linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/percpu_counter.h>
  28#include "hash.h"
  29#include "tree-log.h"
  30#include "disk-io.h"
  31#include "print-tree.h"
  32#include "volumes.h"
  33#include "raid56.h"
  34#include "locking.h"
  35#include "free-space-cache.h"
  36#include "free-space-tree.h"
  37#include "math.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40
  41#undef SCRAMBLE_DELAYED_REFS
  42
  43/*
  44 * control flags for do_chunk_alloc's force field
  45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  46 * if we really need one.
  47 *
  48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  49 * if we have very few chunks already allocated.  This is
  50 * used as part of the clustering code to help make sure
  51 * we have a good pool of storage to cluster in, without
  52 * filling the FS with empty chunks
  53 *
  54 * CHUNK_ALLOC_FORCE means it must try to allocate one
  55 *
  56 */
  57enum {
  58        CHUNK_ALLOC_NO_FORCE = 0,
  59        CHUNK_ALLOC_LIMITED = 1,
  60        CHUNK_ALLOC_FORCE = 2,
  61};
  62
  63/*
  64 * Control how reservations are dealt with.
  65 *
  66 * RESERVE_FREE - freeing a reservation.
  67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  68 *   ENOSPC accounting
  69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  70 *   bytes_may_use as the ENOSPC accounting is done elsewhere
  71 */
  72enum {
  73        RESERVE_FREE = 0,
  74        RESERVE_ALLOC = 1,
  75        RESERVE_ALLOC_NO_ACCOUNT = 2,
  76};
  77
  78static int update_block_group(struct btrfs_trans_handle *trans,
  79                              struct btrfs_root *root, u64 bytenr,
  80                              u64 num_bytes, int alloc);
  81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  82                                struct btrfs_root *root,
  83                                struct btrfs_delayed_ref_node *node, u64 parent,
  84                                u64 root_objectid, u64 owner_objectid,
  85                                u64 owner_offset, int refs_to_drop,
  86                                struct btrfs_delayed_extent_op *extra_op);
  87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  88                                    struct extent_buffer *leaf,
  89                                    struct btrfs_extent_item *ei);
  90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  91                                      struct btrfs_root *root,
  92                                      u64 parent, u64 root_objectid,
  93                                      u64 flags, u64 owner, u64 offset,
  94                                      struct btrfs_key *ins, int ref_mod);
  95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  96                                     struct btrfs_root *root,
  97                                     u64 parent, u64 root_objectid,
  98                                     u64 flags, struct btrfs_disk_key *key,
  99                                     int level, struct btrfs_key *ins);
 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 101                          struct btrfs_root *extent_root, u64 flags,
 102                          int force);
 103static int find_next_key(struct btrfs_path *path, int level,
 104                         struct btrfs_key *key);
 105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 106                            int dump_block_groups);
 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 108                                       u64 num_bytes, int reserve,
 109                                       int delalloc);
 110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 111                               u64 num_bytes);
 112int btrfs_pin_extent(struct btrfs_root *root,
 113                     u64 bytenr, u64 num_bytes, int reserved);
 114
 115static noinline int
 116block_group_cache_done(struct btrfs_block_group_cache *cache)
 117{
 118        smp_mb();
 119        return cache->cached == BTRFS_CACHE_FINISHED ||
 120                cache->cached == BTRFS_CACHE_ERROR;
 121}
 122
 123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 124{
 125        return (cache->flags & bits) == bits;
 126}
 127
 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 129{
 130        atomic_inc(&cache->count);
 131}
 132
 133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 134{
 135        if (atomic_dec_and_test(&cache->count)) {
 136                WARN_ON(cache->pinned > 0);
 137                WARN_ON(cache->reserved > 0);
 138                kfree(cache->free_space_ctl);
 139                kfree(cache);
 140        }
 141}
 142
 143/*
 144 * this adds the block group to the fs_info rb tree for the block group
 145 * cache
 146 */
 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 148                                struct btrfs_block_group_cache *block_group)
 149{
 150        struct rb_node **p;
 151        struct rb_node *parent = NULL;
 152        struct btrfs_block_group_cache *cache;
 153
 154        spin_lock(&info->block_group_cache_lock);
 155        p = &info->block_group_cache_tree.rb_node;
 156
 157        while (*p) {
 158                parent = *p;
 159                cache = rb_entry(parent, struct btrfs_block_group_cache,
 160                                 cache_node);
 161                if (block_group->key.objectid < cache->key.objectid) {
 162                        p = &(*p)->rb_left;
 163                } else if (block_group->key.objectid > cache->key.objectid) {
 164                        p = &(*p)->rb_right;
 165                } else {
 166                        spin_unlock(&info->block_group_cache_lock);
 167                        return -EEXIST;
 168                }
 169        }
 170
 171        rb_link_node(&block_group->cache_node, parent, p);
 172        rb_insert_color(&block_group->cache_node,
 173                        &info->block_group_cache_tree);
 174
 175        if (info->first_logical_byte > block_group->key.objectid)
 176                info->first_logical_byte = block_group->key.objectid;
 177
 178        spin_unlock(&info->block_group_cache_lock);
 179
 180        return 0;
 181}
 182
 183/*
 184 * This will return the block group at or after bytenr if contains is 0, else
 185 * it will return the block group that contains the bytenr
 186 */
 187static struct btrfs_block_group_cache *
 188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 189                              int contains)
 190{
 191        struct btrfs_block_group_cache *cache, *ret = NULL;
 192        struct rb_node *n;
 193        u64 end, start;
 194
 195        spin_lock(&info->block_group_cache_lock);
 196        n = info->block_group_cache_tree.rb_node;
 197
 198        while (n) {
 199                cache = rb_entry(n, struct btrfs_block_group_cache,
 200                                 cache_node);
 201                end = cache->key.objectid + cache->key.offset - 1;
 202                start = cache->key.objectid;
 203
 204                if (bytenr < start) {
 205                        if (!contains && (!ret || start < ret->key.objectid))
 206                                ret = cache;
 207                        n = n->rb_left;
 208                } else if (bytenr > start) {
 209                        if (contains && bytenr <= end) {
 210                                ret = cache;
 211                                break;
 212                        }
 213                        n = n->rb_right;
 214                } else {
 215                        ret = cache;
 216                        break;
 217                }
 218        }
 219        if (ret) {
 220                btrfs_get_block_group(ret);
 221                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 222                        info->first_logical_byte = ret->key.objectid;
 223        }
 224        spin_unlock(&info->block_group_cache_lock);
 225
 226        return ret;
 227}
 228
 229static int add_excluded_extent(struct btrfs_root *root,
 230                               u64 start, u64 num_bytes)
 231{
 232        u64 end = start + num_bytes - 1;
 233        set_extent_bits(&root->fs_info->freed_extents[0],
 234                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 235        set_extent_bits(&root->fs_info->freed_extents[1],
 236                        start, end, EXTENT_UPTODATE, GFP_NOFS);
 237        return 0;
 238}
 239
 240static void free_excluded_extents(struct btrfs_root *root,
 241                                  struct btrfs_block_group_cache *cache)
 242{
 243        u64 start, end;
 244
 245        start = cache->key.objectid;
 246        end = start + cache->key.offset - 1;
 247
 248        clear_extent_bits(&root->fs_info->freed_extents[0],
 249                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 250        clear_extent_bits(&root->fs_info->freed_extents[1],
 251                          start, end, EXTENT_UPTODATE, GFP_NOFS);
 252}
 253
 254static int exclude_super_stripes(struct btrfs_root *root,
 255                                 struct btrfs_block_group_cache *cache)
 256{
 257        u64 bytenr;
 258        u64 *logical;
 259        int stripe_len;
 260        int i, nr, ret;
 261
 262        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 263                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 264                cache->bytes_super += stripe_len;
 265                ret = add_excluded_extent(root, cache->key.objectid,
 266                                          stripe_len);
 267                if (ret)
 268                        return ret;
 269        }
 270
 271        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 272                bytenr = btrfs_sb_offset(i);
 273                ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 274                                       cache->key.objectid, bytenr,
 275                                       0, &logical, &nr, &stripe_len);
 276                if (ret)
 277                        return ret;
 278
 279                while (nr--) {
 280                        u64 start, len;
 281
 282                        if (logical[nr] > cache->key.objectid +
 283                            cache->key.offset)
 284                                continue;
 285
 286                        if (logical[nr] + stripe_len <= cache->key.objectid)
 287                                continue;
 288
 289                        start = logical[nr];
 290                        if (start < cache->key.objectid) {
 291                                start = cache->key.objectid;
 292                                len = (logical[nr] + stripe_len) - start;
 293                        } else {
 294                                len = min_t(u64, stripe_len,
 295                                            cache->key.objectid +
 296                                            cache->key.offset - start);
 297                        }
 298
 299                        cache->bytes_super += len;
 300                        ret = add_excluded_extent(root, start, len);
 301                        if (ret) {
 302                                kfree(logical);
 303                                return ret;
 304                        }
 305                }
 306
 307                kfree(logical);
 308        }
 309        return 0;
 310}
 311
 312static struct btrfs_caching_control *
 313get_caching_control(struct btrfs_block_group_cache *cache)
 314{
 315        struct btrfs_caching_control *ctl;
 316
 317        spin_lock(&cache->lock);
 318        if (!cache->caching_ctl) {
 319                spin_unlock(&cache->lock);
 320                return NULL;
 321        }
 322
 323        ctl = cache->caching_ctl;
 324        atomic_inc(&ctl->count);
 325        spin_unlock(&cache->lock);
 326        return ctl;
 327}
 328
 329static void put_caching_control(struct btrfs_caching_control *ctl)
 330{
 331        if (atomic_dec_and_test(&ctl->count))
 332                kfree(ctl);
 333}
 334
 335#ifdef CONFIG_BTRFS_DEBUG
 336static void fragment_free_space(struct btrfs_root *root,
 337                                struct btrfs_block_group_cache *block_group)
 338{
 339        u64 start = block_group->key.objectid;
 340        u64 len = block_group->key.offset;
 341        u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 342                root->nodesize : root->sectorsize;
 343        u64 step = chunk << 1;
 344
 345        while (len > chunk) {
 346                btrfs_remove_free_space(block_group, start, chunk);
 347                start += step;
 348                if (len < step)
 349                        len = 0;
 350                else
 351                        len -= step;
 352        }
 353}
 354#endif
 355
 356/*
 357 * this is only called by cache_block_group, since we could have freed extents
 358 * we need to check the pinned_extents for any extents that can't be used yet
 359 * since their free space will be released as soon as the transaction commits.
 360 */
 361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 362                       struct btrfs_fs_info *info, u64 start, u64 end)
 363{
 364        u64 extent_start, extent_end, size, total_added = 0;
 365        int ret;
 366
 367        while (start < end) {
 368                ret = find_first_extent_bit(info->pinned_extents, start,
 369                                            &extent_start, &extent_end,
 370                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 371                                            NULL);
 372                if (ret)
 373                        break;
 374
 375                if (extent_start <= start) {
 376                        start = extent_end + 1;
 377                } else if (extent_start > start && extent_start < end) {
 378                        size = extent_start - start;
 379                        total_added += size;
 380                        ret = btrfs_add_free_space(block_group, start,
 381                                                   size);
 382                        BUG_ON(ret); /* -ENOMEM or logic error */
 383                        start = extent_end + 1;
 384                } else {
 385                        break;
 386                }
 387        }
 388
 389        if (start < end) {
 390                size = end - start;
 391                total_added += size;
 392                ret = btrfs_add_free_space(block_group, start, size);
 393                BUG_ON(ret); /* -ENOMEM or logic error */
 394        }
 395
 396        return total_added;
 397}
 398
 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 400{
 401        struct btrfs_block_group_cache *block_group;
 402        struct btrfs_fs_info *fs_info;
 403        struct btrfs_root *extent_root;
 404        struct btrfs_path *path;
 405        struct extent_buffer *leaf;
 406        struct btrfs_key key;
 407        u64 total_found = 0;
 408        u64 last = 0;
 409        u32 nritems;
 410        int ret;
 411        bool wakeup = true;
 412
 413        block_group = caching_ctl->block_group;
 414        fs_info = block_group->fs_info;
 415        extent_root = fs_info->extent_root;
 416
 417        path = btrfs_alloc_path();
 418        if (!path)
 419                return -ENOMEM;
 420
 421        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 422
 423#ifdef CONFIG_BTRFS_DEBUG
 424        /*
 425         * If we're fragmenting we don't want to make anybody think we can
 426         * allocate from this block group until we've had a chance to fragment
 427         * the free space.
 428         */
 429        if (btrfs_should_fragment_free_space(extent_root, block_group))
 430                wakeup = false;
 431#endif
 432        /*
 433         * We don't want to deadlock with somebody trying to allocate a new
 434         * extent for the extent root while also trying to search the extent
 435         * root to add free space.  So we skip locking and search the commit
 436         * root, since its read-only
 437         */
 438        path->skip_locking = 1;
 439        path->search_commit_root = 1;
 440        path->reada = READA_FORWARD;
 441
 442        key.objectid = last;
 443        key.offset = 0;
 444        key.type = BTRFS_EXTENT_ITEM_KEY;
 445
 446next:
 447        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 448        if (ret < 0)
 449                goto out;
 450
 451        leaf = path->nodes[0];
 452        nritems = btrfs_header_nritems(leaf);
 453
 454        while (1) {
 455                if (btrfs_fs_closing(fs_info) > 1) {
 456                        last = (u64)-1;
 457                        break;
 458                }
 459
 460                if (path->slots[0] < nritems) {
 461                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 462                } else {
 463                        ret = find_next_key(path, 0, &key);
 464                        if (ret)
 465                                break;
 466
 467                        if (need_resched() ||
 468                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 469                                if (wakeup)
 470                                        caching_ctl->progress = last;
 471                                btrfs_release_path(path);
 472                                up_read(&fs_info->commit_root_sem);
 473                                mutex_unlock(&caching_ctl->mutex);
 474                                cond_resched();
 475                                mutex_lock(&caching_ctl->mutex);
 476                                down_read(&fs_info->commit_root_sem);
 477                                goto next;
 478                        }
 479
 480                        ret = btrfs_next_leaf(extent_root, path);
 481                        if (ret < 0)
 482                                goto out;
 483                        if (ret)
 484                                break;
 485                        leaf = path->nodes[0];
 486                        nritems = btrfs_header_nritems(leaf);
 487                        continue;
 488                }
 489
 490                if (key.objectid < last) {
 491                        key.objectid = last;
 492                        key.offset = 0;
 493                        key.type = BTRFS_EXTENT_ITEM_KEY;
 494
 495                        if (wakeup)
 496                                caching_ctl->progress = last;
 497                        btrfs_release_path(path);
 498                        goto next;
 499                }
 500
 501                if (key.objectid < block_group->key.objectid) {
 502                        path->slots[0]++;
 503                        continue;
 504                }
 505
 506                if (key.objectid >= block_group->key.objectid +
 507                    block_group->key.offset)
 508                        break;
 509
 510                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 511                    key.type == BTRFS_METADATA_ITEM_KEY) {
 512                        total_found += add_new_free_space(block_group,
 513                                                          fs_info, last,
 514                                                          key.objectid);
 515                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 516                                last = key.objectid +
 517                                        fs_info->tree_root->nodesize;
 518                        else
 519                                last = key.objectid + key.offset;
 520
 521                        if (total_found > CACHING_CTL_WAKE_UP) {
 522                                total_found = 0;
 523                                if (wakeup)
 524                                        wake_up(&caching_ctl->wait);
 525                        }
 526                }
 527                path->slots[0]++;
 528        }
 529        ret = 0;
 530
 531        total_found += add_new_free_space(block_group, fs_info, last,
 532                                          block_group->key.objectid +
 533                                          block_group->key.offset);
 534        caching_ctl->progress = (u64)-1;
 535
 536out:
 537        btrfs_free_path(path);
 538        return ret;
 539}
 540
 541static noinline void caching_thread(struct btrfs_work *work)
 542{
 543        struct btrfs_block_group_cache *block_group;
 544        struct btrfs_fs_info *fs_info;
 545        struct btrfs_caching_control *caching_ctl;
 546        struct btrfs_root *extent_root;
 547        int ret;
 548
 549        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 550        block_group = caching_ctl->block_group;
 551        fs_info = block_group->fs_info;
 552        extent_root = fs_info->extent_root;
 553
 554        mutex_lock(&caching_ctl->mutex);
 555        down_read(&fs_info->commit_root_sem);
 556
 557        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 558                ret = load_free_space_tree(caching_ctl);
 559        else
 560                ret = load_extent_tree_free(caching_ctl);
 561
 562        spin_lock(&block_group->lock);
 563        block_group->caching_ctl = NULL;
 564        block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 565        spin_unlock(&block_group->lock);
 566
 567#ifdef CONFIG_BTRFS_DEBUG
 568        if (btrfs_should_fragment_free_space(extent_root, block_group)) {
 569                u64 bytes_used;
 570
 571                spin_lock(&block_group->space_info->lock);
 572                spin_lock(&block_group->lock);
 573                bytes_used = block_group->key.offset -
 574                        btrfs_block_group_used(&block_group->item);
 575                block_group->space_info->bytes_used += bytes_used >> 1;
 576                spin_unlock(&block_group->lock);
 577                spin_unlock(&block_group->space_info->lock);
 578                fragment_free_space(extent_root, block_group);
 579        }
 580#endif
 581
 582        caching_ctl->progress = (u64)-1;
 583
 584        up_read(&fs_info->commit_root_sem);
 585        free_excluded_extents(fs_info->extent_root, block_group);
 586        mutex_unlock(&caching_ctl->mutex);
 587
 588        wake_up(&caching_ctl->wait);
 589
 590        put_caching_control(caching_ctl);
 591        btrfs_put_block_group(block_group);
 592}
 593
 594static int cache_block_group(struct btrfs_block_group_cache *cache,
 595                             int load_cache_only)
 596{
 597        DEFINE_WAIT(wait);
 598        struct btrfs_fs_info *fs_info = cache->fs_info;
 599        struct btrfs_caching_control *caching_ctl;
 600        int ret = 0;
 601
 602        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 603        if (!caching_ctl)
 604                return -ENOMEM;
 605
 606        INIT_LIST_HEAD(&caching_ctl->list);
 607        mutex_init(&caching_ctl->mutex);
 608        init_waitqueue_head(&caching_ctl->wait);
 609        caching_ctl->block_group = cache;
 610        caching_ctl->progress = cache->key.objectid;
 611        atomic_set(&caching_ctl->count, 1);
 612        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 613                        caching_thread, NULL, NULL);
 614
 615        spin_lock(&cache->lock);
 616        /*
 617         * This should be a rare occasion, but this could happen I think in the
 618         * case where one thread starts to load the space cache info, and then
 619         * some other thread starts a transaction commit which tries to do an
 620         * allocation while the other thread is still loading the space cache
 621         * info.  The previous loop should have kept us from choosing this block
 622         * group, but if we've moved to the state where we will wait on caching
 623         * block groups we need to first check if we're doing a fast load here,
 624         * so we can wait for it to finish, otherwise we could end up allocating
 625         * from a block group who's cache gets evicted for one reason or
 626         * another.
