linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
  33#include <asm/unaligned.h>
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  59                                 BTRFS_HEADER_FLAG_RELOC |\
  60                                 BTRFS_SUPER_FLAG_ERROR |\
  61                                 BTRFS_SUPER_FLAG_SEEDING |\
  62                                 BTRFS_SUPER_FLAG_METADUMP)
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68                                    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71                                      struct btrfs_root *root);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  74                                        struct extent_io_tree *dirty_pages,
  75                                        int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  77                                       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_root *root);
  79static void btrfs_error_commit_super(struct btrfs_root *root);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87        struct bio *bio;
  88        bio_end_io_t *end_io;
  89        void *private;
  90        struct btrfs_fs_info *info;
  91        int error;
  92        enum btrfs_wq_endio_type metadata;
  93        struct list_head list;
  94        struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102                                        sizeof(struct btrfs_end_io_wq),
 103                                        0,
 104                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 105                                        NULL);
 106        if (!btrfs_end_io_wq_cache)
 107                return -ENOMEM;
 108        return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113        kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122        struct inode *inode;
 123        struct bio *bio;
 124        struct list_head list;
 125        extent_submit_bio_hook_t *submit_bio_start;
 126        extent_submit_bio_hook_t *submit_bio_done;
 127        int rw;
 128        int mirror_num;
 129        unsigned long bio_flags;
 130        /*
 131         * bio_offset is optional, can be used if the pages in the bio
 132         * can't tell us where in the file the bio should go
 133         */
 134        u64 bio_offset;
 135        struct btrfs_work work;
 136        int error;
 137};
 138
 139/*
 140 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 142 * the level the eb occupies in the tree.
 143 *
 144 * Different roots are used for different purposes and may nest inside each
 145 * other and they require separate keysets.  As lockdep keys should be
 146 * static, assign keysets according to the purpose of the root as indicated
 147 * by btrfs_root->objectid.  This ensures that all special purpose roots
 148 * have separate keysets.
 149 *
 150 * Lock-nesting across peer nodes is always done with the immediate parent
 151 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 152 * subclass to avoid triggering lockdep warning in such cases.
 153 *
 154 * The key is set by the readpage_end_io_hook after the buffer has passed
 155 * csum validation but before the pages are unlocked.  It is also set by
 156 * btrfs_init_new_buffer on freshly allocated blocks.
 157 *
 158 * We also add a check to make sure the highest level of the tree is the
 159 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 160 * needs update as well.
 161 */
 162#ifdef CONFIG_DEBUG_LOCK_ALLOC
 163# if BTRFS_MAX_LEVEL != 8
 164#  error
 165# endif
 166
 167static struct btrfs_lockdep_keyset {
 168        u64                     id;             /* root objectid */
 169        const char              *name_stem;     /* lock name stem */
 170        char                    names[BTRFS_MAX_LEVEL + 1][20];
 171        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 172} btrfs_lockdep_keysets[] = {
 173        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 174        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 175        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 176        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 177        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 178        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 179        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 180        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 181        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 182        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 183        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 184        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 185        { .id = 0,                              .name_stem = "tree"     },
 186};
 187
 188void __init btrfs_init_lockdep(void)
 189{
 190        int i, j;
 191
 192        /* initialize lockdep class names */
 193        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 194                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 195
 196                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 197                        snprintf(ks->names[j], sizeof(ks->names[j]),
 198                                 "btrfs-%s-%02d", ks->name_stem, j);
 199        }
 200}
 201
 202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 203                                    int level)
 204{
 205        struct btrfs_lockdep_keyset *ks;
 206
 207        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 208
 209        /* find the matching keyset, id 0 is the default entry */
 210        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 211                if (ks->id == objectid)
 212                        break;
 213
 214        lockdep_set_class_and_name(&eb->lock,
 215                                   &ks->keys[level], ks->names[level]);
 216}
 217
 218#endif
 219
 220/*
 221 * extents on the btree inode are pretty simple, there's one extent
 222 * that covers the entire device
 223 */
 224static struct extent_map *btree_get_extent(struct inode *inode,
 225                struct page *page, size_t pg_offset, u64 start, u64 len,
 226                int create)
 227{
 228        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229        struct extent_map *em;
 230        int ret;
 231
 232        read_lock(&em_tree->lock);
 233        em = lookup_extent_mapping(em_tree, start, len);
 234        if (em) {
 235                em->bdev =
 236                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 237                read_unlock(&em_tree->lock);
 238                goto out;
 239        }
 240        read_unlock(&em_tree->lock);
 241
 242        em = alloc_extent_map();
 243        if (!em) {
 244                em = ERR_PTR(-ENOMEM);
 245                goto out;
 246        }
 247        em->start = 0;
 248        em->len = (u64)-1;
 249        em->block_len = (u64)-1;
 250        em->block_start = 0;
 251        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 252
 253        write_lock(&em_tree->lock);
 254        ret = add_extent_mapping(em_tree, em, 0);
 255        if (ret == -EEXIST) {
 256                free_extent_map(em);
 257                em = lookup_extent_mapping(em_tree, start, len);
 258                if (!em)
 259                        em = ERR_PTR(-EIO);
 260        } else if (ret) {
 261                free_extent_map(em);
 262                em = ERR_PTR(ret);
 263        }
 264        write_unlock(&em_tree->lock);
 265
 266out:
 267        return em;
 268}
 269
 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 271{
 272        return btrfs_crc32c(seed, data, len);
 273}
 274
 275void btrfs_csum_final(u32 crc, char *result)
 276{
 277        put_unaligned_le32(~crc, result);
 278}
 279
 280/*
 281 * compute the csum for a btree block, and either verify it or write it
 282 * into the csum field of the block.
 283 */
 284static int csum_tree_block(struct btrfs_fs_info *fs_info,
 285                           struct extent_buffer *buf,
 286                           int verify)
 287{
 288        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 289        char *result = NULL;
 290        unsigned long len;
 291        unsigned long cur_len;
 292        unsigned long offset = BTRFS_CSUM_SIZE;
 293        char *kaddr;
 294        unsigned long map_start;
 295        unsigned long map_len;
 296        int err;
 297        u32 crc = ~(u32)0;
 298        unsigned long inline_result;
 299
 300        len = buf->len - offset;
 301        while (len > 0) {
 302                err = map_private_extent_buffer(buf, offset, 32,
 303                                        &kaddr, &map_start, &map_len);
 304                if (err)
 305                        return err;
 306                cur_len = min(len, map_len - (offset - map_start));
 307                crc = btrfs_csum_data(kaddr + offset - map_start,
 308                                      crc, cur_len);
 309                len -= cur_len;
 310                offset += cur_len;
 311        }
 312        if (csum_size > sizeof(inline_result)) {
 313                result = kzalloc(csum_size, GFP_NOFS);
 314                if (!result)
 315                        return -ENOMEM;
 316        } else {
 317                result = (char *)&inline_result;
 318        }
 319
 320        btrfs_csum_final(crc, result);
 321
 322        if (verify) {
 323                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 324                        u32 val;
 325                        u32 found = 0;
 326                        memcpy(&found, result, csum_size);
 327
 328                        read_extent_buffer(buf, &val, 0, csum_size);
 329                        btrfs_warn_rl(fs_info,
 330                                "%s checksum verify failed on %llu wanted %X found %X "
 331                                "level %d",
 332                                fs_info->sb->s_id, buf->start,
 333                                val, found, btrfs_header_level(buf));
 334                        if (result != (char *)&inline_result)
 335                                kfree(result);
 336                        return -EUCLEAN;
 337                }
 338        } else {
 339                write_extent_buffer(buf, result, 0, csum_size);
 340        }
 341        if (result != (char *)&inline_result)
 342                kfree(result);
 343        return 0;
 344}
 345
 346/*
 347 * we can't consider a given block up to date unless the transid of the
 348 * block matches the transid in the parent node's pointer.  This is how we
 349 * detect blocks that either didn't get written at all or got written
 350 * in the wrong place.
 351 */
 352static int verify_parent_transid(struct extent_io_tree *io_tree,
 353                                 struct extent_buffer *eb, u64 parent_transid,
 354                                 int atomic)
 355{
 356        struct extent_state *cached_state = NULL;
 357        int ret;
 358        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 359
 360        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 361                return 0;
 362
 363        if (atomic)
 364                return -EAGAIN;
 365
 366        if (need_lock) {
 367                btrfs_tree_read_lock(eb);
 368                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 369        }
 370
 371        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 372                         &cached_state);
 373        if (extent_buffer_uptodate(eb) &&
 374            btrfs_header_generation(eb) == parent_transid) {
 375                ret = 0;
 376                goto out;
 377        }
 378        btrfs_err_rl(eb->fs_info,
 379                "parent transid verify failed on %llu wanted %llu found %llu",
 380                        eb->start,
 381                        parent_transid, btrfs_header_generation(eb));
 382        ret = 1;
 383
 384        /*
 385         * Things reading via commit roots that don't have normal protection,
 386         * like send, can have a really old block in cache that may point at a
 387         * block that has been free'd and re-allocated.  So don't clear uptodate
 388         * if we find an eb that is under IO (dirty/writeback) because we could
 389         * end up reading in the stale data and then writing it back out and
 390         * making everybody very sad.
 391         */
 392        if (!extent_buffer_under_io(eb))
 393                clear_extent_buffer_uptodate(eb);
 394out:
 395        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 396                             &cached_state, GFP_NOFS);
 397        if (need_lock)
 398                btrfs_tree_read_unlock_blocking(eb);
 399        return ret;
 400}
 401
 402/*
 403 * Return 0 if the superblock checksum type matches the checksum value of that
 404 * algorithm. Pass the raw disk superblock data.
 405 */
 406static int btrfs_check_super_csum(char *raw_disk_sb)
 407{
 408        struct btrfs_super_block *disk_sb =
 409                (struct btrfs_super_block *)raw_disk_sb;
 410        u16 csum_type = btrfs_super_csum_type(disk_sb);
 411        int ret = 0;
 412
 413        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 414                u32 crc = ~(u32)0;
 415                const int csum_size = sizeof(crc);
 416                char result[csum_size];
 417
 418                /*
 419                 * The super_block structure does not span the whole
 420                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 421                 * is filled with zeros and is included in the checkum.
 422                 */
 423                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 424                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 425                btrfs_csum_final(crc, result);
 426
 427                if (memcmp(raw_disk_sb, result, csum_size))
 428                        ret = 1;
 429        }
 430
 431        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 432                printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 433                                csum_type);
 434                ret = 1;
 435        }
 436
 437        return ret;
 438}
 439
 440/*
 441 * helper to read a given tree block, doing retries as required when
 442 * the checksums don't match and we have alternate mirrors to try.
 443 */
 444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 445                                          struct extent_buffer *eb,
 446                                          u64 start, u64 parent_transid)
 447{
 448        struct extent_io_tree *io_tree;
 449        int failed = 0;
 450        int ret;
 451        int num_copies = 0;
 452        int mirror_num = 0;
 453        int failed_mirror = 0;
 454
 455        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 456        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 457        while (1) {
 458                ret = read_extent_buffer_pages(io_tree, eb, start,
 459                                               WAIT_COMPLETE,
 460                                               btree_get_extent, mirror_num);
 461                if (!ret) {
 462                        if (!verify_parent_transid(io_tree, eb,
 463                                                   parent_transid, 0))
 464                                break;
 465                        else
 466                                ret = -EIO;
 467                }
 468
 469                /*
 470                 * This buffer's crc is fine, but its contents are corrupted, so
 471                 * there is no reason to read the other copies, they won't be
 472                 * any less wrong.
 473                 */
 474                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 475                        break;
 476
 477                num_copies = btrfs_num_copies(root->fs_info,
 478                                              eb->start, eb->len);
 479                if (num_copies == 1)
 480                        break;
 481
 482                if (!failed_mirror) {
 483                        failed = 1;
 484                        failed_mirror = eb->read_mirror;
 485                }
 486
 487                mirror_num++;
 488                if (mirror_num == failed_mirror)
 489                        mirror_num++;
 490
 491                if (mirror_num > num_copies)
 492                        break;
 493        }
 494
 495        if (failed && !ret && failed_mirror)
 496                repair_eb_io_failure(root, eb, failed_mirror);
 497
 498        return ret;
 499}
 500
 501/*
 502 * checksum a dirty tree block before IO.  This has extra checks to make sure
 503 * we only fill in the checksum field in the first page of a multi-page block
 504 */
 505
 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 507{
 508        u64 start = page_offset(page);
 509        u64 found_start;
 510        struct extent_buffer *eb;
 511
 512        eb = (struct extent_buffer *)page->private;
 513        if (page != eb->pages[0])
 514                return 0;
 515
 516        found_start = btrfs_header_bytenr(eb);
 517        /*
 518         * Please do not consolidate these warnings into a single if.
 519         * It is useful to know what went wrong.
 520         */
 521        if (WARN_ON(found_start != start))
 522                return -EUCLEAN;
 523        if (WARN_ON(!PageUptodate(page)))
 524                return -EUCLEAN;
 525
 526        ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 527                        btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 528
 529        return csum_tree_block(fs_info, eb, 0);
 530}
 531
 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 533                                 struct extent_buffer *eb)
 534{
 535        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 536        u8 fsid[BTRFS_UUID_SIZE];
 537        int ret = 1;
 538
 539        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 540        while (fs_devices) {
 541                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 542                        ret = 0;
 543                        break;
 544                }
 545                fs_devices = fs_devices->seed;
 546        }
 547        return ret;
 548}
 549
 550#define CORRUPT(reason, eb, root, slot)                         \
 551        btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
 552                   "root=%llu, slot=%d", reason,                        \
 553               btrfs_header_bytenr(eb), root->objectid, slot)
 554
 555static noinline int check_leaf(struct btrfs_root *root,
 556                               struct extent_buffer *leaf)
 557{
 558        struct btrfs_key key;
 559        struct btrfs_key leaf_key;
 560        u32 nritems = btrfs_header_nritems(leaf);
 561        int slot;
 562
 563        if (nritems == 0)
 564                return 0;
 565
 566        /* Check the 0 item */
 567        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 568            BTRFS_LEAF_DATA_SIZE(root)) {
 569                CORRUPT("invalid item offset size pair", leaf, root, 0);
 570                return -EIO;
 571        }
 572
 573        /*
 574         * Check to make sure each items keys are in the correct order and their
 575         * offsets make sense.  We only have to loop through nritems-1 because
 576         * we check the current slot against the next slot, which verifies the
 577         * next slot's offset+size makes sense and that the current's slot
 578         * offset is correct.
 579         */
 580        for (slot = 0; slot < nritems - 1; slot++) {
 581                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 582                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 583
 584                /* Make sure the keys are in the right order */
 585                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 586                        CORRUPT("bad key order", leaf, root, slot);
 587                        return -EIO;
 588                }
 589
 590                /*
 591                 * Make sure the offset and ends are right, remember that the
 592                 * item data starts at the end of the leaf and grows towards the
 593                 * front.
 594                 */
 595                if (btrfs_item_offset_nr(leaf, slot) !=
 596                        btrfs_item_end_nr(leaf, slot + 1)) {
 597                        CORRUPT("slot offset bad", leaf, root, slot);
 598                        return -EIO;
 599                }
 600
 601                /*
 602                 * Check to make sure that we don't point outside of the leaf,
 603                 * just incase all the items are consistent to eachother, but
 604                 * all point outside of the leaf.
 605                 */
 606                if (btrfs_item_end_nr(leaf, slot) >
 607                    BTRFS_LEAF_DATA_SIZE(root)) {
 608                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 609                        return -EIO;
 610                }
 611        }
 612
 613        return 0;
 614}
 615
 616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 617                                      u64 phy_offset, struct page *page,
 618                                      u64 start, u64 end, int mirror)
 619{
 620        u64 found_start;
 621        int found_level;
 622        struct extent_buffer *eb;
 623        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 624        struct btrfs_fs_info *fs_info = root->fs_info;
 625        int ret = 0;
 626        int reads_done;
 627
 628        if (!page->private)
 629                goto out;
 630
 631        eb = (struct extent_buffer *)page->private;
 632
 633        /* the pending IO might have been the only thing that kept this buffer
 634         * in memory.  Make sure we have a ref for all this other checks
 635         */
 636        extent_buffer_get(eb);
 637
 638        reads_done = atomic_dec_and_test(&eb->io_pages);
 639        if (!reads_done)
 640                goto err;
 641
 642        eb->read_mirror = mirror;
 643        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 644                ret = -EIO;
 645                goto err;
 646        }
 647
 648        found_start = btrfs_header_bytenr(eb);
 649        if (found_start != eb->start) {
 650                btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 651                             found_start, eb->start);
 652                ret = -EIO;
 653                goto err;
 654        }
 655        if (check_tree_block_fsid(fs_info, eb)) {
 656                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 657                             eb->start);
 658                ret = -EIO;
 659                goto err;
 660        }
 661        found_level = btrfs_header_level(eb);
 662        if (found_level >= BTRFS_MAX_LEVEL) {
 663                btrfs_err(fs_info, "bad tree block level %d",
 664                          (int)btrfs_header_level(eb));
 665                ret = -EIO;
 666                goto err;
 667        }
 668
 669        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 670                                       eb, found_level);
 671
 672        ret = csum_tree_block(fs_info, eb, 1);
 673        if (ret)
 674                goto err;
 675
 676        /*
 677         * If this is a leaf block and it is corrupt, set the corrupt bit so
 678         * that we don't try and read the other copies of this block, just
 679         * return -EIO.
