%s: already claimed usecs %d, required usecs %d\n",
 131                        __func__, hsotg->periodic_usecs, qh->host_us);
 132                status = -ENOSPC;
 133        }
 134
 135        return status;
 136}
 137
 138/**
 139 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
 140 *
 141 * @map:             The bitmap representing the schedule; will be updated
 142 *                   upon success.
 143 * @bits_per_period: The schedule represents several periods.  This is how many
 144 *                   bits are in each period.  It's assumed that the beginning
 145 *                   of the schedule will repeat after its end.
 146 * @periods_in_map:  The number of periods in the schedule.
 147 * @num_bits:        The number of bits we need per period we want to reserve
 148 *                   in this function call.
 149 * @interval:        How often we need to be scheduled for the reservation this
 150 *                   time.  1 means every period.  2 means every other period.
 151 *                   ...you get the picture?
 152 * @start:           The bit number to start at.  Normally 0.  Must be within
 153 *                   the interval or we return failure right away.
 154 * @only_one_period: Normally we'll allow picking a start anywhere within the
 155 *                   first interval, since we can still make all repetition
 156 *                   requirements by doing that.  However, if you pass true
 157 *                   here then we'll return failure if we can't fit within
 158 *                   the period that "start" is in.
 159 *
 160 * The idea here is that we want to schedule time for repeating events that all
 161 * want the same resource.  The resource is divided into fixed-sized periods
 162 * and the events want to repeat every "interval" periods.  The schedule
 163 * granularity is one bit.
 164 *
 165 * To keep things "simple", we'll represent our schedule with a bitmap that
 166 * contains a fixed number of periods.  This gets rid of a lot of complexity
 167 * but does mean that we need to handle things specially (and non-ideally) if
 168 * the number of the periods in the schedule doesn't match well with the
 169 * intervals that we're trying to schedule.
 170 *
 171 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
 172 * - If interval is 1, we need to take up space in each of the 8
 173 *   periods we're scheduling.  Easy.
 174 * - If interval is 2, we need to take up space in half of the
 175 *   periods.  Again, easy.
 176 * - If interval is 3, we actually need to fall back to interval 1.
 177 *   Why?  Because we might need time in any period.  AKA for the
 178 *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
 179 *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
 180 *   0, 3, and 6.  Since we could be in any frame we need to reserve
 181 *   for all of them.  Sucks, but that's what you gotta do.  Note that
 182 *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
 183 *   then we need more memory and time to do scheduling.
 184 * - If interval is 4, easy.
 185 * - If interval is 5, we again need interval 1.  The schedule will be
 186 *   0, 5, 2, 7, 4, 1, 6, 3, 0
 187 * - If interval is 6, we need interval 2.  0, 6, 4, 2.
 188 * - If interval is 7, we need interval 1.
 189 * - If interval is 8, we need interval 8.
 190 *
 191 * If you do the math, you'll see that we need to pretend that interval is
 192 * equal to the greatest_common_divisor(interval, periods_in_map).
 193 *
 194 * Note that at the moment this function tends to front-pack the schedule.
 195 * In some cases that's really non-ideal (it's hard to schedule things that
 196 * need to repeat every period).  In other cases it's perfect (you can easily
 197 * schedule bigger, less often repeating things).
 198 *
 199 * Here's the algorithm in action (8 periods, 5 bits per period):
 200 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 201 *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
 202 *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
 203 *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
 204 *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
 205 *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
 206 *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
 207 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
 208 *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
 209 *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
 210 *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
 211 *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
 212 *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
 213 *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
 214 *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
 215 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
 216 *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
 217 *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
 218 *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
 219 *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
 220 *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
 221 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
 222 *
 223 * This function is pretty generic and could be easily abstracted if anything
 224 * needed similar scheduling.
 225 *
 226 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
 227 * unschedule routine.  The map bitmap will be updated on a non-error result.
 228 */
 229static int pmap_schedule(unsigned long *map, int bits_per_period,
 230                         int periods_in_map, int num_bits,
 231                         int interval, int start, bool only_one_period)
 232{
 233        int interval_bits;
 234        int to_reserve;
 235        int first_end;
 236        int i;
 237
 238        if (num_bits > bits_per_period)
 239                return -ENOSPC;
 240
 241        /* Adjust interval as per description */
 242        interval = gcd(interval, periods_in_map);
 243
 244        interval_bits = bits_per_period * interval;
 245        to_reserve = periods_in_map / interval;
 246
 247        /* If start has gotten us past interval then we can't schedule */
 248        if (start >= interval_bits)
 249                return -ENOSPC;
 250
 251        if (only_one_period)
 252                /* Must fit within same period as start; end at begin of next */
 253                first_end = (start / bits_per_period + 1) * bits_per_period;
 254        else
 255                /* Can fit anywhere in the first interval */
 256                first_end = interval_bits;
 257
 258        /*
 259         * We'll try to pick the first repetition, then see if that time
 260         * is free for each of the subsequent repetitions.  If it's not
 261         * we'll adjust the start time for the next search of the first
 262         * repetition.
 263         */
 264        while (start + num_bits <= first_end) {
 265                int end;
 266
 267                /* Need to stay within this period */
 268                end = (start / bits_per_period + 1) * bits_per_period;
 269
 270                /* Look for num_bits us in this microframe starting at start */
 271                start = bitmap_find_next_zero_area(map, end, start, num_bits,
 272                                                   0);
 273
 274                /*
 275                 * We should get start >= end if we fail.  We might be
 276                 * able to check the next microframe depending on the
 277                 * interval, so continue on (start already updated).
 278                 */
 279                if (start >= end) {
 280                        start = end;
 281                        continue;
 282                }
 283
 284                /* At this point we have a valid point for first one */
 285                for (i = 1; i < to_reserve; i++) {
 286                        int ith_start = start + interval_bits * i;
 287                        int ith_end = end + interval_bits * i;
 288                        int ret;
 289
 290                        /* Use this as a dumb "check if bits are 0" */
 291                        ret = bitmap_find_next_zero_area(
 292                                map, ith_start + num_bits, ith_start, num_bits,
 293                                0);
 294
 295                        /* We got the right place, continue checking */
 296                        if (ret == ith_start)
 297                                continue;
 298
 299                        /* Move start up for next time and exit for loop */
 300                        ith_start = bitmap_find_next_zero_area(
 301                                map, ith_end, ith_start, num_bits, 0);
 302                        if (ith_start >= ith_end)
 303                                /* Need a while new period next time */
 304                                start = end;
 305                        else
 306                                start = ith_start - interval_bits * i;
 307                        break;
 308                }
 309
 310                /* If didn't exit the for loop with a break, we have success */
 311                if (i == to_reserve)
 312                        break;
 313        }
 314
 315        if (start + num_bits > first_end)
 316                return -ENOSPC;
 317
 318        for (i = 0; i < to_reserve; i++) {
 319                int ith_start = start + interval_bits * i;
 320
 321                bitmap_set(map, ith_start, num_bits);
 322        }
 323
 324        return start;
 325}
 326
 327/**
 328 * pmap_unschedule() - Undo work done by pmap_schedule()
 329 *
 330 * @map:             See pmap_schedule().
 331 * @bits_per_period: See pmap_schedule().
 332 * @periods_in_map:  See pmap_schedule().
 333 * @num_bits:        The number of bits that was passed to schedule.
 334 * @interval:        The interval that was passed to schedule.
 335 * @start:           The return value from pmap_schedule().
 336 */
 337static void pmap_unschedule(unsigned long *map, int bits_per_period,
 338                            int periods_in_map, int num_bits,
 339                            int interval, int start)
 340{
 341        int interval_bits;
 342        int to_release;
 343        int i;
 344
 345        /* Adjust interval as per description in pmap_schedule() */
 346        interval = gcd(interval, periods_in_map);
 347
 348        interval_bits = bits_per_period * interval;
 349        to_release = periods_in_map / interval;
 350
 351        for (i = 0; i < to_release; i++) {
 352                int ith_start = start + interval_bits * i;
 353
 354                bitmap_clear(map, ith_start, num_bits);
 355        }
 356}
 357
 358/*
 359 * cat_printf() - A printf() + strcat() helper
 360 *
 361 * This is useful for concatenating a bunch of strings where each string is
 362 * constructed using printf.
