linux/fs/block_dev.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/block_dev.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/fcntl.h>
  11#include <linux/slab.h>
  12#include <linux/kmod.h>
  13#include <linux/major.h>
  14#include <linux/device_cgroup.h>
  15#include <linux/highmem.h>
  16#include <linux/blkdev.h>
  17#include <linux/backing-dev.h>
  18#include <linux/module.h>
  19#include <linux/blkpg.h>
  20#include <linux/magic.h>
  21#include <linux/buffer_head.h>
  22#include <linux/swap.h>
  23#include <linux/pagevec.h>
  24#include <linux/writeback.h>
  25#include <linux/mpage.h>
  26#include <linux/mount.h>
  27#include <linux/uio.h>
  28#include <linux/namei.h>
  29#include <linux/log2.h>
  30#include <linux/cleancache.h>
  31#include <linux/dax.h>
  32#include <asm/uaccess.h>
  33#include "internal.h"
  34
  35struct bdev_inode {
  36        struct block_device bdev;
  37        struct inode vfs_inode;
  38};
  39
  40static const struct address_space_operations def_blk_aops;
  41
  42static inline struct bdev_inode *BDEV_I(struct inode *inode)
  43{
  44        return container_of(inode, struct bdev_inode, vfs_inode);
  45}
  46
  47struct block_device *I_BDEV(struct inode *inode)
  48{
  49        return &BDEV_I(inode)->bdev;
  50}
  51EXPORT_SYMBOL(I_BDEV);
  52
  53static void bdev_write_inode(struct block_device *bdev)
  54{
  55        struct inode *inode = bdev->bd_inode;
  56        int ret;
  57
  58        spin_lock(&inode->i_lock);
  59        while (inode->i_state & I_DIRTY) {
  60                spin_unlock(&inode->i_lock);
  61                ret = write_inode_now(inode, true);
  62                if (ret) {
  63                        char name[BDEVNAME_SIZE];
  64                        pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  65                                            "for block device %s (err=%d).\n",
  66                                            bdevname(bdev, name), ret);
  67                }
  68                spin_lock(&inode->i_lock);
  69        }
  70        spin_unlock(&inode->i_lock);
  71}
  72
  73/* Kill _all_ buffers and pagecache , dirty or not.. */
  74void kill_bdev(struct block_device *bdev)
  75{
  76        struct address_space *mapping = bdev->bd_inode->i_mapping;
  77
  78        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  79                return;
  80
  81        invalidate_bh_lrus();
  82        truncate_inode_pages(mapping, 0);
  83}       
  84EXPORT_SYMBOL(kill_bdev);
  85
  86/* Invalidate clean unused buffers and pagecache. */
  87void invalidate_bdev(struct block_device *bdev)
  88{
  89        struct address_space *mapping = bdev->bd_inode->i_mapping;
  90
  91        if (mapping->nrpages == 0)
  92                return;
  93
  94        invalidate_bh_lrus();
  95        lru_add_drain_all();    /* make sure all lru add caches are flushed */
  96        invalidate_mapping_pages(mapping, 0, -1);
  97        /* 99% of the time, we don't need to flush the cleancache on the bdev.
  98         * But, for the strange corners, lets be cautious
  99         */
 100        cleancache_invalidate_inode(mapping);
 101}
 102EXPORT_SYMBOL(invalidate_bdev);
 103
 104int set_blocksize(struct block_device *bdev, int size)
 105{
 106        /* Size must be a power of two, and between 512 and PAGE_SIZE */
 107        if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 108                return -EINVAL;
 109
 110        /* Size cannot be smaller than the size supported by the device */
 111        if (size < bdev_logical_block_size(bdev))
 112                return -EINVAL;
 113
 114        /* Don't change the size if it is same as current */
 115        if (bdev->bd_block_size != size) {
 116                sync_blockdev(bdev);
 117                bdev->bd_block_size = size;
 118                bdev->bd_inode->i_blkbits = blksize_bits(size);
 119                kill_bdev(bdev);
 120        }
 121        return 0;
 122}
 123
 124EXPORT_SYMBOL(set_blocksize);
 125
 126int sb_set_blocksize(struct super_block *sb, int size)
 127{
 128        if (set_blocksize(sb->s_bdev, size))
 129                return 0;
 130        /* If we get here, we know size is power of two
 131         * and it's value is between 512 and PAGE_SIZE */
 132        sb->s_blocksize = size;
 133        sb->s_blocksize_bits = blksize_bits(size);
 134        return sb->s_blocksize;
 135}
 136
 137EXPORT_SYMBOL(sb_set_blocksize);
 138
 139int sb_min_blocksize(struct super_block *sb, int size)
 140{
 141        int minsize = bdev_logical_block_size(sb->s_bdev);
 142        if (size < minsize)
 143                size = minsize;
 144        return sb_set_blocksize(sb, size);
 145}
 146
 147EXPORT_SYMBOL(sb_min_blocksize);
 148
 149static int
 150blkdev_get_block(struct inode *inode, sector_t iblock,
 151                struct buffer_head *bh, int create)
 152{
 153        bh->b_bdev = I_BDEV(inode);
 154        bh->b_blocknr = iblock;
 155        set_buffer_mapped(bh);
 156        return 0;
 157}
 158
 159static struct inode *bdev_file_inode(struct file *file)
 160{
 161        return file->f_mapping->host;
 162}
 163
 164static ssize_t
 165blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
 166{
 167        struct file *file = iocb->ki_filp;
 168        struct inode *inode = bdev_file_inode(file);
 169
 170        if (IS_DAX(inode))
 171                return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
 172                                NULL, DIO_SKIP_DIO_COUNT);
 173        return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
 174                                    blkdev_get_block, NULL, NULL,
 175                                    DIO_SKIP_DIO_COUNT);
 176}
 177
 178int __sync_blockdev(struct block_device *bdev, int wait)
 179{
 180        if (!bdev)
 181                return 0;
 182        if (!wait)
 183                return filemap_flush(bdev->bd_inode->i_mapping);
 184        return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 185}
 186
 187/*
 188 * Write out and wait upon all the dirty data associated with a block
 189 * device via its mapping.  Does not take the superblock lock.
 190 */
 191int sync_blockdev(struct block_device *bdev)
 192{
 193        return __sync_blockdev(bdev, 1);
 194}
 195EXPORT_SYMBOL(sync_blockdev);
 196
 197/*
 198 * Write out and wait upon all dirty data associated with this
 199 * device.   Filesystem data as well as the underlying block
 200 * device.  Takes the superblock lock.
 201 */
 202int fsync_bdev(struct block_device *bdev)
 203{
 204        struct super_block *sb = get_super(bdev);
 205        if (sb) {
 206                int res = sync_filesystem(sb);
 207                drop_super(sb);
 208                return res;
 209        }
 210        return sync_blockdev(bdev);
 211}
 212EXPORT_SYMBOL(fsync_bdev);
 213
 214/**
 215 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 216 * @bdev:       blockdevice to lock
 217 *
 218 * If a superblock is found on this device, we take the s_umount semaphore
 219 * on it to make sure nobody unmounts until the snapshot creation is done.
 220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 224 * actually.
 225 */
 226struct super_block *freeze_bdev(struct block_device *bdev)
 227{
 228        struct super_block *sb;
 229        int error = 0;
 230
 231        mutex_lock(&bdev->bd_fsfreeze_mutex);
 232        if (++bdev->bd_fsfreeze_count > 1) {
 233                /*
 234                 * We don't even need to grab a reference - the first call
 235                 * to freeze_bdev grab an active reference and only the last
 236                 * thaw_bdev drops it.
