linux/drivers/usb/wusbcore/wa-hc.h
<<
>>
Prefs
   1/*
   2 * HWA Host Controller Driver
   3 * Wire Adapter Control/Data Streaming Iface (WUSB1.0[8])
   4 *
   5 * Copyright (C) 2005-2006 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * This driver implements a USB Host Controller (struct usb_hcd) for a
  24 * Wireless USB Host Controller based on the Wireless USB 1.0
  25 * Host-Wire-Adapter specification (in layman terms, a USB-dongle that
  26 * implements a Wireless USB host).
  27 *
  28 * Check out the Design-overview.txt file in the source documentation
  29 * for other details on the implementation.
  30 *
  31 * Main blocks:
  32 *
  33 *  driver     glue with the driver API, workqueue daemon
  34 *
  35 *  lc         RC instance life cycle management (create, destroy...)
  36 *
  37 *  hcd        glue with the USB API Host Controller Interface API.
  38 *
  39 *  nep        Notification EndPoint management: collect notifications
  40 *             and queue them with the workqueue daemon.
  41 *
  42 *             Handle notifications as coming from the NEP. Sends them
  43 *             off others to their respective modules (eg: connect,
  44 *             disconnect and reset go to devconnect).
  45 *
  46 *  rpipe      Remote Pipe management; rpipe is what we use to write
  47 *             to an endpoint on a WUSB device that is connected to a
  48 *             HWA RC.
  49 *
  50 *  xfer       Transfer management -- this is all the code that gets a
  51 *             buffer and pushes it to a device (or viceversa). *
  52 *
  53 * Some day a lot of this code will be shared between this driver and
  54 * the drivers for DWA (xfer, rpipe).
  55 *
  56 * All starts at driver.c:hwahc_probe(), when one of this guys is
  57 * connected. hwahc_disconnect() stops it.
  58 *
  59 * During operation, the main driver is devices connecting or
  60 * disconnecting. They cause the HWA RC to send notifications into
  61 * nep.c:hwahc_nep_cb() that will dispatch them to
  62 * notif.c:wa_notif_dispatch(). From there they will fan to cause
  63 * device connects, disconnects, etc.
  64 *
  65 * Note much of the activity is difficult to follow. For example a
  66 * device connect goes to devconnect, which will cause the "fake" root
  67 * hub port to show a connect and stop there. Then hub_wq will notice
  68 * and call into the rh.c:hwahc_rc_port_reset() code to authenticate
  69 * the device (and this might require user intervention) and enable
  70 * the port.
  71 *
  72 * We also have a timer workqueue going from devconnect.c that
  73 * schedules in hwahc_devconnect_create().
  74 *
  75 * The rest of the traffic is in the usual entry points of a USB HCD,
  76 * which are hooked up in driver.c:hwahc_rc_driver, and defined in
  77 * hcd.c.
  78 */
  79
  80#ifndef __HWAHC_INTERNAL_H__
  81#define __HWAHC_INTERNAL_H__
  82
  83#include <linux/completion.h>
  84#include <linux/usb.h>
  85#include <linux/mutex.h>
  86#include <linux/spinlock.h>
  87#include <linux/uwb.h>
  88#include <linux/usb/wusb.h>
  89#include <linux/usb/wusb-wa.h>
  90
  91struct wusbhc;
  92struct wahc;
  93extern void wa_urb_enqueue_run(struct work_struct *ws);
  94extern void wa_process_errored_transfers_run(struct work_struct *ws);
  95
  96/**
  97 * RPipe instance
  98 *
  99 * @descr's fields are kept in LE, as we need to send it back and
 100 * forth.
 101 *
 102 * @wa is referenced when set
 103 *
 104 * @segs_available is the number of requests segments that still can
 105 *                 be submitted to the controller without overloading
 106 *                 it. It is initialized to descr->wRequests when
 107 *                 aiming.
 108 *
 109 * A rpipe supports a max of descr->wRequests at the same time; before
 110 * submitting seg_lock has to be taken. If segs_avail > 0, then we can
 111 * submit; if not, we have to queue them.
 112 */
 113struct wa_rpipe {
 114        struct kref refcnt;
 115        struct usb_rpipe_descriptor descr;
 116        struct usb_host_endpoint *ep;
 117        struct wahc *wa;
 118        spinlock_t seg_lock;
 119        struct list_head seg_list;
 120        struct list_head list_node;
 121        atomic_t segs_available;
 122        u8 buffer[1];   /* For reads/writes on USB */
 123};
 124
 125
 126enum wa_dti_state {
 127        WA_DTI_TRANSFER_RESULT_PENDING,
 128        WA_DTI_ISOC_PACKET_STATUS_PENDING,
 129        WA_DTI_BUF_IN_DATA_PENDING
 130};
 131
 132enum wa_quirks {
 133        /*
 134         * The Alereon HWA expects the data frames in isochronous transfer
 135         * requests to be concatenated and not sent as separate packets.