 363 *
 364 * @buf:   The destination buffer; will be updated to point after the printed
 365 *         data.
 366 * @size:  The number of bytes in the buffer (includes space for '\0').
 367 * @fmt:   The format for printf.
 368 * @...:   The args for printf.
 369 */
 370static void cat_printf(char **buf, size_t *size, const char *fmt, ...)
 371{
 372        va_list args;
 373        int i;
 374
 375        if (*size == 0)
 376                return;
 377
 378        va_start(args, fmt);
 379        i = vsnprintf(*buf, *size, fmt, args);
 380        va_end(args);
 381
 382        if (i >= *size) {
 383                (*buf)[*size - 1] = '\0';
 384                *buf += *size;
 385                *size = 0;
 386        } else {
 387                *buf += i;
 388                *size -= i;
 389        }
 390}
 391
 392/*
 393 * pmap_print() - Print the given periodic map
 394 *
 395 * Will attempt to print out the periodic schedule.
 396 *
 397 * @map:             See pmap_schedule().
 398 * @bits_per_period: See pmap_schedule().
 399 * @periods_in_map:  See pmap_schedule().
 400 * @period_name:     The name of 1 period, like "uFrame"
 401 * @units:           The name of the units, like "us".
 402 * @print_fn:        The function to call for printing.
 403 * @print_data:      Opaque data to pass to the print function.
 404 */
 405static void pmap_print(unsigned long *map, int bits_per_period,
 406                       int periods_in_map, const char *period_name,
 407                       const char *units,
 408                       void (*print_fn)(const char *str, void *data),
 409                       void *print_data)
 410{
 411        int period;
 412
 413        for (period = 0; period < periods_in_map; period++) {
 414                char tmp[64];
 415                char *buf = tmp;
 416                size_t buf_size = sizeof(tmp);
 417                int period_start = period * bits_per_period;
 418                int period_end = period_start + bits_per_period;
 419                int start = 0;
 420                int count = 0;
 421                bool printed = false;
 422                int i;
 423
 424                for (i = period_start; i < period_end + 1; i++) {
 425                        /* Handle case when ith bit is set */
 426                        if (i < period_end &&
 427                            bitmap_find_next_zero_area(map, i + 1,
 428                                                       i, 1, 0) != i) {
 429                                if (count == 0)
 430                                        start = i - period_start;
 431                                count++;
 432                                continue;
 433                        }
 434
 435                        /* ith bit isn't set; don't care if count == 0 */
 436                        if (count == 0)
 437                                continue;
 438
 439                        if (!printed)
 440                                cat_printf(&buf, &buf_size, "%s %d: ",
 441                                           period_name, period);
 442                        else
 443                                cat_printf(&buf, &buf_size, ", ");
 444                        printed = true;
 445
 446                        cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
 447                                   units, start + count - 1, units);
 448                        count = 0;
 449                }
 450
 451                if (printed)
 452                        print_fn(tmp, print_data);
 453        }
 454}
 455
 456/**
 457 * dwc2_get_ls_map() - Get the map used for the given qh
 458 *
 459 * @hsotg: The HCD state structure for the DWC OTG controller.
 460 * @qh:    QH for the periodic transfer.
 461 *
 462 * We'll always get the periodic map out of our TT.  Note that even if we're
 463 * running the host straight in low speed / full speed mode it appears as if
 464 * a TT is allocated for us, so we'll use it.  If that ever changes we can
 465 * add logic here to get a map out of "hsotg" if !qh->do_split.
 466 *
 467 * Returns: the map or NULL if a map couldn't be found.
 468 */
 469static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
 470                                      struct dwc2_qh *qh)
 471{
 472        unsigned long *map;
 473
 474        /* Don't expect to be missing a TT and be doing low speed scheduling */
 475        if (WARN_ON(!qh->dwc_tt))
 476                return NULL;
 477
 478        /* Get the map and adjust if this is a multi_tt hub */
 479        map = qh->dwc_tt->periodic_bitmaps;
 480        if (qh->dwc_tt->usb_tt->multi)
 481                map += DWC2_ELEMENTS_PER_LS_BITMAP * qh->ttport;
 482
 483        return map;
 484}
 485
 486struct dwc2_qh_print_data {
 487        struct dwc2_hsotg *hsotg;
 488        struct dwc2_qh *qh;
 489};
 490
 491/**
 492 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
 493 *
 494 * @str:  The string to print
 495 * @data: A pointer to a struct dwc2_qh_print_data
 496 */
 497static void dwc2_qh_print(const char *str, void *data)
 498{
 499        struct dwc2_qh_print_data *print_data = data;
 500
 501        dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
 502}
 503
 504/**
 505 * dwc2_qh_schedule_print() - Print the periodic schedule
 506 *
 507 * @hsotg: The HCD state structure for the DWC OTG controller.
 508 * @qh:    QH to print.
 509 */
 510static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
 511                                   struct dwc2_qh *qh)
 512{
 513        struct dwc2_qh_print_data print_data = { hsotg, qh };
 514        int i;
 515
 516        /*
 517         * The printing functions are quite slow and inefficient.
 518         * If we don't have tracing turned on, don't run unless the special
 519         * define is turned on.
 520         */
 521#ifndef DWC2_PRINT_SCHEDULE
 522        return;
 523#endif
 524
 525        if (qh->schedule_low_speed) {
 526                unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 527
 528                dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
 529                             qh, qh->device_us,
 530                             DWC2_ROUND_US_TO_SLICE(qh->device_us),
 531                             DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
 532
 533                if (map) {
 534                        dwc2_sch_dbg(hsotg,
 535                                     "QH=%p Whole low/full speed map %p now:\n",
 536                                     qh, map);
 537                        pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 538                                   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
 539                                   dwc2_qh_print, &print_data);
 540                }
 541        }
 542
 543        for (i = 0; i < qh->num_hs_transfers; i++) {
 544                struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
 545                int uframe = trans_time->start_schedule_us /
 546                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 547                int rel_us = trans_time->start_schedule_us %
 548                             DWC2_HS_PERIODIC_US_PER_UFRAME;
 549
 550                dwc2_sch_dbg(hsotg,
 551                             "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
 552                             qh, i, trans_time->duration_us, uframe, rel_us);
 553        }
 554        if (qh->num_hs_transfers) {
 555                dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
 556                pmap_print(hsotg->hs_periodic_bitmap,
 557                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 558                           DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
 559                           dwc2_qh_print, &print_data);
 560        }
 561
 562}
 563
 564/**
 565 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
 566 *
 567 * @hsotg:        The HCD state structure for the DWC OTG controller.
 568 * @qh:           QH for the periodic transfer.
 569 * @search_slice: We'll start trying to schedule at the passed slice.
 570 *                Remember that slices are the units of the low speed
 571 *                schedule (think 25us or so).
 572 *
 573 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
 574 *
 575 * Normally we schedule low speed devices on the map associated with the TT.
 576 *
 577 * Returns: 0 for success or an error code.
 578 */
 579static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 580                                 int search_slice)
 581{
 582        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 583        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 584        int slice;
 585
 586        if (map == NULL)
 587                return -EINVAL;
 588
 589        /*
 590         * Schedule on the proper low speed map with our low speed scheduling
 591         * parameters.  Note that we use the "device_interval" here since
 592         * we want the low speed interval and the only way we'd be in this
 593         * function is if the device is low speed.
 594         *
 595         * If we happen to be doing low speed and high speed scheduling for the
 596         * same transaction (AKA we have a split) we always do low speed first.