 237                 */
 238                sb = get_super(bdev);
 239                drop_super(sb);
 240                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 241                return sb;
 242        }
 243
 244        sb = get_active_super(bdev);
 245        if (!sb)
 246                goto out;
 247        if (sb->s_op->freeze_super)
 248                error = sb->s_op->freeze_super(sb);
 249        else
 250                error = freeze_super(sb);
 251        if (error) {
 252                deactivate_super(sb);
 253                bdev->bd_fsfreeze_count--;
 254                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 255                return ERR_PTR(error);
 256        }
 257        deactivate_super(sb);
 258 out:
 259        sync_blockdev(bdev);
 260        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 261        return sb;      /* thaw_bdev releases s->s_umount */
 262}
 263EXPORT_SYMBOL(freeze_bdev);
 264
 265/**
 266 * thaw_bdev  -- unlock filesystem
 267 * @bdev:       blockdevice to unlock
 268 * @sb:         associated superblock
 269 *
 270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 271 */
 272int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 273{
 274        int error = -EINVAL;
 275
 276        mutex_lock(&bdev->bd_fsfreeze_mutex);
 277        if (!bdev->bd_fsfreeze_count)
 278                goto out;
 279
 280        error = 0;
 281        if (--bdev->bd_fsfreeze_count > 0)
 282                goto out;
 283
 284        if (!sb)
 285                goto out;
 286
 287        if (sb->s_op->thaw_super)
 288                error = sb->s_op->thaw_super(sb);
 289        else
 290                error = thaw_super(sb);
 291        if (error) {
 292                bdev->bd_fsfreeze_count++;
 293                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 294                return error;
 295        }
 296out:
 297        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 298        return 0;
 299}
 300EXPORT_SYMBOL(thaw_bdev);
 301
 302static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 303{
 304        return block_write_full_page(page, blkdev_get_block, wbc);
 305}
 306
 307static int blkdev_readpage(struct file * file, struct page * page)
 308{
 309        return block_read_full_page(page, blkdev_get_block);
 310}
 311
 312static int blkdev_readpages(struct file *file, struct address_space *mapping,
 313                        struct list_head *pages, unsigned nr_pages)
 314{
 315        return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 316}
 317
 318static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 319                        loff_t pos, unsigned len, unsigned flags,
 320                        struct page **pagep, void **fsdata)
 321{
 322        return block_write_begin(mapping, pos, len, flags, pagep,
 323                                 blkdev_get_block);
 324}
 325
 326static int blkdev_write_end(struct file *file, struct address_space *mapping,
 327                        loff_t pos, unsigned len, unsigned copied,
 328                        struct page *page, void *fsdata)
 329{
 330        int ret;
 331        ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 332
 333        unlock_page(page);
 334        put_page(page);
 335
 336        return ret;
 337}
 338
 339/*
 340 * private llseek:
 341 * for a block special file file_inode(file)->i_size is zero
 342 * so we compute the size by hand (just as in block_read/write above)
 343 */
 344static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 345{
 346        struct inode *bd_inode = bdev_file_inode(file);
 347        loff_t retval;
 348
 349        inode_lock(bd_inode);
 350        retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 351        inode_unlock(bd_inode);
 352        return retval;
 353}
 354        
 355int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 356{
 357        struct inode *bd_inode = bdev_file_inode(filp);
 358        struct block_device *bdev = I_BDEV(bd_inode);
 359        int error;
 360        
 361        error = filemap_write_and_wait_range(filp->f_mapping, start, end);
 362        if (error)
 363                return error;
 364
 365        /*
 366         * There is no need to serialise calls to blkdev_issue_flush with
 367         * i_mutex and doing so causes performance issues with concurrent
 368         * O_SYNC writers to a block device.
 369         */
 370        error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 371        if (error == -EOPNOTSUPP)
 372                error = 0;
 373
 374        return error;
 375}
 376EXPORT_SYMBOL(blkdev_fsync);
 377
 378/**
 379 * bdev_read_page() - Start reading a page from a block device
 380 * @bdev: The device to read the page from
 381 * @sector: The offset on the device to read the page to (need not be aligned)
 382 * @page: The page to read
 383 *
 384 * On entry, the page should be locked.  It will be unlocked when the page
 385 * has been read.  If the block driver implements rw_page synchronously,
 386 * that will be true on exit from this function, but it need not be.
 387 *
 388 * Errors returned by this function are usually "soft", eg out of memory, or
 389 * queue full; callers should try a different route to read this page rather
 390 * than propagate an error back up the stack.
 391 *
 392 * Return: negative errno if an error occurs, 0 if submission was successful.
 393 */
 394int bdev_read_page(struct block_device *bdev, sector_t sector,
 395                        struct page *page)
 396{
 397        const struct block_device_operations *ops = bdev->bd_disk->fops;
 398        int result = -EOPNOTSUPP;
 399
 400        if (!ops->rw_page || bdev_get_integrity(bdev))
 401                return result;
 402
 403        result = blk_queue_enter(bdev->bd_queue, false);
 404        if (result)
 405                return result;
 406        result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
 407        blk_queue_exit(bdev->bd_queue);
 408        return result;
 409}
 410EXPORT_SYMBOL_GPL(bdev_read_page);
 411
 412/**
 413 * bdev_write_page() - Start writing a page to a block device
 414 * @bdev: The device to write the page to
 415 * @sector: The offset on the device to write the page to (need not be aligned)
 416 * @page: The page to write
 417 * @wbc: The writeback_control for the write
 418 *
 419 * On entry, the page should be locked and not currently under writeback.
 420 * On exit, if the write started successfully, the page will be unlocked and
 421 * under writeback.  If the write failed already (eg the driver failed to
 422 * queue the page to the device), the page will still be locked.  If the
 423 * caller is a ->writepage implementation, it will need to unlock the page.
 424 *
 425 * Errors returned by this function are usually "soft", eg out of memory, or
 426 * queue full; callers should try a different route to write this page rather
 427 * than propagate an error back up the stack.
 428 *
 429 * Return: negative errno if an error occurs, 0 if submission was successful.
 430 */
 431int bdev_write_page(struct block_device *bdev, sector_t sector,
 432                        struct page *page, struct writeback_control *wbc)
 433{
 434        int result;
 435        int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
 436        const struct block_device_operations *ops = bdev->bd_disk->fops;
 437
 438        if (!ops->rw_page || bdev_get_integrity(bdev))
 439                return -EOPNOTSUPP;
 440        result = blk_queue_enter(bdev->bd_queue, false);
 441        if (result)
 442                return result;
 443
 444        set_page_writeback(page);
 445        result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
 446        if (result)
 447                end_page_writeback(page);
 448        else
 449                unlock_page(page);
 450        blk_queue_exit(bdev->bd_queue);
 451        return result;
 452}
 453EXPORT_SYMBOL_GPL(bdev_write_page);
 454
 455/**
 456 * bdev_direct_access() - Get the address for directly-accessibly memory
 457 * @bdev: The device containing the memory
 458 * @dax: control and output parameters for ->direct_access
 459 *
 460 * If a block device is made up of directly addressable memory, this function
 461 * will tell the caller the PFN and the address of the memory.  The address
 462 * may be directly dereferenced within the kernel without the need to call
 463 * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
 464 * page tables.
 465 *
 466 * Return: negative errno if an error occurs, otherwise the number of bytes
 467 * accessible at this address.
 468 */
 469long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
 470{
 471        sector_t sector = dax->sector;
 472        long avail, size = dax->size;
 473        const struct block_device_operations *ops = bdev->bd_disk->fops;
 474
 475        /*
 476         * The device driver is allowed to sleep, in order to make the
 477         * memory directly accessible.