 136         */
 137        WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC      = 0x01,
 138        /*
 139         * The Alereon HWA can be instructed to not send transfer notifications
 140         * as an optimization.
 141         */
 142        WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS       = 0x02,
 143};
 144
 145enum wa_vendor_specific_requests {
 146        WA_REQ_ALEREON_DISABLE_XFER_NOTIFICATIONS = 0x4C,
 147        WA_REQ_ALEREON_FEATURE_SET = 0x01,
 148        WA_REQ_ALEREON_FEATURE_CLEAR = 0x00,
 149};
 150
 151#define WA_MAX_BUF_IN_URBS      4
 152/**
 153 * Instance of a HWA Host Controller
 154 *
 155 * Except where a more specific lock/mutex applies or atomic, all
 156 * fields protected by @mutex.
 157 *
 158 * @wa_descr  Can be accessed without locking because it is in
 159 *            the same area where the device descriptors were
 160 *            read, so it is guaranteed to exist unmodified while
 161 *            the device exists.
 162 *
 163 *            Endianess has been converted to CPU's.
 164 *
 165 * @nep_* can be accessed without locking as its processing is
 166 *        serialized; we submit a NEP URB and it comes to
 167 *        hwahc_nep_cb(), which won't issue another URB until it is
 168 *        done processing it.
 169 *
 170 * @xfer_list:
 171 *
 172 *   List of active transfers to verify existence from a xfer id
 173 *   gotten from the xfer result message. Can't use urb->list because
 174 *   it goes by endpoint, and we don't know the endpoint at the time
 175 *   when we get the xfer result message. We can't really rely on the
 176 *   pointer (will have to change for 64 bits) as the xfer id is 32 bits.
 177 *
 178 * @xfer_delayed_list:   List of transfers that need to be started
 179 *                       (with a workqueue, because they were
 180 *                       submitted from an atomic context).
 181 *
 182 * FIXME: this needs to be layered up: a wusbhc layer (for sharing
 183 *        commonalities with WHCI), a wa layer (for sharing
 184 *        commonalities with DWA-RC).
 185 */
 186struct wahc {
 187        struct usb_device *usb_dev;
 188        struct usb_interface *usb_iface;
 189
 190        /* HC to deliver notifications */
 191        union {
 192                struct wusbhc *wusb;
 193                struct dwahc *dwa;
 194        };
 195
 196        const struct usb_endpoint_descriptor *dto_epd, *dti_epd;
 197        const struct usb_wa_descriptor *wa_descr;
 198
 199        struct urb *nep_urb;            /* Notification EndPoint [lockless] */
 200        struct edc nep_edc;
 201        void *nep_buffer;
 202        size_t nep_buffer_size;
 203
 204        atomic_t notifs_queued;
 205
 206        u16 rpipes;
 207        unsigned long *rpipe_bm;        /* rpipe usage bitmap */
 208        struct list_head rpipe_delayed_list;    /* delayed RPIPES. */
 209        spinlock_t rpipe_lock;  /* protect rpipe_bm and delayed list */
 210        struct mutex rpipe_mutex;       /* assigning resources to endpoints */
 211
 212        /*
 213         * dti_state is used to track the state of the dti_urb. When dti_state
 214         * is WA_DTI_ISOC_PACKET_STATUS_PENDING, dti_isoc_xfer_in_progress and
 215         * dti_isoc_xfer_seg identify which xfer the incoming isoc packet
 216         * status refers to.
 217         */
 218        enum wa_dti_state dti_state;
 219        u32 dti_isoc_xfer_in_progress;
 220        u8  dti_isoc_xfer_seg;
 221        struct urb *dti_urb;            /* URB for reading xfer results */
 222                                        /* URBs for reading data in */
 223        struct urb buf_in_urbs[WA_MAX_BUF_IN_URBS];
 224        int active_buf_in_urbs;         /* number of buf_in_urbs active. */
 225        struct edc dti_edc;             /* DTI error density counter */
 226        void *dti_buf;
 227        size_t dti_buf_size;
 228
 229        unsigned long dto_in_use;       /* protect dto endoint serialization */
 230
 231        s32 status;                     /* For reading status */
 232
 233        struct list_head xfer_list;
 234        struct list_head xfer_delayed_list;
 235        struct list_head xfer_errored_list;
 236        /*
 237         * lock for the above xfer lists.  Can be taken while a xfer->lock is
 238         * held but not in the reverse order.