 597         * That means we can always pass "false" for only_one_period (that
 598         * parameters is only useful when we're trying to get one schedule to
 599         * match what we already planned in the other schedule).
 600         */
 601        slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 602                              DWC2_LS_SCHEDULE_FRAMES, slices,
 603                              qh->device_interval, search_slice, false);
 604
 605        if (slice < 0)
 606                return slice;
 607
 608        qh->ls_start_schedule_slice = slice;
 609        return 0;
 610}
 611
 612/**
 613 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
 614 *
 615 * @hsotg:       The HCD state structure for the DWC OTG controller.
 616 * @qh:          QH for the periodic transfer.
 617 */
 618static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
 619                                    struct dwc2_qh *qh)
 620{
 621        int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
 622        unsigned long *map = dwc2_get_ls_map(hsotg, qh);
 623
 624        /* Schedule should have failed, so no worries about no error code */
 625        if (map == NULL)
 626                return;
 627
 628        pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
 629                        DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
 630                        qh->ls_start_schedule_slice);
 631}
 632
 633/**
 634 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
 635 *
 636 * This will schedule something on the main dwc2 schedule.
 637 *
 638 * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
 639 * update this with the result upon success.  We also use the duration from
 640 * the same structure.
 641 *
 642 * @hsotg:           The HCD state structure for the DWC OTG controller.
 643 * @qh:              QH for the periodic transfer.
 644 * @only_one_period: If true we will limit ourselves to just looking at
 645 *                   one period (aka one 100us chunk).  This is used if we have
 646 *                   already scheduled something on the low speed schedule and
 647 *                   need to find something that matches on the high speed one.
 648 * @index:           The index into qh->hs_transfers that we're working with.
 649 *
 650 * Returns: 0 for success or an error code.  Upon success the
 651 *          dwc2_hs_transfer_time specified by "index" will be updated.
 652 */
 653static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 654                                 bool only_one_period, int index)
 655{
 656        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 657        int us;
 658
 659        us = pmap_schedule(hsotg->hs_periodic_bitmap,
 660                           DWC2_HS_PERIODIC_US_PER_UFRAME,
 661                           DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 662                           qh->host_interval, trans_time->start_schedule_us,
 663                           only_one_period);
 664
 665        if (us < 0)
 666                return us;
 667
 668        trans_time->start_schedule_us = us;
 669        return 0;
 670}
 671
 672/**
 673 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
 674 *
 675 * @hsotg:       The HCD state structure for the DWC OTG controller.
 676 * @qh:          QH for the periodic transfer.
 677 */
 678static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
 679                                    struct dwc2_qh *qh, int index)
 680{
 681        struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
 682
 683        pmap_unschedule(hsotg->hs_periodic_bitmap,
 684                        DWC2_HS_PERIODIC_US_PER_UFRAME,
 685                        DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
 686                        qh->host_interval, trans_time->start_schedule_us);
 687}
 688
 689/**
 690 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
 691 *
 692 * This is the most complicated thing in USB.  We have to find matching time
 693 * in both the global high speed schedule for the port and the low speed
 694 * schedule for the TT associated with the given device.
 695 *
 696 * Being here means that the host must be running in high speed mode and the
 697 * device is in low or full speed mode (and behind a hub).
 698 *
 699 * @hsotg:       The HCD state structure for the DWC OTG controller.
 700 * @qh:          QH for the periodic transfer.
 701 */
 702static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
 703                                      struct dwc2_qh *qh)
 704{
 705        int bytecount = dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
 706        int ls_search_slice;
 707        int err = 0;
 708        int host_interval_in_sched;
 709
 710        /*
 711         * The interval (how often to repeat) in the actual host schedule.
 712         * See pmap_schedule() for gcd() explanation.
 713         */
 714        host_interval_in_sched = gcd(qh->host_interval,
 715                                     DWC2_HS_SCHEDULE_UFRAMES);
 716
 717        /*
 718         * We always try to find space in the low speed schedule first, then
 719         * try to find high speed time that matches.  If we don't, we'll bump
 720         * up the place we start searching in the low speed schedule and try
 721         * again.  To start we'll look right at the beginning of the low speed
 722         * schedule.
 723         *
 724         * Note that this will tend to front-load the high speed schedule.
 725         * We may eventually want to try to avoid this by either considering
 726         * both schedules together or doing some sort of round robin.
 727         */
 728        ls_search_slice = 0;
 729
 730        while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
 731                int start_s_uframe;
 732                int ssplit_s_uframe;
 733                int second_s_uframe;
 734                int rel_uframe;
 735                int first_count;
 736                int middle_count;
 737                int end_count;
 738                int first_data_bytes;
 739                int other_data_bytes;
 740                int i;
 741
 742                if (qh->schedule_low_speed) {
 743                        err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
 744
 745                        /*
 746                         * If we got an error here there's no other magic we
 747                         * can do, so bail.  All the looping above is only
 748                         * helpful to redo things if we got a low speed slot
 749                         * and then couldn't find a matching high speed slot.
 750                         */
 751                        if (err)
 752                                return err;
 753                } else {
 754                        /* Must be missing the tt structure?  Why? */
 755                        WARN_ON_ONCE(1);
 756                }
 757
 758                /*
 759                 * This will give us a number 0 - 7 if
 760                 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
 761                 */
 762                start_s_uframe = qh->ls_start_schedule_slice /
 763                                 DWC2_SLICES_PER_UFRAME;
 764
 765                /* Get a number that's always 0 - 7 */
 766                rel_uframe = (start_s_uframe % 8);
 767
 768                /*
 769                 * If we were going to start in uframe 7 then we would need to
 770                 * issue a start split in uframe 6, which spec says is not OK.
 771                 * Move on to the next full frame (assuming there is one).
 772                 *
 773                 * See 11.18.4 Host Split Transaction Scheduling Requirements
 774                 * bullet 1.
 775                 */
 776                if (rel_uframe == 7) {
 777                        if (qh->schedule_low_speed)
 778                                dwc2_ls_pmap_unschedule(hsotg, qh);
 779                        ls_search_slice =
 780                                (qh->ls_start_schedule_slice /
 781                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
 782                                DWC2_LS_PERIODIC_SLICES_PER_FRAME;
 783                        continue;
 784                }
 785
 786                /*
 787                 * For ISOC in:
 788                 * - start split            (frame -1)
 789                 * - complete split w/ data (frame +1)
 790                 * - complete split w/ data (frame +2)
 791                 * - ...
 792                 * - complete split w/ data (frame +num_data_packets)
 793                 * - complete split w/ data (frame +num_data_packets+1)
 794                 * - complete split w/ data (frame +num_data_packets+2, max 8)
 795                 *   ...though if frame was "0" then max is 7...
 796                 *
 797                 * For ISOC out we might need to do:
 798                 * - start split w/ data    (frame -1)
 799                 * - start split w/ data    (frame +0)
 800                 * - ...
 801                 * - start split w/ data    (frame +num_data_packets-2)
 802                 *
 803                 * For INTERRUPT in we might need to do:
 804                 * - start split            (frame -1)
 805                 * - complete split w/ data (frame +1)
 806                 * - complete split w/ data (frame +2)
 807                 * - complete split w/ data (frame +3, max 8)
 808                 *
 809                 * For INTERRUPT out we might need to do:
 810                 * - start split w/ data    (frame -1)
 811                 * - complete split         (frame +1)
 812                 * - complete split         (frame +2)
 813                 * - complete split         (frame +3, max 8)
 814                 *
 815                 * Start adjusting!