 627         */
 628        while (cache->cached == BTRFS_CACHE_FAST) {
 629                struct btrfs_caching_control *ctl;
 630
 631                ctl = cache->caching_ctl;
 632                atomic_inc(&ctl->count);
 633                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 634                spin_unlock(&cache->lock);
 635
 636                schedule();
 637
 638                finish_wait(&ctl->wait, &wait);
 639                put_caching_control(ctl);
 640                spin_lock(&cache->lock);
 641        }
 642
 643        if (cache->cached != BTRFS_CACHE_NO) {
 644                spin_unlock(&cache->lock);
 645                kfree(caching_ctl);
 646                return 0;
 647        }
 648        WARN_ON(cache->caching_ctl);
 649        cache->caching_ctl = caching_ctl;
 650        cache->cached = BTRFS_CACHE_FAST;
 651        spin_unlock(&cache->lock);
 652
 653        if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 654                mutex_lock(&caching_ctl->mutex);
 655                ret = load_free_space_cache(fs_info, cache);
 656
 657                spin_lock(&cache->lock);
 658                if (ret == 1) {
 659                        cache->caching_ctl = NULL;
 660                        cache->cached = BTRFS_CACHE_FINISHED;
 661                        cache->last_byte_to_unpin = (u64)-1;
 662                        caching_ctl->progress = (u64)-1;
 663                } else {
 664                        if (load_cache_only) {
 665                                cache->caching_ctl = NULL;
 666                                cache->cached = BTRFS_CACHE_NO;
 667                        } else {
 668                                cache->cached = BTRFS_CACHE_STARTED;
 669                                cache->has_caching_ctl = 1;
 670                        }
 671                }
 672                spin_unlock(&cache->lock);
 673#ifdef CONFIG_BTRFS_DEBUG
 674                if (ret == 1 &&
 675                    btrfs_should_fragment_free_space(fs_info->extent_root,
 676                                                     cache)) {
 677                        u64 bytes_used;
 678
 679                        spin_lock(&cache->space_info->lock);
 680                        spin_lock(&cache->lock);
 681                        bytes_used = cache->key.offset -
 682                                btrfs_block_group_used(&cache->item);
 683                        cache->space_info->bytes_used += bytes_used >> 1;
 684                        spin_unlock(&cache->lock);
 685                        spin_unlock(&cache->space_info->lock);
 686                        fragment_free_space(fs_info->extent_root, cache);
 687                }
 688#endif
 689                mutex_unlock(&caching_ctl->mutex);
 690
 691                wake_up(&caching_ctl->wait);
 692                if (ret == 1) {
 693                        put_caching_control(caching_ctl);
 694                        free_excluded_extents(fs_info->extent_root, cache);
 695                        return 0;
 696                }
 697        } else {
 698                /*
 699                 * We're either using the free space tree or no caching at all.
 700                 * Set cached to the appropriate value and wakeup any waiters.
 701                 */
 702                spin_lock(&cache->lock);
 703                if (load_cache_only) {
 704                        cache->caching_ctl = NULL;
 705                        cache->cached = BTRFS_CACHE_NO;
 706                } else {
 707                        cache->cached = BTRFS_CACHE_STARTED;
 708                        cache->has_caching_ctl = 1;
 709                }
 710                spin_unlock(&cache->lock);
 711                wake_up(&caching_ctl->wait);
 712        }
 713
 714        if (load_cache_only) {
 715                put_caching_control(caching_ctl);
 716                return 0;
 717        }
 718
 719        down_write(&fs_info->commit_root_sem);
 720        atomic_inc(&caching_ctl->count);
 721        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 722        up_write(&fs_info->commit_root_sem);
 723
 724        btrfs_get_block_group(cache);
 725
 726        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 727
 728        return ret;
 729}
 730
 731/*
 732 * return the block group that starts at or after bytenr
 733 */
 734static struct btrfs_block_group_cache *
 735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 736{
 737        struct btrfs_block_group_cache *cache;
 738
 739        cache = block_group_cache_tree_search(info, bytenr, 0);
 740
 741        return cache;
 742}
 743
 744/*
 745 * return the block group that contains the given bytenr
 746 */
 747struct btrfs_block_group_cache *btrfs_lookup_block_group(
 748                                                 struct btrfs_fs_info *info,
 749                                                 u64 bytenr)
 750{
 751        struct btrfs_block_group_cache *cache;
 752
 753        cache = block_group_cache_tree_search(info, bytenr, 1);
 754
 755        return cache;
 756}
 757
 758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 759                                                  u64 flags)
 760{
 761        struct list_head *head = &info->space_info;
 762        struct btrfs_space_info *found;
 763
 764        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 765
 766        rcu_read_lock();
 767        list_for_each_entry_rcu(found, head, list) {
 768                if (found->flags & flags) {
 769                        rcu_read_unlock();
 770                        return found;
 771                }
 772        }
 773        rcu_read_unlock();
 774        return NULL;
 775}
 776
 777/*
 778 * after adding space to the filesystem, we need to clear the full flags
 779 * on all the space infos.
 780 */
 781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 782{
 783        struct list_head *head = &info->space_info;
 784        struct btrfs_space_info *found;
 785
 786        rcu_read_lock();
 787        list_for_each_entry_rcu(found, head, list)
 788                found->full = 0;
 789        rcu_read_unlock();
 790}
 791
 792/* simple helper to search for an existing data extent at a given offset */
 793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
 794{
 795        int ret;
 796        struct btrfs_key key;
 797        struct btrfs_path *path;
 798
 799        path = btrfs_alloc_path();
 800        if (!path)
 801                return -ENOMEM;
 802
 803        key.objectid = start;
 804        key.offset = len;
 805        key.type = BTRFS_EXTENT_ITEM_KEY;
 806        ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 807                                0, 0);
 808        btrfs_free_path(path);
 809        return ret;
 810}
 811
 812/*
 813 * helper function to lookup reference count and flags of a tree block.
 814 *
 815 * the head node for delayed ref is used to store the sum of all the
 816 * reference count modifications queued up in the rbtree. the head
 817 * node may also store the extent flags to set. This way you can check
 818 * to see what the reference count and extent flags would be if all of
 819 * the delayed refs are not processed.
 820 */
 821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 822                             struct btrfs_root *root, u64 bytenr,
 823                             u64 offset, int metadata, u64 *refs, u64 *flags)
 824{
 825        struct btrfs_delayed_ref_head *head;
 826        struct btrfs_delayed_ref_root *delayed_refs;
 827        struct btrfs_path *path;
 828        struct btrfs_extent_item *ei;
 829        struct extent_buffer *leaf;
 830        struct btrfs_key key;
 831        u32 item_size;
 832        u64 num_refs;
 833        u64 extent_flags;
 834        int ret;
 835
 836        /*
 837         * If we don't have skinny metadata, don't bother doing anything
 838         * different
 839         */
 840        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 841                offset = root->nodesize;
 842                metadata = 0;
 843        }
 844
 845        path = btrfs_alloc_path();
 846        if (!path)
 847                return -ENOMEM;
 848
 849        if (!trans) {
 850                path->skip_locking = 1;
 851                path->search_commit_root = 1;
 852        }
 853
 854search_again:
 855        key.objectid = bytenr;
 856        key.offset = offset;
 857        if (metadata)
 858                key.type = BTRFS_METADATA_ITEM_KEY;
 859        else
 860                key.type = BTRFS_EXTENT_ITEM_KEY;
 861
 862        ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 863                                &key, path, 0, 0);
 864        if (ret < 0)
 865                goto out_free;
 866
 867        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 868                if (path->slots[0]) {
 869                        path->slots[0]--;
 870                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 871                                              path->slots[0]);
 872                        if (key.objectid == bytenr &&
 873                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 874                            key.offset == root->nodesize)
 875                                ret = 0;
 876                }
 877        }
 878
 879        if (ret == 0) {
 880                leaf = path->nodes[0];
 881                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 882                if (item_size >= sizeof(*ei)) {
 883                        ei = btrfs_item_ptr(leaf, path->slots[0],
 884                                            struct btrfs_extent_item);
 885                        num_refs = btrfs_extent_refs(leaf, ei);
 886                        extent_flags = btrfs_extent_flags(leaf, ei);
 887                } else {
 888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 889                        struct btrfs_extent_item_v0 *ei0;
 890                        BUG_ON(item_size != sizeof(*ei0));
 891                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 892                                             struct btrfs_extent_item_v0);
 893                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 894                        /* FIXME: this isn't correct for data */
 895                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 896#else
 897                        BUG();
 898#endif
 899                }
 900                BUG_ON(num_refs == 0);
 901        } else {
 902                num_refs = 0;
 903                extent_flags = 0;
 904                ret = 0;
 905        }
 906
 907        if (!trans)
 908                goto out;
 909
 910        delayed_refs = &trans->transaction->delayed_refs;
 911        spin_lock(&delayed_refs->lock);
 912        head = btrfs_find_delayed_ref_head(trans, bytenr);
 913        if (head) {
 914                if (!mutex_trylock(&head->mutex)) {
 915                        atomic_inc(&head->node.refs);
 916                        spin_unlock(&delayed_refs->lock);
 917
 918                        btrfs_release_path(path);
 919
 920                        /*
 921                         * Mutex was contended, block until it's released and try
 922                         * again
 923                         */
 924                        mutex_lock(&head->mutex);
 925                        mutex_unlock(&head->mutex);
 926                        btrfs_put_delayed_ref(&head->node);
 927                        goto search_again;
 928                }
 929                spin_lock(&head->lock);
 930                if (head->extent_op && head->extent_op->update_flags)
 931                        extent_flags |= head->extent_op->flags_to_set;
 932                else
 933                        BUG_ON(num_refs == 0);
 934
 935                num_refs += head->node.ref_mod;
 936                spin_unlock(&head->lock);
 937                mutex_unlock(&head->mutex);
 938        }
 939        spin_unlock(&delayed_refs->lock);
 940out:
 941        WARN_ON(num_refs == 0);
 942        if (refs)
 943                *refs = num_refs;
 944        if (flags)
 945                *flags = extent_flags;
 946out_free:
 947        btrfs_free_path(path);
 948        return ret;
 949}
 950
 951/*
 952 * Back reference rules.  Back refs have three main goals:
 953 *
 954 * 1) differentiate between all holders of references to an extent so that
 955 *    when a reference is dropped we can make sure it was a valid reference
 956 *    before freeing the extent.
 957 *
 958 * 2) Provide enough information to quickly find the holders of an extent
 959 *    if we notice a given block is corrupted or bad.
 960 *
 961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 962 *    maintenance.  This is actually the same as #2, but with a slightly
 963 *    different use case.
 964 *
 965 * There are two kinds of back refs. The implicit back refs is optimized
 966 * for pointers in non-shared tree blocks. For a given pointer in a block,
 967 * back refs of this kind provide information about the block's owner tree
 968 * and the pointer's key. These information allow us to find the block by
 969 * b-tree searching. The full back refs is for pointers in tree blocks not
 970 * referenced by their owner trees. The location of tree block is recorded
 971 * in the back refs. Actually the full back refs is generic, and can be
 972 * used in all cases the implicit back refs is used. The major shortcoming
 973 * of the full back refs is its overhead. Every time a tree block gets
 974 * COWed, we have to update back refs entry for all pointers in it.
 975 *
 976 * For a newly allocated tree block, we use implicit back refs for
 977 * pointers in it. This means most tree related operations only involve
 978 * implicit back refs. For a tree block created in old transaction, the
 979 * only way to drop a reference to it is COW it. So we can detect the
 980 * event that tree block loses its owner tree's reference and do the
 981 * back refs conversion.
 982 *
 983 * When a tree block is COW'd through a tree, there are four cases:
 984 *
 985 * The reference count of the block is one and the tree is the block's
 986 * owner tree. Nothing to do in this case.
 987 *
 988 * The reference count of the block is one and the tree is not the
 989 * block's owner tree. In this case, full back refs is used for pointers
 990 * in the block. Remove these full back refs, add implicit back refs for
 991 * every pointers in the new block.
 992 *
 993 * The reference count of the block is greater than one and the tree is
 994 * the block's owner tree. In this case, implicit back refs is used for
 995 * pointers in the block. Add full back refs for every pointers in the
 996 * block, increase lower level extents' reference counts. The original
 997 * implicit back refs are entailed to the new block.