 680         */
 681        if (found_level == 0 && check_leaf(root, eb)) {
 682                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 683                ret = -EIO;
 684        }
 685
 686        if (!ret)
 687                set_extent_buffer_uptodate(eb);
 688err:
 689        if (reads_done &&
 690            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 691                btree_readahead_hook(fs_info, eb, eb->start, ret);
 692
 693        if (ret) {
 694                /*
 695                 * our io error hook is going to dec the io pages
 696                 * again, we have to make sure it has something
 697                 * to decrement
 698                 */
 699                atomic_inc(&eb->io_pages);
 700                clear_extent_buffer_uptodate(eb);
 701        }
 702        free_extent_buffer(eb);
 703out:
 704        return ret;
 705}
 706
 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
 708{
 709        struct extent_buffer *eb;
 710
 711        eb = (struct extent_buffer *)page->private;
 712        set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 713        eb->read_mirror = failed_mirror;
 714        atomic_dec(&eb->io_pages);
 715        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 716                btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
 717        return -EIO;    /* we fixed nothing */
 718}
 719
 720static void end_workqueue_bio(struct bio *bio)
 721{
 722        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 723        struct btrfs_fs_info *fs_info;
 724        struct btrfs_workqueue *wq;
 725        btrfs_work_func_t func;
 726
 727        fs_info = end_io_wq->info;
 728        end_io_wq->error = bio->bi_error;
 729
 730        if (bio->bi_rw & REQ_WRITE) {
 731                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 732                        wq = fs_info->endio_meta_write_workers;
 733                        func = btrfs_endio_meta_write_helper;
 734                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 735                        wq = fs_info->endio_freespace_worker;
 736                        func = btrfs_freespace_write_helper;
 737                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 738                        wq = fs_info->endio_raid56_workers;
 739                        func = btrfs_endio_raid56_helper;
 740                } else {
 741                        wq = fs_info->endio_write_workers;
 742                        func = btrfs_endio_write_helper;
 743                }
 744        } else {
 745                if (unlikely(end_io_wq->metadata ==
 746                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 747                        wq = fs_info->endio_repair_workers;
 748                        func = btrfs_endio_repair_helper;
 749                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 750                        wq = fs_info->endio_raid56_workers;
 751                        func = btrfs_endio_raid56_helper;
 752                } else if (end_io_wq->metadata) {
 753                        wq = fs_info->endio_meta_workers;
 754                        func = btrfs_endio_meta_helper;
 755                } else {
 756                        wq = fs_info->endio_workers;
 757                        func = btrfs_endio_helper;
 758                }
 759        }
 760
 761        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 762        btrfs_queue_work(wq, &end_io_wq->work);
 763}
 764
 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 766                        enum btrfs_wq_endio_type metadata)
 767{
 768        struct btrfs_end_io_wq *end_io_wq;
 769
 770        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 771        if (!end_io_wq)
 772                return -ENOMEM;
 773
 774        end_io_wq->private = bio->bi_private;
 775        end_io_wq->end_io = bio->bi_end_io;
 776        end_io_wq->info = info;
 777        end_io_wq->error = 0;
 778        end_io_wq->bio = bio;
 779        end_io_wq->metadata = metadata;
 780
 781        bio->bi_private = end_io_wq;
 782        bio->bi_end_io = end_workqueue_bio;
 783        return 0;
 784}
 785
 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 787{
 788        unsigned long limit = min_t(unsigned long,
 789                                    info->thread_pool_size,
 790                                    info->fs_devices->open_devices);
 791        return 256 * limit;
 792}
 793
 794static void run_one_async_start(struct btrfs_work *work)
 795{
 796        struct async_submit_bio *async;
 797        int ret;
 798
 799        async = container_of(work, struct  async_submit_bio, work);
 800        ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 801                                      async->mirror_num, async->bio_flags,
 802                                      async->bio_offset);
 803        if (ret)
 804                async->error = ret;
 805}
 806
 807static void run_one_async_done(struct btrfs_work *work)
 808{
 809        struct btrfs_fs_info *fs_info;
 810        struct async_submit_bio *async;
 811        int limit;
 812
 813        async = container_of(work, struct  async_submit_bio, work);
 814        fs_info = BTRFS_I(async->inode)->root->fs_info;
 815
 816        limit = btrfs_async_submit_limit(fs_info);
 817        limit = limit * 2 / 3;
 818
 819        /*
 820         * atomic_dec_return implies a barrier for waitqueue_active
 821         */
 822        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 823            waitqueue_active(&fs_info->async_submit_wait))
 824                wake_up(&fs_info->async_submit_wait);
 825
 826        /* If an error occurred we just want to clean up the bio and move on */
 827        if (async->error) {
 828                async->bio->bi_error = async->error;
 829                bio_endio(async->bio);
 830                return;
 831        }
 832
 833        async->submit_bio_done(async->inode, async->rw, async->bio,
 834                               async->mirror_num, async->bio_flags,
 835                               async->bio_offset);
 836}
 837
 838static void run_one_async_free(struct btrfs_work *work)
 839{
 840        struct async_submit_bio *async;
 841
 842        async = container_of(work, struct  async_submit_bio, work);
 843        kfree(async);
 844}
 845
 846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 847                        int rw, struct bio *bio, int mirror_num,
 848                        unsigned long bio_flags,
 849                        u64 bio_offset,
 850                        extent_submit_bio_hook_t *submit_bio_start,
 851                        extent_submit_bio_hook_t *submit_bio_done)
 852{
 853        struct async_submit_bio *async;
 854
 855        async = kmalloc(sizeof(*async), GFP_NOFS);
 856        if (!async)
 857                return -ENOMEM;
 858
 859        async->inode = inode;
 860        async->rw = rw;
 861        async->bio = bio;
 862        async->mirror_num = mirror_num;
 863        async->submit_bio_start = submit_bio_start;
 864        async->submit_bio_done = submit_bio_done;
 865
 866        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 867                        run_one_async_done, run_one_async_free);
 868
 869        async->bio_flags = bio_flags;
 870        async->bio_offset = bio_offset;
 871
 872        async->error = 0;
 873
 874        atomic_inc(&fs_info->nr_async_submits);
 875
 876        if (rw & REQ_SYNC)
 877                btrfs_set_work_high_priority(&async->work);
 878
 879        btrfs_queue_work(fs_info->workers, &async->work);
 880
 881        while (atomic_read(&fs_info->async_submit_draining) &&
 882              atomic_read(&fs_info->nr_async_submits)) {
 883                wait_event(fs_info->async_submit_wait,
 884                           (atomic_read(&fs_info->nr_async_submits) == 0));
 885        }
 886
 887        return 0;
 888}
 889
 890static int btree_csum_one_bio(struct bio *bio)
 891{
 892        struct bio_vec *bvec;
 893        struct btrfs_root *root;
 894        int i, ret = 0;
 895
 896        bio_for_each_segment_all(bvec, bio, i) {
 897                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 898                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 899                if (ret)
 900                        break;
 901        }
 902
 903        return ret;
 904}
 905
 906static int __btree_submit_bio_start(struct inode *inode, int rw,
 907                                    struct bio *bio, int mirror_num,
 908                                    unsigned long bio_flags,
 909                                    u64 bio_offset)
 910{
 911        /*
 912         * when we're called for a write, we're already in the async
 913         * submission context.  Just jump into btrfs_map_bio
 914         */
 915        return btree_csum_one_bio(bio);
 916}
 917
 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 919                                 int mirror_num, unsigned long bio_flags,
 920                                 u64 bio_offset)
 921{
 922        int ret;
 923
 924        /*
 925         * when we're called for a write, we're already in the async
 926         * submission context.  Just jump into btrfs_map_bio
 927         */
 928        ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 929        if (ret) {
 930                bio->bi_error = ret;
 931                bio_endio(bio);
 932        }
 933        return ret;
 934}
 935
 936static int check_async_write(struct inode *inode, unsigned long bio_flags)
 937{
 938        if (bio_flags & EXTENT_BIO_TREE_LOG)
 939                return 0;
 940#ifdef CONFIG_X86
 941        if (static_cpu_has(X86_FEATURE_XMM4_2))
 942                return 0;
 943#endif
 944        return 1;
 945}
 946
 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 948                                 int mirror_num, unsigned long bio_flags,
 949                                 u64 bio_offset)
 950{
 951        int async = check_async_write(inode, bio_flags);
 952        int ret;
 953
 954        if (!(rw & REQ_WRITE)) {
 955                /*
 956                 * called for a read, do the setup so that checksum validation
 957                 * can happen in the async kernel threads
 958                 */
 959                ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 960                                          bio, BTRFS_WQ_ENDIO_METADATA);
 961                if (ret)
 962                        goto out_w_error;
 963                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 964                                    mirror_num, 0);
 965        } else if (!async) {
 966                ret = btree_csum_one_bio(bio);
 967                if (ret)
 968                        goto out_w_error;
 969                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 970                                    mirror_num, 0);
 971        } else {
 972                /*
 973                 * kthread helpers are used to submit writes so that
 974                 * checksumming can happen in parallel across all CPUs
 975                 */
 976                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 977                                          inode, rw, bio, mirror_num, 0,
 978                                          bio_offset,
 979                                          __btree_submit_bio_start,
 980                                          __btree_submit_bio_done);
 981        }
 982
 983        if (ret)
 984                goto out_w_error;
 985        return 0;
 986
 987out_w_error:
 988        bio->bi_error = ret;
 989        bio_endio(bio);
 990        return ret;
 991}
 992
 993#ifdef CONFIG_MIGRATION
 994static int btree_migratepage(struct address_space *mapping,
 995                        struct page *newpage, struct page *page,
 996                        enum migrate_mode mode)
 997{
 998        /*
 999         * we can't safely write a btree page from here,
1000         * we haven't done the locking hook
1001         */
1002        if (PageDirty(page))
1003                return -EAGAIN;
1004        /*
1005         * Buffers may be managed in a filesystem specific way.
1006         * We must have no buffers or drop them.
1007         */
1008        if (page_has_private(page) &&
1009            !try_to_release_page(page, GFP_KERNEL))
1010                return -EAGAIN;
1011        return migrate_page(mapping, newpage, page, mode);
1012}
1013#endif
1014
1015
1016static int btree_writepages(struct address_space *mapping,
1017                            struct writeback_control *wbc)
1018{
1019        struct btrfs_fs_info *fs_info;
1020        int ret;
1021
1022        if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024                if (wbc->for_kupdate)
1025                        return 0;
1026
1027                fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028                /* this is a bit racy, but that's ok */
1029                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030                                             BTRFS_DIRTY_METADATA_THRESH);
1031                if (ret < 0)
1032                        return 0;
1033        }
1034        return btree_write_cache_pages(mapping, wbc);
1035}
1036
1037static int btree_readpage(struct file *file, struct page *page)
1038{
1039        struct extent_io_tree *tree;
1040        tree = &BTRFS_I(page->mapping->host)->io_tree;
1041        return extent_read_full_page(tree, page, btree_get_extent, 0);
1042}
1043
1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045{
1046        if (PageWriteback(page) || PageDirty(page))
1047                return 0;
1048
1049        return try_release_extent_buffer(page);
1050}
1051
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053                                 unsigned int length)
1054{
1055        struct extent_io_tree *tree;
1056        tree = &BTRFS_I(page->mapping->host)->io_tree;
1057        extent_invalidatepage(tree, page, offset);
1058        btree_releasepage(page, GFP_NOFS);
1059        if (PagePrivate(page)) {
1060                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061                           "page private not zero on page %llu",
1062                           (unsigned long long)page_offset(page));
1063                ClearPagePrivate(page);
1064                set_page_private(page, 0);
1065                put_page(page);
1066        }
1067}
1068
1069static int btree_set_page_dirty(struct page *page)
1070{
1071#ifdef DEBUG
1072        struct extent_buffer *eb;
1073
1074        BUG_ON(!PagePrivate(page));
1075        eb = (struct extent_buffer *)page->private;
1076        BUG_ON(!eb);
1077        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078        BUG_ON(!atomic_read(&eb->refs));
1079        btrfs_assert_tree_locked(eb);
1080#endif
1081        return __set_page_dirty_nobuffers(page);
1082}
1083
1084static const struct address_space_operations btree_aops = {
1085        .readpage       = btree_readpage,
1086        .writepages     = btree_writepages,
1087        .releasepage    = btree_releasepage,
1088        .invalidatepage = btree_invalidatepage,
1089#ifdef CONFIG_MIGRATION
1090        .migratepage    = btree_migratepage,
1091#endif
1092        .set_page_dirty = btree_set_page_dirty,
1093};
1094
1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096{
1097        struct extent_buffer *buf = NULL;
1098        struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100        buf = btrfs_find_create_tree_block(root, bytenr);
1101        if (!buf)
1102                return;
1103        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104                                 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105        free_extent_buffer(buf);
1106}
1107
1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109                         int mirror_num, struct extent_buffer **eb)
1110{
1111        struct extent_buffer *buf = NULL;
1112        struct inode *btree_inode = root->fs_info->btree_inode;
1113        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114        int ret;
1115
1116        buf = btrfs_find_create_tree_block(root, bytenr);
1117        if (!buf)
1118                return 0;
1119
1120        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122        ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123                                       btree_get_extent, mirror_num);
1124        if (ret) {
1125                free_extent_buffer(buf);
1126                return ret;
1127        }
1128
1129        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130                free_extent_buffer(buf);
1131                return -EIO;
1132        } else if (extent_buffer_uptodate(buf)) {
1133                *eb = buf;
1134        } else {
1135                free_extent_buffer(buf);
1136        }
1137        return 0;
1138}
1139
1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141                                            u64 bytenr)
1142{
1143        return find_extent_buffer(fs_info, bytenr);
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147                                                 u64 bytenr)
1148{
1149        if (btrfs_test_is_dummy_root(root))
1150                return alloc_test_extent_buffer(root->fs_info, bytenr);
1151        return alloc_extent_buffer(root->fs_info, bytenr);
1152}
1153
1154
1155int btrfs_write_tree_block(struct extent_buffer *buf)
1156{
1157        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158                                        buf->start + buf->len - 1);
1159}
1160
1161int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162{
1163        return filemap_fdatawait_range(buf->pages[0]->mapping,
1164                                       buf->start, buf->start + buf->len - 1);
1165}
1166
1167struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168                                      u64 parent_transid)
1169{
1170        struct extent_buffer *buf = NULL;
1171        int ret;
1172
1173        buf = btrfs_find_create_tree_block(root, bytenr);
1174        if (!buf)
1175                return ERR_PTR(-ENOMEM);
1176
1177        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178        if (ret) {
1179                free_extent_buffer(buf);
1180                return ERR_PTR(ret);
1181        }
1182        return buf;
1183
1184}
1185
1186void clean_tree_block(struct btrfs_trans_handle *trans,
1187                      struct btrfs_fs_info *fs_info,
1188                      struct extent_buffer *buf)
1189{
1190        if (btrfs_header_generation(buf) ==
1191            fs_info->running_transaction->transid) {
1192                btrfs_assert_tree_locked(buf);
1193
1194                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195                        __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196                                             -buf->len,
1197                                             fs_info->dirty_metadata_batch);
1198                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1199                        btrfs_set_lock_blocking(buf);
1200                        clear_extent_buffer_dirty(buf);
1201                }
1202        }
1203}
1204
1205static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206{
1207        struct btrfs_subvolume_writers *writers;
1208        int ret;
1209
1210        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211        if (!writers)
1212                return ERR_PTR(-ENOMEM);
1213
1214        ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215        if (ret < 0) {
1216                kfree(writers);
1217                return ERR_PTR(ret);
1218        }
1219
1220        init_waitqueue_head(&writers->wait);
1221        return writers;
1222}
1223
1224static void
1225btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226{
1227        percpu_counter_destroy(&writers->counter);
1228        kfree(writers);
1229}
1230
1231static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232                         struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1233                         u64 objectid)
1234{
1235        root->node = NULL;
1236        root->commit_root = NULL;
1237        root->sectorsize = sectorsize;
1238        root->nodesize = nodesize;
1239        root->stripesize = stripesize;
1240        root->state = 0;
1241        root->orphan_cleanup_state = 0;
1242
1243        root->objectid = objectid;
1244        root->last_trans = 0;
1245        root->highest_objectid = 0;