 816                 */
 817                ssplit_s_uframe = (start_s_uframe +
 818                                   host_interval_in_sched - 1) %
 819                                  host_interval_in_sched;
 820                if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
 821                        second_s_uframe = start_s_uframe;
 822                else
 823                        second_s_uframe = start_s_uframe + 1;
 824
 825                /* First data transfer might not be all 188 bytes. */
 826                first_data_bytes = 188 -
 827                        DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
 828                                            DWC2_SLICES_PER_UFRAME),
 829                                     DWC2_SLICES_PER_UFRAME);
 830                if (first_data_bytes > bytecount)
 831                        first_data_bytes = bytecount;
 832                other_data_bytes = bytecount - first_data_bytes;
 833
 834                /*
 835                 * For now, skip OUT xfers where first xfer is partial
 836                 *
 837                 * Main dwc2 code assumes:
 838                 * - INT transfers never get split in two.
 839                 * - ISOC transfers can always transfer 188 bytes the first
 840                 *   time.
 841                 *
 842                 * Until that code is fixed, try again if the first transfer
 843                 * couldn't transfer everything.
 844                 *
 845                 * This code can be removed if/when the rest of dwc2 handles
 846                 * the above cases.  Until it's fixed we just won't be able
 847                 * to schedule quite as tightly.
 848                 */
 849                if (!qh->ep_is_in &&
 850                    (first_data_bytes != min_t(int, 188, bytecount))) {
 851                        dwc2_sch_dbg(hsotg,
 852                                     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
 853                                     qh, first_data_bytes, bytecount);
 854                        if (qh->schedule_low_speed)
 855                                dwc2_ls_pmap_unschedule(hsotg, qh);
 856                        ls_search_slice = (start_s_uframe + 1) *
 857                                DWC2_SLICES_PER_UFRAME;
 858                        continue;
 859                }
 860
 861                /* Start by assuming transfers for the bytes */
 862                qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
 863
 864                /*
 865                 * Everything except ISOC OUT has extra transfers.  Rules are
 866                 * complicated.  See 11.18.4 Host Split Transaction Scheduling
 867                 * Requirements bullet 3.
 868                 */
 869                if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
 870                        if (rel_uframe == 6)
 871                                qh->num_hs_transfers += 2;
 872                        else
 873                                qh->num_hs_transfers += 3;
 874
 875                        if (qh->ep_is_in) {
 876                                /*
 877                                 * First is start split, middle/end is data.
 878                                 * Allocate full data bytes for all data.
 879                                 */
 880                                first_count = 4;
 881                                middle_count = bytecount;
 882                                end_count = bytecount;
 883                        } else {
 884                                /*
 885                                 * First is data, middle/end is complete.
 886                                 * First transfer and second can have data.
 887                                 * Rest should just have complete split.
 888                                 */
 889                                first_count = first_data_bytes;
 890                                middle_count = max_t(int, 4, other_data_bytes);
 891                                end_count = 4;
 892                        }
 893                } else {
 894                        if (qh->ep_is_in) {
 895                                int last;
 896
 897                                /* Account for the start split */
 898                                qh->num_hs_transfers++;
 899
 900                                /* Calculate "L" value from spec */
 901                                last = rel_uframe + qh->num_hs_transfers + 1;
 902
 903                                /* Start with basic case */
 904                                if (last <= 6)
 905                                        qh->num_hs_transfers += 2;
 906                                else
 907                                        qh->num_hs_transfers += 1;
 908
 909                                /* Adjust downwards */
 910                                if (last >= 6 && rel_uframe == 0)
 911                                        qh->num_hs_transfers--;
 912
 913                                /* 1st = start; rest can contain data */
 914                                first_count = 4;
 915                                middle_count = min_t(int, 188, bytecount);
 916                                end_count = middle_count;
 917                        } else {
 918                                /* All contain data, last might be smaller */
 919                                first_count = first_data_bytes;
 920                                middle_count = min_t(int, 188,
 921                                                     other_data_bytes);
 922                                end_count = other_data_bytes % 188;
 923                        }
 924                }
 925
 926                /* Assign durations per uFrame */
 927                qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
 928                for (i = 1; i < qh->num_hs_transfers - 1; i++)
 929                        qh->hs_transfers[i].duration_us =
 930                                HS_USECS_ISO(middle_count);
 931                if (qh->num_hs_transfers > 1)
 932                        qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
 933                                HS_USECS_ISO(end_count);
 934
 935                /*
 936                 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
 937                 * will start with these numbers but may adjust within the same
 938                 * microframe.
 939                 */
 940                qh->hs_transfers[0].start_schedule_us =
 941                        ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
 942                for (i = 1; i < qh->num_hs_transfers; i++)
 943                        qh->hs_transfers[i].start_schedule_us =
 944                                ((second_s_uframe + i - 1) %
 945                                 DWC2_HS_SCHEDULE_UFRAMES) *
 946                                DWC2_HS_PERIODIC_US_PER_UFRAME;
 947
 948                /* Try to schedule with filled in hs_transfers above */
 949                for (i = 0; i < qh->num_hs_transfers; i++) {
 950                        err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
 951                        if (err)
 952                                break;
 953                }
 954
 955                /* If we scheduled all w/out breaking out then we're all good */
 956                if (i == qh->num_hs_transfers)
 957                        break;
 958
 959                for (; i >= 0; i--)
 960                        dwc2_hs_pmap_unschedule(hsotg, qh, i);
 961
 962                if (qh->schedule_low_speed)
 963                        dwc2_ls_pmap_unschedule(hsotg, qh);
 964
 965                /* Try again starting in the next microframe */
 966                ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
 967        }
 968
 969        if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
 970                return -ENOSPC;
 971
 972        return 0;
 973}
 974
 975/**
 976 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
 977 *
 978 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
 979 * interface.
 980 *
 981 * @hsotg:       The HCD state structure for the DWC OTG controller.
 982 * @qh:          QH for the periodic transfer.
 983 */
 984static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
 985{
 986        /* In non-split host and device time are the same */
 987        WARN_ON(qh->host_us != qh->device_us);
 988        WARN_ON(qh->host_interval != qh->device_interval);
 989        WARN_ON(qh->num_hs_transfers != 1);
 990
 991        /* We'll have one transfer; init start to 0 before calling scheduler */
 992        qh->hs_transfers[0].start_schedule_us = 0;
 993        qh->hs_transfers[0].duration_us = qh->host_us;
 994
 995        return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
 996}
 997
 998/**
 999 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1000 *
1001 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1002 * interface.
1003 *
1004 * @hsotg:       The HCD state structure for the DWC OTG controller.
1005 * @qh:          QH for the periodic transfer.
1006 */
1007static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1008{
1009        /* In non-split host and device time are the same */
1010        WARN_ON(qh->host_us != qh->device_us);
1011        WARN_ON(qh->host_interval != qh->device_interval);
1012        WARN_ON(!qh->schedule_low_speed);
1013
1014        /* Run on the main low speed schedule (no split = no hub = no TT) */
1015        return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1016}
1017
1018/**
1019 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1020 *
1021 * Calls one of the 3 sub-function depending on what type of transfer this QH
1022 * is for.  Also adds some printing.
1023 *
1024 * @hsotg:       The HCD state structure for the DWC OTG controller.
1025 * @qh:          QH for the periodic transfer.
1026 */
1027static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1028{
1029        int ret;
1030
1031        if (qh->dev_speed == USB_SPEED_HIGH)
1032                ret = dwc2_uframe_schedule_hs(hsotg, qh);
1033        else if (!qh->do_split)
1034                ret = dwc2_uframe_schedule_ls(hsotg, qh);
1035        else
1036                ret = dwc2_uframe_schedule_split(hsotg, qh);
1037
1038        if (ret)
1039                dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1040        else
1041                dwc2_qh_schedule_print(hsotg, qh);
1042
1043        return ret;
1044}
1045
1046/**
1047 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1048 *
1049 * @hsotg:       The HCD state structure for the DWC OTG controller.
1050 * @qh:          QH for the periodic transfer.