 239         */
 240        spinlock_t xfer_list_lock;
 241        struct work_struct xfer_enqueue_work;
 242        struct work_struct xfer_error_work;
 243        atomic_t xfer_id_count;
 244
 245        kernel_ulong_t  quirks;
 246};
 247
 248
 249extern int wa_create(struct wahc *wa, struct usb_interface *iface,
 250        kernel_ulong_t);
 251extern void __wa_destroy(struct wahc *wa);
 252extern int wa_dti_start(struct wahc *wa);
 253void wa_reset_all(struct wahc *wa);
 254
 255
 256/* Miscellaneous constants */
 257enum {
 258        /** Max number of EPROTO errors we tolerate on the NEP in a
 259         * period of time */
 260        HWAHC_EPROTO_MAX = 16,
 261        /** Period of time for EPROTO errors (in jiffies) */
 262        HWAHC_EPROTO_PERIOD = 4 * HZ,
 263};
 264
 265
 266/* Notification endpoint handling */
 267extern int wa_nep_create(struct wahc *, struct usb_interface *);
 268extern void wa_nep_destroy(struct wahc *);
 269
 270static inline int wa_nep_arm(struct wahc *wa, gfp_t gfp_mask)
 271{
 272        struct urb *urb = wa->nep_urb;
 273        urb->transfer_buffer = wa->nep_buffer;
 274        urb->transfer_buffer_length = wa->nep_buffer_size;
 275        return usb_submit_urb(urb, gfp_mask);
 276}
 277
 278static inline void wa_nep_disarm(struct wahc *wa)
 279{
 280        usb_kill_urb(wa->nep_urb);
 281}
 282
 283
 284/* RPipes */
 285static inline void wa_rpipe_init(struct wahc *wa)
 286{
 287        INIT_LIST_HEAD(&wa->rpipe_delayed_list);
 288        spin_lock_init(&wa->rpipe_lock);
 289        mutex_init(&wa->rpipe_mutex);
 290}
 291
 292static inline void wa_init(struct wahc *wa)
 293{
 294        int index;
 295
 296        edc_init(&wa->nep_edc);
 297        atomic_set(&wa->notifs_queued, 0);
 298        wa->dti_state = WA_DTI_TRANSFER_RESULT_PENDING;
 299        wa_rpipe_init(wa);
 300        edc_init(&wa->dti_edc);
 301        INIT_LIST_HEAD(&wa->xfer_list);
 302        INIT_LIST_HEAD(&wa->xfer_delayed_list);
 303        INIT_LIST_HEAD(&wa->xfer_errored_list);
 304        spin_lock_init(&wa->xfer_list_lock);
 305        INIT_WORK(&wa->xfer_enqueue_work, wa_urb_enqueue_run);
 306        INIT_WORK(&wa->xfer_error_work, wa_process_errored_transfers_run);
 307        wa->dto_in_use = 0;
 308        atomic_set(&wa->xfer_id_count, 1);
 309        /* init the buf in URBs */
 310        for (index = 0; index < WA_MAX_BUF_IN_URBS; ++index)
 311                usb_init_urb(&(wa->buf_in_urbs[index]));
 312        wa->active_buf_in_urbs = 0;
 313}
 314
 315/**
 316 * Destroy a pipe (when refcount drops to zero)
 317 *
 318 * Assumes it has been moved to the "QUIESCING" state.
 319 */
 320struct wa_xfer;
 321extern void rpipe_destroy(struct kref *_rpipe);
 322static inline
 323void __rpipe_get(struct wa_rpipe *rpipe)
 324{
 325        kref_get(&rpipe->refcnt);
 326}
 327extern int rpipe_get_by_ep(struct wahc *, struct usb_host_endpoint *,
 328                           struct urb *, gfp_t);
 329static inline void rpipe_put(struct wa_rpipe *rpipe)
 330{
 331        kref_put(&rpipe->refcnt, rpipe_destroy);
 332
 333}
 334extern void rpipe_ep_disable(struct wahc *, struct usb_host_endpoint *);
 335extern void rpipe_clear_feature_stalled(struct wahc *,
 336                        struct usb_host_endpoint *);
 337extern int wa_rpipes_create(struct wahc *);
 338extern void wa_rpipes_destroy(struct wahc *);
 339static inline void rpipe_avail_dec(struct wa_rpipe *rpipe)
 340{
 341        atomic_dec(&rpipe->segs_available);
 342}
 343
 344/**
 345 * Returns true if the rpipe is ready to submit more segments.