1246        root->nr_delalloc_inodes = 0;
1247        root->nr_ordered_extents = 0;
1248        root->name = NULL;
1249        root->inode_tree = RB_ROOT;
1250        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251        root->block_rsv = NULL;
1252        root->orphan_block_rsv = NULL;
1253
1254        INIT_LIST_HEAD(&root->dirty_list);
1255        INIT_LIST_HEAD(&root->root_list);
1256        INIT_LIST_HEAD(&root->delalloc_inodes);
1257        INIT_LIST_HEAD(&root->delalloc_root);
1258        INIT_LIST_HEAD(&root->ordered_extents);
1259        INIT_LIST_HEAD(&root->ordered_root);
1260        INIT_LIST_HEAD(&root->logged_list[0]);
1261        INIT_LIST_HEAD(&root->logged_list[1]);
1262        spin_lock_init(&root->orphan_lock);
1263        spin_lock_init(&root->inode_lock);
1264        spin_lock_init(&root->delalloc_lock);
1265        spin_lock_init(&root->ordered_extent_lock);
1266        spin_lock_init(&root->accounting_lock);
1267        spin_lock_init(&root->log_extents_lock[0]);
1268        spin_lock_init(&root->log_extents_lock[1]);
1269        mutex_init(&root->objectid_mutex);
1270        mutex_init(&root->log_mutex);
1271        mutex_init(&root->ordered_extent_mutex);
1272        mutex_init(&root->delalloc_mutex);
1273        init_waitqueue_head(&root->log_writer_wait);
1274        init_waitqueue_head(&root->log_commit_wait[0]);
1275        init_waitqueue_head(&root->log_commit_wait[1]);
1276        INIT_LIST_HEAD(&root->log_ctxs[0]);
1277        INIT_LIST_HEAD(&root->log_ctxs[1]);
1278        atomic_set(&root->log_commit[0], 0);
1279        atomic_set(&root->log_commit[1], 0);
1280        atomic_set(&root->log_writers, 0);
1281        atomic_set(&root->log_batch, 0);
1282        atomic_set(&root->orphan_inodes, 0);
1283        atomic_set(&root->refs, 1);
1284        atomic_set(&root->will_be_snapshoted, 0);
1285        atomic_set(&root->qgroup_meta_rsv, 0);
1286        root->log_transid = 0;
1287        root->log_transid_committed = -1;
1288        root->last_log_commit = 0;
1289        if (fs_info)
1290                extent_io_tree_init(&root->dirty_log_pages,
1291                                     fs_info->btree_inode->i_mapping);
1292
1293        memset(&root->root_key, 0, sizeof(root->root_key));
1294        memset(&root->root_item, 0, sizeof(root->root_item));
1295        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296        if (fs_info)
1297                root->defrag_trans_start = fs_info->generation;
1298        else
1299                root->defrag_trans_start = 0;
1300        root->root_key.objectid = objectid;
1301        root->anon_dev = 0;
1302
1303        spin_lock_init(&root->root_item_lock);
1304}
1305
1306static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307                gfp_t flags)
1308{
1309        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310        if (root)
1311                root->fs_info = fs_info;
1312        return root;
1313}
1314
1315#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316/* Should only be used by the testing infrastructure */
1317struct btrfs_root *btrfs_alloc_dummy_root(void)
1318{
1319        struct btrfs_root *root;
1320
1321        root = btrfs_alloc_root(NULL, GFP_KERNEL);
1322        if (!root)
1323                return ERR_PTR(-ENOMEM);
1324        __setup_root(4096, 4096, 4096, root, NULL, 1);
1325        set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326        root->alloc_bytenr = 0;
1327
1328        return root;
1329}
1330#endif
1331
1332struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333                                     struct btrfs_fs_info *fs_info,
1334                                     u64 objectid)
1335{
1336        struct extent_buffer *leaf;
1337        struct btrfs_root *tree_root = fs_info->tree_root;
1338        struct btrfs_root *root;
1339        struct btrfs_key key;
1340        int ret = 0;
1341        uuid_le uuid;
1342
1343        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1344        if (!root)
1345                return ERR_PTR(-ENOMEM);
1346
1347        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1348                tree_root->stripesize, root, fs_info, objectid);
1349        root->root_key.objectid = objectid;
1350        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351        root->root_key.offset = 0;
1352
1353        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1354        if (IS_ERR(leaf)) {
1355                ret = PTR_ERR(leaf);
1356                leaf = NULL;
1357                goto fail;
1358        }
1359
1360        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361        btrfs_set_header_bytenr(leaf, leaf->start);
1362        btrfs_set_header_generation(leaf, trans->transid);
1363        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364        btrfs_set_header_owner(leaf, objectid);
1365        root->node = leaf;
1366
1367        write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368                            BTRFS_FSID_SIZE);
1369        write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370                            btrfs_header_chunk_tree_uuid(leaf),
1371                            BTRFS_UUID_SIZE);
1372        btrfs_mark_buffer_dirty(leaf);
1373
1374        root->commit_root = btrfs_root_node(root);
1375        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376
1377        root->root_item.flags = 0;
1378        root->root_item.byte_limit = 0;
1379        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380        btrfs_set_root_generation(&root->root_item, trans->transid);
1381        btrfs_set_root_level(&root->root_item, 0);
1382        btrfs_set_root_refs(&root->root_item, 1);
1383        btrfs_set_root_used(&root->root_item, leaf->len);
1384        btrfs_set_root_last_snapshot(&root->root_item, 0);
1385        btrfs_set_root_dirid(&root->root_item, 0);
1386        uuid_le_gen(&uuid);
1387        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388        root->root_item.drop_level = 0;
1389
1390        key.objectid = objectid;
1391        key.type = BTRFS_ROOT_ITEM_KEY;
1392        key.offset = 0;
1393        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394        if (ret)
1395                goto fail;
1396
1397        btrfs_tree_unlock(leaf);
1398
1399        return root;
1400
1401fail:
1402        if (leaf) {
1403                btrfs_tree_unlock(leaf);
1404                free_extent_buffer(root->commit_root);
1405                free_extent_buffer(leaf);
1406        }
1407        kfree(root);
1408
1409        return ERR_PTR(ret);
1410}
1411
1412static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413                                         struct btrfs_fs_info *fs_info)
1414{
1415        struct btrfs_root *root;
1416        struct btrfs_root *tree_root = fs_info->tree_root;
1417        struct extent_buffer *leaf;
1418
1419        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420        if (!root)
1421                return ERR_PTR(-ENOMEM);
1422
1423        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424                     tree_root->stripesize, root, fs_info,
1425                     BTRFS_TREE_LOG_OBJECTID);
1426
1427        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430
1431        /*
1432         * DON'T set REF_COWS for log trees
1433         *
1434         * log trees do not get reference counted because they go away
1435         * before a real commit is actually done.  They do store pointers
1436         * to file data extents, and those reference counts still get
1437         * updated (along with back refs to the log tree).
1438         */
1439
1440        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441                        NULL, 0, 0, 0);
1442        if (IS_ERR(leaf)) {
1443                kfree(root);
1444                return ERR_CAST(leaf);
1445        }
1446
1447        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448        btrfs_set_header_bytenr(leaf, leaf->start);
1449        btrfs_set_header_generation(leaf, trans->transid);
1450        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452        root->node = leaf;
1453
1454        write_extent_buffer(root->node, root->fs_info->fsid,
1455                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
1456        btrfs_mark_buffer_dirty(root->node);
1457        btrfs_tree_unlock(root->node);
1458        return root;
1459}
1460
1461int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462                             struct btrfs_fs_info *fs_info)
1463{
1464        struct btrfs_root *log_root;
1465
1466        log_root = alloc_log_tree(trans, fs_info);
1467        if (IS_ERR(log_root))
1468                return PTR_ERR(log_root);
1469        WARN_ON(fs_info->log_root_tree);
1470        fs_info->log_root_tree = log_root;
1471        return 0;
1472}
1473
1474int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475                       struct btrfs_root *root)
1476{
1477        struct btrfs_root *log_root;
1478        struct btrfs_inode_item *inode_item;
1479
1480        log_root = alloc_log_tree(trans, root->fs_info);
1481        if (IS_ERR(log_root))
1482                return PTR_ERR(log_root);
1483
1484        log_root->last_trans = trans->transid;
1485        log_root->root_key.offset = root->root_key.objectid;
1486
1487        inode_item = &log_root->root_item.inode;
1488        btrfs_set_stack_inode_generation(inode_item, 1);
1489        btrfs_set_stack_inode_size(inode_item, 3);
1490        btrfs_set_stack_inode_nlink(inode_item, 1);
1491        btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1492        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493
1494        btrfs_set_root_node(&log_root->root_item, log_root->node);
1495
1496        WARN_ON(root->log_root);
1497        root->log_root = log_root;
1498        root->log_transid = 0;
1499        root->log_transid_committed = -1;
1500        root->last_log_commit = 0;
1501        return 0;
1502}
1503
1504static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505                                               struct btrfs_key *key)
1506{
1507        struct btrfs_root *root;
1508        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509        struct btrfs_path *path;
1510        u64 generation;
1511        int ret;
1512
1513        path = btrfs_alloc_path();
1514        if (!path)
1515                return ERR_PTR(-ENOMEM);
1516
1517        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518        if (!root) {
1519                ret = -ENOMEM;
1520                goto alloc_fail;
1521        }
1522
1523        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1524                tree_root->stripesize, root, fs_info, key->objectid);
1525
1526        ret = btrfs_find_root(tree_root, key, path,
1527                              &root->root_item, &root->root_key);
1528        if (ret) {
1529                if (ret > 0)
1530                        ret = -ENOENT;
1531                goto find_fail;
1532        }
1533
1534        generation = btrfs_root_generation(&root->root_item);
1535        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536                                     generation);
1537        if (IS_ERR(root->node)) {
1538                ret = PTR_ERR(root->node);
1539                goto find_fail;
1540        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1541                ret = -EIO;
1542                free_extent_buffer(root->node);
1543                goto find_fail;
1544        }
1545        root->commit_root = btrfs_root_node(root);
1546out:
1547        btrfs_free_path(path);
1548        return root;
1549
1550find_fail:
1551        kfree(root);
1552alloc_fail:
1553        root = ERR_PTR(ret);
1554        goto out;
1555}
1556
1557struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558                                      struct btrfs_key *location)
1559{
1560        struct btrfs_root *root;
1561
1562        root = btrfs_read_tree_root(tree_root, location);
1563        if (IS_ERR(root))
1564                return root;
1565
1566        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568                btrfs_check_and_init_root_item(&root->root_item);
1569        }
1570
1571        return root;
1572}
1573
1574int btrfs_init_fs_root(struct btrfs_root *root)
1575{
1576        int ret;
1577        struct btrfs_subvolume_writers *writers;
1578
1579        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581                                        GFP_NOFS);
1582        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583                ret = -ENOMEM;
1584                goto fail;
1585        }
1586
1587        writers = btrfs_alloc_subvolume_writers();
1588        if (IS_ERR(writers)) {
1589                ret = PTR_ERR(writers);
1590                goto fail;
1591        }
1592        root->subv_writers = writers;
1593
1594        btrfs_init_free_ino_ctl(root);
1595        spin_lock_init(&root->ino_cache_lock);
1596        init_waitqueue_head(&root->ino_cache_wait);
1597
1598        ret = get_anon_bdev(&root->anon_dev);
1599        if (ret)
1600                goto free_writers;
1601
1602        mutex_lock(&root->objectid_mutex);
1603        ret = btrfs_find_highest_objectid(root,
1604                                        &root->highest_objectid);
1605        if (ret) {
1606                mutex_unlock(&root->objectid_mutex);
1607                goto free_root_dev;
1608        }
1609
1610        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612        mutex_unlock(&root->objectid_mutex);
1613
1614        return 0;
1615
1616free_root_dev:
1617        free_anon_bdev(root->anon_dev);
1618free_writers:
1619        btrfs_free_subvolume_writers(root->subv_writers);
1620fail:
1621        kfree(root->free_ino_ctl);
1622        kfree(root->free_ino_pinned);
1623        return ret;
1624}
1625
1626static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627                                               u64 root_id)
1628{
1629        struct btrfs_root *root;
1630
1631        spin_lock(&fs_info->fs_roots_radix_lock);
1632        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633                                 (unsigned long)root_id);
1634        spin_unlock(&fs_info->fs_roots_radix_lock);
1635        return root;
1636}
1637
1638int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639                         struct btrfs_root *root)
1640{
1641        int ret;
1642
1643        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644        if (ret)
1645                return ret;
1646
1647        spin_lock(&fs_info->fs_roots_radix_lock);
1648        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649                                (unsigned long)root->root_key.objectid,
1650                                root);
1651        if (ret == 0)
1652                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1653        spin_unlock(&fs_info->fs_roots_radix_lock);
1654        radix_tree_preload_end();
1655
1656        return ret;
1657}
1658
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660                                     struct btrfs_key *location,
1661                                     bool check_ref)
1662{
1663        struct btrfs_root *root;
1664        struct btrfs_path *path;
1665        struct btrfs_key key;
1666        int ret;
1667
1668        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669                return fs_info->tree_root;
1670        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671                return fs_info->extent_root;
1672        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673                return fs_info->chunk_root;
1674        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675                return fs_info->dev_root;
1676        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677                return fs_info->csum_root;
1678        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679                return fs_info->quota_root ? fs_info->quota_root :
1680                                             ERR_PTR(-ENOENT);
1681        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682                return fs_info->uuid_root ? fs_info->uuid_root :
1683                                            ERR_PTR(-ENOENT);
1684        if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685                return fs_info->free_space_root ? fs_info->free_space_root :
1686                                                  ERR_PTR(-ENOENT);
1687again:
1688        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689        if (root) {
1690                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1691                        return ERR_PTR(-ENOENT);
1692                return root;
1693        }
1694
1695        root = btrfs_read_fs_root(fs_info->tree_root, location);
1696        if (IS_ERR(root))
1697                return root;
1698
1699        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700                ret = -ENOENT;
1701                goto fail;
1702        }
1703
1704        ret = btrfs_init_fs_root(root);
1705        if (ret)
1706                goto fail;
1707
1708        path = btrfs_alloc_path();
1709        if (!path) {
1710                ret = -ENOMEM;
1711                goto fail;
1712        }
1713        key.objectid = BTRFS_ORPHAN_OBJECTID;
1714        key.type = BTRFS_ORPHAN_ITEM_KEY;
1715        key.offset = location->objectid;
1716
1717        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718        btrfs_free_path(path);
1719        if (ret < 0)
1720                goto fail;
1721        if (ret == 0)
1722                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1723
1724        ret = btrfs_insert_fs_root(fs_info, root);
1725        if (ret) {
1726                if (ret == -EEXIST) {
1727                        free_fs_root(root);
1728                        goto again;
1729                }
1730                goto fail;
1731        }
1732        return root;
1733fail:
1734        free_fs_root(root);
1735        return ERR_PTR(ret);
1736}
1737
1738static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1739{
1740        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741        int ret = 0;
1742        struct btrfs_device *device;
1743        struct backing_dev_info *bdi;
1744
1745        rcu_read_lock();
1746        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747                if (!device->bdev)
1748                        continue;
1749                bdi = blk_get_backing_dev_info(device->bdev);
1750                if (bdi_congested(bdi, bdi_bits)) {
1751                        ret = 1;
1752                        break;
1753                }
1754        }
1755        rcu_read_unlock();
1756        return ret;
1757}
1758
1759static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1760{
1761        int err;
1762
1763        err = bdi_setup_and_register(bdi, "btrfs");
1764        if (err)
1765                return err;
1766
1767        bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768        bdi->congested_fn       = btrfs_congested_fn;
1769        bdi->congested_data     = info;
1770        bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771        return 0;
1772}
1773
1774/*
1775 * called by the kthread helper functions to finally call the bio end_io
1776 * functions.  This is where read checksum verification actually happens
1777 */
1778static void end_workqueue_fn(struct btrfs_work *work)
1779{
1780        struct bio *bio;
1781        struct btrfs_end_io_wq *end_io_wq;
1782
1783        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784        bio = end_io_wq->bio;
1785
1786        bio->bi_error = end_io_wq->error;
1787        bio->bi_private = end_io_wq->private;
1788        bio->bi_end_io = end_io_wq->end_io;
1789        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790        bio_endio(bio);
1791}
1792
1793static int cleaner_kthread(void *arg)
1794{
1795        struct btrfs_root *root = arg;
1796        int again;
1797        struct btrfs_trans_handle *trans;
1798
1799        do {
1800                again = 0;
1801
1802                /* Make the cleaner go to sleep early. */
1803                if (btrfs_need_cleaner_sleep(root))
1804                        goto sleep;
1805
1806                if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1807                        goto sleep;
1808
1809                /*
1810                 * Avoid the problem that we change the status of the fs
1811                 * during the above check and trylock.