1051 */
1052static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1053{
1054        int i;
1055
1056        for (i = 0; i < qh->num_hs_transfers; i++)
1057                dwc2_hs_pmap_unschedule(hsotg, qh, i);
1058
1059        if (qh->schedule_low_speed)
1060                dwc2_ls_pmap_unschedule(hsotg, qh);
1061
1062        dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1063}
1064
1065/**
1066 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1067 *
1068 * Takes a qh that has already been scheduled (which means we know we have the
1069 * bandwdith reserved for us) and set the next_active_frame and the
1070 * start_active_frame.
1071 *
1072 * This is expected to be called on qh's that weren't previously actively
1073 * running.  It just picks the next frame that we can fit into without any
1074 * thought about the past.
1075 *
1076 * @hsotg: The HCD state structure for the DWC OTG controller
1077 * @qh:    QH for a periodic endpoint
1078 *
1079 */
1080static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1081{
1082        u16 frame_number;
1083        u16 earliest_frame;
1084        u16 next_active_frame;
1085        u16 relative_frame;
1086        u16 interval;
1087
1088        /*
1089         * Use the real frame number rather than the cached value as of the
1090         * last SOF to give us a little extra slop.
1091         */
1092        frame_number = dwc2_hcd_get_frame_number(hsotg);
1093
1094        /*
1095         * We wouldn't want to start any earlier than the next frame just in
1096         * case the frame number ticks as we're doing this calculation.
1097         *
1098         * NOTE: if we could quantify how long till we actually get scheduled
1099         * we might be able to avoid the "+ 1" by looking at the upper part of
1100         * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1101         */
1102        earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1103        next_active_frame = earliest_frame;
1104
1105        /* Get the "no microframe schduler" out of the way... */
1106        if (hsotg->core_params->uframe_sched <= 0) {
1107                if (qh->do_split)
1108                        /* Splits are active at microframe 0 minus 1 */
1109                        next_active_frame |= 0x7;
1110                goto exit;
1111        }
1112
1113        if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1114                /*
1115                 * We're either at high speed or we're doing a split (which
1116                 * means we're talking high speed to a hub).  In any case
1117                 * the first frame should be based on when the first scheduled
1118                 * event is.
1119                 */
1120                WARN_ON(qh->num_hs_transfers < 1);
1121
1122                relative_frame = qh->hs_transfers[0].start_schedule_us /
1123                                 DWC2_HS_PERIODIC_US_PER_UFRAME;
1124
1125                /* Adjust interval as per high speed schedule */
1126                interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1127
1128        } else {
1129                /*
1130                 * Low or full speed directly on dwc2.  Just about the same
1131                 * as high speed but on a different schedule and with slightly
1132                 * different adjustments.  Note that this works because when
1133                 * the host and device are both low speed then frames in the
1134                 * controller tick at low speed.
1135                 */
1136                relative_frame = qh->ls_start_schedule_slice /
1137                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1138                interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1139        }
1140
1141        /* Scheduler messed up if frame is past interval */
1142        WARN_ON(relative_frame >= interval);
1143
1144        /*
1145         * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1146         * done the gcd(), so it's safe to move to the beginning of the current
1147         * interval like this.
1148         *
1149         * After this we might be before earliest_frame, but don't worry,
1150         * we'll fix it...
1151         */
1152        next_active_frame = (next_active_frame / interval) * interval;
1153
1154        /*
1155         * Actually choose to start at the frame number we've been
1156         * scheduled for.
1157         */
1158        next_active_frame = dwc2_frame_num_inc(next_active_frame,
1159                                               relative_frame);
1160
1161        /*
1162         * We actually need 1 frame before since the next_active_frame is
1163         * the frame number we'll be put on the ready list and we won't be on
1164         * the bus until 1 frame later.
1165         */
1166        next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1167
1168        /*
1169         * By now we might actually be before the earliest_frame.  Let's move
1170         * up intervals until we're not.
1171         */
1172        while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1173                next_active_frame = dwc2_frame_num_inc(next_active_frame,
1174                                                       interval);
1175
1176exit:
1177        qh->next_active_frame = next_active_frame;
1178        qh->start_active_frame = next_active_frame;
1179
1180        dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1181                     qh, frame_number, qh->next_active_frame);
1182}
1183
1184/**
1185 * dwc2_do_reserve() - Make a periodic reservation
1186 *
1187 * Try to allocate space in the periodic schedule.  Depending on parameters
1188 * this might use the microframe scheduler or the dumb scheduler.
1189 *
1190 * @hsotg: The HCD state structure for the DWC OTG controller
1191 * @qh:    QH for the periodic transfer.
1192 *
1193 * Returns: 0 upon success; error upon failure.
1194 */
1195static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1196{
1197        int status;
1198
1199        if (hsotg->core_params->uframe_sched > 0) {
1200                status = dwc2_uframe_schedule(hsotg, qh);
1201        } else {
1202                status = dwc2_periodic_channel_available(hsotg);
1203                if (status) {
1204                        dev_info(hsotg->dev,
1205                                 "%s: No host channel available for periodic transfer\n",
1206                                 __func__);
1207                        return status;
1208                }
1209
1210                status = dwc2_check_periodic_bandwidth(hsotg, qh);
1211        }
1212
1213        if (status) {
1214                dev_dbg(hsotg->dev,
1215                        "%s: Insufficient periodic bandwidth for periodic transfer\n",
1216                        __func__);
1217                return status;
1218        }
1219
1220        if (hsotg->core_params->uframe_sched <= 0)
1221                /* Reserve periodic channel */
1222                hsotg->periodic_channels++;
1223
1224        /* Update claimed usecs per (micro)frame */
1225        hsotg->periodic_usecs += qh->host_us;
1226
1227        dwc2_pick_first_frame(hsotg, qh);
1228
1229        return 0;
1230}
1231
1232/**
1233 * dwc2_do_unreserve() - Actually release the periodic reservation
1234 *
1235 * This function actually releases the periodic bandwidth that was reserved
1236 * by the given qh.
1237 *
1238 * @hsotg: The HCD state structure for the DWC OTG controller
1239 * @qh:    QH for the periodic transfer.
1240 */
1241static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1242{
1243        assert_spin_locked(&hsotg->lock);
1244
1245        WARN_ON(!qh->unreserve_pending);
1246
1247        /* No more unreserve pending--we're doing it */
1248        qh->unreserve_pending = false;
1249
1250        if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1251                list_del_init(&qh->qh_list_entry);
1252
1253        /* Update claimed usecs per (micro)frame */
1254        hsotg->periodic_usecs -= qh->host_us;
1255
1256        if (hsotg->core_params->uframe_sched > 0) {
1257                dwc2_uframe_unschedule(hsotg, qh);
1258        } else {
1259                /* Release periodic channel reservation */
1260                hsotg->periodic_channels--;
1261        }
1262}
1263
1264/**
1265 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1266 *
1267 * According to the kernel doc for usb_submit_urb() (specifically the part about
1268 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1269 * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1270 * back the URB we need to give the driver a little bit of time before we
1271 * release the reservation.  This worker is called after the appropriate
1272 * delay.
1273 *
1274 * @work: Pointer to a qh unreserve_work.
1275 */
1276static void dwc2_unreserve_timer_fn(unsigned long data)
1277{
1278        struct dwc2_qh *qh = (struct dwc2_qh *)data;
1279        struct dwc2_hsotg *hsotg = qh->hsotg;
1280        unsigned long flags;
1281
1282        /*
1283         * Wait for the lock, or for us to be scheduled again.  We
1284         * could be scheduled again if:
1285         * - We started executing but didn't get the lock yet.
1286         * - A new reservation came in, but cancel didn't take effect
1287         *   because we already started executing.
1288         * - The timer has been kicked again.
1289         * In that case cancel and wait for the next call.
1290         */
1291        while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1292                if (timer_pending(&qh->unreserve_timer))
1293                        return;
1294        }
1295
1296        /*
1297         * Might be no more unreserve pending if:
1298         * - We started executing but didn't get the lock yet.