 998 *
 999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 *     (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059                                  struct btrfs_root *root,
1060                                  struct btrfs_path *path,
1061                                  u64 owner, u32 extra_size)
1062{
1063        struct btrfs_extent_item *item;
1064        struct btrfs_extent_item_v0 *ei0;
1065        struct btrfs_extent_ref_v0 *ref0;
1066        struct btrfs_tree_block_info *bi;
1067        struct extent_buffer *leaf;
1068        struct btrfs_key key;
1069        struct btrfs_key found_key;
1070        u32 new_size = sizeof(*item);
1071        u64 refs;
1072        int ret;
1073
1074        leaf = path->nodes[0];
1075        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078        ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079                             struct btrfs_extent_item_v0);
1080        refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082        if (owner == (u64)-1) {
1083                while (1) {
1084                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085                                ret = btrfs_next_leaf(root, path);
1086                                if (ret < 0)
1087                                        return ret;
1088                                BUG_ON(ret > 0); /* Corruption */
1089                                leaf = path->nodes[0];
1090                        }
1091                        btrfs_item_key_to_cpu(leaf, &found_key,
1092                                              path->slots[0]);
1093                        BUG_ON(key.objectid != found_key.objectid);
1094                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095                                path->slots[0]++;
1096                                continue;
1097                        }
1098                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099                                              struct btrfs_extent_ref_v0);
1100                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1101                        break;
1102                }
1103        }
1104        btrfs_release_path(path);
1105
1106        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107                new_size += sizeof(*bi);
1108
1109        new_size -= sizeof(*ei0);
1110        ret = btrfs_search_slot(trans, root, &key, path,
1111                                new_size + extra_size, 1);
1112        if (ret < 0)
1113                return ret;
1114        BUG_ON(ret); /* Corruption */
1115
1116        btrfs_extend_item(root, path, new_size);
1117
1118        leaf = path->nodes[0];
1119        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120        btrfs_set_extent_refs(leaf, item, refs);
1121        /* FIXME: get real generation */
1122        btrfs_set_extent_generation(leaf, item, 0);
1123        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124                btrfs_set_extent_flags(leaf, item,
1125                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127                bi = (struct btrfs_tree_block_info *)(item + 1);
1128                /* FIXME: get first key of the block */
1129                memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131        } else {
1132                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133        }
1134        btrfs_mark_buffer_dirty(leaf);
1135        return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141        u32 high_crc = ~(u32)0;
1142        u32 low_crc = ~(u32)0;
1143        __le64 lenum;
1144
1145        lenum = cpu_to_le64(root_objectid);
1146        high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147        lenum = cpu_to_le64(owner);
1148        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149        lenum = cpu_to_le64(offset);
1150        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152        return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156                                     struct btrfs_extent_data_ref *ref)
1157{
1158        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159                                    btrfs_extent_data_ref_objectid(leaf, ref),
1160                                    btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164                                 struct btrfs_extent_data_ref *ref,
1165                                 u64 root_objectid, u64 owner, u64 offset)
1166{
1167        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170                return 0;
1171        return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175                                           struct btrfs_root *root,
1176                                           struct btrfs_path *path,
1177                                           u64 bytenr, u64 parent,
1178                                           u64 root_objectid,
1179                                           u64 owner, u64 offset)
1180{
1181        struct btrfs_key key;
1182        struct btrfs_extent_data_ref *ref;
1183        struct extent_buffer *leaf;
1184        u32 nritems;
1185        int ret;
1186        int recow;
1187        int err = -ENOENT;
1188
1189        key.objectid = bytenr;
1190        if (parent) {
1191                key.type = BTRFS_SHARED_DATA_REF_KEY;
1192                key.offset = parent;
1193        } else {
1194                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195                key.offset = hash_extent_data_ref(root_objectid,
1196                                                  owner, offset);
1197        }
1198again:
1199        recow = 0;
1200        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201        if (ret < 0) {
1202                err = ret;
1203                goto fail;
1204        }
1205
1206        if (parent) {
1207                if (!ret)
1208                        return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210                key.type = BTRFS_EXTENT_REF_V0_KEY;
1211                btrfs_release_path(path);
1212                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213                if (ret < 0) {
1214                        err = ret;
1215                        goto fail;
1216                }
1217                if (!ret)
1218                        return 0;
1219#endif
1220                goto fail;
1221        }
1222
1223        leaf = path->nodes[0];
1224        nritems = btrfs_header_nritems(leaf);
1225        while (1) {
1226                if (path->slots[0] >= nritems) {
1227                        ret = btrfs_next_leaf(root, path);
1228                        if (ret < 0)
1229                                err = ret;
1230                        if (ret)
1231                                goto fail;
1232
1233                        leaf = path->nodes[0];
1234                        nritems = btrfs_header_nritems(leaf);
1235                        recow = 1;
1236                }
1237
1238                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239                if (key.objectid != bytenr ||
1240                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241                        goto fail;
1242
1243                ref = btrfs_item_ptr(leaf, path->slots[0],
1244                                     struct btrfs_extent_data_ref);
1245
1246                if (match_extent_data_ref(leaf, ref, root_objectid,
1247                                          owner, offset)) {
1248                        if (recow) {
1249                                btrfs_release_path(path);
1250                                goto again;
1251                        }
1252                        err = 0;
1253                        break;
1254                }
1255                path->slots[0]++;
1256        }
1257fail:
1258        return err;
1259}
1260
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262                                           struct btrfs_root *root,
1263                                           struct btrfs_path *path,
1264                                           u64 bytenr, u64 parent,
1265                                           u64 root_objectid, u64 owner,
1266                                           u64 offset, int refs_to_add)
1267{
1268        struct btrfs_key key;
1269        struct extent_buffer *leaf;
1270        u32 size;
1271        u32 num_refs;
1272        int ret;
1273
1274        key.objectid = bytenr;
1275        if (parent) {
1276                key.type = BTRFS_SHARED_DATA_REF_KEY;
1277                key.offset = parent;
1278                size = sizeof(struct btrfs_shared_data_ref);
1279        } else {
1280                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281                key.offset = hash_extent_data_ref(root_objectid,
1282                                                  owner, offset);
1283                size = sizeof(struct btrfs_extent_data_ref);
1284        }
1285
1286        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287        if (ret && ret != -EEXIST)
1288                goto fail;
1289
1290        leaf = path->nodes[0];
1291        if (parent) {
1292                struct btrfs_shared_data_ref *ref;
1293                ref = btrfs_item_ptr(leaf, path->slots[0],
1294                                     struct btrfs_shared_data_ref);
1295                if (ret == 0) {
1296                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297                } else {
1298                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299                        num_refs += refs_to_add;
1300                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301                }
1302        } else {
1303                struct btrfs_extent_data_ref *ref;
1304                while (ret == -EEXIST) {
1305                        ref = btrfs_item_ptr(leaf, path->slots[0],
1306                                             struct btrfs_extent_data_ref);
1307                        if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                                  owner, offset))
1309                                break;
1310                        btrfs_release_path(path);
1311                        key.offset++;
1312                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1313                                                      size);
1314                        if (ret && ret != -EEXIST)
1315                                goto fail;
1316
1317                        leaf = path->nodes[0];
1318                }
1319                ref = btrfs_item_ptr(leaf, path->slots[0],
1320                                     struct btrfs_extent_data_ref);
1321                if (ret == 0) {
1322                        btrfs_set_extent_data_ref_root(leaf, ref,
1323                                                       root_objectid);
1324                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327                } else {
1328                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329                        num_refs += refs_to_add;
1330                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331                }
1332        }
1333        btrfs_mark_buffer_dirty(leaf);
1334        ret = 0;
1335fail:
1336        btrfs_release_path(path);
1337        return ret;
1338}
1339
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341                                           struct btrfs_root *root,
1342                                           struct btrfs_path *path,
1343                                           int refs_to_drop, int *last_ref)
1344{
1345        struct btrfs_key key;
1346        struct btrfs_extent_data_ref *ref1 = NULL;
1347        struct btrfs_shared_data_ref *ref2 = NULL;
1348        struct extent_buffer *leaf;
1349        u32 num_refs = 0;
1350        int ret = 0;
1351
1352        leaf = path->nodes[0];
1353        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357                                      struct btrfs_extent_data_ref);
1358                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361                                      struct btrfs_shared_data_ref);
1362                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365                struct btrfs_extent_ref_v0 *ref0;
1366                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367                                      struct btrfs_extent_ref_v0);
1368                num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370        } else {
1371                BUG();
1372        }
1373
1374        BUG_ON(num_refs < refs_to_drop);
1375        num_refs -= refs_to_drop;
1376
1377        if (num_refs == 0) {
1378                ret = btrfs_del_item(trans, root, path);
1379                *last_ref = 1;
1380        } else {
1381                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386                else {
1387                        struct btrfs_extent_ref_v0 *ref0;
1388                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389                                        struct btrfs_extent_ref_v0);
1390                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391                }
1392#endif
1393                btrfs_mark_buffer_dirty(leaf);
1394        }
1395        return ret;
1396}
1397
1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399                                          struct btrfs_extent_inline_ref *iref)
1400{
1401        struct btrfs_key key;
1402        struct extent_buffer *leaf;
1403        struct btrfs_extent_data_ref *ref1;
1404        struct btrfs_shared_data_ref *ref2;
1405        u32 num_refs = 0;
1406
1407        leaf = path->nodes[0];
1408        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409        if (iref) {
1410                if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411                    BTRFS_EXTENT_DATA_REF_KEY) {
1412                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414                } else {
1415                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417                }
1418        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420                                      struct btrfs_extent_data_ref);
1421                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424                                      struct btrfs_shared_data_ref);
1425                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428                struct btrfs_extent_ref_v0 *ref0;
1429                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430                                      struct btrfs_extent_ref_v0);
1431                num_refs = btrfs_ref_count_v0(leaf, ref0);
1432#endif
1433        } else {
1434                WARN_ON(1);
1435        }
1436        return num_refs;
1437}
1438
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440                                          struct btrfs_root *root,
1441                                          struct btrfs_path *path,
1442                                          u64 bytenr, u64 parent,
1443                                          u64 root_objectid)
1444{
1445        struct btrfs_key key;
1446        int ret;
1447
1448        key.objectid = bytenr;
1449        if (parent) {
1450                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451                key.offset = parent;
1452        } else {
1453                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454                key.offset = root_objectid;
1455        }
1456
1457        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458        if (ret > 0)
1459                ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461        if (ret == -ENOENT && parent) {
1462                btrfs_release_path(path);
1463                key.type = BTRFS_EXTENT_REF_V0_KEY;
1464                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465                if (ret > 0)
1466                        ret = -ENOENT;
1467        }
1468#endif
1469        return ret;
1470}
1471
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473                                          struct btrfs_root *root,
1474                                          struct btrfs_path *path,
1475                                          u64 bytenr, u64 parent,
1476                                          u64 root_objectid)
1477{
1478        struct btrfs_key key;
1479        int ret;
1480
1481        key.objectid = bytenr;
1482        if (parent) {
1483                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484                key.offset = parent;
1485        } else {
1486                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487                key.offset = root_objectid;
1488        }
1489
1490        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491        btrfs_release_path(path);
1492        return ret;
1493}
1494
1495static inline int extent_ref_type(u64 parent, u64 owner)
1496{
1497        int type;
1498        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499                if (parent > 0)
1500                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1501                else
1502                        type = BTRFS_TREE_BLOCK_REF_KEY;
1503        } else {
1504                if (parent > 0)
1505                        type = BTRFS_SHARED_DATA_REF_KEY;
1506                else
1507                        type = BTRFS_EXTENT_DATA_REF_KEY;
1508        }
1509        return type;
1510}
1511
1512static int find_next_key(struct btrfs_path *path, int level,
1513                         struct btrfs_key *key)
1514
1515{
1516        for (; level < BTRFS_MAX_LEVEL; level++) {
1517                if (!path->nodes[level])
1518                        break;
1519                if (path->slots[level] + 1 >=
1520                    btrfs_header_nritems(path->nodes[level]))
1521                        continue;
1522                if (level == 0)
1523                        btrfs_item_key_to_cpu(path->nodes[level], key,
1524                                              path->slots[level] + 1);
1525                else
1526                        btrfs_node_key_to_cpu(path->nodes[level], key,
1527                                              path->slots[level] + 1);
1528                return 0;
1529        }
1530        return 1;
1531}
1532
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 *       items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548                                 struct btrfs_root *root,
1549                                 struct btrfs_path *path,
1550                                 struct btrfs_extent_inline_ref **ref_ret,
1551                                 u64 bytenr, u64 num_bytes,
1552                                 u64 parent, u64 root_objectid,
1553                                 u64 owner, u64 offset, int insert)
1554{
1555        struct btrfs_key key;
1556        struct extent_buffer *leaf;
1557        struct btrfs_extent_item *ei;
1558        struct btrfs_extent_inline_ref *iref;
1559        u64 flags;
1560        u64 item_size;
1561        unsigned long ptr;
1562        unsigned long end;
1563        int extra_size;
1564        int type;
1565        int want;
1566        int ret;
1567        int err = 0;
1568        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569                                                 SKINNY_METADATA);
1570
1571        key.objectid = bytenr;
1572        key.type = BTRFS_EXTENT_ITEM_KEY;
1573        key.offset = num_bytes;
1574
1575        want = extent_ref_type(parent, owner);
1576        if (insert) {
1577                extra_size = btrfs_extent_inline_ref_size(want);
1578                path->keep_locks = 1;
1579        } else
1580                extra_size = -1;
1581
1582        /*
1583         * Owner is our parent level, so we can just add one to get the level
1584         * for the block we are interested in.
1585         */
1586        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587                key.type = BTRFS_METADATA_ITEM_KEY;
1588                key.offset = owner;
1589        }
1590
1591again:
1592        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593        if (ret < 0) {
1594                err = ret;
1595                goto out;
1596        }
1597
1598        /*
1599         * We may be a newly converted file system which still has the old fat
1600         * extent entries for metadata, so try and see if we have one of those.
1601         */
1602        if (ret > 0 && skinny_metadata) {
1603                skinny_metadata = false;
1604                if (path->slots[0]) {
1605                        path->slots[0]--;
1606                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1607                                              path->slots[0]);
1608                        if (key.objectid == bytenr &&
1609                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1610                            key.offset == num_bytes)
1611                                ret = 0;
1612                }
1613                if (ret) {
1614                        key.objectid = bytenr;
1615                        key.type = BTRFS_EXTENT_ITEM_KEY;
1616                        key.offset = num_bytes;
1617                        btrfs_release_path(path);
1618                        goto again;
1619                }
1620        }
1621
1622        if (ret && !insert) {
1623                err = -ENOENT;
1624                goto out;
1625        } else if (WARN_ON(ret)) {
1626                err = -EIO;
1627                goto out;
1628        }
1629
1630        leaf = path->nodes[0];
1631        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633        if (item_size < sizeof(*ei)) {
1634                if (!insert) {
1635                        err = -ENOENT;
1636                        goto out;
1637                }
1638                ret = convert_extent_item_v0(trans, root, path, owner,
1639                                             extra_size);
1640                if (ret < 0) {
1641                        err = ret;
1642                        goto out;
1643                }
1644                leaf = path->nodes[0];
1645                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646        }
1647#endif
1648        BUG_ON(item_size < sizeof(*ei));
1649
1650        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651        flags = btrfs_extent_flags(leaf, ei);
1652
1653        ptr = (unsigned long)(ei + 1);
1654        end = (unsigned long)ei + item_size;
1655
1656        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657                ptr += sizeof(struct btrfs_tree_block_info);
1658                BUG_ON(ptr > end);
1659        }
1660
1661        err = -ENOENT;
1662        while (1) {
1663                if (ptr >= end) {
1664                        WARN_ON(ptr > end);
1665                        break;
1666                }
1667                iref = (struct btrfs_extent_inline_ref *)ptr;
1668                type = btrfs_extent_inline_ref_type(leaf, iref);
1669                if (want < type)
1670                        break;
1671                if (want > type) {
1672                        ptr += btrfs_extent_inline_ref_size(type);
1673                        continue;
1674                }
1675
1676                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677                        struct btrfs_extent_data_ref *dref;
1678                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679                        if (match_extent_data_ref(leaf, dref, root_objectid,
1680                                                  owner, offset)) {
1681                                err = 0;
1682                                break;
1683                        }
1684                        if (hash_extent_data_ref_item(leaf, dref) <
1685                            hash_extent_data_ref(root_objectid, owner, offset))
1686                                break;
1687                } else {
1688                        u64 ref_offset;
1689                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690                        if (parent > 0) {
1691                                if (parent == ref_offset) {
1692                                        err = 0;
1693                                        break;
1694                                }
1695                                if (ref_offset < parent)
1696                                        break;
1697                        } else {
1698                                if (root_objectid == ref_offset) {
1699                                        err = 0;
1700                                        break;
1701                                }
1702                                if (ref_offset < root_objectid)
1703                                        break;
1704                        }
1705                }
1706                ptr += btrfs_extent_inline_ref_size(type);
1707        }
1708        if (err == -ENOENT && insert) {
1709                if (item_size + extra_size >=
1710                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711                        err = -EAGAIN;
1712                        goto out;
1713                }
1714                /*
1715                 * To add new inline back ref, we have to make sure
1716                 * there is no corresponding back ref item.