1812                 */
1813                if (btrfs_need_cleaner_sleep(root)) {
1814                        mutex_unlock(&root->fs_info->cleaner_mutex);
1815                        goto sleep;
1816                }
1817
1818                mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819                btrfs_run_delayed_iputs(root);
1820                mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1821
1822                again = btrfs_clean_one_deleted_snapshot(root);
1823                mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825                /*
1826                 * The defragger has dealt with the R/O remount and umount,
1827                 * needn't do anything special here.
1828                 */
1829                btrfs_run_defrag_inodes(root->fs_info);
1830
1831                /*
1832                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833                 * with relocation (btrfs_relocate_chunk) and relocation
1834                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837                 * unused block groups.
1838                 */
1839                btrfs_delete_unused_bgs(root->fs_info);
1840sleep:
1841                if (!again) {
1842                        set_current_state(TASK_INTERRUPTIBLE);
1843                        if (!kthread_should_stop())
1844                                schedule();
1845                        __set_current_state(TASK_RUNNING);
1846                }
1847        } while (!kthread_should_stop());
1848
1849        /*
1850         * Transaction kthread is stopped before us and wakes us up.
1851         * However we might have started a new transaction and COWed some
1852         * tree blocks when deleting unused block groups for example. So
1853         * make sure we commit the transaction we started to have a clean
1854         * shutdown when evicting the btree inode - if it has dirty pages
1855         * when we do the final iput() on it, eviction will trigger a
1856         * writeback for it which will fail with null pointer dereferences
1857         * since work queues and other resources were already released and
1858         * destroyed by the time the iput/eviction/writeback is made.
1859         */
1860        trans = btrfs_attach_transaction(root);
1861        if (IS_ERR(trans)) {
1862                if (PTR_ERR(trans) != -ENOENT)
1863                        btrfs_err(root->fs_info,
1864                                  "cleaner transaction attach returned %ld",
1865                                  PTR_ERR(trans));
1866        } else {
1867                int ret;
1868
1869                ret = btrfs_commit_transaction(trans, root);
1870                if (ret)
1871                        btrfs_err(root->fs_info,
1872                                  "cleaner open transaction commit returned %d",
1873                                  ret);
1874        }
1875
1876        return 0;
1877}
1878
1879static int transaction_kthread(void *arg)
1880{
1881        struct btrfs_root *root = arg;
1882        struct btrfs_trans_handle *trans;
1883        struct btrfs_transaction *cur;
1884        u64 transid;
1885        unsigned long now;
1886        unsigned long delay;
1887        bool cannot_commit;
1888
1889        do {
1890                cannot_commit = false;
1891                delay = HZ * root->fs_info->commit_interval;
1892                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
1894                spin_lock(&root->fs_info->trans_lock);
1895                cur = root->fs_info->running_transaction;
1896                if (!cur) {
1897                        spin_unlock(&root->fs_info->trans_lock);
1898                        goto sleep;
1899                }
1900
1901                now = get_seconds();
1902                if (cur->state < TRANS_STATE_BLOCKED &&
1903                    (now < cur->start_time ||
1904                     now - cur->start_time < root->fs_info->commit_interval)) {
1905                        spin_unlock(&root->fs_info->trans_lock);
1906                        delay = HZ * 5;
1907                        goto sleep;
1908                }
1909                transid = cur->transid;
1910                spin_unlock(&root->fs_info->trans_lock);
1911
1912                /* If the file system is aborted, this will always fail. */
1913                trans = btrfs_attach_transaction(root);
1914                if (IS_ERR(trans)) {
1915                        if (PTR_ERR(trans) != -ENOENT)
1916                                cannot_commit = true;
1917                        goto sleep;
1918                }
1919                if (transid == trans->transid) {
1920                        btrfs_commit_transaction(trans, root);
1921                } else {
1922                        btrfs_end_transaction(trans, root);
1923                }
1924sleep:
1925                wake_up_process(root->fs_info->cleaner_kthread);
1926                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
1928                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929                                      &root->fs_info->fs_state)))
1930                        btrfs_cleanup_transaction(root);
1931                set_current_state(TASK_INTERRUPTIBLE);
1932                if (!kthread_should_stop() &&
1933                                (!btrfs_transaction_blocked(root->fs_info) ||
1934                                 cannot_commit))
1935                        schedule_timeout(delay);
1936                __set_current_state(TASK_RUNNING);
1937        } while (!kthread_should_stop());
1938        return 0;
1939}
1940
1941/*
1942 * this will find the highest generation in the array of
1943 * root backups.  The index of the highest array is returned,
1944 * or -1 if we can't find anything.
1945 *
1946 * We check to make sure the array is valid by comparing the
1947 * generation of the latest  root in the array with the generation
1948 * in the super block.  If they don't match we pitch it.
1949 */
1950static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951{
1952        u64 cur;
1953        int newest_index = -1;
1954        struct btrfs_root_backup *root_backup;
1955        int i;
1956
1957        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958                root_backup = info->super_copy->super_roots + i;
1959                cur = btrfs_backup_tree_root_gen(root_backup);
1960                if (cur == newest_gen)
1961                        newest_index = i;
1962        }
1963
1964        /* check to see if we actually wrapped around */
1965        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966                root_backup = info->super_copy->super_roots;
1967                cur = btrfs_backup_tree_root_gen(root_backup);
1968                if (cur == newest_gen)
1969                        newest_index = 0;
1970        }
1971        return newest_index;
1972}
1973
1974
1975/*
1976 * find the oldest backup so we know where to store new entries
1977 * in the backup array.  This will set the backup_root_index
1978 * field in the fs_info struct
1979 */
1980static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981                                     u64 newest_gen)
1982{
1983        int newest_index = -1;
1984
1985        newest_index = find_newest_super_backup(info, newest_gen);
1986        /* if there was garbage in there, just move along */
1987        if (newest_index == -1) {
1988                info->backup_root_index = 0;
1989        } else {
1990                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991        }
1992}
1993
1994/*
1995 * copy all the root pointers into the super backup array.
1996 * this will bump the backup pointer by one when it is
1997 * done
1998 */
1999static void backup_super_roots(struct btrfs_fs_info *info)
2000{
2001        int next_backup;
2002        struct btrfs_root_backup *root_backup;
2003        int last_backup;
2004
2005        next_backup = info->backup_root_index;
2006        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007                BTRFS_NUM_BACKUP_ROOTS;
2008
2009        /*
2010         * just overwrite the last backup if we're at the same generation
2011         * this happens only at umount
2012         */
2013        root_backup = info->super_for_commit->super_roots + last_backup;
2014        if (btrfs_backup_tree_root_gen(root_backup) ==
2015            btrfs_header_generation(info->tree_root->node))
2016                next_backup = last_backup;
2017
2018        root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020        /*
2021         * make sure all of our padding and empty slots get zero filled
2022         * regardless of which ones we use today
2023         */
2024        memset(root_backup, 0, sizeof(*root_backup));
2025
2026        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029        btrfs_set_backup_tree_root_gen(root_backup,
2030                               btrfs_header_generation(info->tree_root->node));
2031
2032        btrfs_set_backup_tree_root_level(root_backup,
2033                               btrfs_header_level(info->tree_root->node));
2034
2035        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036        btrfs_set_backup_chunk_root_gen(root_backup,
2037                               btrfs_header_generation(info->chunk_root->node));
2038        btrfs_set_backup_chunk_root_level(root_backup,
2039                               btrfs_header_level(info->chunk_root->node));
2040
2041        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042        btrfs_set_backup_extent_root_gen(root_backup,
2043                               btrfs_header_generation(info->extent_root->node));
2044        btrfs_set_backup_extent_root_level(root_backup,
2045                               btrfs_header_level(info->extent_root->node));
2046
2047        /*
2048         * we might commit during log recovery, which happens before we set
2049         * the fs_root.  Make sure it is valid before we fill it in.
2050         */
2051        if (info->fs_root && info->fs_root->node) {
2052                btrfs_set_backup_fs_root(root_backup,
2053                                         info->fs_root->node->start);
2054                btrfs_set_backup_fs_root_gen(root_backup,
2055                               btrfs_header_generation(info->fs_root->node));
2056                btrfs_set_backup_fs_root_level(root_backup,
2057                               btrfs_header_level(info->fs_root->node));
2058        }
2059
2060        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061        btrfs_set_backup_dev_root_gen(root_backup,
2062                               btrfs_header_generation(info->dev_root->node));
2063        btrfs_set_backup_dev_root_level(root_backup,
2064                                       btrfs_header_level(info->dev_root->node));
2065
2066        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067        btrfs_set_backup_csum_root_gen(root_backup,
2068                               btrfs_header_generation(info->csum_root->node));
2069        btrfs_set_backup_csum_root_level(root_backup,
2070                               btrfs_header_level(info->csum_root->node));
2071
2072        btrfs_set_backup_total_bytes(root_backup,
2073                             btrfs_super_total_bytes(info->super_copy));
2074        btrfs_set_backup_bytes_used(root_backup,
2075                             btrfs_super_bytes_used(info->super_copy));
2076        btrfs_set_backup_num_devices(root_backup,
2077                             btrfs_super_num_devices(info->super_copy));
2078
2079        /*
2080         * if we don't copy this out to the super_copy, it won't get remembered
2081         * for the next commit
2082         */
2083        memcpy(&info->super_copy->super_roots,
2084               &info->super_for_commit->super_roots,
2085               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086}
2087
2088/*
2089 * this copies info out of the root backup array and back into
2090 * the in-memory super block.  It is meant to help iterate through
2091 * the array, so you send it the number of backups you've already
2092 * tried and the last backup index you used.
2093 *
2094 * this returns -1 when it has tried all the backups
2095 */
2096static noinline int next_root_backup(struct btrfs_fs_info *info,
2097                                     struct btrfs_super_block *super,
2098                                     int *num_backups_tried, int *backup_index)
2099{
2100        struct btrfs_root_backup *root_backup;
2101        int newest = *backup_index;
2102
2103        if (*num_backups_tried == 0) {
2104                u64 gen = btrfs_super_generation(super);
2105
2106                newest = find_newest_super_backup(info, gen);
2107                if (newest == -1)
2108                        return -1;
2109
2110                *backup_index = newest;
2111                *num_backups_tried = 1;
2112        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113                /* we've tried all the backups, all done */
2114                return -1;
2115        } else {
2116                /* jump to the next oldest backup */
2117                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118                        BTRFS_NUM_BACKUP_ROOTS;
2119                *backup_index = newest;
2120                *num_backups_tried += 1;
2121        }
2122        root_backup = super->super_roots + newest;
2123
2124        btrfs_set_super_generation(super,
2125                                   btrfs_backup_tree_root_gen(root_backup));
2126        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127        btrfs_set_super_root_level(super,
2128                                   btrfs_backup_tree_root_level(root_backup));
2129        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130
2131        /*
2132         * fixme: the total bytes and num_devices need to match or we should
2133         * need a fsck
2134         */
2135        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137        return 0;
2138}
2139
2140/* helper to cleanup workers */
2141static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142{
2143        btrfs_destroy_workqueue(fs_info->fixup_workers);
2144        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145        btrfs_destroy_workqueue(fs_info->workers);
2146        btrfs_destroy_workqueue(fs_info->endio_workers);
2147        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150        btrfs_destroy_workqueue(fs_info->rmw_workers);
2151        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154        btrfs_destroy_workqueue(fs_info->submit_workers);
2155        btrfs_destroy_workqueue(fs_info->delayed_workers);
2156        btrfs_destroy_workqueue(fs_info->caching_workers);
2157        btrfs_destroy_workqueue(fs_info->readahead_workers);
2158        btrfs_destroy_workqueue(fs_info->flush_workers);
2159        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160        btrfs_destroy_workqueue(fs_info->extent_workers);
2161}
2162
2163static void free_root_extent_buffers(struct btrfs_root *root)
2164{
2165        if (root) {
2166                free_extent_buffer(root->node);
2167                free_extent_buffer(root->commit_root);
2168                root->node = NULL;
2169                root->commit_root = NULL;
2170        }
2171}
2172
2173/* helper to cleanup tree roots */
2174static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175{
2176        free_root_extent_buffers(info->tree_root);
2177
2178        free_root_extent_buffers(info->dev_root);
2179        free_root_extent_buffers(info->extent_root);
2180        free_root_extent_buffers(info->csum_root);
2181        free_root_extent_buffers(info->quota_root);
2182        free_root_extent_buffers(info->uuid_root);
2183        if (chunk_root)
2184                free_root_extent_buffers(info->chunk_root);
2185        free_root_extent_buffers(info->free_space_root);
2186}
2187
2188void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189{
2190        int ret;
2191        struct btrfs_root *gang[8];
2192        int i;
2193
2194        while (!list_empty(&fs_info->dead_roots)) {
2195                gang[0] = list_entry(fs_info->dead_roots.next,
2196                                     struct btrfs_root, root_list);
2197                list_del(&gang[0]->root_list);
2198
2199                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201                } else {
2202                        free_extent_buffer(gang[0]->node);
2203                        free_extent_buffer(gang[0]->commit_root);
2204                        btrfs_put_fs_root(gang[0]);
2205                }
2206        }
2207
2208        while (1) {
2209                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210                                             (void **)gang, 0,
2211                                             ARRAY_SIZE(gang));
2212                if (!ret)
2213                        break;
2214                for (i = 0; i < ret; i++)
2215                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216        }
2217
2218        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219                btrfs_free_log_root_tree(NULL, fs_info);
2220                btrfs_destroy_pinned_extent(fs_info->tree_root,
2221                                            fs_info->pinned_extents);
2222        }
2223}
2224
2225static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226{
2227        mutex_init(&fs_info->scrub_lock);
2228        atomic_set(&fs_info->scrubs_running, 0);
2229        atomic_set(&fs_info->scrub_pause_req, 0);
2230        atomic_set(&fs_info->scrubs_paused, 0);
2231        atomic_set(&fs_info->scrub_cancel_req, 0);
2232        init_waitqueue_head(&fs_info->scrub_pause_wait);
2233        fs_info->scrub_workers_refcnt = 0;
2234}
2235
2236static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237{
2238        spin_lock_init(&fs_info->balance_lock);
2239        mutex_init(&fs_info->balance_mutex);
2240        atomic_set(&fs_info->balance_running, 0);
2241        atomic_set(&fs_info->balance_pause_req, 0);
2242        atomic_set(&fs_info->balance_cancel_req, 0);
2243        fs_info->balance_ctl = NULL;
2244        init_waitqueue_head(&fs_info->balance_wait_q);
2245}
2246
2247static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248                                   struct btrfs_root *tree_root)
2249{
2250        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251        set_nlink(fs_info->btree_inode, 1);
2252        /*
2253         * we set the i_size on the btree inode to the max possible int.