1299         * - A new reservation came in, but cancel didn't take effect
1300         *   because we already started executing.
1301         *
1302         * We can't put this in the loop above because unreserve_pending needs
1303         * to be accessed under lock, so we can only check it once we got the
1304         * lock.
1305         */
1306        if (qh->unreserve_pending)
1307                dwc2_do_unreserve(hsotg, qh);
1308
1309        spin_unlock_irqrestore(&hsotg->lock, flags);
1310}
1311
1312/**
1313 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1314 * host channel is large enough to handle the maximum data transfer in a single
1315 * (micro)frame for a periodic transfer
1316 *
1317 * @hsotg: The HCD state structure for the DWC OTG controller
1318 * @qh:    QH for a periodic endpoint
1319 *
1320 * Return: 0 if successful, negative error code otherwise
1321 */
1322static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1323                                    struct dwc2_qh *qh)
1324{
1325        u32 max_xfer_size;
1326        u32 max_channel_xfer_size;
1327        int status = 0;
1328
1329        max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
1330        max_channel_xfer_size = hsotg->core_params->max_transfer_size;
1331
1332        if (max_xfer_size > max_channel_xfer_size) {
1333                dev_err(hsotg->dev,
1334                        "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1335                        __func__, max_xfer_size, max_channel_xfer_size);
1336                status = -ENOSPC;
1337        }
1338
1339        return status;
1340}
1341
1342/**
1343 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1344 * the periodic schedule
1345 *
1346 * @hsotg: The HCD state structure for the DWC OTG controller
1347 * @qh:    QH for the periodic transfer. The QH should already contain the
1348 *         scheduling information.
1349 *
1350 * Return: 0 if successful, negative error code otherwise
1351 */
1352static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1353{
1354        int status;
1355
1356        status = dwc2_check_max_xfer_size(hsotg, qh);
1357        if (status) {
1358                dev_dbg(hsotg->dev,
1359                        "%s: Channel max transfer size too small for periodic transfer\n",
1360                        __func__);
1361                return status;
1362        }
1363
1364        /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1365        if (del_timer(&qh->unreserve_timer))
1366                WARN_ON(!qh->unreserve_pending);
1367
1368        /*
1369         * Only need to reserve if there's not an unreserve pending, since if an
1370         * unreserve is pending then by definition our old reservation is still
1371         * valid.  Unreserve might still be pending even if we didn't cancel if
1372         * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1373         * that case.
1374         */
1375        if (!qh->unreserve_pending) {
1376                status = dwc2_do_reserve(hsotg, qh);
1377                if (status)
1378                        return status;
1379        } else {
1380                /*
1381                 * It might have been a while, so make sure that frame_number
1382                 * is still good.  Note: we could also try to use the similar
1383                 * dwc2_next_periodic_start() but that schedules much more
1384                 * tightly and we might need to hurry and queue things up.
1385                 */
1386                if (dwc2_frame_num_le(qh->next_active_frame,
1387                                      hsotg->frame_number))
1388                        dwc2_pick_first_frame(hsotg, qh);
1389        }
1390
1391        qh->unreserve_pending = 0;
1392
1393        if (hsotg->core_params->dma_desc_enable > 0)
1394                /* Don't rely on SOF and start in ready schedule */
1395                list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1396        else
1397                /* Always start in inactive schedule */
1398                list_add_tail(&qh->qh_list_entry,
1399                              &hsotg->periodic_sched_inactive);
1400
1401        return 0;
1402}
1403
1404/**
1405 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1406 * from the periodic schedule
1407 *
1408 * @hsotg: The HCD state structure for the DWC OTG controller
1409 * @qh:    QH for the periodic transfer
1410 */
1411static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1412                                     struct dwc2_qh *qh)
1413{
1414        bool did_modify;
1415
1416        assert_spin_locked(&hsotg->lock);
1417
1418        /*
1419         * Schedule the unreserve to happen in a little bit.  Cases here:
1420         * - Unreserve worker might be sitting there waiting to grab the lock.
1421         *   In this case it will notice it's been schedule again and will
1422         *   quit.
1423         * - Unreserve worker might not be scheduled.
1424         *
1425         * We should never already be scheduled since dwc2_schedule_periodic()
1426         * should have canceled the scheduled unreserve timer (hence the
1427         * warning on did_modify).
1428         *
1429         * We add + 1 to the timer to guarantee that at least 1 jiffy has
1430         * passed (otherwise if the jiffy counter might tick right after we
1431         * read it and we'll get no delay).
1432         */
1433        did_modify = mod_timer(&qh->unreserve_timer,
1434                               jiffies + DWC2_UNRESERVE_DELAY + 1);
1435        WARN_ON(did_modify);
1436        qh->unreserve_pending = 1;
1437
1438        list_del_init(&qh->qh_list_entry);
1439}
1440
1441/**
1442 * dwc2_qh_init() - Initializes a QH structure
1443 *
1444 * @hsotg: The HCD state structure for the DWC OTG controller
1445 * @qh:    The QH to init
1446 * @urb:   Holds the information about the device/endpoint needed to initialize
1447 *         the QH
1448 * @mem_flags: Flags for allocating memory.
1449 */
1450static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1451                         struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1452{
1453        int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1454        u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1455        bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1456        bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1457        bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1458        u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
1459        u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1460        bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1461                         dev_speed != USB_SPEED_HIGH);
1462        int maxp = dwc2_hcd_get_mps(&urb->pipe_info);
1463        int bytecount = dwc2_hb_mult(maxp) * dwc2_max_packet(maxp);
1464        char *speed, *type;
1465
1466        /* Initialize QH */
1467        qh->hsotg = hsotg;
1468        setup_timer(&qh->unreserve_timer, dwc2_unreserve_timer_fn,
1469                    (unsigned long)qh);
1470        qh->ep_type = ep_type;
1471        qh->ep_is_in = ep_is_in;
1472
1473        qh->data_toggle = DWC2_HC_PID_DATA0;
1474        qh->maxp = maxp;
1475        INIT_LIST_HEAD(&qh->qtd_list);
1476        INIT_LIST_HEAD(&qh->qh_list_entry);
1477
1478        qh->do_split = do_split;
1479        qh->dev_speed = dev_speed;
1480
1481        if (ep_is_int || ep_is_isoc) {
1482                /* Compute scheduling parameters once and save them */
1483                int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1484                struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1485                                                               mem_flags,
1486                                                               &qh->ttport);
1487                int device_ns;
1488
1489                qh->dwc_tt = dwc_tt;
1490
1491                qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1492                                       ep_is_isoc, bytecount));
1493                device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1494                                              ep_is_isoc, bytecount);
1495
1496                if (do_split && dwc_tt)
1497                        device_ns += dwc_tt->usb_tt->think_time;
1498                qh->device_us = NS_TO_US(device_ns);
1499
1500
1501                qh->device_interval = urb->interval;
1502                qh->host_interval = urb->interval * (do_split ? 8 : 1);
1503
1504                /*
1505                 * Schedule low speed if we're running the host in low or
1506                 * full speed OR if we've got a "TT" to deal with to access this
1507                 * device.