1717                 * For simplicity, we just do not add new inline back
1718                 * ref if there is any kind of item for this block
1719                 */
1720                if (find_next_key(path, 0, &key) == 0 &&
1721                    key.objectid == bytenr &&
1722                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723                        err = -EAGAIN;
1724                        goto out;
1725                }
1726        }
1727        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
1729        if (insert) {
1730                path->keep_locks = 0;
1731                btrfs_unlock_up_safe(path, 1);
1732        }
1733        return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
1740void setup_inline_extent_backref(struct btrfs_root *root,
1741                                 struct btrfs_path *path,
1742                                 struct btrfs_extent_inline_ref *iref,
1743                                 u64 parent, u64 root_objectid,
1744                                 u64 owner, u64 offset, int refs_to_add,
1745                                 struct btrfs_delayed_extent_op *extent_op)
1746{
1747        struct extent_buffer *leaf;
1748        struct btrfs_extent_item *ei;
1749        unsigned long ptr;
1750        unsigned long end;
1751        unsigned long item_offset;
1752        u64 refs;
1753        int size;
1754        int type;
1755
1756        leaf = path->nodes[0];
1757        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758        item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760        type = extent_ref_type(parent, owner);
1761        size = btrfs_extent_inline_ref_size(type);
1762
1763        btrfs_extend_item(root, path, size);
1764
1765        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766        refs = btrfs_extent_refs(leaf, ei);
1767        refs += refs_to_add;
1768        btrfs_set_extent_refs(leaf, ei, refs);
1769        if (extent_op)
1770                __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772        ptr = (unsigned long)ei + item_offset;
1773        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774        if (ptr < end - size)
1775                memmove_extent_buffer(leaf, ptr + size, ptr,
1776                                      end - size - ptr);
1777
1778        iref = (struct btrfs_extent_inline_ref *)ptr;
1779        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781                struct btrfs_extent_data_ref *dref;
1782                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788                struct btrfs_shared_data_ref *sref;
1789                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794        } else {
1795                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796        }
1797        btrfs_mark_buffer_dirty(leaf);
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801                                 struct btrfs_root *root,
1802                                 struct btrfs_path *path,
1803                                 struct btrfs_extent_inline_ref **ref_ret,
1804                                 u64 bytenr, u64 num_bytes, u64 parent,
1805                                 u64 root_objectid, u64 owner, u64 offset)
1806{
1807        int ret;
1808
1809        ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810                                           bytenr, num_bytes, parent,
1811                                           root_objectid, owner, offset, 0);
1812        if (ret != -ENOENT)
1813                return ret;
1814
1815        btrfs_release_path(path);
1816        *ref_ret = NULL;
1817
1818        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819                ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820                                            root_objectid);
1821        } else {
1822                ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823                                             root_objectid, owner, offset);
1824        }
1825        return ret;
1826}
1827
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
1832void update_inline_extent_backref(struct btrfs_root *root,
1833                                  struct btrfs_path *path,
1834                                  struct btrfs_extent_inline_ref *iref,
1835                                  int refs_to_mod,
1836                                  struct btrfs_delayed_extent_op *extent_op,
1837                                  int *last_ref)
1838{
1839        struct extent_buffer *leaf;
1840        struct btrfs_extent_item *ei;
1841        struct btrfs_extent_data_ref *dref = NULL;
1842        struct btrfs_shared_data_ref *sref = NULL;
1843        unsigned long ptr;
1844        unsigned long end;
1845        u32 item_size;
1846        int size;
1847        int type;
1848        u64 refs;
1849
1850        leaf = path->nodes[0];
1851        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852        refs = btrfs_extent_refs(leaf, ei);
1853        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854        refs += refs_to_mod;
1855        btrfs_set_extent_refs(leaf, ei, refs);
1856        if (extent_op)
1857                __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859        type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863                refs = btrfs_extent_data_ref_count(leaf, dref);
1864        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866                refs = btrfs_shared_data_ref_count(leaf, sref);
1867        } else {
1868                refs = 1;
1869                BUG_ON(refs_to_mod != -1);
1870        }
1871
1872        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873        refs += refs_to_mod;
1874
1875        if (refs > 0) {
1876                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878                else
1879                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880        } else {
1881                *last_ref = 1;
1882                size =  btrfs_extent_inline_ref_size(type);
1883                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884                ptr = (unsigned long)iref;
1885                end = (unsigned long)ei + item_size;
1886                if (ptr + size < end)
1887                        memmove_extent_buffer(leaf, ptr, ptr + size,
1888                                              end - ptr - size);
1889                item_size -= size;
1890                btrfs_truncate_item(root, path, item_size, 1);
1891        }
1892        btrfs_mark_buffer_dirty(leaf);
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897                                 struct btrfs_root *root,
1898                                 struct btrfs_path *path,
1899                                 u64 bytenr, u64 num_bytes, u64 parent,
1900                                 u64 root_objectid, u64 owner,
1901                                 u64 offset, int refs_to_add,
1902                                 struct btrfs_delayed_extent_op *extent_op)
1903{
1904        struct btrfs_extent_inline_ref *iref;
1905        int ret;
1906
1907        ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908                                           bytenr, num_bytes, parent,
1909                                           root_objectid, owner, offset, 1);
1910        if (ret == 0) {
1911                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912                update_inline_extent_backref(root, path, iref,
1913                                             refs_to_add, extent_op, NULL);
1914        } else if (ret == -ENOENT) {
1915                setup_inline_extent_backref(root, path, iref, parent,
1916                                            root_objectid, owner, offset,
1917                                            refs_to_add, extent_op);
1918                ret = 0;
1919        }
1920        return ret;
1921}
1922
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924                                 struct btrfs_root *root,
1925                                 struct btrfs_path *path,
1926                                 u64 bytenr, u64 parent, u64 root_objectid,
1927                                 u64 owner, u64 offset, int refs_to_add)
1928{
1929        int ret;
1930        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931                BUG_ON(refs_to_add != 1);
1932                ret = insert_tree_block_ref(trans, root, path, bytenr,
1933                                            parent, root_objectid);
1934        } else {
1935                ret = insert_extent_data_ref(trans, root, path, bytenr,
1936                                             parent, root_objectid,
1937                                             owner, offset, refs_to_add);
1938        }
1939        return ret;
1940}
1941
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943                                 struct btrfs_root *root,
1944                                 struct btrfs_path *path,
1945                                 struct btrfs_extent_inline_ref *iref,
1946                                 int refs_to_drop, int is_data, int *last_ref)
1947{
1948        int ret = 0;
1949
1950        BUG_ON(!is_data && refs_to_drop != 1);
1951        if (iref) {
1952                update_inline_extent_backref(root, path, iref,
1953                                             -refs_to_drop, NULL, last_ref);
1954        } else if (is_data) {
1955                ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956                                             last_ref);
1957        } else {
1958                *last_ref = 1;
1959                ret = btrfs_del_item(trans, root, path);
1960        }
1961        return ret;
1962}
1963
1964#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966                               u64 *discarded_bytes)
1967{
1968        int j, ret = 0;
1969        u64 bytes_left, end;
1970        u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972        if (WARN_ON(start != aligned_start)) {
1973                len -= aligned_start - start;
1974                len = round_down(len, 1 << 9);
1975                start = aligned_start;
1976        }
1977
1978        *discarded_bytes = 0;
1979
1980        if (!len)
1981                return 0;
1982
1983        end = start + len;
1984        bytes_left = len;
1985
1986        /* Skip any superblocks on this device. */
1987        for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988                u64 sb_start = btrfs_sb_offset(j);
1989                u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990                u64 size = sb_start - start;
1991
1992                if (!in_range(sb_start, start, bytes_left) &&
1993                    !in_range(sb_end, start, bytes_left) &&
1994                    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995                        continue;
1996
1997                /*
1998                 * Superblock spans beginning of range.  Adjust start and
1999                 * try again.
2000                 */
2001                if (sb_start <= start) {
2002                        start += sb_end - start;
2003                        if (start > end) {
2004                                bytes_left = 0;
2005                                break;
2006                        }
2007                        bytes_left = end - start;
2008                        continue;
2009                }
2010
2011                if (size) {
2012                        ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013                                                   GFP_NOFS, 0);
2014                        if (!ret)
2015                                *discarded_bytes += size;
2016                        else if (ret != -EOPNOTSUPP)
2017                                return ret;
2018                }
2019
2020                start = sb_end;
2021                if (start > end) {
2022                        bytes_left = 0;
2023                        break;
2024                }
2025                bytes_left = end - start;
2026        }
2027
2028        if (bytes_left) {
2029                ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030                                           GFP_NOFS, 0);
2031                if (!ret)
2032                        *discarded_bytes += bytes_left;
2033        }
2034        return ret;
2035}
2036
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038                         u64 num_bytes, u64 *actual_bytes)
2039{
2040        int ret;
2041        u64 discarded_bytes = 0;
2042        struct btrfs_bio *bbio = NULL;
2043
2044
2045        /* Tell the block device(s) that the sectors can be discarded */
2046        ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2047                              bytenr, &num_bytes, &bbio, 0);
2048        /* Error condition is -ENOMEM */
2049        if (!ret) {
2050                struct btrfs_bio_stripe *stripe = bbio->stripes;
2051                int i;
2052
2053
2054                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2055                        u64 bytes;
2056                        if (!stripe->dev->can_discard)
2057                                continue;
2058
2059                        ret = btrfs_issue_discard(stripe->dev->bdev,
2060                                                  stripe->physical,
2061                                                  stripe->length,
2062                                                  &bytes);
2063                        if (!ret)
2064                                discarded_bytes += bytes;
2065                        else if (ret != -EOPNOTSUPP)
2066                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2067
2068                        /*
2069                         * Just in case we get back EOPNOTSUPP for some reason,
2070                         * just ignore the return value so we don't screw up
2071                         * people calling discard_extent.
2072                         */
2073                        ret = 0;
2074                }
2075                btrfs_put_bbio(bbio);
2076        }
2077
2078        if (actual_bytes)
2079                *actual_bytes = discarded_bytes;
2080
2081
2082        if (ret == -EOPNOTSUPP)
2083                ret = 0;
2084        return ret;
2085}
2086
2087/* Can return -ENOMEM */
2088int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089                         struct btrfs_root *root,
2090                         u64 bytenr, u64 num_bytes, u64 parent,
2091                         u64 root_objectid, u64 owner, u64 offset)
2092{
2093        int ret;
2094        struct btrfs_fs_info *fs_info = root->fs_info;
2095
2096        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097               root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098
2099        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2100                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101                                        num_bytes,
2102                                        parent, root_objectid, (int)owner,
2103                                        BTRFS_ADD_DELAYED_REF, NULL);
2104        } else {
2105                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2106                                        num_bytes, parent, root_objectid,
2107                                        owner, offset, 0,
2108                                        BTRFS_ADD_DELAYED_REF, NULL);
2109        }
2110        return ret;
2111}
2112
2113static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114                                  struct btrfs_root *root,
2115                                  struct btrfs_delayed_ref_node *node,
2116                                  u64 parent, u64 root_objectid,
2117                                  u64 owner, u64 offset, int refs_to_add,
2118                                  struct btrfs_delayed_extent_op *extent_op)
2119{
2120        struct btrfs_fs_info *fs_info = root->fs_info;
2121        struct btrfs_path *path;
2122        struct extent_buffer *leaf;
2123        struct btrfs_extent_item *item;
2124        struct btrfs_key key;
2125        u64 bytenr = node->bytenr;
2126        u64 num_bytes = node->num_bytes;
2127        u64 refs;
2128        int ret;
2129
2130        path = btrfs_alloc_path();
2131        if (!path)
2132                return -ENOMEM;
2133
2134        path->reada = READA_FORWARD;
2135        path->leave_spinning = 1;
2136        /* this will setup the path even if it fails to insert the back ref */
2137        ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138                                           bytenr, num_bytes, parent,
2139                                           root_objectid, owner, offset,
2140                                           refs_to_add, extent_op);
2141        if ((ret < 0 && ret != -EAGAIN) || !ret)
2142                goto out;
2143
2144        /*
2145         * Ok we had -EAGAIN which means we didn't have space to insert and
2146         * inline extent ref, so just update the reference count and add a
2147         * normal backref.
2148         */
2149        leaf = path->nodes[0];
2150        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152        refs = btrfs_extent_refs(leaf, item);
2153        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154        if (extent_op)
2155                __run_delayed_extent_op(extent_op, leaf, item);
2156
2157        btrfs_mark_buffer_dirty(leaf);
2158        btrfs_release_path(path);
2159
2160        path->reada = READA_FORWARD;
2161        path->leave_spinning = 1;
2162        /* now insert the actual backref */
2163        ret = insert_extent_backref(trans, root->fs_info->extent_root,
2164                                    path, bytenr, parent, root_objectid,
2165                                    owner, offset, refs_to_add);
2166        if (ret)
2167                btrfs_abort_transaction(trans, root, ret);
2168out:
2169        btrfs_free_path(path);
2170        return ret;
2171}
2172
2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174                                struct btrfs_root *root,
2175                                struct btrfs_delayed_ref_node *node,
2176                                struct btrfs_delayed_extent_op *extent_op,
2177                                int insert_reserved)
2178{
2179        int ret = 0;
2180        struct btrfs_delayed_data_ref *ref;
2181        struct btrfs_key ins;
2182        u64 parent = 0;
2183        u64 ref_root = 0;
2184        u64 flags = 0;
2185
2186        ins.objectid = node->bytenr;
2187        ins.offset = node->num_bytes;
2188        ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190        ref = btrfs_delayed_node_to_data_ref(node);
2191        trace_run_delayed_data_ref(node, ref, node->action);
2192
2193        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194                parent = ref->parent;
2195        ref_root = ref->root;
2196
2197        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198                if (extent_op)
2199                        flags |= extent_op->flags_to_set;
2200                ret = alloc_reserved_file_extent(trans, root,
2201                                                 parent, ref_root, flags,
2202                                                 ref->objectid, ref->offset,
2203                                                 &ins, node->ref_mod);
2204        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205                ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2206                                             ref_root, ref->objectid,
2207                                             ref->offset, node->ref_mod,
2208                                             extent_op);
2209        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210                ret = __btrfs_free_extent(trans, root, node, parent,
2211                                          ref_root, ref->objectid,
2212                                          ref->offset, node->ref_mod,
2213                                          extent_op);
2214        } else {
2215                BUG();
2216        }
2217        return ret;
2218}
2219
2220static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221                                    struct extent_buffer *leaf,
2222                                    struct btrfs_extent_item *ei)
2223{
2224        u64 flags = btrfs_extent_flags(leaf, ei);
2225        if (extent_op->update_flags) {
2226                flags |= extent_op->flags_to_set;
2227                btrfs_set_extent_flags(leaf, ei, flags);
2228        }
2229
2230        if (extent_op->update_key) {
2231                struct btrfs_tree_block_info *bi;
2232                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233                bi = (struct btrfs_tree_block_info *)(ei + 1);
2234                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235        }
2236}
2237
2238static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239                                 struct btrfs_root *root,
2240                                 struct btrfs_delayed_ref_node *node,
2241                                 struct btrfs_delayed_extent_op *extent_op)
2242{
2243        struct btrfs_key key;
2244        struct btrfs_path *path;
2245        struct btrfs_extent_item *ei;
2246        struct extent_buffer *leaf;
2247        u32 item_size;
2248        int ret;
2249        int err = 0;
2250        int metadata = !extent_op->is_data;
2251
2252        if (trans->aborted)
2253                return 0;
2254
2255        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256                metadata = 0;
2257
2258        path = btrfs_alloc_path();
2259        if (!path)
2260                return -ENOMEM;
2261
2262        key.objectid = node->bytenr;
2263
2264        if (metadata) {
2265                key.type = BTRFS_METADATA_ITEM_KEY;
2266                key.offset = extent_op->level;
2267        } else {
2268                key.type = BTRFS_EXTENT_ITEM_KEY;
2269                key.offset = node->num_bytes;
2270        }
2271
2272again:
2273        path->reada = READA_FORWARD;
2274        path->leave_spinning = 1;
2275        ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276                                path, 0, 1);
2277        if (ret < 0) {
2278                err = ret;
2279                goto out;
2280        }
2281        if (ret > 0) {
2282                if (metadata) {
2283                        if (path->slots[0] > 0) {
2284                                path->slots[0]--;
2285                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2286                                                      path->slots[0]);
2287                                if (key.objectid == node->bytenr &&
2288                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2289                                    key.offset == node->num_bytes)
2290                                        ret = 0;
2291                        }
2292                        if (ret > 0) {
2293                                btrfs_release_path(path);
2294                                metadata = 0;
2295
2296                                key.objectid = node->bytenr;
2297                                key.offset = node->num_bytes;
2298                                key.type = BTRFS_EXTENT_ITEM_KEY;
2299                                goto again;
2300                        }
2301                } else {
2302                        err = -EIO;
2303                        goto out;
2304                }
2305        }
2306
2307        leaf = path->nodes[0];
2308        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310        if (item_size < sizeof(*ei)) {
2311                ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312                                             path, (u64)-1, 0);
2313                if (ret < 0) {
2314                        err = ret;
2315                        goto out;
2316                }
2317                leaf = path->nodes[0];
2318                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319        }
2320#endif
2321        BUG_ON(item_size < sizeof(*ei));
2322        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323        __run_delayed_extent_op(extent_op, leaf, ei);
2324
2325        btrfs_mark_buffer_dirty(leaf);
2326out:
2327        btrfs_free_path(path);
2328        return err;
2329}
2330
2331static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332                                struct btrfs_root *root,
2333                                struct btrfs_delayed_ref_node *node,
2334                                struct btrfs_delayed_extent_op *extent_op,
2335                                int insert_reserved)
2336{
2337        int ret = 0;
2338        struct btrfs_delayed_tree_ref *ref;
2339        struct btrfs_key ins;
2340        u64 parent = 0;
2341        u64 ref_root = 0;
2342        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343                                                 SKINNY_METADATA);
2344
2345        ref = btrfs_delayed_node_to_tree_ref(node);
2346        trace_run_delayed_tree_ref(node, ref, node->action);
2347
2348        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349                parent = ref->parent;
2350        ref_root = ref->root;
2351
2352        ins.objectid = node->bytenr;
2353        if (skinny_metadata) {
2354                ins.offset = ref->level;
2355                ins.type = BTRFS_METADATA_ITEM_KEY;
2356        } else {
2357                ins.offset = node->num_bytes;
2358                ins.type = BTRFS_EXTENT_ITEM_KEY;
2359        }
2360
2361        BUG_ON(node->ref_mod != 1);
2362        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363                BUG_ON(!extent_op || !extent_op->update_flags);
2364                ret = alloc_reserved_tree_block(trans, root,
2365                                                parent, ref_root,
2366                                                extent_op->flags_to_set,
2367                                                &extent_op->key,
2368                                                ref->level, &ins);
2369        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370                ret = __btrfs_inc_extent_ref(trans, root, node,
2371                                             parent, ref_root,
2372                                             ref->level, 0, 1,
2373                                             extent_op);
2374        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375                ret = __btrfs_free_extent(trans, root, node,
2376                                          parent, ref_root,
2377                                          ref->level, 0, 1, extent_op);
2378        } else {
2379                BUG();
2380        }
2381        return ret;
2382}
2383
2384/* helper function to actually process a single delayed ref entry */
2385static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386                               struct btrfs_root *root,
2387                               struct btrfs_delayed_ref_node *node,
2388                               struct btrfs_delayed_extent_op *extent_op,
2389                               int insert_reserved)
2390{
2391        int ret = 0;
2392
2393        if (trans->aborted) {
2394                if (insert_reserved)
2395                        btrfs_pin_extent(root, node->bytenr,
2396                                         node->num_bytes, 1);
2397                return 0;
2398        }
2399
2400        if (btrfs_delayed_ref_is_head(node)) {
2401                struct btrfs_delayed_ref_head *head;
2402                /*
2403                 * we've hit the end of the chain and we were supposed
2404                 * to insert this extent into the tree.  But, it got
2405                 * deleted before we ever needed to insert it, so all
2406                 * we have to do is clean up the accounting
2407                 */
2408                BUG_ON(extent_op);
2409                head = btrfs_delayed_node_to_head(node);
2410                trace_run_delayed_ref_head(node, head, node->action);
2411
2412                if (insert_reserved) {
2413                        btrfs_pin_extent(root, node->bytenr,
2414                                         node->num_bytes, 1);
2415                        if (head->is_data) {
2416                                ret = btrfs_del_csums(trans, root,
2417                                                      node->bytenr,
2418                                                      node->num_bytes);
2419                        }
2420                }
2421
2422                /* Also free its reserved qgroup space */
2423                btrfs_qgroup_free_delayed_ref(root->fs_info,
2424                                              head->qgroup_ref_root,
2425                                              head->qgroup_reserved);
2426                return ret;
2427        }
2428
2429        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431                ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432                                           insert_reserved);
2433        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435                ret = run_delayed_data_ref(trans, root, node, extent_op,
2436                                           insert_reserved);
2437        else
2438                BUG();
2439        return ret;
2440}
2441
2442static inline struct btrfs_delayed_ref_node *
2443select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444{
2445        struct btrfs_delayed_ref_node *ref;
2446
2447        if (list_empty(&head->ref_list))
2448                return NULL;
2449
2450        /*
2451         * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452         * This is to prevent a ref count from going down to zero, which deletes
2453         * the extent item from the extent tree, when there still are references
2454         * to add, which would fail because they would not find the extent item.