2254         * the real end of the address space is determined by all of
2255         * the devices in the system
2256         */
2257        fs_info->btree_inode->i_size = OFFSET_MAX;
2258        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259
2260        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262                             fs_info->btree_inode->i_mapping);
2263        BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268        BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270               sizeof(struct btrfs_key));
2271        set_bit(BTRFS_INODE_DUMMY,
2272                &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273        btrfs_insert_inode_hash(fs_info->btree_inode);
2274}
2275
2276static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277{
2278        fs_info->dev_replace.lock_owner = 0;
2279        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281        rwlock_init(&fs_info->dev_replace.lock);
2282        atomic_set(&fs_info->dev_replace.read_locks, 0);
2283        atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284        init_waitqueue_head(&fs_info->replace_wait);
2285        init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286}
2287
2288static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289{
2290        spin_lock_init(&fs_info->qgroup_lock);
2291        mutex_init(&fs_info->qgroup_ioctl_lock);
2292        fs_info->qgroup_tree = RB_ROOT;
2293        fs_info->qgroup_op_tree = RB_ROOT;
2294        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295        fs_info->qgroup_seq = 1;
2296        fs_info->quota_enabled = 0;
2297        fs_info->pending_quota_state = 0;
2298        fs_info->qgroup_ulist = NULL;
2299        mutex_init(&fs_info->qgroup_rescan_lock);
2300}
2301
2302static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303                struct btrfs_fs_devices *fs_devices)
2304{
2305        int max_active = fs_info->thread_pool_size;
2306        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307
2308        fs_info->workers =
2309                btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310                                      max_active, 16);
2311
2312        fs_info->delalloc_workers =
2313                btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2314
2315        fs_info->flush_workers =
2316                btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2317
2318        fs_info->caching_workers =
2319                btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320
2321        /*
2322         * a higher idle thresh on the submit workers makes it much more
2323         * likely that bios will be send down in a sane order to the
2324         * devices
2325         */
2326        fs_info->submit_workers =
2327                btrfs_alloc_workqueue("submit", flags,
2328                                      min_t(u64, fs_devices->num_devices,
2329                                            max_active), 64);
2330
2331        fs_info->fixup_workers =
2332                btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333
2334        /*
2335         * endios are largely parallel and should have a very
2336         * low idle thresh
2337         */
2338        fs_info->endio_workers =
2339                btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340        fs_info->endio_meta_workers =
2341                btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342        fs_info->endio_meta_write_workers =
2343                btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344        fs_info->endio_raid56_workers =
2345                btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346        fs_info->endio_repair_workers =
2347                btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348        fs_info->rmw_workers =
2349                btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350        fs_info->endio_write_workers =
2351                btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2352        fs_info->endio_freespace_worker =
2353                btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2354        fs_info->delayed_workers =
2355                btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356        fs_info->readahead_workers =
2357                btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358        fs_info->qgroup_rescan_workers =
2359                btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360        fs_info->extent_workers =
2361                btrfs_alloc_workqueue("extent-refs", flags,
2362                                      min_t(u64, fs_devices->num_devices,
2363                                            max_active), 8);
2364
2365        if (!(fs_info->workers && fs_info->delalloc_workers &&
2366              fs_info->submit_workers && fs_info->flush_workers &&
2367              fs_info->endio_workers && fs_info->endio_meta_workers &&
2368              fs_info->endio_meta_write_workers &&
2369              fs_info->endio_repair_workers &&
2370              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372              fs_info->caching_workers && fs_info->readahead_workers &&
2373              fs_info->fixup_workers && fs_info->delayed_workers &&
2374              fs_info->extent_workers &&
2375              fs_info->qgroup_rescan_workers)) {
2376                return -ENOMEM;
2377        }
2378
2379        return 0;
2380}
2381
2382static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383                            struct btrfs_fs_devices *fs_devices)
2384{
2385        int ret;
2386        struct btrfs_root *tree_root = fs_info->tree_root;
2387        struct btrfs_root *log_tree_root;
2388        struct btrfs_super_block *disk_super = fs_info->super_copy;
2389        u64 bytenr = btrfs_super_log_root(disk_super);
2390
2391        if (fs_devices->rw_devices == 0) {
2392                btrfs_warn(fs_info, "log replay required on RO media");
2393                return -EIO;
2394        }
2395
2396        log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2397        if (!log_tree_root)
2398                return -ENOMEM;
2399
2400        __setup_root(tree_root->nodesize, tree_root->sectorsize,
2401                        tree_root->stripesize, log_tree_root, fs_info,
2402                        BTRFS_TREE_LOG_OBJECTID);
2403
2404        log_tree_root->node = read_tree_block(tree_root, bytenr,
2405                        fs_info->generation + 1);
2406        if (IS_ERR(log_tree_root->node)) {
2407                btrfs_warn(fs_info, "failed to read log tree");
2408                ret = PTR_ERR(log_tree_root->node);
2409                kfree(log_tree_root);
2410                return ret;
2411        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2412                btrfs_err(fs_info, "failed to read log tree");
2413                free_extent_buffer(log_tree_root->node);
2414                kfree(log_tree_root);
2415                return -EIO;
2416        }
2417        /* returns with log_tree_root freed on success */
2418        ret = btrfs_recover_log_trees(log_tree_root);
2419        if (ret) {
2420                btrfs_std_error(tree_root->fs_info, ret,
2421                            "Failed to recover log tree");
2422                free_extent_buffer(log_tree_root->node);
2423                kfree(log_tree_root);
2424                return ret;
2425        }
2426
2427        if (fs_info->sb->s_flags & MS_RDONLY) {
2428                ret = btrfs_commit_super(tree_root);
2429                if (ret)
2430                        return ret;
2431        }
2432
2433        return 0;
2434}
2435
2436static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437                            struct btrfs_root *tree_root)
2438{
2439        struct btrfs_root *root;
2440        struct btrfs_key location;
2441        int ret;
2442
2443        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2444        location.type = BTRFS_ROOT_ITEM_KEY;
2445        location.offset = 0;
2446
2447        root = btrfs_read_tree_root(tree_root, &location);
2448        if (IS_ERR(root))
2449                return PTR_ERR(root);
2450        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451        fs_info->extent_root = root;
2452
2453        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454        root = btrfs_read_tree_root(tree_root, &location);
2455        if (IS_ERR(root))
2456                return PTR_ERR(root);
2457        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458        fs_info->dev_root = root;
2459        btrfs_init_devices_late(fs_info);
2460
2461        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462        root = btrfs_read_tree_root(tree_root, &location);
2463        if (IS_ERR(root))
2464                return PTR_ERR(root);
2465        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466        fs_info->csum_root = root;
2467
2468        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469        root = btrfs_read_tree_root(tree_root, &location);
2470        if (!IS_ERR(root)) {
2471                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472                fs_info->quota_enabled = 1;
2473                fs_info->pending_quota_state = 1;
2474                fs_info->quota_root = root;
2475        }
2476
2477        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478        root = btrfs_read_tree_root(tree_root, &location);
2479        if (IS_ERR(root)) {
2480                ret = PTR_ERR(root);
2481                if (ret != -ENOENT)
2482                        return ret;
2483        } else {
2484                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485                fs_info->uuid_root = root;
2486        }
2487
2488        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490                root = btrfs_read_tree_root(tree_root, &location);
2491                if (IS_ERR(root))
2492                        return PTR_ERR(root);
2493                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494                fs_info->free_space_root = root;
2495        }
2496
2497        return 0;
2498}
2499
2500int open_ctree(struct super_block *sb,
2501               struct btrfs_fs_devices *fs_devices,
2502               char *options)
2503{
2504        u32 sectorsize;
2505        u32 nodesize;
2506        u32 stripesize;
2507        u64 generation;
2508        u64 features;
2509        struct btrfs_key location;
2510        struct buffer_head *bh;
2511        struct btrfs_super_block *disk_super;
2512        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513        struct btrfs_root *tree_root;
2514        struct btrfs_root *chunk_root;
2515        int ret;
2516        int err = -EINVAL;
2517        int num_backups_tried = 0;
2518        int backup_index = 0;
2519        int max_active;
2520
2521        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2522        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523        if (!tree_root || !chunk_root) {
2524                err = -ENOMEM;
2525                goto fail;
2526        }
2527
2528        ret = init_srcu_struct(&fs_info->subvol_srcu);
2529        if (ret) {
2530                err = ret;
2531                goto fail;
2532        }
2533
2534        ret = setup_bdi(fs_info, &fs_info->bdi);
2535        if (ret) {
2536                err = ret;
2537                goto fail_srcu;
2538        }
2539
2540        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2541        if (ret) {
2542                err = ret;
2543                goto fail_bdi;
2544        }
2545        fs_info->dirty_metadata_batch = PAGE_SIZE *
2546                                        (1 + ilog2(nr_cpu_ids));
2547
2548        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2549        if (ret) {
2550                err = ret;
2551                goto fail_dirty_metadata_bytes;
2552        }
2553
2554        ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2555        if (ret) {
2556                err = ret;
2557                goto fail_delalloc_bytes;
2558        }
2559
2560        fs_info->btree_inode = new_inode(sb);
2561        if (!fs_info->btree_inode) {
2562                err = -ENOMEM;
2563                goto fail_bio_counter;
2564        }
2565
2566        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2567
2568        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2569        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2570        INIT_LIST_HEAD(&fs_info->trans_list);
2571        INIT_LIST_HEAD(&fs_info->dead_roots);
2572        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2573        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2574        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2575        spin_lock_init(&fs_info->delalloc_root_lock);
2576        spin_lock_init(&fs_info->trans_lock);
2577        spin_lock_init(&fs_info->fs_roots_radix_lock);
2578        spin_lock_init(&fs_info->delayed_iput_lock);
2579        spin_lock_init(&fs_info->defrag_inodes_lock);
2580        spin_lock_init(&fs_info->free_chunk_lock);
2581        spin_lock_init(&fs_info->tree_mod_seq_lock);
2582        spin_lock_init(&fs_info->super_lock);
2583        spin_lock_init(&fs_info->qgroup_op_lock);
2584        spin_lock_init(&fs_info->buffer_lock);
2585        spin_lock_init(&fs_info->unused_bgs_lock);
2586        rwlock_init(&fs_info->tree_mod_log_lock);
2587        mutex_init(&fs_info->unused_bg_unpin_mutex);
2588        mutex_init(&fs_info->delete_unused_bgs_mutex);
2589        mutex_init(&fs_info->reloc_mutex);
2590        mutex_init(&fs_info->delalloc_root_mutex);
2591        mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2592        seqlock_init(&fs_info->profiles_lock);
2593
2594        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2595        INIT_LIST_HEAD(&fs_info->space_info);
2596        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2597        INIT_LIST_HEAD(&fs_info->unused_bgs);
2598        btrfs_mapping_init(&fs_info->mapping_tree);
2599        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2600                             BTRFS_BLOCK_RSV_GLOBAL);
2601        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2602                             BTRFS_BLOCK_RSV_DELALLOC);
2603        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2604        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2605        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2606        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2607                             BTRFS_BLOCK_RSV_DELOPS);
2608        atomic_set(&fs_info->nr_async_submits, 0);
2609        atomic_set(&fs_info->async_delalloc_pages, 0);
2610        atomic_set(&fs_info->async_submit_draining, 0);
2611        atomic_set(&fs_info->nr_async_bios, 0);
2612        atomic_set(&fs_info->defrag_running, 0);
2613        atomic_set(&fs_info->qgroup_op_seq, 0);
2614        atomic_set(&fs_info->reada_works_cnt, 0);
2615        atomic64_set(&fs_info->tree_mod_seq, 0);
2616        fs_info->sb = sb;
2617        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2618        fs_info->metadata_ratio = 0;
2619        fs_info->defrag_inodes = RB_ROOT;
2620        fs_info->free_chunk_space = 0;
2621        fs_info->tree_mod_log = RB_ROOT;
2622        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2623        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2624        /* readahead state */
2625        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2626        spin_lock_init(&fs_info->reada_lock);
2627
2628        fs_info->thread_pool_size = min_t(unsigned long,
2629                                          num_online_cpus() + 2, 8);
2630
2631        INIT_LIST_HEAD(&fs_info->ordered_roots);
2632        spin_lock_init(&fs_info->ordered_root_lock);
2633        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2634                                        GFP_KERNEL);
2635        if (!fs_info->delayed_root) {
2636                err = -ENOMEM;
2637                goto fail_iput;
2638        }
2639        btrfs_init_delayed_root(fs_info->delayed_root);
2640
2641        btrfs_init_scrub(fs_info);
2642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2643        fs_info->check_integrity_print_mask = 0;
2644#endif
2645        btrfs_init_balance(fs_info);
2646        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2647
2648        sb->s_blocksize = 4096;
2649        sb->s_blocksize_bits = blksize_bits(4096);
2650        sb->s_bdi = &fs_info->bdi;
2651
2652        btrfs_init_btree_inode(fs_info, tree_root);
2653
2654        spin_lock_init(&fs_info->block_group_cache_lock);
2655        fs_info->block_group_cache_tree = RB_ROOT;
2656        fs_info->first_logical_byte = (u64)-1;
2657
2658        extent_io_tree_init(&fs_info->freed_extents[0],
2659                             fs_info->btree_inode->i_mapping);
2660        extent_io_tree_init(&fs_info->freed_extents[1],
2661                             fs_info->btree_inode->i_mapping);
2662        fs_info->pinned_extents = &fs_info->freed_extents[0];
2663        fs_info->do_barriers = 1;
2664
2665
2666        mutex_init(&fs_info->ordered_operations_mutex);
2667        mutex_init(&fs_info->tree_log_mutex);
2668        mutex_init(&fs_info->chunk_mutex);
2669        mutex_init(&fs_info->transaction_kthread_mutex);
2670        mutex_init(&fs_info->cleaner_mutex);
2671        mutex_init(&fs_info->volume_mutex);
2672        mutex_init(&fs_info->ro_block_group_mutex);
2673        init_rwsem(&fs_info->commit_root_sem);
2674        init_rwsem(&fs_info->cleanup_work_sem);
2675        init_rwsem(&fs_info->subvol_sem);
2676        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2677
2678        btrfs_init_dev_replace_locks(fs_info);
2679        btrfs_init_qgroup(fs_info);
2680
2681        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2682        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2683
2684        init_waitqueue_head(&fs_info->transaction_throttle);
2685        init_waitqueue_head(&fs_info->transaction_wait);
2686        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2687        init_waitqueue_head(&fs_info->async_submit_wait);
2688
2689        INIT_LIST_HEAD(&fs_info->pinned_chunks);
2690
2691        ret = btrfs_alloc_stripe_hash_table(fs_info);
2692        if (ret) {
2693                err = ret;
2694                goto fail_alloc;
2695        }
2696
2697        __setup_root(4096, 4096, 4096, tree_root,
2698                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2699
2700        invalidate_bdev(fs_devices->latest_bdev);
2701
2702        /*
2703         * Read super block and check the signature bytes only
2704         */
2705        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2706        if (IS_ERR(bh)) {
2707                err = PTR_ERR(bh);
2708                goto fail_alloc;
2709        }
2710
2711        /*
2712         * We want to check superblock checksum, the type is stored inside.
2713         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2714         */
2715        if (btrfs_check_super_csum(bh->b_data)) {
2716                printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2717                err = -EINVAL;
2718                brelse(bh);
2719                goto fail_alloc;
2720        }
2721
2722        /*
2723         * super_copy is zeroed at allocation time and we never touch the
2724         * following bytes up to INFO_SIZE, the checksum is calculated from
2725         * the whole block of INFO_SIZE
2726         */
2727        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2728        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2729               sizeof(*fs_info->super_for_commit));
2730        brelse(bh);
2731
2732        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2733
2734        ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2735        if (ret) {
2736                printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2737                err = -EINVAL;
2738                goto fail_alloc;
2739        }
2740
2741        disk_super = fs_info->super_copy;
2742        if (!btrfs_super_root(disk_super))
2743                goto fail_alloc;
2744
2745        /* check FS state, whether FS is broken. */
2746        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2747                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2748
2749        /*
2750         * run through our array of backup supers and setup
2751         * our ring pointer to the oldest one
2752         */
2753        generation = btrfs_super_generation(disk_super);
2754        find_oldest_super_backup(fs_info, generation);
2755
2756        /*
2757         * In the long term, we'll store the compression type in the super
2758         * block, and it'll be used for per file compression control.
2759         */
2760        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2761
2762        ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2763        if (ret) {
2764                err = ret;
2765                goto fail_alloc;
2766        }
2767
2768        features = btrfs_super_incompat_flags(disk_super) &
2769                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2770        if (features) {
2771                printk(KERN_ERR "BTRFS: couldn't mount because of "
2772                       "unsupported optional features (%Lx).\n",
2773                       features);
2774                err = -EINVAL;
2775                goto fail_alloc;
2776        }
2777
2778        features = btrfs_super_incompat_flags(disk_super);
2779        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2780        if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2781                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2782
2783        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2784                printk(KERN_INFO "BTRFS: has skinny extents\n");
2785
2786        /*
2787         * flag our filesystem as having big metadata blocks if
2788         * they are bigger than the page size
2789         */
2790        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2791                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2792                        printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2793                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2794        }
2795
2796        nodesize = btrfs_super_nodesize(disk_super);
2797        sectorsize = btrfs_super_sectorsize(disk_super);
2798        stripesize = btrfs_super_stripesize(disk_super);
2799        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2800        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2801
2802        /*
2803         * mixed block groups end up with duplicate but slightly offset
2804         * extent buffers for the same range.  It leads to corruptions
2805         */
2806        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2807            (sectorsize != nodesize)) {
2808                printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2809                                "are not allowed for mixed block groups on %s\n",
2810                                sb->s_id);
2811                goto fail_alloc;
2812        }
2813
2814        /*
2815         * Needn't use the lock because there is no other task which will
2816         * update the flag.