1508                 */
1509                qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1510                                         dwc_tt;
1511
1512                if (do_split) {
1513                        /* We won't know num transfers until we schedule */
1514                        qh->num_hs_transfers = -1;
1515                } else if (dev_speed == USB_SPEED_HIGH) {
1516                        qh->num_hs_transfers = 1;
1517                } else {
1518                        qh->num_hs_transfers = 0;
1519                }
1520
1521                /* We'll schedule later when we have something to do */
1522        }
1523
1524        switch (dev_speed) {
1525        case USB_SPEED_LOW:
1526                speed = "low";
1527                break;
1528        case USB_SPEED_FULL:
1529                speed = "full";
1530                break;
1531        case USB_SPEED_HIGH:
1532                speed = "high";
1533                break;
1534        default:
1535                speed = "?";
1536                break;
1537        }
1538
1539        switch (qh->ep_type) {
1540        case USB_ENDPOINT_XFER_ISOC:
1541                type = "isochronous";
1542                break;
1543        case USB_ENDPOINT_XFER_INT:
1544                type = "interrupt";
1545                break;
1546        case USB_ENDPOINT_XFER_CONTROL:
1547                type = "control";
1548                break;
1549        case USB_ENDPOINT_XFER_BULK:
1550                type = "bulk";
1551                break;
1552        default:
1553                type = "?";
1554                break;
1555        }
1556
1557        dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1558                     speed, bytecount);
1559        dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1560                     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1561                     dwc2_hcd_get_ep_num(&urb->pipe_info),
1562                     ep_is_in ? "IN" : "OUT");
1563        if (ep_is_int || ep_is_isoc) {
1564                dwc2_sch_dbg(hsotg,
1565                             "QH=%p ...duration: host=%d us, device=%d us\n",
1566                             qh, qh->host_us, qh->device_us);
1567                dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1568                             qh, qh->host_interval, qh->device_interval);
1569                if (qh->schedule_low_speed)
1570                        dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1571                                     qh, dwc2_get_ls_map(hsotg, qh));
1572        }
1573}
1574
1575/**
1576 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1577 *
1578 * @hsotg:        The HCD state structure for the DWC OTG controller
1579 * @urb:          Holds the information about the device/endpoint needed
1580 *                to initialize the QH
1581 * @atomic_alloc: Flag to do atomic allocation if needed
1582 *
1583 * Return: Pointer to the newly allocated QH, or NULL on error
1584 */
1585struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1586                                          struct dwc2_hcd_urb *urb,
1587                                          gfp_t mem_flags)
1588{
1589        struct dwc2_qh *qh;
1590
1591        if (!urb->priv)
1592                return NULL;
1593
1594        /* Allocate memory */
1595        qh = kzalloc(sizeof(*qh), mem_flags);
1596        if (!qh)
1597                return NULL;
1598
1599        dwc2_qh_init(hsotg, qh, urb, mem_flags);
1600
1601        if (hsotg->core_params->dma_desc_enable > 0 &&
1602            dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1603                dwc2_hcd_qh_free(hsotg, qh);
1604                return NULL;
1605        }
1606
1607        return qh;
1608}
1609
1610/**
1611 * dwc2_hcd_qh_free() - Frees the QH
1612 *
1613 * @hsotg: HCD instance
1614 * @qh:    The QH to free
1615 *
1616 * QH should already be removed from the list. QTD list should already be empty
1617 * if called from URB Dequeue.
1618 *
1619 * Must NOT be called with interrupt disabled or spinlock held
1620 */
1621void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1622{
1623        /* Make sure any unreserve work is finished. */
1624        if (del_timer_sync(&qh->unreserve_timer)) {
1625                unsigned long flags;
1626
1627                spin_lock_irqsave(&hsotg->lock, flags);
1628                dwc2_do_unreserve(hsotg, qh);
1629                spin_unlock_irqrestore(&hsotg->lock, flags);
1630        }
1631        dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1632
1633        if (qh->desc_list)
1634                dwc2_hcd_qh_free_ddma(hsotg, qh);
1635        kfree(qh);
1636}
1637
1638/**
1639 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1640 * schedule if it is not already in the schedule. If the QH is already in
1641 * the schedule, no action is taken.
1642 *
1643 * @hsotg: The HCD state structure for the DWC OTG controller
1644 * @qh:    The QH to add
1645 *
1646 * Return: 0 if successful, negative error code otherwise
1647 */
1648int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1649{
1650        int status;
1651        u32 intr_mask;
1652
1653        if (dbg_qh(qh))
1654                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1655
1656        if (!list_empty(&qh->qh_list_entry))
1657                /* QH already in a schedule */
1658                return 0;
1659
1660        /* Add the new QH to the appropriate schedule */
1661        if (dwc2_qh_is_non_per(qh)) {
1662                /* Schedule right away */
1663                qh->start_active_frame = hsotg->frame_number;
1664                qh->next_active_frame = qh->start_active_frame;
1665
1666                /* Always start in inactive schedule */
1667                list_add_tail(&qh->qh_list_entry,
1668                              &hsotg->non_periodic_sched_inactive);
1669                return 0;
1670        }
1671
1672        status = dwc2_schedule_periodic(hsotg, qh);
1673        if (status)
1674                return status;
1675        if (!hsotg->periodic_qh_count) {
1676                intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1677                intr_mask |= GINTSTS_SOF;
1678                dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1679        }
1680        hsotg->periodic_qh_count++;
1681
1682        return 0;
1683}
1684
1685/**
1686 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1687 * schedule. Memory is not freed.
1688 *
1689 * @hsotg: The HCD state structure
1690 * @qh:    QH to remove from schedule
1691 */
1692void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1693{
1694        u32 intr_mask;
1695
1696        dev_vdbg(hsotg->dev, "%s()\n", __func__);
1697
1698        if (list_empty(&qh->qh_list_entry))
1699                /* QH is not in a schedule */
1700                return;
1701
1702        if (dwc2_qh_is_non_per(qh)) {
1703                if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1704                        hsotg->non_periodic_qh_ptr =
1705                                        hsotg->non_periodic_qh_ptr->next;
1706                list_del_init(&qh->qh_list_entry);
1707                return;
1708        }
1709
1710        dwc2_deschedule_periodic(hsotg, qh);
1711        hsotg->periodic_qh_count--;
1712        if (!hsotg->periodic_qh_count) {
1713                intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
1714                intr_mask &= ~GINTSTS_SOF;
1715                dwc2_writel(intr_mask, hsotg->regs + GINTMSK);
1716        }
1717}
1718
1719/**
1720 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1721 *
1722 * This is called for setting next_active_frame for periodic splits for all but
1723 * the first packet of the split.  Confusing?  I thought so...
1724 *
1725 * Periodic splits are single low/full speed transfers that we end up splitting
1726 * up into several high speed transfers.  They always fit into one full (1 ms)
1727 * frame but might be split over several microframes (125 us each).  We to put
1728 * each of the parts on a very specific high speed frame.
1729 *
1730 * This function figures out where the next active uFrame needs to be.
1731 *
1732 * @hsotg:        The HCD state structure
1733 * @qh:           QH for the periodic transfer.
1734 * @frame_number: The current frame number.
1735 *
1736 * Return: number missed by (or 0 if we didn't miss).
1737 */
1738static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1739                                         struct dwc2_qh *qh, u16 frame_number)
1740{
1741        u16 old_frame = qh->next_active_frame;
1742        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1743        int missed = 0;
1744        u16 incr;
1745
1746        /*
1747         * See dwc2_uframe_schedule_split() for split scheduling.
1748         *
1749         * Basically: increment 1 normally, but 2 right after the start split
1750         * (except for ISOC out).
1751         */
1752        if (old_frame == qh->start_active_frame &&
1753            !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1754                incr = 2;
1755        else
1756                incr = 1;
1757
1758        qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1759
1760        /*
1761         * Note that it's OK for frame_number to be 1 frame past
1762         * next_active_frame.  Remember that next_active_frame is supposed to
1763         * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1764         * past it just means schedule ASAP.
1765         *
1766         * It's _not_ OK, however, if we're more than one frame past.
1767         */
1768        if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1769                /*
1770                 * OOPS, we missed.  That's actually pretty bad since
1771                 * the hub will be unhappy; try ASAP I guess.
1772                 */
1773                missed = dwc2_frame_num_dec(prev_frame_number,
1774                                            qh->next_active_frame);
1775                qh->next_active_frame = frame_number;
1776        }
1777
1778        return missed;
1779}
1780
1781/**
1782 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1783 *
1784 * This is called for setting next_active_frame for a periodic transfer for
1785 * all cases other than midway through a periodic split.  This will also update
1786 * start_active_frame.