2455         */
2456        list_for_each_entry(ref, &head->ref_list, list) {
2457                if (ref->action == BTRFS_ADD_DELAYED_REF)
2458                        return ref;
2459        }
2460
2461        return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462                          list);
2463}
2464
2465/*
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468 */
2469static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470                                             struct btrfs_root *root,
2471                                             unsigned long nr)
2472{
2473        struct btrfs_delayed_ref_root *delayed_refs;
2474        struct btrfs_delayed_ref_node *ref;
2475        struct btrfs_delayed_ref_head *locked_ref = NULL;
2476        struct btrfs_delayed_extent_op *extent_op;
2477        struct btrfs_fs_info *fs_info = root->fs_info;
2478        ktime_t start = ktime_get();
2479        int ret;
2480        unsigned long count = 0;
2481        unsigned long actual_count = 0;
2482        int must_insert_reserved = 0;
2483
2484        delayed_refs = &trans->transaction->delayed_refs;
2485        while (1) {
2486                if (!locked_ref) {
2487                        if (count >= nr)
2488                                break;
2489
2490                        spin_lock(&delayed_refs->lock);
2491                        locked_ref = btrfs_select_ref_head(trans);
2492                        if (!locked_ref) {
2493                                spin_unlock(&delayed_refs->lock);
2494                                break;
2495                        }
2496
2497                        /* grab the lock that says we are going to process
2498                         * all the refs for this head */
2499                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2500                        spin_unlock(&delayed_refs->lock);
2501                        /*
2502                         * we may have dropped the spin lock to get the head
2503                         * mutex lock, and that might have given someone else
2504                         * time to free the head.  If that's true, it has been
2505                         * removed from our list and we can move on.
2506                         */
2507                        if (ret == -EAGAIN) {
2508                                locked_ref = NULL;
2509                                count++;
2510                                continue;
2511                        }
2512                }
2513
2514                /*
2515                 * We need to try and merge add/drops of the same ref since we
2516                 * can run into issues with relocate dropping the implicit ref
2517                 * and then it being added back again before the drop can
2518                 * finish.  If we merged anything we need to re-loop so we can
2519                 * get a good ref.
2520                 * Or we can get node references of the same type that weren't
2521                 * merged when created due to bumps in the tree mod seq, and
2522                 * we need to merge them to prevent adding an inline extent
2523                 * backref before dropping it (triggering a BUG_ON at
2524                 * insert_inline_extent_backref()).
2525                 */
2526                spin_lock(&locked_ref->lock);
2527                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528                                         locked_ref);
2529
2530                /*
2531                 * locked_ref is the head node, so we have to go one
2532                 * node back for any delayed ref updates
2533                 */
2534                ref = select_delayed_ref(locked_ref);
2535
2536                if (ref && ref->seq &&
2537                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2538                        spin_unlock(&locked_ref->lock);
2539                        btrfs_delayed_ref_unlock(locked_ref);
2540                        spin_lock(&delayed_refs->lock);
2541                        locked_ref->processing = 0;
2542                        delayed_refs->num_heads_ready++;
2543                        spin_unlock(&delayed_refs->lock);
2544                        locked_ref = NULL;
2545                        cond_resched();
2546                        count++;
2547                        continue;
2548                }
2549
2550                /*
2551                 * record the must insert reserved flag before we
2552                 * drop the spin lock.
2553                 */
2554                must_insert_reserved = locked_ref->must_insert_reserved;
2555                locked_ref->must_insert_reserved = 0;
2556
2557                extent_op = locked_ref->extent_op;
2558                locked_ref->extent_op = NULL;
2559
2560                if (!ref) {
2561
2562
2563                        /* All delayed refs have been processed, Go ahead
2564                         * and send the head node to run_one_delayed_ref,
2565                         * so that any accounting fixes can happen
2566                         */
2567                        ref = &locked_ref->node;
2568
2569                        if (extent_op && must_insert_reserved) {
2570                                btrfs_free_delayed_extent_op(extent_op);
2571                                extent_op = NULL;
2572                        }
2573
2574                        if (extent_op) {
2575                                spin_unlock(&locked_ref->lock);
2576                                ret = run_delayed_extent_op(trans, root,
2577                                                            ref, extent_op);
2578                                btrfs_free_delayed_extent_op(extent_op);
2579
2580                                if (ret) {
2581                                        /*
2582                                         * Need to reset must_insert_reserved if
2583                                         * there was an error so the abort stuff
2584                                         * can cleanup the reserved space
2585                                         * properly.
2586                                         */
2587                                        if (must_insert_reserved)
2588                                                locked_ref->must_insert_reserved = 1;
2589                                        locked_ref->processing = 0;
2590                                        btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591                                        btrfs_delayed_ref_unlock(locked_ref);
2592                                        return ret;
2593                                }
2594                                continue;
2595                        }
2596
2597                        /*
2598                         * Need to drop our head ref lock and re-aqcuire the
2599                         * delayed ref lock and then re-check to make sure
2600                         * nobody got added.
2601                         */
2602                        spin_unlock(&locked_ref->lock);
2603                        spin_lock(&delayed_refs->lock);
2604                        spin_lock(&locked_ref->lock);
2605                        if (!list_empty(&locked_ref->ref_list) ||
2606                            locked_ref->extent_op) {
2607                                spin_unlock(&locked_ref->lock);
2608                                spin_unlock(&delayed_refs->lock);
2609                                continue;
2610                        }
2611                        ref->in_tree = 0;
2612                        delayed_refs->num_heads--;
2613                        rb_erase(&locked_ref->href_node,
2614                                 &delayed_refs->href_root);
2615                        spin_unlock(&delayed_refs->lock);
2616                } else {
2617                        actual_count++;
2618                        ref->in_tree = 0;
2619                        list_del(&ref->list);
2620                }
2621                atomic_dec(&delayed_refs->num_entries);
2622
2623                if (!btrfs_delayed_ref_is_head(ref)) {
2624                        /*
2625                         * when we play the delayed ref, also correct the
2626                         * ref_mod on head
2627                         */
2628                        switch (ref->action) {
2629                        case BTRFS_ADD_DELAYED_REF:
2630                        case BTRFS_ADD_DELAYED_EXTENT:
2631                                locked_ref->node.ref_mod -= ref->ref_mod;
2632                                break;
2633                        case BTRFS_DROP_DELAYED_REF:
2634                                locked_ref->node.ref_mod += ref->ref_mod;
2635                                break;
2636                        default:
2637                                WARN_ON(1);
2638                        }
2639                }
2640                spin_unlock(&locked_ref->lock);
2641
2642                ret = run_one_delayed_ref(trans, root, ref, extent_op,
2643                                          must_insert_reserved);
2644
2645                btrfs_free_delayed_extent_op(extent_op);
2646                if (ret) {
2647                        locked_ref->processing = 0;
2648                        btrfs_delayed_ref_unlock(locked_ref);
2649                        btrfs_put_delayed_ref(ref);
2650                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2651                        return ret;
2652                }
2653
2654                /*
2655                 * If this node is a head, that means all the refs in this head
2656                 * have been dealt with, and we will pick the next head to deal
2657                 * with, so we must unlock the head and drop it from the cluster
2658                 * list before we release it.
2659                 */
2660                if (btrfs_delayed_ref_is_head(ref)) {
2661                        if (locked_ref->is_data &&
2662                            locked_ref->total_ref_mod < 0) {
2663                                spin_lock(&delayed_refs->lock);
2664                                delayed_refs->pending_csums -= ref->num_bytes;
2665                                spin_unlock(&delayed_refs->lock);
2666                        }
2667                        btrfs_delayed_ref_unlock(locked_ref);
2668                        locked_ref = NULL;
2669                }
2670                btrfs_put_delayed_ref(ref);
2671                count++;
2672                cond_resched();
2673        }
2674
2675        /*
2676         * We don't want to include ref heads since we can have empty ref heads
2677         * and those will drastically skew our runtime down since we just do
2678         * accounting, no actual extent tree updates.
2679         */
2680        if (actual_count > 0) {
2681                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682                u64 avg;
2683
2684                /*
2685                 * We weigh the current average higher than our current runtime
2686                 * to avoid large swings in the average.
2687                 */
2688                spin_lock(&delayed_refs->lock);
2689                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2690                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2691                spin_unlock(&delayed_refs->lock);
2692        }
2693        return 0;
2694}
2695
2696#ifdef SCRAMBLE_DELAYED_REFS
2697/*
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2701 */
2702static u64 find_middle(struct rb_root *root)
2703{
2704        struct rb_node *n = root->rb_node;
2705        struct btrfs_delayed_ref_node *entry;
2706        int alt = 1;
2707        u64 middle;
2708        u64 first = 0, last = 0;
2709
2710        n = rb_first(root);
2711        if (n) {
2712                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713                first = entry->bytenr;
2714        }
2715        n = rb_last(root);
2716        if (n) {
2717                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718                last = entry->bytenr;
2719        }
2720        n = root->rb_node;
2721
2722        while (n) {
2723                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724                WARN_ON(!entry->in_tree);
2725
2726                middle = entry->bytenr;
2727
2728                if (alt)
2729                        n = n->rb_left;
2730                else
2731                        n = n->rb_right;
2732
2733                alt = 1 - alt;
2734        }
2735        return middle;
2736}
2737#endif
2738
2739static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740{
2741        u64 num_bytes;
2742
2743        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744                             sizeof(struct btrfs_extent_inline_ref));
2745        if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747
2748        /*
2749         * We don't ever fill up leaves all the way so multiply by 2 just to be
2750         * closer to what we're really going to want to ouse.
2751         */
2752        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2753}
2754
2755/*
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2758 */
2759u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2760{
2761        u64 csum_size;
2762        u64 num_csums_per_leaf;
2763        u64 num_csums;
2764
2765        csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766        num_csums_per_leaf = div64_u64(csum_size,
2767                        (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768        num_csums = div64_u64(csum_bytes, root->sectorsize);
2769        num_csums += num_csums_per_leaf - 1;
2770        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771        return num_csums;
2772}
2773
2774int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2775                                       struct btrfs_root *root)
2776{
2777        struct btrfs_block_rsv *global_rsv;
2778        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2779        u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2780        u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781        u64 num_bytes, num_dirty_bgs_bytes;
2782        int ret = 0;
2783
2784        num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785        num_heads = heads_to_leaves(root, num_heads);
2786        if (num_heads > 1)
2787                num_bytes += (num_heads - 1) * root->nodesize;
2788        num_bytes <<= 1;
2789        num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2790        num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791                                                             num_dirty_bgs);
2792        global_rsv = &root->fs_info->global_block_rsv;
2793
2794        /*
2795         * If we can't allocate any more chunks lets make sure we have _lots_ of
2796         * wiggle room since running delayed refs can create more delayed refs.
2797         */
2798        if (global_rsv->space_info->full) {
2799                num_dirty_bgs_bytes <<= 1;
2800                num_bytes <<= 1;
2801        }
2802
2803        spin_lock(&global_rsv->lock);
2804        if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2805                ret = 1;
2806        spin_unlock(&global_rsv->lock);
2807        return ret;
2808}
2809
2810int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811                                       struct btrfs_root *root)
2812{
2813        struct btrfs_fs_info *fs_info = root->fs_info;
2814        u64 num_entries =
2815                atomic_read(&trans->transaction->delayed_refs.num_entries);
2816        u64 avg_runtime;
2817        u64 val;
2818
2819        smp_mb();
2820        avg_runtime = fs_info->avg_delayed_ref_runtime;
2821        val = num_entries * avg_runtime;
2822        if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823                return 1;
2824        if (val >= NSEC_PER_SEC / 2)
2825                return 2;
2826
2827        return btrfs_check_space_for_delayed_refs(trans, root);
2828}
2829
2830struct async_delayed_refs {
2831        struct btrfs_root *root;
2832        int count;
2833        int error;
2834        int sync;
2835        struct completion wait;
2836        struct btrfs_work work;
2837};
2838
2839static void delayed_ref_async_start(struct btrfs_work *work)
2840{
2841        struct async_delayed_refs *async;
2842        struct btrfs_trans_handle *trans;
2843        int ret;
2844
2845        async = container_of(work, struct async_delayed_refs, work);
2846
2847        trans = btrfs_join_transaction(async->root);
2848        if (IS_ERR(trans)) {
2849                async->error = PTR_ERR(trans);
2850                goto done;
2851        }
2852
2853        /*
2854         * trans->sync means that when we call end_transaciton, we won't
2855         * wait on delayed refs
2856         */
2857        trans->sync = true;
2858        ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859        if (ret)
2860                async->error = ret;
2861
2862        ret = btrfs_end_transaction(trans, async->root);
2863        if (ret && !async->error)
2864                async->error = ret;
2865done:
2866        if (async->sync)
2867                complete(&async->wait);
2868        else
2869                kfree(async);
2870}
2871
2872int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873                                 unsigned long count, int wait)
2874{
2875        struct async_delayed_refs *async;
2876        int ret;
2877
2878        async = kmalloc(sizeof(*async), GFP_NOFS);
2879        if (!async)
2880                return -ENOMEM;
2881
2882        async->root = root->fs_info->tree_root;
2883        async->count = count;
2884        async->error = 0;
2885        if (wait)
2886                async->sync = 1;
2887        else
2888                async->sync = 0;
2889        init_completion(&async->wait);
2890
2891        btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892                        delayed_ref_async_start, NULL, NULL);
2893
2894        btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895
2896        if (wait) {
2897                wait_for_completion(&async->wait);
2898                ret = async->error;
2899                kfree(async);
2900                return ret;
2901        }
2902        return 0;
2903}
2904
2905/*
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far.  count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
2911 *
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
2914 */
2915int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916                           struct btrfs_root *root, unsigned long count)
2917{
2918        struct rb_node *node;
2919        struct btrfs_delayed_ref_root *delayed_refs;
2920        struct btrfs_delayed_ref_head *head;
2921        int ret;
2922        int run_all = count == (unsigned long)-1;
2923        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2924
2925        /* We'll clean this up in btrfs_cleanup_transaction */
2926        if (trans->aborted)
2927                return 0;
2928
2929        if (root->fs_info->creating_free_space_tree)
2930                return 0;
2931
2932        if (root == root->fs_info->extent_root)
2933                root = root->fs_info->tree_root;
2934
2935        delayed_refs = &trans->transaction->delayed_refs;
2936        if (count == 0)
2937                count = atomic_read(&delayed_refs->num_entries) * 2;
2938
2939again:
2940#ifdef SCRAMBLE_DELAYED_REFS
2941        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942#endif
2943        trans->can_flush_pending_bgs = false;
2944        ret = __btrfs_run_delayed_refs(trans, root, count);
2945        if (ret < 0) {
2946                btrfs_abort_transaction(trans, root, ret);
2947                return ret;
2948        }
2949
2950        if (run_all) {
2951                if (!list_empty(&trans->new_bgs))
2952                        btrfs_create_pending_block_groups(trans, root);
2953
2954                spin_lock(&delayed_refs->lock);
2955                node = rb_first(&delayed_refs->href_root);
2956                if (!node) {
2957                        spin_unlock(&delayed_refs->lock);
2958                        goto out;
2959                }
2960                count = (unsigned long)-1;
2961
2962                while (node) {
2963                        head = rb_entry(node, struct btrfs_delayed_ref_head,
2964                                        href_node);
2965                        if (btrfs_delayed_ref_is_head(&head->node)) {
2966                                struct btrfs_delayed_ref_node *ref;
2967
2968                                ref = &head->node;
2969                                atomic_inc(&ref->refs);
2970
2971                                spin_unlock(&delayed_refs->lock);
2972                                /*
2973                                 * Mutex was contended, block until it's
2974                                 * released and try again
2975                                 */
2976                                mutex_lock(&head->mutex);
2977                                mutex_unlock(&head->mutex);
2978
2979                                btrfs_put_delayed_ref(ref);
2980                                cond_resched();
2981                                goto again;
2982                        } else {
2983                                WARN_ON(1);
2984                        }
2985                        node = rb_next(node);
2986                }
2987                spin_unlock(&delayed_refs->lock);
2988                cond_resched();
2989                goto again;
2990        }
2991out:
2992        assert_qgroups_uptodate(trans);
2993        trans->can_flush_pending_bgs = can_flush_pending_bgs;
2994        return 0;
2995}
2996
2997int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998                                struct btrfs_root *root,
2999                                u64 bytenr, u64 num_bytes, u64 flags,
3000                                int level, int is_data)
3001{
3002        struct btrfs_delayed_extent_op *extent_op;
3003        int ret;
3004
3005        extent_op = btrfs_alloc_delayed_extent_op();
3006        if (!extent_op)
3007                return -ENOMEM;
3008
3009        extent_op->flags_to_set = flags;
3010        extent_op->update_flags = true;
3011        extent_op->update_key = false;
3012        extent_op->is_data = is_data ? true : false;
3013        extent_op->level = level;
3014
3015        ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016                                          num_bytes, extent_op);
3017        if (ret)
3018                btrfs_free_delayed_extent_op(extent_op);
3019        return ret;
3020}
3021
3022static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023                                      struct btrfs_root *root,
3024                                      struct btrfs_path *path,
3025                                      u64 objectid, u64 offset, u64 bytenr)
3026{
3027        struct btrfs_delayed_ref_head *head;
3028        struct btrfs_delayed_ref_node *ref;
3029        struct btrfs_delayed_data_ref *data_ref;
3030        struct btrfs_delayed_ref_root *delayed_refs;
3031        int ret = 0;
3032
3033        delayed_refs = &trans->transaction->delayed_refs;
3034        spin_lock(&delayed_refs->lock);
3035        head = btrfs_find_delayed_ref_head(trans, bytenr);
3036        if (!head) {
3037                spin_unlock(&delayed_refs->lock);
3038                return 0;
3039        }
3040
3041        if (!mutex_trylock(&head->mutex)) {
3042                atomic_inc(&head->node.refs);
3043                spin_unlock(&delayed_refs->lock);
3044
3045                btrfs_release_path(path);
3046
3047                /*
3048                 * Mutex was contended, block until it's released and let
3049                 * caller try again
3050                 */
3051                mutex_lock(&head->mutex);
3052                mutex_unlock(&head->mutex);
3053                btrfs_put_delayed_ref(&head->node);
3054                return -EAGAIN;
3055        }
3056        spin_unlock(&delayed_refs->lock);
3057
3058        spin_lock(&head->lock);
3059        list_for_each_entry(ref, &head->ref_list, list) {
3060                /* If it's a shared ref we know a cross reference exists */
3061                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062                        ret = 1;
3063                        break;
3064                }
3065
3066                data_ref = btrfs_delayed_node_to_data_ref(ref);
3067
3068                /*
3069                 * If our ref doesn't match the one we're currently looking at
3070                 * then we have a cross reference.