 478         */
 479        might_sleep();
 480
 481        if (size < 0)
 482                return size;
 483        if (!ops->direct_access)
 484                return -EOPNOTSUPP;
 485        if ((sector + DIV_ROUND_UP(size, 512)) >
 486                                        part_nr_sects_read(bdev->bd_part))
 487                return -ERANGE;
 488        sector += get_start_sect(bdev);
 489        if (sector % (PAGE_SIZE / 512))
 490                return -EINVAL;
 491        avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
 492        if (!avail)
 493                return -ERANGE;
 494        if (avail > 0 && avail & ~PAGE_MASK)
 495                return -ENXIO;
 496        return min(avail, size);
 497}
 498EXPORT_SYMBOL_GPL(bdev_direct_access);
 499
 500/*
 501 * pseudo-fs
 502 */
 503
 504static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 505static struct kmem_cache * bdev_cachep __read_mostly;
 506
 507static struct inode *bdev_alloc_inode(struct super_block *sb)
 508{
 509        struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 510        if (!ei)
 511                return NULL;
 512        return &ei->vfs_inode;
 513}
 514
 515static void bdev_i_callback(struct rcu_head *head)
 516{
 517        struct inode *inode = container_of(head, struct inode, i_rcu);
 518        struct bdev_inode *bdi = BDEV_I(inode);
 519
 520        kmem_cache_free(bdev_cachep, bdi);
 521}
 522
 523static void bdev_destroy_inode(struct inode *inode)
 524{
 525        call_rcu(&inode->i_rcu, bdev_i_callback);
 526}
 527
 528static void init_once(void *foo)
 529{
 530        struct bdev_inode *ei = (struct bdev_inode *) foo;
 531        struct block_device *bdev = &ei->bdev;
 532
 533        memset(bdev, 0, sizeof(*bdev));
 534        mutex_init(&bdev->bd_mutex);
 535        INIT_LIST_HEAD(&bdev->bd_inodes);
 536        INIT_LIST_HEAD(&bdev->bd_list);
 537#ifdef CONFIG_SYSFS
 538        INIT_LIST_HEAD(&bdev->bd_holder_disks);
 539#endif
 540        inode_init_once(&ei->vfs_inode);
 541        /* Initialize mutex for freeze. */
 542        mutex_init(&bdev->bd_fsfreeze_mutex);
 543}
 544
 545static inline void __bd_forget(struct inode *inode)
 546{
 547        list_del_init(&inode->i_devices);
 548        inode->i_bdev = NULL;
 549        inode->i_mapping = &inode->i_data;
 550}
 551
 552static void bdev_evict_inode(struct inode *inode)
 553{
 554        struct block_device *bdev = &BDEV_I(inode)->bdev;
 555        struct list_head *p;
 556        truncate_inode_pages_final(&inode->i_data);
 557        invalidate_inode_buffers(inode); /* is it needed here? */
 558        clear_inode(inode);
 559        spin_lock(&bdev_lock);
 560        while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
 561                __bd_forget(list_entry(p, struct inode, i_devices));
 562        }
 563        list_del_init(&bdev->bd_list);
 564        spin_unlock(&bdev_lock);
 565}
 566
 567static const struct super_operations bdev_sops = {
 568        .statfs = simple_statfs,
 569        .alloc_inode = bdev_alloc_inode,
 570        .destroy_inode = bdev_destroy_inode,
 571        .drop_inode = generic_delete_inode,
 572        .evict_inode = bdev_evict_inode,
 573};
 574
 575static struct dentry *bd_mount(struct file_system_type *fs_type,
 576        int flags, const char *dev_name, void *data)
 577{
 578        struct dentry *dent;
 579        dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
 580        if (dent)
 581                dent->d_sb->s_iflags |= SB_I_CGROUPWB;
 582        return dent;
 583}
 584
 585static struct file_system_type bd_type = {
 586        .name           = "bdev",
 587        .mount          = bd_mount,
 588        .kill_sb        = kill_anon_super,
 589};
 590
 591struct super_block *blockdev_superblock __read_mostly;
 592EXPORT_SYMBOL_GPL(blockdev_superblock);
 593
 594void __init bdev_cache_init(void)
 595{
 596        int err;
 597        static struct vfsmount *bd_mnt;
 598
 599        bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 600                        0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 601                                SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 602                        init_once);
 603        err = register_filesystem(&bd_type);
 604        if (err)
 605                panic("Cannot register bdev pseudo-fs");
 606        bd_mnt = kern_mount(&bd_type);
 607        if (IS_ERR(bd_mnt))
 608                panic("Cannot create bdev pseudo-fs");
 609        blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 610}
 611
 612/*
 613 * Most likely _very_ bad one - but then it's hardly critical for small
 614 * /dev and can be fixed when somebody will need really large one.
 615 * Keep in mind that it will be fed through icache hash function too.
 616 */
 617static inline unsigned long hash(dev_t dev)
 618{
 619        return MAJOR(dev)+MINOR(dev);
 620}
 621
 622static int bdev_test(struct inode *inode, void *data)
 623{
 624        return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 625}
 626
 627static int bdev_set(struct inode *inode, void *data)
 628{
 629        BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 630        return 0;
 631}
 632
 633static LIST_HEAD(all_bdevs);
 634
 635struct block_device *bdget(dev_t dev)
 636{
 637        struct block_device *bdev;
 638        struct inode *inode;
 639
 640        inode = iget5_locked(blockdev_superblock, hash(dev),
 641                        bdev_test, bdev_set, &dev);
 642
 643        if (!inode)
 644                return NULL;
 645
 646        bdev = &BDEV_I(inode)->bdev;
 647
 648        if (inode->i_state & I_NEW) {
 649                bdev->bd_contains = NULL;
 650                bdev->bd_super = NULL;
 651                bdev->bd_inode = inode;
 652                bdev->bd_block_size = (1 << inode->i_blkbits);
 653                bdev->bd_part_count = 0;
 654                bdev->bd_invalidated = 0;
 655                inode->i_mode = S_IFBLK;
 656                inode->i_rdev = dev;
 657                inode->i_bdev = bdev;
 658                inode->i_data.a_ops = &def_blk_aops;
 659                mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 660                spin_lock(&bdev_lock);
 661                list_add(&bdev->bd_list, &all_bdevs);
 662                spin_unlock(&bdev_lock);
 663                unlock_new_inode(inode);
 664        }
 665        return bdev;
 666}
 667
 668EXPORT_SYMBOL(bdget);
 669
 670/**
 671 * bdgrab -- Grab a reference to an already referenced block device
 672 * @bdev:       Block device to grab a reference to.
 673 */
 674struct block_device *bdgrab(struct block_device *bdev)
 675{
 676        ihold(bdev->bd_inode);
 677        return bdev;
 678}
 679EXPORT_SYMBOL(bdgrab);
 680
 681long nr_blockdev_pages(void)
 682{
 683        struct block_device *bdev;
 684        long ret = 0;
 685        spin_lock(&bdev_lock);
 686        list_for_each_entry(bdev, &all_bdevs, bd_list) {
 687                ret += bdev->bd_inode->i_mapping->nrpages;
 688        }
 689        spin_unlock(&bdev_lock);
 690        return ret;
 691}
 692
 693void bdput(struct block_device *bdev)
 694{
 695        iput(bdev->bd_inode);
 696}
 697
 698EXPORT_SYMBOL(bdput);
 699 
 700static struct block_device *bd_acquire(struct inode *inode)
 701{
 702        struct block_device *bdev;
 703
 704        spin_lock(&bdev_lock);
 705        bdev = inode->i_bdev;
 706        if (bdev) {
 707                bdgrab(bdev);
 708                spin_unlock(&bdev_lock);
 709                return bdev;
 710        }
 711        spin_unlock(&bdev_lock);
 712
 713        bdev = bdget(inode->i_rdev);
 714        if (bdev) {
 715                spin_lock(&bdev_lock);
 716                if (!inode->i_bdev) {
 717                        /*
 718                         * We take an additional reference to bd_inode,
 719                         * and it's released in clear_inode() of inode.
 720                         * So, we can access it via ->i_mapping always
 721                         * without igrab().