2817         */
2818        btrfs_set_super_incompat_flags(disk_super, features);
2819
2820        features = btrfs_super_compat_ro_flags(disk_super) &
2821                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2822        if (!(sb->s_flags & MS_RDONLY) && features) {
2823                printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2824                       "unsupported option features (%Lx).\n",
2825                       features);
2826                err = -EINVAL;
2827                goto fail_alloc;
2828        }
2829
2830        max_active = fs_info->thread_pool_size;
2831
2832        ret = btrfs_init_workqueues(fs_info, fs_devices);
2833        if (ret) {
2834                err = ret;
2835                goto fail_sb_buffer;
2836        }
2837
2838        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2839        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2840                                    SZ_4M / PAGE_SIZE);
2841
2842        tree_root->nodesize = nodesize;
2843        tree_root->sectorsize = sectorsize;
2844        tree_root->stripesize = stripesize;
2845
2846        sb->s_blocksize = sectorsize;
2847        sb->s_blocksize_bits = blksize_bits(sectorsize);
2848
2849        mutex_lock(&fs_info->chunk_mutex);
2850        ret = btrfs_read_sys_array(tree_root);
2851        mutex_unlock(&fs_info->chunk_mutex);
2852        if (ret) {
2853                printk(KERN_ERR "BTRFS: failed to read the system "
2854                       "array on %s\n", sb->s_id);
2855                goto fail_sb_buffer;
2856        }
2857
2858        generation = btrfs_super_chunk_root_generation(disk_super);
2859
2860        __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2861                     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2862
2863        chunk_root->node = read_tree_block(chunk_root,
2864                                           btrfs_super_chunk_root(disk_super),
2865                                           generation);
2866        if (IS_ERR(chunk_root->node) ||
2867            !extent_buffer_uptodate(chunk_root->node)) {
2868                printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2869                       sb->s_id);
2870                if (!IS_ERR(chunk_root->node))
2871                        free_extent_buffer(chunk_root->node);
2872                chunk_root->node = NULL;
2873                goto fail_tree_roots;
2874        }
2875        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876        chunk_root->commit_root = btrfs_root_node(chunk_root);
2877
2878        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2880
2881        ret = btrfs_read_chunk_tree(chunk_root);
2882        if (ret) {
2883                printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2884                       sb->s_id);
2885                goto fail_tree_roots;
2886        }
2887
2888        /*
2889         * keep the device that is marked to be the target device for the
2890         * dev_replace procedure
2891         */
2892        btrfs_close_extra_devices(fs_devices, 0);
2893
2894        if (!fs_devices->latest_bdev) {
2895                printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2896                       sb->s_id);
2897                goto fail_tree_roots;
2898        }
2899
2900retry_root_backup:
2901        generation = btrfs_super_generation(disk_super);
2902
2903        tree_root->node = read_tree_block(tree_root,
2904                                          btrfs_super_root(disk_super),
2905                                          generation);
2906        if (IS_ERR(tree_root->node) ||
2907            !extent_buffer_uptodate(tree_root->node)) {
2908                printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2909                       sb->s_id);
2910                if (!IS_ERR(tree_root->node))
2911                        free_extent_buffer(tree_root->node);
2912                tree_root->node = NULL;
2913                goto recovery_tree_root;
2914        }
2915
2916        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917        tree_root->commit_root = btrfs_root_node(tree_root);
2918        btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920        mutex_lock(&tree_root->objectid_mutex);
2921        ret = btrfs_find_highest_objectid(tree_root,
2922                                        &tree_root->highest_objectid);
2923        if (ret) {
2924                mutex_unlock(&tree_root->objectid_mutex);
2925                goto recovery_tree_root;
2926        }
2927
2928        ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930        mutex_unlock(&tree_root->objectid_mutex);
2931
2932        ret = btrfs_read_roots(fs_info, tree_root);
2933        if (ret)
2934                goto recovery_tree_root;
2935
2936        fs_info->generation = generation;
2937        fs_info->last_trans_committed = generation;
2938
2939        ret = btrfs_recover_balance(fs_info);
2940        if (ret) {
2941                printk(KERN_ERR "BTRFS: failed to recover balance\n");
2942                goto fail_block_groups;
2943        }
2944
2945        ret = btrfs_init_dev_stats(fs_info);
2946        if (ret) {
2947                printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2948                       ret);
2949                goto fail_block_groups;
2950        }
2951
2952        ret = btrfs_init_dev_replace(fs_info);
2953        if (ret) {
2954                pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2955                goto fail_block_groups;
2956        }
2957
2958        btrfs_close_extra_devices(fs_devices, 1);
2959
2960        ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2961        if (ret) {
2962                pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2963                goto fail_block_groups;
2964        }
2965
2966        ret = btrfs_sysfs_add_device(fs_devices);
2967        if (ret) {
2968                pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2969                goto fail_fsdev_sysfs;
2970        }
2971
2972        ret = btrfs_sysfs_add_mounted(fs_info);
2973        if (ret) {
2974                pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2975                goto fail_fsdev_sysfs;
2976        }
2977
2978        ret = btrfs_init_space_info(fs_info);
2979        if (ret) {
2980                printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2981                goto fail_sysfs;
2982        }
2983
2984        ret = btrfs_read_block_groups(fs_info->extent_root);
2985        if (ret) {
2986                printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2987                goto fail_sysfs;
2988        }
2989        fs_info->num_tolerated_disk_barrier_failures =
2990                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2991        if (fs_info->fs_devices->missing_devices >
2992             fs_info->num_tolerated_disk_barrier_failures &&
2993            !(sb->s_flags & MS_RDONLY)) {
2994                pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2995                        fs_info->fs_devices->missing_devices,
2996                        fs_info->num_tolerated_disk_barrier_failures);
2997                goto fail_sysfs;
2998        }
2999
3000        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001                                               "btrfs-cleaner");
3002        if (IS_ERR(fs_info->cleaner_kthread))
3003                goto fail_sysfs;
3004
3005        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006                                                   tree_root,
3007                                                   "btrfs-transaction");
3008        if (IS_ERR(fs_info->transaction_kthread))
3009                goto fail_cleaner;
3010
3011        if (!btrfs_test_opt(tree_root, SSD) &&
3012            !btrfs_test_opt(tree_root, NOSSD) &&
3013            !fs_info->fs_devices->rotating) {
3014                printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3015                       "mode\n");
3016                btrfs_set_opt(fs_info->mount_opt, SSD);
3017        }
3018
3019        /*
3020         * Mount does not set all options immediatelly, we can do it now and do
3021         * not have to wait for transaction commit
3022         */
3023        btrfs_apply_pending_changes(fs_info);
3024
3025#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3026        if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3027                ret = btrfsic_mount(tree_root, fs_devices,
3028                                    btrfs_test_opt(tree_root,
3029                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3030                                    1 : 0,
3031                                    fs_info->check_integrity_print_mask);
3032                if (ret)
3033                        printk(KERN_WARNING "BTRFS: failed to initialize"
3034                               " integrity check module %s\n", sb->s_id);
3035        }
3036#endif
3037        ret = btrfs_read_qgroup_config(fs_info);
3038        if (ret)
3039                goto fail_trans_kthread;
3040
3041        /* do not make disk changes in broken FS or nologreplay is given */
3042        if (btrfs_super_log_root(disk_super) != 0 &&
3043            !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3044                ret = btrfs_replay_log(fs_info, fs_devices);
3045                if (ret) {
3046                        err = ret;
3047                        goto fail_qgroup;
3048                }
3049        }
3050
3051        ret = btrfs_find_orphan_roots(tree_root);
3052        if (ret)
3053                goto fail_qgroup;
3054
3055        if (!(sb->s_flags & MS_RDONLY)) {
3056                ret = btrfs_cleanup_fs_roots(fs_info);
3057                if (ret)
3058                        goto fail_qgroup;
3059
3060                mutex_lock(&fs_info->cleaner_mutex);
3061                ret = btrfs_recover_relocation(tree_root);
3062                mutex_unlock(&fs_info->cleaner_mutex);
3063                if (ret < 0) {
3064                        printk(KERN_WARNING
3065                               "BTRFS: failed to recover relocation\n");
3066                        err = -EINVAL;
3067                        goto fail_qgroup;
3068                }
3069        }
3070
3071        location.objectid = BTRFS_FS_TREE_OBJECTID;
3072        location.type = BTRFS_ROOT_ITEM_KEY;
3073        location.offset = 0;
3074
3075        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076        if (IS_ERR(fs_info->fs_root)) {
3077                err = PTR_ERR(fs_info->fs_root);
3078                goto fail_qgroup;
3079        }
3080
3081        if (sb->s_flags & MS_RDONLY)
3082                return 0;
3083
3084        if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086                pr_info("BTRFS: creating free space tree\n");
3087                ret = btrfs_create_free_space_tree(fs_info);
3088                if (ret) {
3089                        pr_warn("BTRFS: failed to create free space tree %d\n",
3090                                ret);
3091                        close_ctree(tree_root);
3092                        return ret;
3093                }
3094        }
3095
3096        down_read(&fs_info->cleanup_work_sem);
3097        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099                up_read(&fs_info->cleanup_work_sem);
3100                close_ctree(tree_root);
3101                return ret;
3102        }
3103        up_read(&fs_info->cleanup_work_sem);
3104
3105        ret = btrfs_resume_balance_async(fs_info);
3106        if (ret) {
3107                printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3108                close_ctree(tree_root);
3109                return ret;
3110        }
3111
3112        ret = btrfs_resume_dev_replace_async(fs_info);
3113        if (ret) {
3114                pr_warn("BTRFS: failed to resume dev_replace\n");
3115                close_ctree(tree_root);
3116                return ret;
3117        }
3118
3119        btrfs_qgroup_rescan_resume(fs_info);
3120
3121        if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123                pr_info("BTRFS: clearing free space tree\n");
3124                ret = btrfs_clear_free_space_tree(fs_info);
3125                if (ret) {
3126                        pr_warn("BTRFS: failed to clear free space tree %d\n",
3127                                ret);
3128                        close_ctree(tree_root);
3129                        return ret;
3130                }
3131        }
3132
3133        if (!fs_info->uuid_root) {
3134                pr_info("BTRFS: creating UUID tree\n");
3135                ret = btrfs_create_uuid_tree(fs_info);
3136                if (ret) {
3137                        pr_warn("BTRFS: failed to create the UUID tree %d\n",
3138                                ret);
3139                        close_ctree(tree_root);
3140                        return ret;
3141                }
3142        } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143                   fs_info->generation !=
3144                                btrfs_super_uuid_tree_generation(disk_super)) {
3145                pr_info("BTRFS: checking UUID tree\n");
3146                ret = btrfs_check_uuid_tree(fs_info);
3147                if (ret) {
3148                        pr_warn("BTRFS: failed to check the UUID tree %d\n",
3149                                ret);
3150                        close_ctree(tree_root);
3151                        return ret;
3152                }
3153        } else {
3154                fs_info->update_uuid_tree_gen = 1;
3155        }
3156
3157        fs_info->open = 1;
3158
3159        /*
3160         * backuproot only affect mount behavior, and if open_ctree succeeded,
3161         * no need to keep the flag
3162         */
3163        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164
3165        return 0;
3166
3167fail_qgroup:
3168        btrfs_free_qgroup_config(fs_info);
3169fail_trans_kthread:
3170        kthread_stop(fs_info->transaction_kthread);
3171        btrfs_cleanup_transaction(fs_info->tree_root);
3172        btrfs_free_fs_roots(fs_info);
3173fail_cleaner:
3174        kthread_stop(fs_info->cleaner_kthread);
3175
3176        /*
3177         * make sure we're done with the btree inode before we stop our
3178         * kthreads
3179         */
3180        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181
3182fail_sysfs:
3183        btrfs_sysfs_remove_mounted(fs_info);
3184
3185fail_fsdev_sysfs:
3186        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3187
3188fail_block_groups:
3189        btrfs_put_block_group_cache(fs_info);
3190        btrfs_free_block_groups(fs_info);
3191
3192fail_tree_roots:
3193        free_root_pointers(fs_info, 1);
3194        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3195
3196fail_sb_buffer:
3197        btrfs_stop_all_workers(fs_info);
3198fail_alloc:
3199fail_iput:
3200        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3201
3202        iput(fs_info->btree_inode);
3203fail_bio_counter:
3204        percpu_counter_destroy(&fs_info->bio_counter);
3205fail_delalloc_bytes:
3206        percpu_counter_destroy(&fs_info->delalloc_bytes);
3207fail_dirty_metadata_bytes:
3208        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3209fail_bdi:
3210        bdi_destroy(&fs_info->bdi);
3211fail_srcu:
3212        cleanup_srcu_struct(&fs_info->subvol_srcu);
3213fail:
3214        btrfs_free_stripe_hash_table(fs_info);
3215        btrfs_close_devices(fs_info->fs_devices);
3216        return err;
3217
3218recovery_tree_root:
3219        if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3220                goto fail_tree_roots;
3221
3222        free_root_pointers(fs_info, 0);
3223
3224        /* don't use the log in recovery mode, it won't be valid */
3225        btrfs_set_super_log_root(disk_super, 0);
3226
3227        /* we can't trust the free space cache either */
3228        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3229
3230        ret = next_root_backup(fs_info, fs_info->super_copy,
3231                               &num_backups_tried, &backup_index);
3232        if (ret == -1)
3233                goto fail_block_groups;
3234        goto retry_root_backup;
3235}
3236
3237static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3238{
3239        if (uptodate) {
3240                set_buffer_uptodate(bh);
3241        } else {
3242                struct btrfs_device *device = (struct btrfs_device *)
3243                        bh->b_private;
3244
3245                btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3246                                "lost page write due to IO error on %s",
3247                                          rcu_str_deref(device->name));
3248                /* note, we dont' set_buffer_write_io_error because we have
3249                 * our own ways of dealing with the IO errors
3250                 */
3251                clear_buffer_uptodate(bh);
3252                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3253        }
3254        unlock_buffer(bh);
3255        put_bh(bh);
3256}
3257
3258int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3259                        struct buffer_head **bh_ret)
3260{
3261        struct buffer_head *bh;
3262        struct btrfs_super_block *super;
3263        u64 bytenr;
3264
3265        bytenr = btrfs_sb_offset(copy_num);
3266        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3267                return -EINVAL;
3268
3269        bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3270        /*
3271         * If we fail to read from the underlying devices, as of now
3272         * the best option we have is to mark it EIO.
3273         */
3274        if (!bh)
3275                return -EIO;
3276
3277        super = (struct btrfs_super_block *)bh->b_data;
3278        if (btrfs_super_bytenr(super) != bytenr ||
3279                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3280                brelse(bh);
3281                return -EINVAL;
3282        }
3283
3284        *bh_ret = bh;
3285        return 0;
3286}
3287
3288
3289struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3290{
3291        struct buffer_head *bh;
3292        struct buffer_head *latest = NULL;
3293        struct btrfs_super_block *super;
3294        int i;
3295        u64 transid = 0;
3296        int ret = -EINVAL;
3297
3298        /* we would like to check all the supers, but that would make
3299         * a btrfs mount succeed after a mkfs from a different FS.
3300         * So, we need to add a special mount option to scan for
3301         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3302         */
3303        for (i = 0; i < 1; i++) {
3304                ret = btrfs_read_dev_one_super(bdev, i, &bh);
3305                if (ret)
3306                        continue;
3307
3308                super = (struct btrfs_super_block *)bh->b_data;
3309
3310                if (!latest || btrfs_super_generation(super) > transid) {
3311                        brelse(latest);
3312                        latest = bh;
3313                        transid = btrfs_super_generation(super);
3314                } else {
3315                        brelse(bh);
3316                }
3317        }
3318
3319        if (!latest)
3320                return ERR_PTR(ret);
3321
3322        return latest;
3323}
3324
3325/*
3326 * this should be called twice, once with wait == 0 and
3327 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3328 * we write are pinned.
3329 *
3330 * They are released when wait == 1 is done.
3331 * max_mirrors must be the same for both runs, and it indicates how
3332 * many supers on this one device should be written.
3333 *
3334 * max_mirrors == 0 means to write them all.
3335 */
3336static int write_dev_supers(struct btrfs_device *device,
3337                            struct btrfs_super_block *sb,
3338                            int do_barriers, int wait, int max_mirrors)
3339{
3340        struct buffer_head *bh;
3341        int i;
3342        int ret;
3343        int errors = 0;
3344        u32 crc;
3345        u64 bytenr;
3346
3347        if (max_mirrors == 0)
3348                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3349
3350        for (i = 0; i < max_mirrors; i++) {
3351                bytenr = btrfs_sb_offset(i);
3352                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3353                    device->commit_total_bytes)
3354                        break;
3355
3356                if (wait) {
3357                        bh = __find_get_block(device->bdev, bytenr / 4096,
3358                                              BTRFS_SUPER_INFO_SIZE);
3359                        if (!bh) {
3360                                errors++;
3361                                continue;
3362                        }
3363                        wait_on_buffer(bh);
3364                        if (!buffer_uptodate(bh))
3365                                errors++;
3366
3367                        /* drop our reference */
3368                        brelse(bh);
3369
3370                        /* drop the reference from the wait == 0 run */
3371                        brelse(bh);
3372                        continue;
3373                } else {
3374                        btrfs_set_super_bytenr(sb, bytenr);
3375
3376                        crc = ~(u32)0;
3377                        crc = btrfs_csum_data((char *)sb +
3378                                              BTRFS_CSUM_SIZE, crc,
3379                                              BTRFS_SUPER_INFO_SIZE -
3380                                              BTRFS_CSUM_SIZE);
3381                        btrfs_csum_final(crc, sb->csum);
3382
3383                        /*
3384                         * one reference for us, and we leave it for the
3385                         * caller
3386                         */
3387                        bh = __getblk(device->bdev, bytenr / 4096,
3388                                      BTRFS_SUPER_INFO_SIZE);
3389                        if (!bh) {
3390                                btrfs_err(device->dev_root->fs_info,
3391                                    "couldn't get super buffer head for bytenr %llu",
3392                                    bytenr);
3393                                errors++;
3394                                continue;
3395                        }
3396
3397                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3398
3399                        /* one reference for submit_bh */
3400                        get_bh(bh);
3401
3402                        set_buffer_uptodate(bh);
3403                        lock_buffer(bh);
3404                        bh->b_end_io = btrfs_end_buffer_write_sync;
3405                        bh->b_private = device;
3406                }
3407
3408                /*
3409                 * we fua the first super.  The others we allow
3410                 * to go down lazy.