3071                 */
3072                if (data_ref->root != root->root_key.objectid ||
3073                    data_ref->objectid != objectid ||
3074                    data_ref->offset != offset) {
3075                        ret = 1;
3076                        break;
3077                }
3078        }
3079        spin_unlock(&head->lock);
3080        mutex_unlock(&head->mutex);
3081        return ret;
3082}
3083
3084static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085                                        struct btrfs_root *root,
3086                                        struct btrfs_path *path,
3087                                        u64 objectid, u64 offset, u64 bytenr)
3088{
3089        struct btrfs_root *extent_root = root->fs_info->extent_root;
3090        struct extent_buffer *leaf;
3091        struct btrfs_extent_data_ref *ref;
3092        struct btrfs_extent_inline_ref *iref;
3093        struct btrfs_extent_item *ei;
3094        struct btrfs_key key;
3095        u32 item_size;
3096        int ret;
3097
3098        key.objectid = bytenr;
3099        key.offset = (u64)-1;
3100        key.type = BTRFS_EXTENT_ITEM_KEY;
3101
3102        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103        if (ret < 0)
3104                goto out;
3105        BUG_ON(ret == 0); /* Corruption */
3106
3107        ret = -ENOENT;
3108        if (path->slots[0] == 0)
3109                goto out;
3110
3111        path->slots[0]--;
3112        leaf = path->nodes[0];
3113        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3114
3115        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3116                goto out;
3117
3118        ret = 1;
3119        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121        if (item_size < sizeof(*ei)) {
3122                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123                goto out;
3124        }
3125#endif
3126        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3127
3128        if (item_size != sizeof(*ei) +
3129            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130                goto out;
3131
3132        if (btrfs_extent_generation(leaf, ei) <=
3133            btrfs_root_last_snapshot(&root->root_item))
3134                goto out;
3135
3136        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137        if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138            BTRFS_EXTENT_DATA_REF_KEY)
3139                goto out;
3140
3141        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142        if (btrfs_extent_refs(leaf, ei) !=
3143            btrfs_extent_data_ref_count(leaf, ref) ||
3144            btrfs_extent_data_ref_root(leaf, ref) !=
3145            root->root_key.objectid ||
3146            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147            btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148                goto out;
3149
3150        ret = 0;
3151out:
3152        return ret;
3153}
3154
3155int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156                          struct btrfs_root *root,
3157                          u64 objectid, u64 offset, u64 bytenr)
3158{
3159        struct btrfs_path *path;
3160        int ret;
3161        int ret2;
3162
3163        path = btrfs_alloc_path();
3164        if (!path)
3165                return -ENOENT;
3166
3167        do {
3168                ret = check_committed_ref(trans, root, path, objectid,
3169                                          offset, bytenr);
3170                if (ret && ret != -ENOENT)
3171                        goto out;
3172
3173                ret2 = check_delayed_ref(trans, root, path, objectid,
3174                                         offset, bytenr);
3175        } while (ret2 == -EAGAIN);
3176
3177        if (ret2 && ret2 != -ENOENT) {
3178                ret = ret2;
3179                goto out;
3180        }
3181
3182        if (ret != -ENOENT || ret2 != -ENOENT)
3183                ret = 0;
3184out:
3185        btrfs_free_path(path);
3186        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187                WARN_ON(ret > 0);
3188        return ret;
3189}
3190
3191static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3192                           struct btrfs_root *root,
3193                           struct extent_buffer *buf,
3194                           int full_backref, int inc)
3195{
3196        u64 bytenr;
3197        u64 num_bytes;
3198        u64 parent;
3199        u64 ref_root;
3200        u32 nritems;
3201        struct btrfs_key key;
3202        struct btrfs_file_extent_item *fi;
3203        int i;
3204        int level;
3205        int ret = 0;
3206        int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3207                            u64, u64, u64, u64, u64, u64);
3208
3209
3210        if (btrfs_test_is_dummy_root(root))
3211                return 0;
3212
3213        ref_root = btrfs_header_owner(buf);
3214        nritems = btrfs_header_nritems(buf);
3215        level = btrfs_header_level(buf);
3216
3217        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3218                return 0;
3219
3220        if (inc)
3221                process_func = btrfs_inc_extent_ref;
3222        else
3223                process_func = btrfs_free_extent;
3224
3225        if (full_backref)
3226                parent = buf->start;
3227        else
3228                parent = 0;
3229
3230        for (i = 0; i < nritems; i++) {
3231                if (level == 0) {
3232                        btrfs_item_key_to_cpu(buf, &key, i);
3233                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3234                                continue;
3235                        fi = btrfs_item_ptr(buf, i,
3236                                            struct btrfs_file_extent_item);
3237                        if (btrfs_file_extent_type(buf, fi) ==
3238                            BTRFS_FILE_EXTENT_INLINE)
3239                                continue;
3240                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241                        if (bytenr == 0)
3242                                continue;
3243
3244                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245                        key.offset -= btrfs_file_extent_offset(buf, fi);
3246                        ret = process_func(trans, root, bytenr, num_bytes,
3247                                           parent, ref_root, key.objectid,
3248                                           key.offset);
3249                        if (ret)
3250                                goto fail;
3251                } else {
3252                        bytenr = btrfs_node_blockptr(buf, i);
3253                        num_bytes = root->nodesize;
3254                        ret = process_func(trans, root, bytenr, num_bytes,
3255                                           parent, ref_root, level - 1, 0);
3256                        if (ret)
3257                                goto fail;
3258                }
3259        }
3260        return 0;
3261fail:
3262        return ret;
3263}
3264
3265int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266                  struct extent_buffer *buf, int full_backref)
3267{
3268        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3269}
3270
3271int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272                  struct extent_buffer *buf, int full_backref)
3273{
3274        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3275}
3276
3277static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278                                 struct btrfs_root *root,
3279                                 struct btrfs_path *path,
3280                                 struct btrfs_block_group_cache *cache)
3281{
3282        int ret;
3283        struct btrfs_root *extent_root = root->fs_info->extent_root;
3284        unsigned long bi;
3285        struct extent_buffer *leaf;
3286
3287        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3288        if (ret) {
3289                if (ret > 0)
3290                        ret = -ENOENT;
3291                goto fail;
3292        }
3293
3294        leaf = path->nodes[0];
3295        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297        btrfs_mark_buffer_dirty(leaf);
3298fail:
3299        btrfs_release_path(path);
3300        return ret;
3301
3302}
3303
3304static struct btrfs_block_group_cache *
3305next_block_group(struct btrfs_root *root,
3306                 struct btrfs_block_group_cache *cache)
3307{
3308        struct rb_node *node;
3309
3310        spin_lock(&root->fs_info->block_group_cache_lock);
3311
3312        /* If our block group was removed, we need a full search. */
3313        if (RB_EMPTY_NODE(&cache->cache_node)) {
3314                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315
3316                spin_unlock(&root->fs_info->block_group_cache_lock);
3317                btrfs_put_block_group(cache);
3318                cache = btrfs_lookup_first_block_group(root->fs_info,
3319                                                       next_bytenr);
3320                return cache;
3321        }
3322        node = rb_next(&cache->cache_node);
3323        btrfs_put_block_group(cache);
3324        if (node) {
3325                cache = rb_entry(node, struct btrfs_block_group_cache,
3326                                 cache_node);
3327                btrfs_get_block_group(cache);
3328        } else
3329                cache = NULL;
3330        spin_unlock(&root->fs_info->block_group_cache_lock);
3331        return cache;
3332}
3333
3334static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335                            struct btrfs_trans_handle *trans,
3336                            struct btrfs_path *path)
3337{
3338        struct btrfs_root *root = block_group->fs_info->tree_root;
3339        struct inode *inode = NULL;
3340        u64 alloc_hint = 0;
3341        int dcs = BTRFS_DC_ERROR;
3342        u64 num_pages = 0;
3343        int retries = 0;
3344        int ret = 0;
3345
3346        /*
3347         * If this block group is smaller than 100 megs don't bother caching the
3348         * block group.
3349         */
3350        if (block_group->key.offset < (100 * SZ_1M)) {
3351                spin_lock(&block_group->lock);
3352                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353                spin_unlock(&block_group->lock);
3354                return 0;
3355        }
3356
3357        if (trans->aborted)
3358                return 0;
3359again:
3360        inode = lookup_free_space_inode(root, block_group, path);
3361        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362                ret = PTR_ERR(inode);
3363                btrfs_release_path(path);
3364                goto out;
3365        }
3366
3367        if (IS_ERR(inode)) {
3368                BUG_ON(retries);
3369                retries++;
3370
3371                if (block_group->ro)
3372                        goto out_free;
3373
3374                ret = create_free_space_inode(root, trans, block_group, path);
3375                if (ret)
3376                        goto out_free;
3377                goto again;
3378        }
3379
3380        /* We've already setup this transaction, go ahead and exit */
3381        if (block_group->cache_generation == trans->transid &&
3382            i_size_read(inode)) {
3383                dcs = BTRFS_DC_SETUP;
3384                goto out_put;
3385        }
3386
3387        /*
3388         * We want to set the generation to 0, that way if anything goes wrong
3389         * from here on out we know not to trust this cache when we load up next
3390         * time.
3391         */
3392        BTRFS_I(inode)->generation = 0;
3393        ret = btrfs_update_inode(trans, root, inode);
3394        if (ret) {
3395                /*
3396                 * So theoretically we could recover from this, simply set the
3397                 * super cache generation to 0 so we know to invalidate the
3398                 * cache, but then we'd have to keep track of the block groups
3399                 * that fail this way so we know we _have_ to reset this cache
3400                 * before the next commit or risk reading stale cache.  So to
3401                 * limit our exposure to horrible edge cases lets just abort the
3402                 * transaction, this only happens in really bad situations
3403                 * anyway.
3404                 */
3405                btrfs_abort_transaction(trans, root, ret);
3406                goto out_put;
3407        }
3408        WARN_ON(ret);
3409
3410        if (i_size_read(inode) > 0) {
3411                ret = btrfs_check_trunc_cache_free_space(root,
3412                                        &root->fs_info->global_block_rsv);
3413                if (ret)
3414                        goto out_put;
3415
3416                ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3417                if (ret)
3418                        goto out_put;
3419        }
3420
3421        spin_lock(&block_group->lock);
3422        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3423            !btrfs_test_opt(root, SPACE_CACHE)) {
3424                /*
3425                 * don't bother trying to write stuff out _if_
3426                 * a) we're not cached,
3427                 * b) we're with nospace_cache mount option.
3428                 */
3429                dcs = BTRFS_DC_WRITTEN;
3430                spin_unlock(&block_group->lock);
3431                goto out_put;
3432        }
3433        spin_unlock(&block_group->lock);
3434
3435        /*
3436         * We hit an ENOSPC when setting up the cache in this transaction, just
3437         * skip doing the setup, we've already cleared the cache so we're safe.
3438         */
3439        if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440                ret = -ENOSPC;
3441                goto out_put;
3442        }
3443
3444        /*
3445         * Try to preallocate enough space based on how big the block group is.
3446         * Keep in mind this has to include any pinned space which could end up
3447         * taking up quite a bit since it's not folded into the other space
3448         * cache.
3449         */
3450        num_pages = div_u64(block_group->key.offset, SZ_256M);
3451        if (!num_pages)
3452                num_pages = 1;
3453
3454        num_pages *= 16;
3455        num_pages *= PAGE_SIZE;
3456
3457        ret = btrfs_check_data_free_space(inode, 0, num_pages);
3458        if (ret)
3459                goto out_put;
3460
3461        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462                                              num_pages, num_pages,
3463                                              &alloc_hint);
3464        /*
3465         * Our cache requires contiguous chunks so that we don't modify a bunch
3466         * of metadata or split extents when writing the cache out, which means
3467         * we can enospc if we are heavily fragmented in addition to just normal
3468         * out of space conditions.  So if we hit this just skip setting up any
3469         * other block groups for this transaction, maybe we'll unpin enough
3470         * space the next time around.