 722                         */
 723                        bdgrab(bdev);
 724                        inode->i_bdev = bdev;
 725                        inode->i_mapping = bdev->bd_inode->i_mapping;
 726                        list_add(&inode->i_devices, &bdev->bd_inodes);
 727                }
 728                spin_unlock(&bdev_lock);
 729        }
 730        return bdev;
 731}
 732
 733/* Call when you free inode */
 734
 735void bd_forget(struct inode *inode)
 736{
 737        struct block_device *bdev = NULL;
 738
 739        spin_lock(&bdev_lock);
 740        if (!sb_is_blkdev_sb(inode->i_sb))
 741                bdev = inode->i_bdev;
 742        __bd_forget(inode);
 743        spin_unlock(&bdev_lock);
 744
 745        if (bdev)
 746                bdput(bdev);
 747}
 748
 749/**
 750 * bd_may_claim - test whether a block device can be claimed
 751 * @bdev: block device of interest
 752 * @whole: whole block device containing @bdev, may equal @bdev
 753 * @holder: holder trying to claim @bdev
 754 *
 755 * Test whether @bdev can be claimed by @holder.
 756 *
 757 * CONTEXT:
 758 * spin_lock(&bdev_lock).
 759 *
 760 * RETURNS:
 761 * %true if @bdev can be claimed, %false otherwise.
 762 */
 763static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
 764                         void *holder)
 765{
 766        if (bdev->bd_holder == holder)
 767                return true;     /* already a holder */
 768        else if (bdev->bd_holder != NULL)
 769                return false;    /* held by someone else */
 770        else if (bdev->bd_contains == bdev)
 771                return true;     /* is a whole device which isn't held */
 772
 773        else if (whole->bd_holder == bd_may_claim)
 774                return true;     /* is a partition of a device that is being partitioned */
 775        else if (whole->bd_holder != NULL)
 776                return false;    /* is a partition of a held device */
 777        else
 778                return true;     /* is a partition of an un-held device */
 779}
 780
 781/**
 782 * bd_prepare_to_claim - prepare to claim a block device
 783 * @bdev: block device of interest
 784 * @whole: the whole device containing @bdev, may equal @bdev
 785 * @holder: holder trying to claim @bdev
 786 *
 787 * Prepare to claim @bdev.  This function fails if @bdev is already
 788 * claimed by another holder and waits if another claiming is in
 789 * progress.  This function doesn't actually claim.  On successful
 790 * return, the caller has ownership of bd_claiming and bd_holder[s].
 791 *
 792 * CONTEXT:
 793 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
 794 * it multiple times.
 795 *
 796 * RETURNS:
 797 * 0 if @bdev can be claimed, -EBUSY otherwise.
 798 */
 799static int bd_prepare_to_claim(struct block_device *bdev,
 800                               struct block_device *whole, void *holder)
 801{
 802retry:
 803        /* if someone else claimed, fail */
 804        if (!bd_may_claim(bdev, whole, holder))
 805                return -EBUSY;
 806
 807        /* if claiming is already in progress, wait for it to finish */
 808        if (whole->bd_claiming) {
 809                wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
 810                DEFINE_WAIT(wait);
 811
 812                prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
 813                spin_unlock(&bdev_lock);
 814                schedule();
 815                finish_wait(wq, &wait);
 816                spin_lock(&bdev_lock);
 817                goto retry;
 818        }
 819
 820        /* yay, all mine */
 821        return 0;
 822}
 823
 824/**
 825 * bd_start_claiming - start claiming a block device
 826 * @bdev: block device of interest
 827 * @holder: holder trying to claim @bdev
 828 *
 829 * @bdev is about to be opened exclusively.  Check @bdev can be opened
 830 * exclusively and mark that an exclusive open is in progress.  Each
 831 * successful call to this function must be matched with a call to
 832 * either bd_finish_claiming() or bd_abort_claiming() (which do not
 833 * fail).
 834 *
 835 * This function is used to gain exclusive access to the block device
 836 * without actually causing other exclusive open attempts to fail. It
 837 * should be used when the open sequence itself requires exclusive
 838 * access but may subsequently fail.
 839 *
 840 * CONTEXT:
 841 * Might sleep.
 842 *
 843 * RETURNS:
 844 * Pointer to the block device containing @bdev on success, ERR_PTR()
 845 * value on failure.
 846 */
 847static struct block_device *bd_start_claiming(struct block_device *bdev,
 848                                              void *holder)
 849{
 850        struct gendisk *disk;
 851        struct block_device *whole;
 852        int partno, err;
 853
 854        might_sleep();
 855
 856        /*
 857         * @bdev might not have been initialized properly yet, look up
 858         * and grab the outer block device the hard way.
 859         */
 860        disk = get_gendisk(bdev->bd_dev, &partno);
 861        if (!disk)
 862                return ERR_PTR(-ENXIO);
 863
 864        /*
 865         * Normally, @bdev should equal what's returned from bdget_disk()
 866         * if partno is 0; however, some drivers (floppy) use multiple
 867         * bdev's for the same physical device and @bdev may be one of the
 868         * aliases.  Keep @bdev if partno is 0.  This means claimer
 869         * tracking is broken for those devices but it has always been that
 870         * way.
 871         */
 872        if (partno)
 873                whole = bdget_disk(disk, 0);
 874        else
 875                whole = bdgrab(bdev);
 876
 877        module_put(disk->fops->owner);
 878        put_disk(disk);
 879        if (!whole)
 880                return ERR_PTR(-ENOMEM);
 881
 882        /* prepare to claim, if successful, mark claiming in progress */
 883        spin_lock(&bdev_lock);
 884
 885        err = bd_prepare_to_claim(bdev, whole, holder);
 886        if (err == 0) {
 887                whole->bd_claiming = holder;
 888                spin_unlock(&bdev_lock);
 889                return whole;
 890        } else {
 891                spin_unlock(&bdev_lock);
 892                bdput(whole);
 893                return ERR_PTR(err);
 894        }
 895}
 896
 897#ifdef CONFIG_SYSFS
 898struct bd_holder_disk {
 899        struct list_head        list;
 900        struct gendisk          *disk;
 901        int                     refcnt;
 902};
 903
 904static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
 905                                                  struct gendisk *disk)
 906{
 907        struct bd_holder_disk *holder;
 908
 909        list_for_each_entry(holder, &bdev->bd_holder_disks, list)
 910                if (holder->disk == disk)
 911                        return holder;
 912        return NULL;
 913}
 914
 915static int add_symlink(struct kobject *from, struct kobject *to)
 916{
 917        return sysfs_create_link(from, to, kobject_name(to));
 918}
 919
 920static void del_symlink(struct kobject *from, struct kobject *to)
 921{
 922        sysfs_remove_link(from, kobject_name(to));
 923}
 924
 925/**
 926 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
 927 * @bdev: the claimed slave bdev
 928 * @disk: the holding disk
 929 *
 930 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
 931 *
 932 * This functions creates the following sysfs symlinks.
 933 *
 934 * - from "slaves" directory of the holder @disk to the claimed @bdev
 935 * - from "holders" directory of the @bdev to the holder @disk
 936 *
 937 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
 938 * passed to bd_link_disk_holder(), then:
 939 *
 940 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
 941 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
 942 *
 943 * The caller must have claimed @bdev before calling this function and
 944 * ensure that both @bdev and @disk are valid during the creation and
 945 * lifetime of these symlinks.
 946 *
 947 * CONTEXT:
 948 * Might sleep.
 949 *
 950 * RETURNS:
 951 * 0 on success, -errno on failure.