3411                 */
3412                if (i == 0)
3413                        ret = btrfsic_submit_bh(WRITE_FUA, bh);
3414                else
3415                        ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3416                if (ret)
3417                        errors++;
3418        }
3419        return errors < i ? 0 : -1;
3420}
3421
3422/*
3423 * endio for the write_dev_flush, this will wake anyone waiting
3424 * for the barrier when it is done
3425 */
3426static void btrfs_end_empty_barrier(struct bio *bio)
3427{
3428        if (bio->bi_private)
3429                complete(bio->bi_private);
3430        bio_put(bio);
3431}
3432
3433/*
3434 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3435 * sent down.  With wait == 1, it waits for the previous flush.
3436 *
3437 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3438 * capable
3439 */
3440static int write_dev_flush(struct btrfs_device *device, int wait)
3441{
3442        struct bio *bio;
3443        int ret = 0;
3444
3445        if (device->nobarriers)
3446                return 0;
3447
3448        if (wait) {
3449                bio = device->flush_bio;
3450                if (!bio)
3451                        return 0;
3452
3453                wait_for_completion(&device->flush_wait);
3454
3455                if (bio->bi_error) {
3456                        ret = bio->bi_error;
3457                        btrfs_dev_stat_inc_and_print(device,
3458                                BTRFS_DEV_STAT_FLUSH_ERRS);
3459                }
3460
3461                /* drop the reference from the wait == 0 run */
3462                bio_put(bio);
3463                device->flush_bio = NULL;
3464
3465                return ret;
3466        }
3467
3468        /*
3469         * one reference for us, and we leave it for the
3470         * caller
3471         */
3472        device->flush_bio = NULL;
3473        bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3474        if (!bio)
3475                return -ENOMEM;
3476
3477        bio->bi_end_io = btrfs_end_empty_barrier;
3478        bio->bi_bdev = device->bdev;
3479        init_completion(&device->flush_wait);
3480        bio->bi_private = &device->flush_wait;
3481        device->flush_bio = bio;
3482
3483        bio_get(bio);
3484        btrfsic_submit_bio(WRITE_FLUSH, bio);
3485
3486        return 0;
3487}
3488
3489/*
3490 * send an empty flush down to each device in parallel,
3491 * then wait for them
3492 */
3493static int barrier_all_devices(struct btrfs_fs_info *info)
3494{
3495        struct list_head *head;
3496        struct btrfs_device *dev;
3497        int errors_send = 0;
3498        int errors_wait = 0;
3499        int ret;
3500
3501        /* send down all the barriers */
3502        head = &info->fs_devices->devices;
3503        list_for_each_entry_rcu(dev, head, dev_list) {
3504                if (dev->missing)
3505                        continue;
3506                if (!dev->bdev) {
3507                        errors_send++;
3508                        continue;
3509                }
3510                if (!dev->in_fs_metadata || !dev->writeable)
3511                        continue;
3512
3513                ret = write_dev_flush(dev, 0);
3514                if (ret)
3515                        errors_send++;
3516        }
3517
3518        /* wait for all the barriers */
3519        list_for_each_entry_rcu(dev, head, dev_list) {
3520                if (dev->missing)
3521                        continue;
3522                if (!dev->bdev) {
3523                        errors_wait++;
3524                        continue;
3525                }
3526                if (!dev->in_fs_metadata || !dev->writeable)
3527                        continue;
3528
3529                ret = write_dev_flush(dev, 1);
3530                if (ret)
3531                        errors_wait++;
3532        }
3533        if (errors_send > info->num_tolerated_disk_barrier_failures ||
3534            errors_wait > info->num_tolerated_disk_barrier_failures)
3535                return -EIO;
3536        return 0;
3537}
3538
3539int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3540{
3541        int raid_type;
3542        int min_tolerated = INT_MAX;
3543
3544        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3545            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3546                min_tolerated = min(min_tolerated,
3547                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3548                                    tolerated_failures);
3549
3550        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3551                if (raid_type == BTRFS_RAID_SINGLE)
3552                        continue;
3553                if (!(flags & btrfs_raid_group[raid_type]))
3554                        continue;
3555                min_tolerated = min(min_tolerated,
3556                                    btrfs_raid_array[raid_type].
3557                                    tolerated_failures);
3558        }
3559
3560        if (min_tolerated == INT_MAX) {
3561                pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3562                min_tolerated = 0;
3563        }
3564
3565        return min_tolerated;
3566}
3567
3568int btrfs_calc_num_tolerated_disk_barrier_failures(
3569        struct btrfs_fs_info *fs_info)
3570{
3571        struct btrfs_ioctl_space_info space;
3572        struct btrfs_space_info *sinfo;
3573        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3574                       BTRFS_BLOCK_GROUP_SYSTEM,
3575                       BTRFS_BLOCK_GROUP_METADATA,
3576                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3577        int i;
3578        int c;
3579        int num_tolerated_disk_barrier_failures =
3580                (int)fs_info->fs_devices->num_devices;
3581
3582        for (i = 0; i < ARRAY_SIZE(types); i++) {
3583                struct btrfs_space_info *tmp;
3584
3585                sinfo = NULL;
3586                rcu_read_lock();
3587                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3588                        if (tmp->flags == types[i]) {
3589                                sinfo = tmp;
3590                                break;
3591                        }
3592                }
3593                rcu_read_unlock();
3594
3595                if (!sinfo)
3596                        continue;
3597
3598                down_read(&sinfo->groups_sem);
3599                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3600                        u64 flags;
3601
3602                        if (list_empty(&sinfo->block_groups[c]))
3603                                continue;
3604
3605                        btrfs_get_block_group_info(&sinfo->block_groups[c],
3606                                                   &space);
3607                        if (space.total_bytes == 0 || space.used_bytes == 0)
3608                                continue;
3609                        flags = space.flags;
3610
3611                        num_tolerated_disk_barrier_failures = min(
3612                                num_tolerated_disk_barrier_failures,
3613                                btrfs_get_num_tolerated_disk_barrier_failures(
3614                                        flags));
3615                }
3616                up_read(&sinfo->groups_sem);
3617        }
3618
3619        return num_tolerated_disk_barrier_failures;
3620}
3621
3622static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3623{
3624        struct list_head *head;
3625        struct btrfs_device *dev;
3626        struct btrfs_super_block *sb;
3627        struct btrfs_dev_item *dev_item;
3628        int ret;
3629        int do_barriers;
3630        int max_errors;
3631        int total_errors = 0;
3632        u64 flags;
3633
3634        do_barriers = !btrfs_test_opt(root, NOBARRIER);
3635        backup_super_roots(root->fs_info);
3636
3637        sb = root->fs_info->super_for_commit;
3638        dev_item = &sb->dev_item;
3639
3640        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3641        head = &root->fs_info->fs_devices->devices;
3642        max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3643
3644        if (do_barriers) {
3645                ret = barrier_all_devices(root->fs_info);
3646                if (ret) {
3647                        mutex_unlock(
3648                                &root->fs_info->fs_devices->device_list_mutex);
3649                        btrfs_std_error(root->fs_info, ret,
3650                                    "errors while submitting device barriers.");
3651                        return ret;
3652                }
3653        }
3654
3655        list_for_each_entry_rcu(dev, head, dev_list) {
3656                if (!dev->bdev) {
3657                        total_errors++;
3658                        continue;
3659                }
3660                if (!dev->in_fs_metadata || !dev->writeable)
3661                        continue;
3662
3663                btrfs_set_stack_device_generation(dev_item, 0);
3664                btrfs_set_stack_device_type(dev_item, dev->type);
3665                btrfs_set_stack_device_id(dev_item, dev->devid);
3666                btrfs_set_stack_device_total_bytes(dev_item,
3667                                                   dev->commit_total_bytes);
3668                btrfs_set_stack_device_bytes_used(dev_item,
3669                                                  dev->commit_bytes_used);
3670                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3671                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3672                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3673                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3674                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3675
3676                flags = btrfs_super_flags(sb);
3677                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3678
3679                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3680                if (ret)
3681                        total_errors++;
3682        }
3683        if (total_errors > max_errors) {
3684                btrfs_err(root->fs_info, "%d errors while writing supers",
3685                       total_errors);
3686                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3687
3688                /* FUA is masked off if unsupported and can't be the reason */
3689                btrfs_std_error(root->fs_info, -EIO,
3690                            "%d errors while writing supers", total_errors);
3691                return -EIO;
3692        }
3693
3694        total_errors = 0;
3695        list_for_each_entry_rcu(dev, head, dev_list) {
3696                if (!dev->bdev)
3697                        continue;
3698                if (!dev->in_fs_metadata || !dev->writeable)
3699                        continue;
3700
3701                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3702                if (ret)
3703                        total_errors++;
3704        }
3705        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3706        if (total_errors > max_errors) {
3707                btrfs_std_error(root->fs_info, -EIO,
3708                            "%d errors while writing supers", total_errors);
3709                return -EIO;
3710        }
3711        return 0;
3712}
3713
3714int write_ctree_super(struct btrfs_trans_handle *trans,
3715                      struct btrfs_root *root, int max_mirrors)
3716{
3717        return write_all_supers(root, max_mirrors);
3718}
3719
3720/* Drop a fs root from the radix tree and free it. */
3721void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3722                                  struct btrfs_root *root)
3723{
3724        spin_lock(&fs_info->fs_roots_radix_lock);
3725        radix_tree_delete(&fs_info->fs_roots_radix,
3726                          (unsigned long)root->root_key.objectid);
3727        spin_unlock(&fs_info->fs_roots_radix_lock);
3728
3729        if (btrfs_root_refs(&root->root_item) == 0)
3730                synchronize_srcu(&fs_info->subvol_srcu);
3731
3732        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733                btrfs_free_log(NULL, root);
3734
3735        if (root->free_ino_pinned)
3736                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3737        if (root->free_ino_ctl)
3738                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3739        free_fs_root(root);
3740}
3741
3742static void free_fs_root(struct btrfs_root *root)
3743{
3744        iput(root->ino_cache_inode);
3745        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3746        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3747        root->orphan_block_rsv = NULL;
3748        if (root->anon_dev)
3749                free_anon_bdev(root->anon_dev);
3750        if (root->subv_writers)
3751                btrfs_free_subvolume_writers(root->subv_writers);
3752        free_extent_buffer(root->node);
3753        free_extent_buffer(root->commit_root);
3754        kfree(root->free_ino_ctl);
3755        kfree(root->free_ino_pinned);
3756        kfree(root->name);
3757        btrfs_put_fs_root(root);
3758}
3759
3760void btrfs_free_fs_root(struct btrfs_root *root)
3761{
3762        free_fs_root(root);
3763}
3764
3765int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3766{
3767        u64 root_objectid = 0;
3768        struct btrfs_root *gang[8];
3769        int i = 0;
3770        int err = 0;
3771        unsigned int ret = 0;
3772        int index;
3773
3774        while (1) {
3775                index = srcu_read_lock(&fs_info->subvol_srcu);
3776                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3777                                             (void **)gang, root_objectid,
3778                                             ARRAY_SIZE(gang));
3779                if (!ret) {
3780                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3781                        break;
3782                }
3783                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3784
3785                for (i = 0; i < ret; i++) {
3786                        /* Avoid to grab roots in dead_roots */
3787                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3788                                gang[i] = NULL;
3789                                continue;
3790                        }
3791                        /* grab all the search result for later use */
3792                        gang[i] = btrfs_grab_fs_root(gang[i]);
3793                }
3794                srcu_read_unlock(&fs_info->subvol_srcu, index);
3795
3796                for (i = 0; i < ret; i++) {
3797                        if (!gang[i])
3798                                continue;
3799                        root_objectid = gang[i]->root_key.objectid;
3800                        err = btrfs_orphan_cleanup(gang[i]);
3801                        if (err)
3802                                break;
3803                        btrfs_put_fs_root(gang[i]);
3804                }
3805                root_objectid++;
3806        }
3807
3808        /* release the uncleaned roots due to error */
3809        for (; i < ret; i++) {
3810                if (gang[i])
3811                        btrfs_put_fs_root(gang[i]);
3812        }
3813        return err;
3814}
3815
3816int btrfs_commit_super(struct btrfs_root *root)
3817{
3818        struct btrfs_trans_handle *trans;
3819
3820        mutex_lock(&root->fs_info->cleaner_mutex);
3821        btrfs_run_delayed_iputs(root);
3822        mutex_unlock(&root->fs_info->cleaner_mutex);
3823        wake_up_process(root->fs_info->cleaner_kthread);
3824
3825        /* wait until ongoing cleanup work done */
3826        down_write(&root->fs_info->cleanup_work_sem);
3827        up_write(&root->fs_info->cleanup_work_sem);
3828
3829        trans = btrfs_join_transaction(root);
3830        if (IS_ERR(trans))
3831                return PTR_ERR(trans);
3832        return btrfs_commit_transaction(trans, root);
3833}
3834
3835void close_ctree(struct btrfs_root *root)
3836{
3837        struct btrfs_fs_info *fs_info = root->fs_info;
3838        int ret;
3839
3840        fs_info->closing = 1;
3841        smp_mb();
3842
3843        /* wait for the qgroup rescan worker to stop */
3844        btrfs_qgroup_wait_for_completion(fs_info);
3845
3846        /* wait for the uuid_scan task to finish */
3847        down(&fs_info->uuid_tree_rescan_sem);
3848        /* avoid complains from lockdep et al., set sem back to initial state */
3849        up(&fs_info->uuid_tree_rescan_sem);
3850
3851        /* pause restriper - we want to resume on mount */
3852        btrfs_pause_balance(fs_info);
3853
3854        btrfs_dev_replace_suspend_for_unmount(fs_info);
3855
3856        btrfs_scrub_cancel(fs_info);
3857
3858        /* wait for any defraggers to finish */
3859        wait_event(fs_info->transaction_wait,
3860                   (atomic_read(&fs_info->defrag_running) == 0));
3861
3862        /* clear out the rbtree of defraggable inodes */
3863        btrfs_cleanup_defrag_inodes(fs_info);
3864
3865        cancel_work_sync(&fs_info->async_reclaim_work);
3866
3867        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3868                /*
3869                 * If the cleaner thread is stopped and there are
3870                 * block groups queued for removal, the deletion will be
3871                 * skipped when we quit the cleaner thread.
3872                 */
3873                btrfs_delete_unused_bgs(root->fs_info);
3874
3875                ret = btrfs_commit_super(root);
3876                if (ret)
3877                        btrfs_err(fs_info, "commit super ret %d", ret);
3878        }
3879
3880        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3881                btrfs_error_commit_super(root);
3882
3883        kthread_stop(fs_info->transaction_kthread);
3884        kthread_stop(fs_info->cleaner_kthread);
3885
3886        fs_info->closing = 2;
3887        smp_mb();
3888
3889        btrfs_free_qgroup_config(fs_info);
3890
3891        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3892                btrfs_info(fs_info, "at unmount delalloc count %lld",
3893                       percpu_counter_sum(&fs_info->delalloc_bytes));
3894        }
3895
3896        btrfs_sysfs_remove_mounted(fs_info);
3897        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3898
3899        btrfs_free_fs_roots(fs_info);
3900
3901        btrfs_put_block_group_cache(fs_info);
3902
3903        btrfs_free_block_groups(fs_info);
3904
3905        /*
3906         * we must make sure there is not any read request to
3907         * submit after we stopping all workers.
3908         */
3909        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3910        btrfs_stop_all_workers(fs_info);
3911
3912        fs_info->open = 0;
3913        free_root_pointers(fs_info, 1);
3914
3915        iput(fs_info->btree_inode);
3916
3917#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3918        if (btrfs_test_opt(root, CHECK_INTEGRITY))
3919                btrfsic_unmount(root, fs_info->fs_devices);
3920#endif
3921
3922        btrfs_close_devices(fs_info->fs_devices);
3923        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3924
3925        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3926        percpu_counter_destroy(&fs_info->delalloc_bytes);
3927        percpu_counter_destroy(&fs_info->bio_counter);
3928        bdi_destroy(&fs_info->bdi);
3929        cleanup_srcu_struct(&fs_info->subvol_srcu);
3930
3931        btrfs_free_stripe_hash_table(fs_info);
3932
3933        __btrfs_free_block_rsv(root->orphan_block_rsv);
3934        root->orphan_block_rsv = NULL;
3935
3936        lock_chunks(root);
3937        while (!list_empty(&fs_info->pinned_chunks)) {
3938                struct extent_map *em;
3939
3940                em = list_first_entry(&fs_info->pinned_chunks,
3941                                      struct extent_map, list);
3942                list_del_init(&em->list);
3943                free_extent_map(em);
3944        }
3945        unlock_chunks(root);
3946}
3947
3948int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3949                          int atomic)
3950{
3951        int ret;
3952        struct inode *btree_inode = buf->pages[0]->mapping->host;
3953
3954        ret = extent_buffer_uptodate(buf);
3955        if (!ret)
3956                return ret;
3957
3958        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3959                                    parent_transid, atomic);
3960        if (ret == -EAGAIN)
3961                return ret;
3962        return !ret;
3963}
3964
3965void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3966{
3967        struct btrfs_root *root;
3968        u64 transid = btrfs_header_generation(buf);
3969        int was_dirty;
3970
3971#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3972        /*
3973         * This is a fast path so only do this check if we have sanity tests
3974         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3975         * outside of the sanity tests.