3471         */
3472        if (!ret)
3473                dcs = BTRFS_DC_SETUP;
3474        else if (ret == -ENOSPC)
3475                set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3476        btrfs_free_reserved_data_space(inode, 0, num_pages);
3477
3478out_put:
3479        iput(inode);
3480out_free:
3481        btrfs_release_path(path);
3482out:
3483        spin_lock(&block_group->lock);
3484        if (!ret && dcs == BTRFS_DC_SETUP)
3485                block_group->cache_generation = trans->transid;
3486        block_group->disk_cache_state = dcs;
3487        spin_unlock(&block_group->lock);
3488
3489        return ret;
3490}
3491
3492int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493                            struct btrfs_root *root)
3494{
3495        struct btrfs_block_group_cache *cache, *tmp;
3496        struct btrfs_transaction *cur_trans = trans->transaction;
3497        struct btrfs_path *path;
3498
3499        if (list_empty(&cur_trans->dirty_bgs) ||
3500            !btrfs_test_opt(root, SPACE_CACHE))
3501                return 0;
3502
3503        path = btrfs_alloc_path();
3504        if (!path)
3505                return -ENOMEM;
3506
3507        /* Could add new block groups, use _safe just in case */
3508        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509                                 dirty_list) {
3510                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511                        cache_save_setup(cache, trans, path);
3512        }
3513
3514        btrfs_free_path(path);
3515        return 0;
3516}
3517
3518/*
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS.  This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3523 *
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO.  There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3529 */
3530int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3531                                   struct btrfs_root *root)
3532{
3533        struct btrfs_block_group_cache *cache;
3534        struct btrfs_transaction *cur_trans = trans->transaction;
3535        int ret = 0;
3536        int should_put;
3537        struct btrfs_path *path = NULL;
3538        LIST_HEAD(dirty);
3539        struct list_head *io = &cur_trans->io_bgs;
3540        int num_started = 0;
3541        int loops = 0;
3542
3543        spin_lock(&cur_trans->dirty_bgs_lock);
3544        if (list_empty(&cur_trans->dirty_bgs)) {
3545                spin_unlock(&cur_trans->dirty_bgs_lock);
3546                return 0;
3547        }
3548        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3549        spin_unlock(&cur_trans->dirty_bgs_lock);
3550
3551again:
3552        /*
3553         * make sure all the block groups on our dirty list actually
3554         * exist
3555         */
3556        btrfs_create_pending_block_groups(trans, root);
3557
3558        if (!path) {
3559                path = btrfs_alloc_path();
3560                if (!path)
3561                        return -ENOMEM;
3562        }
3563
3564        /*
3565         * cache_write_mutex is here only to save us from balance or automatic
3566         * removal of empty block groups deleting this block group while we are
3567         * writing out the cache
3568         */
3569        mutex_lock(&trans->transaction->cache_write_mutex);
3570        while (!list_empty(&dirty)) {
3571                cache = list_first_entry(&dirty,
3572                                         struct btrfs_block_group_cache,
3573                                         dirty_list);
3574                /*
3575                 * this can happen if something re-dirties a block
3576                 * group that is already under IO.  Just wait for it to
3577                 * finish and then do it all again
3578                 */
3579                if (!list_empty(&cache->io_list)) {
3580                        list_del_init(&cache->io_list);
3581                        btrfs_wait_cache_io(root, trans, cache,
3582                                            &cache->io_ctl, path,
3583                                            cache->key.objectid);
3584                        btrfs_put_block_group(cache);
3585                }
3586
3587
3588                /*
3589                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590                 * if it should update the cache_state.  Don't delete
3591                 * until after we wait.
3592                 *
3593                 * Since we're not running in the commit critical section
3594                 * we need the dirty_bgs_lock to protect from update_block_group
3595                 */
3596                spin_lock(&cur_trans->dirty_bgs_lock);
3597                list_del_init(&cache->dirty_list);
3598                spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600                should_put = 1;
3601
3602                cache_save_setup(cache, trans, path);
3603
3604                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605                        cache->io_ctl.inode = NULL;
3606                        ret = btrfs_write_out_cache(root, trans, cache, path);
3607                        if (ret == 0 && cache->io_ctl.inode) {
3608                                num_started++;
3609                                should_put = 0;
3610
3611                                /*
3612                                 * the cache_write_mutex is protecting
3613                                 * the io_list
3614                                 */
3615                                list_add_tail(&cache->io_list, io);
3616                        } else {
3617                                /*
3618                                 * if we failed to write the cache, the
3619                                 * generation will be bad and life goes on
3620                                 */
3621                                ret = 0;
3622                        }
3623                }
3624                if (!ret) {
3625                        ret = write_one_cache_group(trans, root, path, cache);
3626                        /*
3627                         * Our block group might still be attached to the list
3628                         * of new block groups in the transaction handle of some
3629                         * other task (struct btrfs_trans_handle->new_bgs). This
3630                         * means its block group item isn't yet in the extent
3631                         * tree. If this happens ignore the error, as we will
3632                         * try again later in the critical section of the
3633                         * transaction commit.
3634                         */
3635                        if (ret == -ENOENT) {
3636                                ret = 0;
3637                                spin_lock(&cur_trans->dirty_bgs_lock);
3638                                if (list_empty(&cache->dirty_list)) {
3639                                        list_add_tail(&cache->dirty_list,
3640                                                      &cur_trans->dirty_bgs);
3641                                        btrfs_get_block_group(cache);
3642                                }
3643                                spin_unlock(&cur_trans->dirty_bgs_lock);
3644                        } else if (ret) {
3645                                btrfs_abort_transaction(trans, root, ret);
3646                        }
3647                }
3648
3649                /* if its not on the io list, we need to put the block group */
3650                if (should_put)
3651                        btrfs_put_block_group(cache);
3652
3653                if (ret)
3654                        break;
3655
3656                /*
3657                 * Avoid blocking other tasks for too long. It might even save
3658                 * us from writing caches for block groups that are going to be
3659                 * removed.
3660                 */
3661                mutex_unlock(&trans->transaction->cache_write_mutex);
3662                mutex_lock(&trans->transaction->cache_write_mutex);
3663        }
3664        mutex_unlock(&trans->transaction->cache_write_mutex);
3665
3666        /*
3667         * go through delayed refs for all the stuff we've just kicked off
3668         * and then loop back (just once)
3669         */
3670        ret = btrfs_run_delayed_refs(trans, root, 0);
3671        if (!ret && loops == 0) {
3672                loops++;
3673                spin_lock(&cur_trans->dirty_bgs_lock);
3674                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675                /*
3676                 * dirty_bgs_lock protects us from concurrent block group
3677                 * deletes too (not just cache_write_mutex).
3678                 */
3679                if (!list_empty(&dirty)) {
3680                        spin_unlock(&cur_trans->dirty_bgs_lock);
3681                        goto again;
3682                }
3683                spin_unlock(&cur_trans->dirty_bgs_lock);
3684        }
3685
3686        btrfs_free_path(path);
3687        return ret;
3688}
3689
3690int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691                                   struct btrfs_root *root)
3692{
3693        struct btrfs_block_group_cache *cache;
3694        struct btrfs_transaction *cur_trans = trans->transaction;
3695        int ret = 0;
3696        int should_put;
3697        struct btrfs_path *path;
3698        struct list_head *io = &cur_trans->io_bgs;
3699        int num_started = 0;
3700
3701        path = btrfs_alloc_path();
3702        if (!path)
3703                return -ENOMEM;
3704
3705        /*
3706         * Even though we are in the critical section of the transaction commit,
3707         * we can still have concurrent tasks adding elements to this
3708         * transaction's list of dirty block groups. These tasks correspond to
3709         * endio free space workers started when writeback finishes for a
3710         * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711         * allocate new block groups as a result of COWing nodes of the root
3712         * tree when updating the free space inode. The writeback for the space
3713         * caches is triggered by an earlier call to
3714         * btrfs_start_dirty_block_groups() and iterations of the following
3715         * loop.
3716         * Also we want to do the cache_save_setup first and then run the
3717         * delayed refs to make sure we have the best chance at doing this all
3718         * in one shot.
3719         */
3720        spin_lock(&cur_trans->dirty_bgs_lock);
3721        while (!list_empty(&cur_trans->dirty_bgs)) {
3722                cache = list_first_entry(&cur_trans->dirty_bgs,
3723                                         struct btrfs_block_group_cache,
3724                                         dirty_list);
3725
3726                /*
3727                 * this can happen if cache_save_setup re-dirties a block
3728                 * group that is already under IO.  Just wait for it to
3729                 * finish and then do it all again
3730                 */
3731                if (!list_empty(&cache->io_list)) {
3732                        spin_unlock(&cur_trans->dirty_bgs_lock);
3733                        list_del_init(&cache->io_list);
3734                        btrfs_wait_cache_io(root, trans, cache,
3735                                            &cache->io_ctl, path,
3736                                            cache->key.objectid);
3737                        btrfs_put_block_group(cache);
3738                        spin_lock(&cur_trans->dirty_bgs_lock);
3739                }
3740
3741                /*
3742                 * don't remove from the dirty list until after we've waited
3743                 * on any pending IO
3744                 */
3745                list_del_init(&cache->dirty_list);
3746                spin_unlock(&cur_trans->dirty_bgs_lock);
3747                should_put = 1;
3748
3749                cache_save_setup(cache, trans, path);
3750
3751                if (!ret)
3752                        ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753
3754                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755                        cache->io_ctl.inode = NULL;
3756                        ret = btrfs_write_out_cache(root, trans, cache, path);
3757                        if (ret == 0 && cache->io_ctl.inode) {
3758                                num_started++;
3759                                should_put = 0;
3760                                list_add_tail(&cache->io_list, io);
3761                        } else {
3762                                /*
3763                                 * if we failed to write the cache, the
3764                                 * generation will be bad and life goes on
3765                                 */
3766                                ret = 0;
3767                        }
3768                }
3769                if (!ret) {
3770                        ret = write_one_cache_group(trans, root, path, cache);
3771                        /*
3772                         * One of the free space endio workers might have
3773                         * created a new block group while updating a free space
3774                         * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775                         * and hasn't released its transaction handle yet, in
3776                         * which case the new block group is still attached to
3777                         * its transaction handle and its creation has not
3778                         * finished yet (no block group item in the extent tree
3779                         * yet, etc). If this is the case, wait for all free
3780                         * space endio workers to finish and retry. This is a
3781                         * a very rare case so no need for a more efficient and
3782                         * complex approach.
3783                         */
3784                        if (ret == -ENOENT) {
3785                                wait_event(cur_trans->writer_wait,
3786                                   atomic_read(&cur_trans->num_writers) == 1);
3787                                ret = write_one_cache_group(trans, root, path,
3788                                                            cache);
3789                        }
3790                        if (ret)
3791                                btrfs_abort_transaction(trans, root, ret);
3792                }
3793
3794                /* if its not on the io list, we need to put the block group */
3795                if (should_put)
3796                        btrfs_put_block_group(cache);
3797                spin_lock(&cur_trans->dirty_bgs_lock);
3798        }
3799        spin_unlock(&cur_trans->dirty_bgs_lock);
3800
3801        while (!list_empty(io)) {
3802                cache = list_first_entry(io, struct btrfs_block_group_cache,
3803                                         io_list);
3804                list_del_init(&cache->io_list);
3805                btrfs_wait_cache_io(root, trans, cache,
3806                                    &cache->io_ctl, path, cache->key.objectid);
3807                btrfs_put_block_group(cache);
3808        }
3809
3810        btrfs_free_path(path);
3811        return ret;
3812}
3813
3814int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815{
3816        struct btrfs_block_group_cache *block_group;
3817        int readonly = 0;
3818
3819        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820        if (!block_group || block_group->ro)
3821                readonly = 1;
3822        if (block_group)
3823                btrfs_put_block_group(block_group);
3824        return readonly;
3825}
3826
3827static const char *alloc_name(u64 flags)
3828{
3829        switch (flags) {
3830        case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3831                return "mixed";
3832        case BTRFS_BLOCK_GROUP_METADATA:
3833                return "metadata";
3834        case BTRFS_BLOCK_GROUP_DATA:
3835                return "data";
3836        case BTRFS_BLOCK_GROUP_SYSTEM:
3837                return "system";
3838        default:
3839                WARN_ON(1);
3840                return "invalid-combination";
3841        };
3842}
3843
3844static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3845                             u64 total_bytes, u64 bytes_used,
3846                             struct btrfs_space_info **space_info)
3847{
3848        struct btrfs_space_info *found;
3849        int i;
3850        int factor;
3851        int ret;
3852
3853        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854                     BTRFS_BLOCK_GROUP_RAID10))
3855                factor = 2;
3856        else
3857                factor = 1;
3858
3859        found = __find_space_info(info, flags);
3860        if (found) {
3861                spin_lock(&found->lock);
3862                found->total_bytes += total_bytes;
3863                found->disk_total += total_bytes * factor;
3864                found->bytes_used += bytes_used;
3865                found->disk_used += bytes_used * factor;
3866                if (total_bytes > 0)
3867                        found->full = 0;
3868                spin_unlock(&found->lock);
3869                *space_info = found;
3870                return 0;
3871        }
3872        found = kzalloc(sizeof(*found), GFP_NOFS);
3873        if (!found)
3874                return -ENOMEM;
3875
3876        ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3877        if (ret) {
3878                kfree(found);
3879                return ret;
3880        }
3881
3882        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3883                INIT_LIST_HEAD(&found->block_groups[i]);
3884        init_rwsem(&found->groups_sem);
3885        spin_lock_init(&found->lock);
3886        found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3887        found->total_bytes = total_bytes;
3888        found->disk_total = total_bytes * factor;
3889        found->bytes_used = bytes_used;
3890        found->disk_used = bytes_used * factor;
3891        found->bytes_pinned = 0;
3892        found->bytes_reserved = 0;
3893        found->bytes_readonly = 0;
3894        found->bytes_may_use = 0;
3895        found->full = 0;
3896        found->max_extent_size = 0;
3897        found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3898        found->chunk_alloc = 0;
3899        found->flush = 0;
3900        init_waitqueue_head(&found->wait);
3901        INIT_LIST_HEAD(&found->ro_bgs);
3902
3903        ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3904                                    info->space_info_kobj, "%s",
3905                                    alloc_name(found->flags));
3906        if (ret) {
3907                kfree(found);
3908                return ret;
3909        }
3910
3911        *space_info = found;
3912        list_add_rcu(&found->list, &info->space_info);
3913        if (flags & BTRFS_BLOCK_GROUP_DATA)
3914                info->data_sinfo = found;
3915
3916        return ret;
3917}
3918
3919static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3920{
3921        u64 extra_flags = chunk_to_extended(flags) &
3922                                BTRFS_EXTENDED_PROFILE_MASK;
3923
3924        write_seqlock(&fs_info->profiles_lock);
3925        if (flags & BTRFS_BLOCK_GROUP_DATA)
3926                fs_info->avail_data_alloc_bits |= extra_flags;
3927        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3928                fs_info->avail_metadata_alloc_bits |= extra_flags;
3929        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3930                fs_info->avail_system_alloc_bits |= extra_flags;
3931        write_sequnlock(&fs_info->profiles_lock);
3932}
3933
3934/*
3935 * returns target flags in extended format or 0 if restripe for this
3936 * chunk_type is not in progress
3937 *
3938 * should be called with either volume_mutex or balance_lock held
3939 */
3940static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3941{
3942        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3943        u64 target = 0;
3944
3945        if (!bctl)
3946                return 0;
3947
3948        if (flags & BTRFS_BLOCK_GROUP_DATA &&
3949            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3950                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3951        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3952                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3953                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3954        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3955                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3956                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3957        }
3958
3959        return target;
3960}
3961
3962/*
3963 * @flags: available profiles in extended format (see ctree.h)
3964 *
3965 * Returns reduced profile in chunk format.  If profile changing is in
3966 * progress (either running or paused) picks the target profile (if it's
3967 * already available), otherwise falls back to plain reducing.
3968 */
3969static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3970{
3971        u64 num_devices = root->fs_info->fs_devices->rw_devices;
3972        u64 target;
3973        u64 raid_type;
3974        u64 allowed = 0;
3975
3976        /*
3977         * see if restripe for this chunk_type is in progress, if so
3978         * try to reduce to the target profile
3979         */
3980        spin_lock(&root->fs_info->balance_lock);
3981        target = get_restripe_target(root->fs_info, flags);
3982        if (target) {
3983                /* pick target profile only if it's already available */
3984                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3985                        spin_unlock(&root->fs_info->balance_lock);
3986                        return extended_to_chunk(target);
3987                }
3988        }
3989        spin_unlock(&root->fs_info->balance_lock);
3990
3991        /* First, mask out the RAID levels which aren't possible */
3992        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993                if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3994                        allowed |= btrfs_raid_group[raid_type];
3995        }
3996        allowed &= flags;
3997
3998        if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3999                allowed = BTRFS_BLOCK_GROUP_RAID6;
4000        else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4001                allowed = BTRFS_BLOCK_GROUP_RAID5;
4002        else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4003                allowed = BTRFS_BLOCK_GROUP_RAID10;
4004        else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4005                allowed = BTRFS_BLOCK_GROUP_RAID1;
4006        else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4007                allowed = BTRFS_BLOCK_GROUP_RAID0;
4008
4009        flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4010
4011        return extended_to_chunk(flags | allowed);
4012}
4013
4014static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4015{
4016        unsigned seq;
4017        u64 flags;
4018
4019        do {
4020                flags = orig_flags;
4021                seq = read_seqbegin(&root->fs_info->profiles_lock);
4022
4023                if (flags & BTRFS_BLOCK_GROUP_DATA)
4024                        flags |= root->fs_info->avail_data_alloc_bits;
4025                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4026                        flags |= root->fs_info->avail_system_alloc_bits;
4027                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4028                        flags |= root->fs_info->avail_metadata_alloc_bits;
4029        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4030
4031        return btrfs_reduce_alloc_profile(root, flags);
4032}
4033
4034u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4035{
4036        u64 flags;
4037        u64 ret;
4038
4039        if (data)
4040                flags = BTRFS_BLOCK_GROUP_DATA;
4041        else if (root == root->fs_info->chunk_root)
4042                flags = BTRFS_BLOCK_GROUP_SYSTEM;
4043        else
4044                flags = BTRFS_BLOCK_GROUP_METADATA;
4045
4046        ret = get_alloc_profile(root, flags);
4047        return ret;
4048}
4049
4050int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4051{
4052        struct btrfs_space_info *data_sinfo;
4053        struct btrfs_root *root = BTRFS_I(inode)->root;
4054        struct btrfs_fs_info *fs_info = root->fs_info;
4055        u64 used;
4056        int ret = 0;
4057        int need_commit = 2;
4058        int have_pinned_space;
4059
4060        /* make sure bytes are sectorsize aligned */
4061        bytes = ALIGN(bytes, root->sectorsize);
4062
4063        if (btrfs_is_free_space_inode(inode)) {
4064                need_commit = 0;
4065                ASSERT(current->journal_info);
4066        }
4067
4068        data_sinfo = fs_info->data_sinfo;
4069        if (!data_sinfo)
4070                goto alloc;
4071
4072again:
4073        /* make sure we have enough space to handle the data first */
4074        spin_lock(&data_sinfo->lock);
4075        used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4076                data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4077                data_sinfo->bytes_may_use;
4078
4079        if (used + bytes > data_sinfo->total_bytes) {
4080                struct btrfs_trans_handle *trans;
4081
4082                /*
4083                 * if we don't have enough free bytes in this space then we need
4084                 * to alloc a new chunk.