 952 */
 953int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
 954{
 955        struct bd_holder_disk *holder;
 956        int ret = 0;
 957
 958        mutex_lock(&bdev->bd_mutex);
 959
 960        WARN_ON_ONCE(!bdev->bd_holder);
 961
 962        /* FIXME: remove the following once add_disk() handles errors */
 963        if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
 964                goto out_unlock;
 965
 966        holder = bd_find_holder_disk(bdev, disk);
 967        if (holder) {
 968                holder->refcnt++;
 969                goto out_unlock;
 970        }
 971
 972        holder = kzalloc(sizeof(*holder), GFP_KERNEL);
 973        if (!holder) {
 974                ret = -ENOMEM;
 975                goto out_unlock;
 976        }
 977
 978        INIT_LIST_HEAD(&holder->list);
 979        holder->disk = disk;
 980        holder->refcnt = 1;
 981
 982        ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
 983        if (ret)
 984                goto out_free;
 985
 986        ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
 987        if (ret)
 988                goto out_del;
 989        /*
 990         * bdev could be deleted beneath us which would implicitly destroy
 991         * the holder directory.  Hold on to it.
 992         */
 993        kobject_get(bdev->bd_part->holder_dir);
 994
 995        list_add(&holder->list, &bdev->bd_holder_disks);
 996        goto out_unlock;
 997
 998out_del:
 999        del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1000out_free:
1001        kfree(holder);
1002out_unlock:
1003        mutex_unlock(&bdev->bd_mutex);
1004        return ret;
1005}
1006EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1007
1008/**
1009 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1010 * @bdev: the calimed slave bdev
1011 * @disk: the holding disk
1012 *
1013 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1014 *
1015 * CONTEXT:
1016 * Might sleep.
1017 */
1018void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1019{
1020        struct bd_holder_disk *holder;
1021
1022        mutex_lock(&bdev->bd_mutex);
1023
1024        holder = bd_find_holder_disk(bdev, disk);
1025
1026        if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1027                del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1028                del_symlink(bdev->bd_part->holder_dir,
1029                            &disk_to_dev(disk)->kobj);
1030                kobject_put(bdev->bd_part->holder_dir);
1031                list_del_init(&holder->list);
1032                kfree(holder);
1033        }
1034
1035        mutex_unlock(&bdev->bd_mutex);
1036}
1037EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1038#endif
1039
1040/**
1041 * flush_disk - invalidates all buffer-cache entries on a disk
1042 *
1043 * @bdev:      struct block device to be flushed
1044 * @kill_dirty: flag to guide handling of dirty inodes
1045 *
1046 * Invalidates all buffer-cache entries on a disk. It should be called
1047 * when a disk has been changed -- either by a media change or online
1048 * resize.
1049 */
1050static void flush_disk(struct block_device *bdev, bool kill_dirty)
1051{
1052        if (__invalidate_device(bdev, kill_dirty)) {
1053                printk(KERN_WARNING "VFS: busy inodes on changed media or "
1054                       "resized disk %s\n",
1055                       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1056        }
1057
1058        if (!bdev->bd_disk)
1059                return;
1060        if (disk_part_scan_enabled(bdev->bd_disk))
1061                bdev->bd_invalidated = 1;
1062}
1063
1064/**
1065 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1066 * @disk: struct gendisk to check
1067 * @bdev: struct bdev to adjust.
1068 *
1069 * This routine checks to see if the bdev size does not match the disk size
1070 * and adjusts it if it differs.
1071 */
1072void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1073{
1074        loff_t disk_size, bdev_size;
1075
1076        disk_size = (loff_t)get_capacity(disk) << 9;
1077        bdev_size = i_size_read(bdev->bd_inode);
1078        if (disk_size != bdev_size) {
1079                printk(KERN_INFO
1080                       "%s: detected capacity change from %lld to %lld\n",
1081                       disk->disk_name, bdev_size, disk_size);
1082                i_size_write(bdev->bd_inode, disk_size);
1083                flush_disk(bdev, false);
1084        }
1085}
1086EXPORT_SYMBOL(check_disk_size_change);
1087
1088/**
1089 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1090 * @disk: struct gendisk to be revalidated
1091 *
1092 * This routine is a wrapper for lower-level driver's revalidate_disk
1093 * call-backs.  It is used to do common pre and post operations needed
1094 * for all revalidate_disk operations.
1095 */
1096int revalidate_disk(struct gendisk *disk)
1097{
1098        struct block_device *bdev;
1099        int ret = 0;
1100
1101        if (disk->fops->revalidate_disk)
1102                ret = disk->fops->revalidate_disk(disk);
1103        blk_integrity_revalidate(disk);
1104        bdev = bdget_disk(disk, 0);
1105        if (!bdev)
1106                return ret;
1107
1108        mutex_lock(&bdev->bd_mutex);
1109        check_disk_size_change(disk, bdev);
1110        bdev->bd_invalidated = 0;
1111        mutex_unlock(&bdev->bd_mutex);
1112        bdput(bdev);
1113        return ret;
1114}
1115EXPORT_SYMBOL(revalidate_disk);
1116
1117/*
1118 * This routine checks whether a removable media has been changed,
1119 * and invalidates all buffer-cache-entries in that case. This
1120 * is a relatively slow routine, so we have to try to minimize using
1121 * it. Thus it is called only upon a 'mount' or 'open'. This
1122 * is the best way of combining speed and utility, I think.
1123 * People changing diskettes in the middle of an operation deserve
1124 * to lose :-)
1125 */
1126int check_disk_change(struct block_device *bdev)
1127{
1128        struct gendisk *disk = bdev->bd_disk;
1129        const struct block_device_operations *bdops = disk->fops;
1130        unsigned int events;
1131
1132        events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1133                                   DISK_EVENT_EJECT_REQUEST);
1134        if (!(events & DISK_EVENT_MEDIA_CHANGE))
1135                return 0;
1136
1137        flush_disk(bdev, true);
1138        if (bdops->revalidate_disk)
1139                bdops->revalidate_disk(bdev->bd_disk);
1140        return 1;
1141}
1142
1143EXPORT_SYMBOL(check_disk_change);
1144
1145void bd_set_size(struct block_device *bdev, loff_t size)
1146{
1147        unsigned bsize = bdev_logical_block_size(bdev);
1148
1149        inode_lock(bdev->bd_inode);
1150        i_size_write(bdev->bd_inode, size);
1151        inode_unlock(bdev->bd_inode);
1152        while (bsize < PAGE_SIZE) {
1153                if (size & bsize)
1154                        break;
1155                bsize <<= 1;
1156        }
1157        bdev->bd_block_size = bsize;
1158        bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1159}
1160EXPORT_SYMBOL(bd_set_size);
1161
1162static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1163
1164/*
1165 * bd_mutex locking:
1166 *
1167 *  mutex_lock(part->bd_mutex)
1168 *    mutex_lock_nested(whole->bd_mutex, 1)
1169 */
1170
1171static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1172{
1173        struct gendisk *disk;
1174        struct module *owner;
1175        int ret;
1176        int partno;
1177        int perm = 0;
1178
1179        if (mode & FMODE_READ)
1180                perm |= MAY_READ;
1181        if (mode & FMODE_WRITE)
1182                perm |= MAY_WRITE;
1183        /*
1184         * hooks: /n/, see "layering violations".
1185         */
1186        if (!for_part) {
1187                ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1188                if (ret != 0) {
1189                        bdput(bdev);
1190                        return ret;
1191                }
1192        }
1193
1194 restart:
1195
1196        ret = -ENXIO;
1197        disk = get_gendisk(bdev->bd_dev, &partno);
1198        if (!disk)
1199                goto out;
1200        owner = disk->fops->owner;
1201
1202        disk_block_events(disk);
1203        mutex_lock_nested(&bdev->bd_mutex, for_part);
1204        if (!bdev->bd_openers) {
1205                bdev->bd_disk = disk;
1206                bdev->bd_queue = disk->queue;
1207                bdev->bd_contains = bdev;
1208                if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1209                        bdev->bd_inode->i_flags = S_DAX;
1210                else
1211                        bdev->bd_inode->i_flags = 0;
1212
1213                if (!partno) {
1214                        ret = -ENXIO;
1215                        bdev->bd_part = disk_get_part(disk, partno);
1216                        if (!bdev->bd_part)
1217                                goto out_clear;
1218
1219                        ret = 0;
1220                        if (disk->fops->open) {
1221                                ret = disk->fops->open(bdev, mode);
1222                                if (ret == -ERESTARTSYS) {
1223                                        /* Lost a race with 'disk' being
1224                                         * deleted, try again.