 346 */
 347static inline int rpipe_avail_inc(struct wa_rpipe *rpipe)
 348{
 349        return atomic_inc_return(&rpipe->segs_available) > 0
 350                && !list_empty(&rpipe->seg_list);
 351}
 352
 353
 354/* Transferring data */
 355extern int wa_urb_enqueue(struct wahc *, struct usb_host_endpoint *,
 356                          struct urb *, gfp_t);
 357extern int wa_urb_dequeue(struct wahc *, struct urb *, int);
 358extern void wa_handle_notif_xfer(struct wahc *, struct wa_notif_hdr *);
 359
 360
 361/* Misc
 362 *
 363 * FIXME: Refcounting for the actual @hwahc object is not correct; I
 364 *        mean, this should be refcounting on the HCD underneath, but
 365 *        it is not. In any case, the semantics for HCD refcounting
 366 *        are *weird*...on refcount reaching zero it just frees
 367 *        it...no RC specific function is called...unless I miss
 368 *        something.
 369 *
 370 * FIXME: has to go away in favour of a 'struct' hcd based solution
 371 */
 372static inline struct wahc *wa_get(struct wahc *wa)
 373{
 374        usb_get_intf(wa->usb_iface);
 375        return wa;
 376}
 377
 378static inline void wa_put(struct wahc *wa)
 379{
 380        usb_put_intf(wa->usb_iface);
 381}
 382
 383
 384static inline int __wa_feature(struct wahc *wa, unsigned op, u16 feature)
 385{
 386        return usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
 387                        op ? USB_REQ_SET_FEATURE : USB_REQ_CLEAR_FEATURE,
 388                        USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
 389                        feature,
 390                        wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
 391                        NULL, 0, USB_CTRL_SET_TIMEOUT);
 392}
 393
 394
 395static inline int __wa_set_feature(struct wahc *wa, u16 feature)
 396{
 397        return  __wa_feature(wa, 1, feature);
 398}
 399
 400
 401static inline int __wa_clear_feature(struct wahc *wa, u16 feature)
 402{
 403        return __wa_feature(wa, 0, feature);
 404}
 405
 406
 407/**
 408 * Return the status of a Wire Adapter
 409 *
 410 * @wa:         Wire Adapter instance
 411 * @returns     < 0 errno code on error, or status bitmap as described
 412 *              in WUSB1.0[8.3.1.6].
 413 *
 414 * NOTE: need malloc, some arches don't take USB from the stack
 415 */
 416static inline
 417s32 __wa_get_status(struct wahc *wa)
 418{
 419        s32 result;
 420        result = usb_control_msg(
 421                wa->usb_dev, usb_rcvctrlpipe(wa->usb_dev, 0),
 422                USB_REQ_GET_STATUS,
 423                USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
 424                0, wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
 425                &wa->status, sizeof(wa->status), USB_CTRL_GET_TIMEOUT);
 426        if (result >= 0)
 427                result = wa->status;
 428        return result;
 429}
 430
 431
 432/**
 433 * Waits until the Wire Adapter's status matches @mask/@value
 434 *
 435 * @wa:         Wire Adapter instance.
 436 * @returns     < 0 errno code on error, otherwise status.
 437 *
 438 * Loop until the WAs status matches the mask and value (status & mask
 439 * == value). Timeout if it doesn't happen.
 440 *
 441 * FIXME: is there an official specification on how long status
 442 *        changes can take?
 443 */
 444static inline s32 __wa_wait_status(struct wahc *wa, u32 mask, u32 value)
 445{
 446        s32 result;
 447        unsigned loops = 10;
 448        do {
 449                msleep(50);
 450                result = __wa_get_status(wa);
 451                if ((result & mask) == value)
 452                        break;
 453                if (loops-- == 0) {
 454                        result = -ETIMEDOUT;
 455                        break;
 456                }
 457        } while (result >= 0);
 458        return result;
 459}
 460
 461
 462/** Command @hwahc to stop, @returns 0 if ok, < 0 errno code on error */
 463static inline int __wa_stop(struct wahc *wa)
 464{
 465        int result;
 466        struct device *dev = &wa->usb_iface->dev;
 467
 468        result = __wa_clear_feature(wa, WA_ENABLE);
 469        if (result < 0 && result != -ENODEV) {
 470                dev_err(dev, "error commanding HC to stop: %d\n", result);
 471                goto out;
 472        }
 473        result = __wa_wait_status(wa, WA_ENABLE, 0);
 474        if (result < 0 && result != -ENODEV)
 475                dev_err(dev, "error waiting for HC to stop: %d\n", result);
 476out:
 477        return 0;
 478}
 479
 480
 481#endif /* #ifndef __HWAHC_INTERNAL_H__ */
 482