3976         */
3977        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3978                return;
3979#endif
3980        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3981        btrfs_assert_tree_locked(buf);
3982        if (transid != root->fs_info->generation)
3983                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3984                       "found %llu running %llu\n",
3985                        buf->start, transid, root->fs_info->generation);
3986        was_dirty = set_extent_buffer_dirty(buf);
3987        if (!was_dirty)
3988                __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3989                                     buf->len,
3990                                     root->fs_info->dirty_metadata_batch);
3991#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992        if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3993                btrfs_print_leaf(root, buf);
3994                ASSERT(0);
3995        }
3996#endif
3997}
3998
3999static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4000                                        int flush_delayed)
4001{
4002        /*
4003         * looks as though older kernels can get into trouble with
4004         * this code, they end up stuck in balance_dirty_pages forever
4005         */
4006        int ret;
4007
4008        if (current->flags & PF_MEMALLOC)
4009                return;
4010
4011        if (flush_delayed)
4012                btrfs_balance_delayed_items(root);
4013
4014        ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4015                                     BTRFS_DIRTY_METADATA_THRESH);
4016        if (ret > 0) {
4017                balance_dirty_pages_ratelimited(
4018                                   root->fs_info->btree_inode->i_mapping);
4019        }
4020}
4021
4022void btrfs_btree_balance_dirty(struct btrfs_root *root)
4023{
4024        __btrfs_btree_balance_dirty(root, 1);
4025}
4026
4027void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4028{
4029        __btrfs_btree_balance_dirty(root, 0);
4030}
4031
4032int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4033{
4034        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4035        return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4036}
4037
4038static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4039                              int read_only)
4040{
4041        struct btrfs_super_block *sb = fs_info->super_copy;
4042        u64 nodesize = btrfs_super_nodesize(sb);
4043        u64 sectorsize = btrfs_super_sectorsize(sb);
4044        int ret = 0;
4045
4046        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4047                printk(KERN_ERR "BTRFS: no valid FS found\n");
4048                ret = -EINVAL;
4049        }
4050        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4051                printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4052                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4053        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054                printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4056                ret = -EINVAL;
4057        }
4058        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059                printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4061                ret = -EINVAL;
4062        }
4063        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064                printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4066                ret = -EINVAL;
4067        }
4068
4069        /*
4070         * Check sectorsize and nodesize first, other check will need it.
4071         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4072         */
4073        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4074            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4075                printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4076                ret = -EINVAL;
4077        }
4078        /* Only PAGE SIZE is supported yet */
4079        if (sectorsize != PAGE_SIZE) {
4080                printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4081                                sectorsize, PAGE_SIZE);
4082                ret = -EINVAL;
4083        }
4084        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4085            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086                printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4087                ret = -EINVAL;
4088        }
4089        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4090                printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4091                                le32_to_cpu(sb->__unused_leafsize),
4092                                nodesize);
4093                ret = -EINVAL;
4094        }
4095
4096        /* Root alignment check */
4097        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4098                printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4099                                btrfs_super_root(sb));
4100                ret = -EINVAL;
4101        }
4102        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4103                printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4104                                btrfs_super_chunk_root(sb));
4105                ret = -EINVAL;
4106        }
4107        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4108                printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4109                                btrfs_super_log_root(sb));
4110                ret = -EINVAL;
4111        }
4112
4113        if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4114                printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4115                                fs_info->fsid, sb->dev_item.fsid);
4116                ret = -EINVAL;
4117        }
4118
4119        /*
4120         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4121         * done later
4122         */
4123        if (btrfs_super_num_devices(sb) > (1UL << 31))
4124                printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4125                                btrfs_super_num_devices(sb));
4126        if (btrfs_super_num_devices(sb) == 0) {
4127                printk(KERN_ERR "BTRFS: number of devices is 0\n");
4128                ret = -EINVAL;
4129        }
4130
4131        if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4132                printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4133                                btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4134                ret = -EINVAL;
4135        }
4136
4137        /*
4138         * Obvious sys_chunk_array corruptions, it must hold at least one key
4139         * and one chunk
4140         */
4141        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4142                printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4143                                btrfs_super_sys_array_size(sb),
4144                                BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4145                ret = -EINVAL;
4146        }
4147        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4148                        + sizeof(struct btrfs_chunk)) {
4149                printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4150                                btrfs_super_sys_array_size(sb),
4151                                sizeof(struct btrfs_disk_key)
4152                                + sizeof(struct btrfs_chunk));
4153                ret = -EINVAL;
4154        }
4155
4156        /*
4157         * The generation is a global counter, we'll trust it more than the others
4158         * but it's still possible that it's the one that's wrong.
4159         */
4160        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4161                printk(KERN_WARNING
4162                        "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4163                        btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4164        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4165            && btrfs_super_cache_generation(sb) != (u64)-1)
4166                printk(KERN_WARNING
4167                        "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4168                        btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4169
4170        return ret;
4171}
4172
4173static void btrfs_error_commit_super(struct btrfs_root *root)
4174{
4175        mutex_lock(&root->fs_info->cleaner_mutex);
4176        btrfs_run_delayed_iputs(root);
4177        mutex_unlock(&root->fs_info->cleaner_mutex);
4178
4179        down_write(&root->fs_info->cleanup_work_sem);
4180        up_write(&root->fs_info->cleanup_work_sem);
4181
4182        /* cleanup FS via transaction */
4183        btrfs_cleanup_transaction(root);
4184}
4185
4186static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4187{
4188        struct btrfs_ordered_extent *ordered;
4189
4190        spin_lock(&root->ordered_extent_lock);
4191        /*
4192         * This will just short circuit the ordered completion stuff which will
4193         * make sure the ordered extent gets properly cleaned up.
4194         */
4195        list_for_each_entry(ordered, &root->ordered_extents,
4196                            root_extent_list)
4197                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4198        spin_unlock(&root->ordered_extent_lock);
4199}
4200
4201static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202{
4203        struct btrfs_root *root;
4204        struct list_head splice;
4205
4206        INIT_LIST_HEAD(&splice);
4207
4208        spin_lock(&fs_info->ordered_root_lock);
4209        list_splice_init(&fs_info->ordered_roots, &splice);
4210        while (!list_empty(&splice)) {
4211                root = list_first_entry(&splice, struct btrfs_root,
4212                                        ordered_root);
4213                list_move_tail(&root->ordered_root,
4214                               &fs_info->ordered_roots);
4215
4216                spin_unlock(&fs_info->ordered_root_lock);
4217                btrfs_destroy_ordered_extents(root);
4218
4219                cond_resched();
4220                spin_lock(&fs_info->ordered_root_lock);
4221        }
4222        spin_unlock(&fs_info->ordered_root_lock);
4223}
4224
4225static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4226                                      struct btrfs_root *root)
4227{
4228        struct rb_node *node;
4229        struct btrfs_delayed_ref_root *delayed_refs;
4230        struct btrfs_delayed_ref_node *ref;
4231        int ret = 0;
4232
4233        delayed_refs = &trans->delayed_refs;
4234
4235        spin_lock(&delayed_refs->lock);
4236        if (atomic_read(&delayed_refs->num_entries) == 0) {
4237                spin_unlock(&delayed_refs->lock);
4238                btrfs_info(root->fs_info, "delayed_refs has NO entry");
4239                return ret;
4240        }
4241
4242        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4243                struct btrfs_delayed_ref_head *head;
4244                struct btrfs_delayed_ref_node *tmp;
4245                bool pin_bytes = false;
4246
4247                head = rb_entry(node, struct btrfs_delayed_ref_head,
4248                                href_node);
4249                if (!mutex_trylock(&head->mutex)) {
4250                        atomic_inc(&head->node.refs);
4251                        spin_unlock(&delayed_refs->lock);
4252
4253                        mutex_lock(&head->mutex);
4254                        mutex_unlock(&head->mutex);
4255                        btrfs_put_delayed_ref(&head->node);
4256                        spin_lock(&delayed_refs->lock);
4257                        continue;
4258                }
4259                spin_lock(&head->lock);
4260                list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4261                                                 list) {
4262                        ref->in_tree = 0;
4263                        list_del(&ref->list);
4264                        atomic_dec(&delayed_refs->num_entries);
4265                        btrfs_put_delayed_ref(ref);
4266                }
4267                if (head->must_insert_reserved)
4268                        pin_bytes = true;
4269                btrfs_free_delayed_extent_op(head->extent_op);
4270                delayed_refs->num_heads--;
4271                if (head->processing == 0)
4272                        delayed_refs->num_heads_ready--;
4273                atomic_dec(&delayed_refs->num_entries);
4274                head->node.in_tree = 0;
4275                rb_erase(&head->href_node, &delayed_refs->href_root);
4276                spin_unlock(&head->lock);
4277                spin_unlock(&delayed_refs->lock);
4278                mutex_unlock(&head->mutex);
4279
4280                if (pin_bytes)
4281                        btrfs_pin_extent(root, head->node.bytenr,
4282                                         head->node.num_bytes, 1);
4283                btrfs_put_delayed_ref(&head->node);
4284                cond_resched();
4285                spin_lock(&delayed_refs->lock);
4286        }
4287
4288        spin_unlock(&delayed_refs->lock);
4289
4290        return ret;
4291}
4292
4293static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294{
4295        struct btrfs_inode *btrfs_inode;
4296        struct list_head splice;
4297
4298        INIT_LIST_HEAD(&splice);
4299
4300        spin_lock(&root->delalloc_lock);
4301        list_splice_init(&root->delalloc_inodes, &splice);
4302
4303        while (!list_empty(&splice)) {
4304                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305                                               delalloc_inodes);
4306
4307                list_del_init(&btrfs_inode->delalloc_inodes);
4308                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4309                          &btrfs_inode->runtime_flags);
4310                spin_unlock(&root->delalloc_lock);
4311
4312                btrfs_invalidate_inodes(btrfs_inode->root);
4313
4314                spin_lock(&root->delalloc_lock);
4315        }
4316
4317        spin_unlock(&root->delalloc_lock);
4318}
4319
4320static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321{
4322        struct btrfs_root *root;
4323        struct list_head splice;
4324
4325        INIT_LIST_HEAD(&splice);
4326
4327        spin_lock(&fs_info->delalloc_root_lock);
4328        list_splice_init(&fs_info->delalloc_roots, &splice);
4329        while (!list_empty(&splice)) {
4330                root = list_first_entry(&splice, struct btrfs_root,
4331                                         delalloc_root);
4332                list_del_init(&root->delalloc_root);
4333                root = btrfs_grab_fs_root(root);
4334                BUG_ON(!root);
4335                spin_unlock(&fs_info->delalloc_root_lock);
4336
4337                btrfs_destroy_delalloc_inodes(root);
4338                btrfs_put_fs_root(root);
4339
4340                spin_lock(&fs_info->delalloc_root_lock);
4341        }
4342        spin_unlock(&fs_info->delalloc_root_lock);
4343}
4344
4345static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4346                                        struct extent_io_tree *dirty_pages,
4347                                        int mark)
4348{
4349        int ret;
4350        struct extent_buffer *eb;
4351        u64 start = 0;
4352        u64 end;
4353
4354        while (1) {
4355                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356                                            mark, NULL);
4357                if (ret)
4358                        break;
4359
4360                clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4361                while (start <= end) {
4362                        eb = btrfs_find_tree_block(root->fs_info, start);
4363                        start += root->nodesize;
4364                        if (!eb)
4365                                continue;
4366                        wait_on_extent_buffer_writeback(eb);
4367
4368                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369                                               &eb->bflags))
4370                                clear_extent_buffer_dirty(eb);
4371                        free_extent_buffer_stale(eb);
4372                }
4373        }
4374
4375        return ret;
4376}
4377
4378static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4379                                       struct extent_io_tree *pinned_extents)
4380{
4381        struct extent_io_tree *unpin;
4382        u64 start;
4383        u64 end;
4384        int ret;
4385        bool loop = true;
4386
4387        unpin = pinned_extents;
4388again:
4389        while (1) {
4390                ret = find_first_extent_bit(unpin, 0, &start, &end,
4391                                            EXTENT_DIRTY, NULL);
4392                if (ret)
4393                        break;
4394
4395                clear_extent_dirty(unpin, start, end, GFP_NOFS);
4396                btrfs_error_unpin_extent_range(root, start, end);
4397                cond_resched();
4398        }
4399
4400        if (loop) {
4401                if (unpin == &root->fs_info->freed_extents[0])
4402                        unpin = &root->fs_info->freed_extents[1];
4403                else
4404                        unpin = &root->fs_info->freed_extents[0];
4405                loop = false;
4406                goto again;
4407        }
4408
4409        return 0;
4410}
4411
4412void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4413                                   struct btrfs_root *root)
4414{
4415        btrfs_destroy_delayed_refs(cur_trans, root);
4416
4417        cur_trans->state = TRANS_STATE_COMMIT_START;
4418        wake_up(&root->fs_info->transaction_blocked_wait);
4419
4420        cur_trans->state = TRANS_STATE_UNBLOCKED;
4421        wake_up(&root->fs_info->transaction_wait);
4422
4423        btrfs_destroy_delayed_inodes(root);
4424        btrfs_assert_delayed_root_empty(root);
4425
4426        btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4427                                     EXTENT_DIRTY);
4428        btrfs_destroy_pinned_extent(root,
4429                                    root->fs_info->pinned_extents);
4430
4431        cur_trans->state =TRANS_STATE_COMPLETED;
4432        wake_up(&cur_trans->commit_wait);
4433
4434        /*
4435        memset(cur_trans, 0, sizeof(*cur_trans));
4436        kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4437        */
4438}
4439
4440static int btrfs_cleanup_transaction(struct btrfs_root *root)
4441{
4442        struct btrfs_transaction *t;
4443
4444        mutex_lock(&root->fs_info->transaction_kthread_mutex);
4445
4446        spin_lock(&root->fs_info->trans_lock);
4447        while (!list_empty(&root->fs_info->trans_list)) {
4448                t = list_first_entry(&root->fs_info->trans_list,
4449                                     struct btrfs_transaction, list);
4450                if (t->state >= TRANS_STATE_COMMIT_START) {
4451                        atomic_inc(&t->use_count);
4452                        spin_unlock(&root->fs_info->trans_lock);
4453                        btrfs_wait_for_commit(root, t->transid);
4454                        btrfs_put_transaction(t);
4455                        spin_lock(&root->fs_info->trans_lock);
4456                        continue;
4457                }
4458                if (t == root->fs_info->running_transaction) {
4459                        t->state = TRANS_STATE_COMMIT_DOING;
4460                        spin_unlock(&root->fs_info->trans_lock);
4461                        /*
4462                         * We wait for 0 num_writers since we don't hold a trans
4463                         * handle open currently for this transaction.
4464                         */
4465                        wait_event(t->writer_wait,
4466                                   atomic_read(&t->num_writers) == 0);
4467                } else {
4468                        spin_unlock(&root->fs_info->trans_lock);
4469                }
4470                btrfs_cleanup_one_transaction(t, root);
4471
4472                spin_lock(&root->fs_info->trans_lock);
4473                if (t == root->fs_info->running_transaction)
4474                        root->fs_info->running_transaction = NULL;
4475                list_del_init(&t->list);
4476                spin_unlock(&root->fs_info->trans_lock);
4477
4478                btrfs_put_transaction(t);
4479                trace_btrfs_transaction_commit(root);
4480                spin_lock(&root->fs_info->trans_lock);
4481        }
4482        spin_unlock(&root->fs_info->trans_lock);
4483        btrfs_destroy_all_ordered_extents(root->fs_info);
4484        btrfs_destroy_delayed_inodes(root);
4485        btrfs_assert_delayed_root_empty(root);
4486        btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4487        btrfs_destroy_all_delalloc_inodes(root->fs_info);
4488        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4489
4490        return 0;
4491}
4492
4493static const struct extent_io_ops btree_extent_io_ops = {
4494        .readpage_end_io_hook = btree_readpage_end_io_hook,
4495        .readpage_io_failed_hook = btree_io_failed_hook,
4496        .submit_bio_hook = btree_submit_bio_hook,
4497        /* note we're sharing with inode.c for the merge bio hook */
4498        .merge_bio_hook = btrfs_merge_bio_hook,
4499};
4500