1225                                         * See md.c
1226                                         */
1227                                        disk_put_part(bdev->bd_part);
1228                                        bdev->bd_part = NULL;
1229                                        bdev->bd_disk = NULL;
1230                                        bdev->bd_queue = NULL;
1231                                        mutex_unlock(&bdev->bd_mutex);
1232                                        disk_unblock_events(disk);
1233                                        put_disk(disk);
1234                                        module_put(owner);
1235                                        goto restart;
1236                                }
1237                        }
1238
1239                        if (!ret) {
1240                                bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1241                                if (!blkdev_dax_capable(bdev))
1242                                        bdev->bd_inode->i_flags &= ~S_DAX;
1243                        }
1244
1245                        /*
1246                         * If the device is invalidated, rescan partition
1247                         * if open succeeded or failed with -ENOMEDIUM.
1248                         * The latter is necessary to prevent ghost
1249                         * partitions on a removed medium.
1250                         */
1251                        if (bdev->bd_invalidated) {
1252                                if (!ret)
1253                                        rescan_partitions(disk, bdev);
1254                                else if (ret == -ENOMEDIUM)
1255                                        invalidate_partitions(disk, bdev);
1256                        }
1257
1258                        if (ret)
1259                                goto out_clear;
1260                } else {
1261                        struct block_device *whole;
1262                        whole = bdget_disk(disk, 0);
1263                        ret = -ENOMEM;
1264                        if (!whole)
1265                                goto out_clear;
1266                        BUG_ON(for_part);
1267                        ret = __blkdev_get(whole, mode, 1);
1268                        if (ret)
1269                                goto out_clear;
1270                        bdev->bd_contains = whole;
1271                        bdev->bd_part = disk_get_part(disk, partno);
1272                        if (!(disk->flags & GENHD_FL_UP) ||
1273                            !bdev->bd_part || !bdev->bd_part->nr_sects) {
1274                                ret = -ENXIO;
1275                                goto out_clear;
1276                        }
1277                        bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1278                        if (!blkdev_dax_capable(bdev))
1279                                bdev->bd_inode->i_flags &= ~S_DAX;
1280                }
1281        } else {
1282                if (bdev->bd_contains == bdev) {
1283                        ret = 0;
1284                        if (bdev->bd_disk->fops->open)
1285                                ret = bdev->bd_disk->fops->open(bdev, mode);
1286                        /* the same as first opener case, read comment there */
1287                        if (bdev->bd_invalidated) {
1288                                if (!ret)
1289                                        rescan_partitions(bdev->bd_disk, bdev);
1290                                else if (ret == -ENOMEDIUM)
1291                                        invalidate_partitions(bdev->bd_disk, bdev);
1292                        }
1293                        if (ret)
1294                                goto out_unlock_bdev;
1295                }
1296                /* only one opener holds refs to the module and disk */
1297                put_disk(disk);
1298                module_put(owner);
1299        }
1300        bdev->bd_openers++;
1301        if (for_part)
1302                bdev->bd_part_count++;
1303        mutex_unlock(&bdev->bd_mutex);
1304        disk_unblock_events(disk);
1305        return 0;
1306
1307 out_clear:
1308        disk_put_part(bdev->bd_part);
1309        bdev->bd_disk = NULL;
1310        bdev->bd_part = NULL;
1311        bdev->bd_queue = NULL;
1312        if (bdev != bdev->bd_contains)
1313                __blkdev_put(bdev->bd_contains, mode, 1);
1314        bdev->bd_contains = NULL;
1315 out_unlock_bdev:
1316        mutex_unlock(&bdev->bd_mutex);
1317        disk_unblock_events(disk);
1318        put_disk(disk);
1319        module_put(owner);
1320 out:
1321        bdput(bdev);
1322
1323        return ret;
1324}
1325
1326/**
1327 * blkdev_get - open a block device
1328 * @bdev: block_device to open
1329 * @mode: FMODE_* mask
1330 * @holder: exclusive holder identifier
1331 *
1332 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1333 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1334 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1335 *
1336 * On success, the reference count of @bdev is unchanged.  On failure,
1337 * @bdev is put.
1338 *
1339 * CONTEXT:
1340 * Might sleep.
1341 *
1342 * RETURNS:
1343 * 0 on success, -errno on failure.
1344 */
1345int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1346{
1347        struct block_device *whole = NULL;
1348        int res;
1349
1350        WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1351
1352        if ((mode & FMODE_EXCL) && holder) {
1353                whole = bd_start_claiming(bdev, holder);
1354                if (IS_ERR(whole)) {
1355                        bdput(bdev);
1356                        return PTR_ERR(whole);
1357                }
1358        }
1359
1360        res = __blkdev_get(bdev, mode, 0);
1361
1362        if (whole) {
1363                struct gendisk *disk = whole->bd_disk;
1364
1365                /* finish claiming */
1366                mutex_lock(&bdev->bd_mutex);
1367                spin_lock(&bdev_lock);
1368
1369                if (!res) {
1370                        BUG_ON(!bd_may_claim(bdev, whole, holder));
1371                        /*
1372                         * Note that for a whole device bd_holders
1373                         * will be incremented twice, and bd_holder
1374                         * will be set to bd_may_claim before being
1375                         * set to holder
1376                         */
1377                        whole->bd_holders++;
1378                        whole->bd_holder = bd_may_claim;
1379                        bdev->bd_holders++;
1380                        bdev->bd_holder = holder;
1381                }
1382
1383                /* tell others that we're done */
1384                BUG_ON(whole->bd_claiming != holder);
1385                whole->bd_claiming = NULL;
1386                wake_up_bit(&whole->bd_claiming, 0);
1387
1388                spin_unlock(&bdev_lock);
1389
1390                /*
1391                 * Block event polling for write claims if requested.  Any
1392                 * write holder makes the write_holder state stick until
1393                 * all are released.  This is good enough and tracking
1394                 * individual writeable reference is too fragile given the
1395                 * way @mode is used in blkdev_get/put().
1396                 */
1397                if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1398                    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1399                        bdev->bd_write_holder = true;
1400                        disk_block_events(disk);
1401                }
1402
1403                mutex_unlock(&bdev->bd_mutex);
1404                bdput(whole);
1405        }
1406
1407        return res;
1408}
1409EXPORT_SYMBOL(blkdev_get);
1410
1411/**
1412 * blkdev_get_by_path - open a block device by name
1413 * @path: path to the block device to open
1414 * @mode: FMODE_* mask
1415 * @holder: exclusive holder identifier
1416 *
1417 * Open the blockdevice described by the device file at @path.  @mode
1418 * and @holder are identical to blkdev_get().
1419 *
1420 * On success, the returned block_device has reference count of one.
1421 *
1422 * CONTEXT:
1423 * Might sleep.
1424 *
1425 * RETURNS:
1426 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1427 */
1428struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1429                                        void *holder)
1430{
1431        struct block_device *bdev;
1432        int err;
1433
1434        bdev = lookup_bdev(path);
1435        if (IS_ERR(bdev))
1436                return bdev;
1437
1438        err = blkdev_get(bdev, mode, holder);
1439        if (err)
1440                return ERR_PTR(err);
1441
1442        if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1443                blkdev_put(bdev, mode);
1444                return ERR_PTR(-EACCES);
1445        }
1446
1447        return bdev;
1448}
1449EXPORT_SYMBOL(blkdev_get_by_path);
1450
1451/**
1452 * blkdev_get_by_dev - open a block device by device number
1453 * @dev: device number of block device to open
1454 * @mode: FMODE_* mask
1455 * @holder: exclusive holder identifier
1456 *
1457 * Open the blockdevice described by device number @dev.  @mode and
1458 * @holder are identical to blkdev_get().