1787 *
1788 * Since we _always_ keep start_active_frame as the start of the previous
1789 * transfer this is normally pretty easy: we just add our interval to
1790 * start_active_frame and we've got our answer.
1791 *
1792 * The tricks come into play if we miss.  In that case we'll look for the next
1793 * slot we can fit into.
1794 *
1795 * @hsotg:        The HCD state structure
1796 * @qh:           QH for the periodic transfer.
1797 * @frame_number: The current frame number.
1798 *
1799 * Return: number missed by (or 0 if we didn't miss).
1800 */
1801static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1802                                     struct dwc2_qh *qh, u16 frame_number)
1803{
1804        int missed = 0;
1805        u16 interval = qh->host_interval;
1806        u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1807
1808        qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1809                                                    interval);
1810
1811        /*
1812         * The dwc2_frame_num_gt() function used below won't work terribly well
1813         * with if we just incremented by a really large intervals since the
1814         * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1815         * will have missed in this case anyway.  Just go to exit.  If we want
1816         * to try to do better we'll need to keep track of a bigger counter
1817         * somewhere in the driver and handle overflows.
1818         */
1819        if (interval >= 0x1000)
1820                goto exit;
1821
1822        /*
1823         * Test for misses, which is when it's too late to schedule.
1824         *
1825         * A few things to note:
1826         * - We compare against prev_frame_number since start_active_frame
1827         *   and next_active_frame are always 1 frame before we want things
1828         *   to be active and we assume we can still get scheduled in the
1829         *   current frame number.
1830         * - It's possible for start_active_frame (now incremented) to be
1831         *   next_active_frame if we got an EO MISS (even_odd miss) which
1832         *   basically means that we detected there wasn't enough time for
1833         *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1834         *   at the last second.  We want to make sure we don't schedule
1835         *   another transfer for the same frame.  My test webcam doesn't seem
1836         *   terribly upset by missing a transfer but really doesn't like when
1837         *   we do two transfers in the same frame.
1838         * - Some misses are expected.  Specifically, in order to work
1839         *   perfectly dwc2 really needs quite spectacular interrupt latency
1840         *   requirements.  It needs to be able to handle its interrupts
1841         *   completely within 125 us of them being asserted. That not only
1842         *   means that the dwc2 interrupt handler needs to be fast but it
1843         *   means that nothing else in the system has to block dwc2 for a long
1844         *   time.  We can help with the dwc2 parts of this, but it's hard to
1845         *   guarantee that a system will have interrupt latency < 125 us, so
1846         *   we have to be robust to some misses.
1847         */
1848        if (qh->start_active_frame == qh->next_active_frame ||
1849            dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1850                u16 ideal_start = qh->start_active_frame;
1851                int periods_in_map;
1852
1853                /*
1854                 * Adjust interval as per gcd with map size.
1855                 * See pmap_schedule() for more details here.
1856                 */
1857                if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1858                        periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1859                else
1860                        periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1861                interval = gcd(interval, periods_in_map);
1862
1863                do {
1864                        qh->start_active_frame = dwc2_frame_num_inc(
1865                                qh->start_active_frame, interval);
1866                } while (dwc2_frame_num_gt(prev_frame_number,
1867                                           qh->start_active_frame));
1868
1869                missed = dwc2_frame_num_dec(qh->start_active_frame,
1870                                            ideal_start);
1871        }
1872
1873exit:
1874        qh->next_active_frame = qh->start_active_frame;
1875
1876        return missed;
1877}
1878
1879/*
1880 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1881 * non-periodic schedule. The QH is added to the inactive non-periodic
1882 * schedule if any QTDs are still attached to the QH.
1883 *
1884 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1885 * there are any QTDs still attached to the QH, the QH is added to either the
1886 * periodic inactive schedule or the periodic ready schedule and its next
1887 * scheduled frame is calculated. The QH is placed in the ready schedule if
1888 * the scheduled frame has been reached already. Otherwise it's placed in the
1889 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1890 * completely removed from the periodic schedule.
1891 */
1892void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1893                            int sched_next_periodic_split)
1894{
1895        u16 old_frame = qh->next_active_frame;
1896        u16 frame_number;
1897        int missed;
1898
1899        if (dbg_qh(qh))
1900                dev_vdbg(hsotg->dev, "%s()\n", __func__);
1901
1902        if (dwc2_qh_is_non_per(qh)) {
1903                dwc2_hcd_qh_unlink(hsotg, qh);
1904                if (!list_empty(&qh->qtd_list))
1905                        /* Add back to inactive non-periodic schedule */
1906                        dwc2_hcd_qh_add(hsotg, qh);
1907                return;
1908        }
1909
1910        /*
1911         * Use the real frame number rather than the cached value as of the
1912         * last SOF just to get us a little closer to reality.  Note that
1913         * means we don't actually know if we've already handled the SOF
1914         * interrupt for this frame.
1915         */
1916        frame_number = dwc2_hcd_get_frame_number(hsotg);
1917
1918        if (sched_next_periodic_split)
1919                missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1920        else
1921                missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1922
1923        dwc2_sch_vdbg(hsotg,
1924                     "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1925                     qh, sched_next_periodic_split, frame_number, old_frame,
1926                     qh->next_active_frame,
1927                     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1928                missed, missed ? "MISS" : "");
1929
1930        if (list_empty(&qh->qtd_list)) {
1931                dwc2_hcd_qh_unlink(hsotg, qh);
1932                return;
1933        }
1934
1935        /*
1936         * Remove from periodic_sched_queued and move to
1937         * appropriate queue
1938         *
1939         * Note: we purposely use the frame_number from the "hsotg" structure
1940         * since we know SOF interrupt will handle future frames.
1941         */
1942        if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1943                list_move_tail(&qh->qh_list_entry,
1944                               &hsotg->periodic_sched_ready);
1945        else
1946                list_move_tail(&qh->qh_list_entry,
1947                               &hsotg->periodic_sched_inactive);
1948}
1949
1950/**
1951 * dwc2_hcd_qtd_init() - Initializes a QTD structure
1952 *
1953 * @qtd: The QTD to initialize
1954 * @urb: The associated URB
1955 */
1956void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
1957{
1958        qtd->urb = urb;
1959        if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
1960                        USB_ENDPOINT_XFER_CONTROL) {
1961                /*
1962                 * The only time the QTD data toggle is used is on the data
1963                 * phase of control transfers. This phase always starts with
1964                 * DATA1.
1965                 */
1966                qtd->data_toggle = DWC2_HC_PID_DATA1;
1967                qtd->control_phase = DWC2_CONTROL_SETUP;
1968        }
1969
1970        /* Start split */
1971        qtd->complete_split = 0;
1972        qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
1973        qtd->isoc_split_offset = 0;
1974        qtd->in_process = 0;
1975
1976        /* Store the qtd ptr in the urb to reference the QTD */
1977        urb->qtd = qtd;
1978}
1979
1980/**
1981 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
1982 *                      Caller must hold driver lock.
1983 *
1984 * @hsotg:        The DWC HCD structure
1985 * @qtd:          The QTD to add
1986 * @qh:           Queue head to add qtd to
1987 *
1988 * Return: 0 if successful, negative error code otherwise
1989 *
1990 * If the QH to which the QTD is added is not currently scheduled, it is placed
1991 * into the proper schedule based on its EP type.
1992 */
1993int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
1994                     struct dwc2_qh *qh)
1995{
1996        int retval;
1997
1998        if (unlikely(!qh)) {
1999                dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2000                retval = -EINVAL;
2001                goto fail;
2002        }
2003
2004        retval = dwc2_hcd_qh_add(hsotg, qh);
2005        if (retval)
2006                goto fail;
2007
2008        qtd->qh = qh;
2009        list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2010
2011        return 0;
2012fail:
2013        return retval;
2014}
2015