1459 *
1460 * Use it ONLY if you really do not have anything better - i.e. when
1461 * you are behind a truly sucky interface and all you are given is a
1462 * device number.  _Never_ to be used for internal purposes.  If you
1463 * ever need it - reconsider your API.
1464 *
1465 * On success, the returned block_device has reference count of one.
1466 *
1467 * CONTEXT:
1468 * Might sleep.
1469 *
1470 * RETURNS:
1471 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1472 */
1473struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1474{
1475        struct block_device *bdev;
1476        int err;
1477
1478        bdev = bdget(dev);
1479        if (!bdev)
1480                return ERR_PTR(-ENOMEM);
1481
1482        err = blkdev_get(bdev, mode, holder);
1483        if (err)
1484                return ERR_PTR(err);
1485
1486        return bdev;
1487}
1488EXPORT_SYMBOL(blkdev_get_by_dev);
1489
1490static int blkdev_open(struct inode * inode, struct file * filp)
1491{
1492        struct block_device *bdev;
1493
1494        /*
1495         * Preserve backwards compatibility and allow large file access
1496         * even if userspace doesn't ask for it explicitly. Some mkfs
1497         * binary needs it. We might want to drop this workaround
1498         * during an unstable branch.
1499         */
1500        filp->f_flags |= O_LARGEFILE;
1501
1502        if (filp->f_flags & O_NDELAY)
1503                filp->f_mode |= FMODE_NDELAY;
1504        if (filp->f_flags & O_EXCL)
1505                filp->f_mode |= FMODE_EXCL;
1506        if ((filp->f_flags & O_ACCMODE) == 3)
1507                filp->f_mode |= FMODE_WRITE_IOCTL;
1508
1509        bdev = bd_acquire(inode);
1510        if (bdev == NULL)
1511                return -ENOMEM;
1512
1513        filp->f_mapping = bdev->bd_inode->i_mapping;
1514
1515        return blkdev_get(bdev, filp->f_mode, filp);
1516}
1517
1518static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1519{
1520        struct gendisk *disk = bdev->bd_disk;
1521        struct block_device *victim = NULL;
1522
1523        mutex_lock_nested(&bdev->bd_mutex, for_part);
1524        if (for_part)
1525                bdev->bd_part_count--;
1526
1527        if (!--bdev->bd_openers) {
1528                WARN_ON_ONCE(bdev->bd_holders);
1529                sync_blockdev(bdev);
1530                kill_bdev(bdev);
1531
1532                bdev_write_inode(bdev);
1533                /*
1534                 * Detaching bdev inode from its wb in __destroy_inode()
1535                 * is too late: the queue which embeds its bdi (along with
1536                 * root wb) can be gone as soon as we put_disk() below.
1537                 */
1538                inode_detach_wb(bdev->bd_inode);
1539        }
1540        if (bdev->bd_contains == bdev) {
1541                if (disk->fops->release)
1542                        disk->fops->release(disk, mode);
1543        }
1544        if (!bdev->bd_openers) {
1545                struct module *owner = disk->fops->owner;
1546
1547                disk_put_part(bdev->bd_part);
1548                bdev->bd_part = NULL;
1549                bdev->bd_disk = NULL;
1550                if (bdev != bdev->bd_contains)
1551                        victim = bdev->bd_contains;
1552                bdev->bd_contains = NULL;
1553
1554                put_disk(disk);
1555                module_put(owner);
1556        }
1557        mutex_unlock(&bdev->bd_mutex);
1558        bdput(bdev);
1559        if (victim)
1560                __blkdev_put(victim, mode, 1);
1561}
1562
1563void blkdev_put(struct block_device *bdev, fmode_t mode)
1564{
1565        mutex_lock(&bdev->bd_mutex);
1566
1567        if (mode & FMODE_EXCL) {
1568                bool bdev_free;
1569
1570                /*
1571                 * Release a claim on the device.  The holder fields
1572                 * are protected with bdev_lock.  bd_mutex is to
1573                 * synchronize disk_holder unlinking.
1574                 */
1575                spin_lock(&bdev_lock);
1576
1577                WARN_ON_ONCE(--bdev->bd_holders < 0);
1578                WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1579
1580                /* bd_contains might point to self, check in a separate step */
1581                if ((bdev_free = !bdev->bd_holders))
1582                        bdev->bd_holder = NULL;
1583                if (!bdev->bd_contains->bd_holders)
1584                        bdev->bd_contains->bd_holder = NULL;
1585
1586                spin_unlock(&bdev_lock);
1587
1588                /*
1589                 * If this was the last claim, remove holder link and
1590                 * unblock evpoll if it was a write holder.
1591                 */
1592                if (bdev_free && bdev->bd_write_holder) {
1593                        disk_unblock_events(bdev->bd_disk);
1594                        bdev->bd_write_holder = false;
1595                }
1596        }
1597
1598        /*
1599         * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1600         * event.  This is to ensure detection of media removal commanded
1601         * from userland - e.g. eject(1).
1602         */
1603        disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1604
1605        mutex_unlock(&bdev->bd_mutex);
1606
1607        __blkdev_put(bdev, mode, 0);
1608}
1609EXPORT_SYMBOL(blkdev_put);
1610
1611static int blkdev_close(struct inode * inode, struct file * filp)
1612{
1613        struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1614        blkdev_put(bdev, filp->f_mode);
1615        return 0;
1616}
1617
1618static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1619{
1620        struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1621        fmode_t mode = file->f_mode;
1622
1623        /*
1624         * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1625         * to updated it before every ioctl.
1626         */
1627        if (file->f_flags & O_NDELAY)
1628                mode |= FMODE_NDELAY;
1629        else
1630                mode &= ~FMODE_NDELAY;
1631
1632        return blkdev_ioctl(bdev, mode, cmd, arg);
1633}
1634
1635/*
1636 * Write data to the block device.  Only intended for the block device itself
1637 * and the raw driver which basically is a fake block device.
1638 *
1639 * Does not take i_mutex for the write and thus is not for general purpose
1640 * use.
1641 */
1642ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1643{
1644        struct file *file = iocb->ki_filp;
1645        struct inode *bd_inode = bdev_file_inode(file);
1646        loff_t size = i_size_read(bd_inode);
1647        struct blk_plug plug;
1648        ssize_t ret;
1649
1650        if (bdev_read_only(I_BDEV(bd_inode)))
1651                return -EPERM;
1652
1653        if (!iov_iter_count(from))
1654                return 0;
1655
1656        if (iocb->ki_pos >= size)
1657                return -ENOSPC;
1658
1659        iov_iter_truncate(from, size - iocb->ki_pos);
1660
1661        blk_start_plug(&plug);
1662        ret = __generic_file_write_iter(iocb, from);
1663        if (ret > 0) {
1664                ssize_t err;
1665                err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1666                if (err < 0)
1667                        ret = err;
1668        }
1669        blk_finish_plug(&plug);
1670        return ret;
1671}
1672EXPORT_SYMBOL_GPL(blkdev_write_iter);
1673
1674ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1675{
1676        struct file *file = iocb->ki_filp;
1677        struct inode *bd_inode = bdev_file_inode(file);
1678        loff_t size = i_size_read(bd_inode);
1679        loff_t pos = iocb->ki_pos;
1680
1681        if (pos >= size)
1682                return 0;
1683
1684        size -= pos;
1685        iov_iter_truncate(to, size);
1686        return generic_file_read_iter(iocb, to);
1687}
1688EXPORT_SYMBOL_GPL(blkdev_read_iter);
1689
1690/*
1691 * Try to release a page associated with block device when the system
1692 * is under memory pressure.
1693 */
1694static int blkdev_releasepage(struct page *page, gfp_t wait)
1695{
1696        struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1697
1698        if (super && super->s_op->bdev_try_to_free_page)
1699                return super->s_op->bdev_try_to_free_page(super, page, wait);
1700
1701        return try_to_free_buffers(page);
1702}
1703
1704static int blkdev_writepages(struct address_space *mapping,
1705                             struct writeback_control *wbc)
1706{
1707        if (dax_mapping(mapping)) {
1708                struct block_device *bdev = I_BDEV(mapping->host);
1709
1710                return dax_writeback_mapping_range(mapping, bdev, wbc);
1711        }
1712        return generic_writepages(mapping, wbc);
1713}
1714
1715static const struct address_space_operations def_blk_aops = {
1716        .readpage       = blkdev_readpage,
1717        .readpages      = blkdev_readpages,
1718        .writepage      = blkdev_writepage,
1719        .write_begin    = blkdev_write_begin,
1720        .write_end      = blkdev_write_end,
1721        .writepages     = blkdev_writepages,
1722        .releasepage    = blkdev_releasepage,
1723        .direct_IO      = blkdev_direct_IO,
1724        .is_dirty_writeback = buffer_check_dirty_writeback,
1725};
1726
1727#ifdef CONFIG_FS_DAX
1728/*
1729 * In the raw block case we do not need to contend with truncation nor
1730 * unwritten file extents.  Without those concerns there is no need for
1731 * additional locking beyond the mmap_sem context that these routines
1732 * are already executing under.
1733 *
1734 * Note, there is no protection if the block device is dynamically
1735 * resized (partition grow/shrink) during a fault. A stable block device
1736 * size is already not enforced in the blkdev_direct_IO path.
1737 *
1738 * For DAX, it is the responsibility of the block device driver to
1739 * ensure the whole-disk device size is stable while requests are in
1740 * flight.
1741 *
1742 * Finally, unlike the filemap_page_mkwrite() case there is no
1743 * filesystem superblock to sync against freezing.  We still include a
1744 * pfn_mkwrite callback for dax drivers to receive write fault
1745 * notifications.
1746 */
1747static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1748{
1749        return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1750}
1751
1752static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma,
1753                struct vm_fault *vmf)
1754{
1755        return dax_pfn_mkwrite(vma, vmf);
1756}
1757
1758static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1759                pmd_t *pmd, unsigned int flags)
1760{
1761        return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1762}
1763
1764static const struct vm_operations_struct blkdev_dax_vm_ops = {
1765        .fault          = blkdev_dax_fault,
1766        .pmd_fault      = blkdev_dax_pmd_fault,
1767        .pfn_mkwrite    = blkdev_dax_pfn_mkwrite,
1768};
1769
1770static const struct vm_operations_struct blkdev_default_vm_ops = {
1771        .fault          = filemap_fault,
1772        .map_pages      = filemap_map_pages,
1773};
1774
1775static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1776{
1777        struct inode *bd_inode = bdev_file_inode(file);
1778
1779        file_accessed(file);
1780        if (IS_DAX(bd_inode)) {
1781                vma->vm_ops = &blkdev_dax_vm_ops;
1782                vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1783        } else {
1784                vma->vm_ops = &blkdev_default_vm_ops;
1785        }
1786
1787        return 0;
1788}
1789#else
1790#define blkdev_mmap generic_file_mmap
1791#endif
1792
1793const struct file_operations def_blk_fops = {
1794        .open           = blkdev_open,
1795        .release        = blkdev_close,
1796        .llseek         = block_llseek,
1797        .read_iter      = blkdev_read_iter,
1798        .write_iter     = blkdev_write_iter,
1799        .mmap           = blkdev_mmap,
1800        .fsync          = blkdev_fsync,
1801        .unlocked_ioctl = block_ioctl,
1802#ifdef CONFIG_COMPAT
1803        .compat_ioctl   = compat_blkdev_ioctl,
1804#endif
1805        .splice_read    = generic_file_splice_read,
1806        .splice_write   = iter_file_splice_write,
1807};
1808
1809int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1810{
1811        int res;
1812        mm_segment_t old_fs = get_fs();
1813        set_fs(KERNEL_DS);
1814        res = blkdev_ioctl(bdev, 0, cmd, arg);
1815        set_fs(old_fs);
1816        return res;
1817}
1818
1819EXPORT_SYMBOL(ioctl_by_bdev);
1820
1821/**
1822 * lookup_bdev  - lookup a struct block_device by name
1823 * @pathname:   special file representing the block device
1824 *
1825 * Get a reference to the blockdevice at @pathname in the current
1826 * namespace if possible and return it.  Return ERR_PTR(error)
1827 * otherwise.
1828 */
1829struct block_device *lookup_bdev(const char *pathname)
1830{
1831        struct block_device *bdev;
1832        struct inode *inode;
1833        struct path path;
1834        int error;
1835
1836        if (!pathname || !*pathname)
1837                return ERR_PTR(-EINVAL);
1838
1839        error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1840        if (error)
1841                return ERR_PTR(error);
1842
1843        inode = d_backing_inode(path.dentry);
1844        error = -ENOTBLK;
1845        if (!S_ISBLK(inode->i_mode))
1846                goto fail;
1847        error = -EACCES;
1848        if (path.mnt->mnt_flags & MNT_NODEV)
1849                goto fail;
1850        error = -ENOMEM;
1851        bdev = bd_acquire(inode);
1852        if (!bdev)
1853                goto fail;
1854out:
1855        path_put(&path);
1856        return bdev;
1857fail:
1858        bdev = ERR_PTR(error);
1859        goto out;
1860}
1861EXPORT_SYMBOL(lookup_bdev);
1862
1863int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1864{
1865        struct super_block *sb = get_super(bdev);
1866        int res = 0;
1867
1868        if (sb) {
1869                /*
1870                 * no need to lock the super, get_super holds the
1871                 * read mutex so the filesystem cannot go away
1872                 * under us (->put_super runs with the write lock
1873                 * hold).
1874                 */
1875                shrink_dcache_sb(sb);
1876                res = invalidate_inodes(sb, kill_dirty);
1877                drop_super(sb);
1878        }
1879        invalidate_bdev(bdev);
1880        return res;
1881}
1882EXPORT_SYMBOL(__invalidate_device);
1883
1884void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1885{
1886        struct inode *inode, *old_inode = NULL;
1887
1888        spin_lock(&blockdev_superblock->s_inode_list_lock);
1889        list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1890                struct address_space *mapping = inode->i_mapping;
1891
1892                spin_lock(&inode->i_lock);
1893                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1894                    mapping->nrpages == 0) {
1895                        spin_unlock(&inode->i_lock);
1896                        continue;
1897                }
1898                __iget(inode);
1899                spin_unlock(&inode->i_lock);
1900                spin_unlock(&blockdev_superblock->s_inode_list_lock);
1901                /*
1902                 * We hold a reference to 'inode' so it couldn't have been
1903                 * removed from s_inodes list while we dropped the
1904                 * s_inode_list_lock  We cannot iput the inode now as we can
1905                 * be holding the last reference and we cannot iput it under
1906                 * s_inode_list_lock. So we keep the reference and iput it
1907                 * later.
1908                 */
1909                iput(old_inode);
1910                old_inode = inode;
1911
1912                func(I_BDEV(inode), arg);
1913
1914                spin_lock(&blockdev_superblock->s_inode_list_lock);
1915        }
1916        spin_unlock(&blockdev_superblock->s_inode_list_lock);
1917        iput(old_inode);
1918}
1919