4085                 */
4086                if (!data_sinfo->full) {
4087                        u64 alloc_target;
4088
4089                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4090                        spin_unlock(&data_sinfo->lock);
4091alloc:
4092                        alloc_target = btrfs_get_alloc_profile(root, 1);
4093                        /*
4094                         * It is ugly that we don't call nolock join
4095                         * transaction for the free space inode case here.
4096                         * But it is safe because we only do the data space
4097                         * reservation for the free space cache in the
4098                         * transaction context, the common join transaction
4099                         * just increase the counter of the current transaction
4100                         * handler, doesn't try to acquire the trans_lock of
4101                         * the fs.
4102                         */
4103                        trans = btrfs_join_transaction(root);
4104                        if (IS_ERR(trans))
4105                                return PTR_ERR(trans);
4106
4107                        ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4108                                             alloc_target,
4109                                             CHUNK_ALLOC_NO_FORCE);
4110                        btrfs_end_transaction(trans, root);
4111                        if (ret < 0) {
4112                                if (ret != -ENOSPC)
4113                                        return ret;
4114                                else {
4115                                        have_pinned_space = 1;
4116                                        goto commit_trans;
4117                                }
4118                        }
4119
4120                        if (!data_sinfo)
4121                                data_sinfo = fs_info->data_sinfo;
4122
4123                        goto again;
4124                }
4125
4126                /*
4127                 * If we don't have enough pinned space to deal with this
4128                 * allocation, and no removed chunk in current transaction,
4129                 * don't bother committing the transaction.
4130                 */
4131                have_pinned_space = percpu_counter_compare(
4132                        &data_sinfo->total_bytes_pinned,
4133                        used + bytes - data_sinfo->total_bytes);
4134                spin_unlock(&data_sinfo->lock);
4135
4136                /* commit the current transaction and try again */
4137commit_trans:
4138                if (need_commit &&
4139                    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4140                        need_commit--;
4141
4142                        if (need_commit > 0) {
4143                                btrfs_start_delalloc_roots(fs_info, 0, -1);
4144                                btrfs_wait_ordered_roots(fs_info, -1);
4145                        }
4146
4147                        trans = btrfs_join_transaction(root);
4148                        if (IS_ERR(trans))
4149                                return PTR_ERR(trans);
4150                        if (have_pinned_space >= 0 ||
4151                            test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4152                                     &trans->transaction->flags) ||
4153                            need_commit > 0) {
4154                                ret = btrfs_commit_transaction(trans, root);
4155                                if (ret)
4156                                        return ret;
4157                                /*
4158                                 * The cleaner kthread might still be doing iput
4159                                 * operations. Wait for it to finish so that
4160                                 * more space is released.
4161                                 */
4162                                mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4163                                mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4164                                goto again;
4165                        } else {
4166                                btrfs_end_transaction(trans, root);
4167                        }
4168                }
4169
4170                trace_btrfs_space_reservation(root->fs_info,
4171                                              "space_info:enospc",
4172                                              data_sinfo->flags, bytes, 1);
4173                return -ENOSPC;
4174        }
4175        data_sinfo->bytes_may_use += bytes;
4176        trace_btrfs_space_reservation(root->fs_info, "space_info",
4177                                      data_sinfo->flags, bytes, 1);
4178        spin_unlock(&data_sinfo->lock);
4179
4180        return ret;
4181}
4182
4183/*
4184 * New check_data_free_space() with ability for precious data reservation
4185 * Will replace old btrfs_check_data_free_space(), but for patch split,
4186 * add a new function first and then replace it.
4187 */
4188int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4189{
4190        struct btrfs_root *root = BTRFS_I(inode)->root;
4191        int ret;
4192
4193        /* align the range */
4194        len = round_up(start + len, root->sectorsize) -
4195              round_down(start, root->sectorsize);
4196        start = round_down(start, root->sectorsize);
4197
4198        ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4199        if (ret < 0)
4200                return ret;
4201
4202        /*
4203         * Use new btrfs_qgroup_reserve_data to reserve precious data space
4204         *
4205         * TODO: Find a good method to avoid reserve data space for NOCOW
4206         * range, but don't impact performance on quota disable case.
4207         */
4208        ret = btrfs_qgroup_reserve_data(inode, start, len);
4209        return ret;
4210}
4211
4212/*
4213 * Called if we need to clear a data reservation for this inode
4214 * Normally in a error case.
4215 *
4216 * This one will *NOT* use accurate qgroup reserved space API, just for case
4217 * which we can't sleep and is sure it won't affect qgroup reserved space.
4218 * Like clear_bit_hook().
4219 */
4220void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4221                                            u64 len)
4222{
4223        struct btrfs_root *root = BTRFS_I(inode)->root;
4224        struct btrfs_space_info *data_sinfo;
4225
4226        /* Make sure the range is aligned to sectorsize */
4227        len = round_up(start + len, root->sectorsize) -
4228              round_down(start, root->sectorsize);
4229        start = round_down(start, root->sectorsize);
4230
4231        data_sinfo = root->fs_info->data_sinfo;
4232        spin_lock(&data_sinfo->lock);
4233        if (WARN_ON(data_sinfo->bytes_may_use < len))
4234                data_sinfo->bytes_may_use = 0;
4235        else
4236                data_sinfo->bytes_may_use -= len;
4237        trace_btrfs_space_reservation(root->fs_info, "space_info",
4238                                      data_sinfo->flags, len, 0);
4239        spin_unlock(&data_sinfo->lock);
4240}
4241
4242/*
4243 * Called if we need to clear a data reservation for this inode
4244 * Normally in a error case.
4245 *
4246 * This one will handle the per-indoe data rsv map for accurate reserved
4247 * space framework.
4248 */
4249void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4250{
4251        btrfs_free_reserved_data_space_noquota(inode, start, len);
4252        btrfs_qgroup_free_data(inode, start, len);
4253}
4254
4255static void force_metadata_allocation(struct btrfs_fs_info *info)
4256{
4257        struct list_head *head = &info->space_info;
4258        struct btrfs_space_info *found;
4259
4260        rcu_read_lock();
4261        list_for_each_entry_rcu(found, head, list) {
4262                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4263                        found->force_alloc = CHUNK_ALLOC_FORCE;
4264        }
4265        rcu_read_unlock();
4266}
4267
4268static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4269{
4270        return (global->size << 1);
4271}
4272
4273static int should_alloc_chunk(struct btrfs_root *root,
4274                              struct btrfs_space_info *sinfo, int force)
4275{
4276        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4277        u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4278        u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4279        u64 thresh;
4280
4281        if (force == CHUNK_ALLOC_FORCE)
4282                return 1;
4283
4284        /*
4285         * We need to take into account the global rsv because for all intents
4286         * and purposes it's used space.  Don't worry about locking the
4287         * global_rsv, it doesn't change except when the transaction commits.
4288         */
4289        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4290                num_allocated += calc_global_rsv_need_space(global_rsv);
4291
4292        /*
4293         * in limited mode, we want to have some free space up to
4294         * about 1% of the FS size.
4295         */
4296        if (force == CHUNK_ALLOC_LIMITED) {
4297                thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4298                thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4299
4300                if (num_bytes - num_allocated < thresh)
4301                        return 1;
4302        }
4303
4304        if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4305                return 0;
4306        return 1;
4307}
4308
4309static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4310{
4311        u64 num_dev;
4312
4313        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4314                    BTRFS_BLOCK_GROUP_RAID0 |
4315                    BTRFS_BLOCK_GROUP_RAID5 |
4316                    BTRFS_BLOCK_GROUP_RAID6))
4317                num_dev = root->fs_info->fs_devices->rw_devices;
4318        else if (type & BTRFS_BLOCK_GROUP_RAID1)
4319                num_dev = 2;
4320        else
4321                num_dev = 1;    /* DUP or single */
4322
4323        return num_dev;
4324}
4325
4326/*
4327 * If @is_allocation is true, reserve space in the system space info necessary
4328 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4329 * removing a chunk.
4330 */
4331void check_system_chunk(struct btrfs_trans_handle *trans,
4332                        struct btrfs_root *root,
4333                        u64 type)
4334{
4335        struct btrfs_space_info *info;
4336        u64 left;
4337        u64 thresh;
4338        int ret = 0;
4339        u64 num_devs;
4340
4341        /*
4342         * Needed because we can end up allocating a system chunk and for an
4343         * atomic and race free space reservation in the chunk block reserve.
4344         */
4345        ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4346
4347        info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4348        spin_lock(&info->lock);
4349        left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4350                info->bytes_reserved - info->bytes_readonly -
4351                info->bytes_may_use;
4352        spin_unlock(&info->lock);
4353
4354        num_devs = get_profile_num_devs(root, type);
4355
4356        /* num_devs device items to update and 1 chunk item to add or remove */
4357        thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4358                btrfs_calc_trans_metadata_size(root, 1);
4359
4360        if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4361                btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4362                        left, thresh, type);
4363                dump_space_info(info, 0, 0);
4364        }
4365
4366        if (left < thresh) {
4367                u64 flags;
4368
4369                flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4370                /*
4371                 * Ignore failure to create system chunk. We might end up not
4372                 * needing it, as we might not need to COW all nodes/leafs from
4373                 * the paths we visit in the chunk tree (they were already COWed
4374                 * or created in the current transaction for example).
4375                 */
4376                ret = btrfs_alloc_chunk(trans, root, flags);
4377        }
4378
4379        if (!ret) {
4380                ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4381                                          &root->fs_info->chunk_block_rsv,
4382                                          thresh, BTRFS_RESERVE_NO_FLUSH);
4383                if (!ret)
4384                        trans->chunk_bytes_reserved += thresh;
4385        }
4386}
4387
4388static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4389                          struct btrfs_root *extent_root, u64 flags, int force)
4390{
4391        struct btrfs_space_info *space_info;
4392        struct btrfs_fs_info *fs_info = extent_root->fs_info;
4393        int wait_for_alloc = 0;
4394        int ret = 0;
4395
4396        /* Don't re-enter if we're already allocating a chunk */
4397        if (trans->allocating_chunk)
4398                return -ENOSPC;
4399
4400        space_info = __find_space_info(extent_root->fs_info, flags);
4401        if (!space_info) {
4402                ret = update_space_info(extent_root->fs_info, flags,
4403                                        0, 0, &space_info);
4404                BUG_ON(ret); /* -ENOMEM */
4405        }
4406        BUG_ON(!space_info); /* Logic error */
4407
4408again:
4409        spin_lock(&space_info->lock);
4410        if (force < space_info->force_alloc)
4411                force = space_info->force_alloc;
4412        if (space_info->full) {
4413                if (should_alloc_chunk(extent_root, space_info, force))
4414                        ret = -ENOSPC;
4415                else
4416                        ret = 0;
4417                spin_unlock(&space_info->lock);
4418                return ret;
4419        }
4420
4421        if (!should_alloc_chunk(extent_root, space_info, force)) {
4422                spin_unlock(&space_info->lock);
4423                return 0;
4424        } else if (space_info->chunk_alloc) {
4425                wait_for_alloc = 1;
4426        } else {
4427                space_info->chunk_alloc = 1;
4428        }
4429
4430        spin_unlock(&space_info->lock);
4431
4432        mutex_lock(&fs_info->chunk_mutex);
4433
4434        /*
4435         * The chunk_mutex is held throughout the entirety of a chunk
4436         * allocation, so once we've acquired the chunk_mutex we know that the
4437         * other guy is done and we need to recheck and see if we should
4438         * allocate.
4439         */
4440        if (wait_for_alloc) {
4441                mutex_unlock(&fs_info->chunk_mutex);
4442                wait_for_alloc = 0;
4443                goto again;
4444        }
4445
4446        trans->allocating_chunk = true;
4447
4448        /*
4449         * If we have mixed data/metadata chunks we want to make sure we keep
4450         * allocating mixed chunks instead of individual chunks.
4451         */
4452        if (btrfs_mixed_space_info(space_info))
4453                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4454
4455        /*
4456         * if we're doing a data chunk, go ahead and make sure that
4457         * we keep a reasonable number of metadata chunks allocated in the
4458         * FS as well.
4459         */
4460        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4461                fs_info->data_chunk_allocations++;
4462                if (!(fs_info->data_chunk_allocations %
4463                      fs_info->metadata_ratio))
4464                        force_metadata_allocation(fs_info);
4465        }
4466
4467        /*
4468         * Check if we have enough space in SYSTEM chunk because we may need
4469         * to update devices.
4470         */
4471        check_system_chunk(trans, extent_root, flags);
4472
4473        ret = btrfs_alloc_chunk(trans, extent_root, flags);
4474        trans->allocating_chunk = false;
4475
4476        spin_lock(&space_info->lock);
4477        if (ret < 0 && ret != -ENOSPC)
4478                goto out;
4479        if (ret)
4480                space_info->full = 1;
4481        else
4482                ret = 1;
4483
4484        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4485out:
4486        space_info->chunk_alloc = 0;
4487        spin_unlock(&space_info->lock);
4488        mutex_unlock(&fs_info->chunk_mutex);
4489        /*
4490         * When we allocate a new chunk we reserve space in the chunk block
4491         * reserve to make sure we can COW nodes/leafs in the chunk tree or
4492         * add new nodes/leafs to it if we end up needing to do it when
4493         * inserting the chunk item and updating device items as part of the
4494         * second phase of chunk allocation, performed by
4495         * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4496         * large number of new block groups to create in our transaction
4497         * handle's new_bgs list to avoid exhausting the chunk block reserve
4498         * in extreme cases - like having a single transaction create many new
4499         * block groups when starting to write out the free space caches of all
4500         * the block groups that were made dirty during the lifetime of the
4501         * transaction.
4502         */
4503        if (trans->can_flush_pending_bgs &&
4504            trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4505                btrfs_create_pending_block_groups(trans, trans->root);
4506                btrfs_trans_release_chunk_metadata(trans);
4507        }
4508        return ret;
4509}
4510
4511static int can_overcommit(struct btrfs_root *root,
4512                          struct btrfs_space_info *space_info, u64 bytes,
4513                          enum btrfs_reserve_flush_enum flush)
4514{
4515        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4516        u64 profile = btrfs_get_alloc_profile(root, 0);
4517        u64 space_size;
4518        u64 avail;
4519        u64 used;
4520
4521        used = space_info->bytes_used + space_info->bytes_reserved +
4522                space_info->bytes_pinned + space_info->bytes_readonly;
4523
4524        /*
4525         * We only want to allow over committing if we have lots of actual space
4526         * free, but if we don't have enough space to handle the global reserve
4527         * space then we could end up having a real enospc problem when trying
4528         * to allocate a chunk or some other such important allocation.
4529         */
4530        spin_lock(&global_rsv->lock);
4531        space_size = calc_global_rsv_need_space(global_rsv);
4532        spin_unlock(&global_rsv->lock);
4533        if (used + space_size >= space_info->total_bytes)
4534                return 0;
4535
4536        used += space_info->bytes_may_use;
4537
4538        spin_lock(&root->fs_info->free_chunk_lock);
4539        avail = root->fs_info->free_chunk_space;
4540        spin_unlock(&root->fs_info->free_chunk_lock);
4541
4542        /*
4543         * If we have dup, raid1 or raid10 then only half of the free
4544         * space is actually useable.  For raid56, the space info used
4545         * doesn't include the parity drive, so we don't have to
4546         * change the math
4547         */
4548        if (profile & (BTRFS_BLOCK_GROUP_DUP |
4549                       BTRFS_BLOCK_GROUP_RAID1 |
4550                       BTRFS_BLOCK_GROUP_RAID10))
4551                avail >>= 1;
4552
4553        /*
4554         * If we aren't flushing all things, let us overcommit up to
4555         * 1/2th of the space. If we can flush, don't let us overcommit
4556         * too much, let it overcommit up to 1/8 of the space.
4557         */
4558        if (flush == BTRFS_RESERVE_FLUSH_ALL)
4559                avail >>= 3;
4560        else
4561                avail >>= 1;
4562
4563        if (used + bytes < space_info->total_bytes + avail)
4564                return 1;
4565        return 0;
4566}
4567
4568static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4569                                         unsigned long nr_pages, int nr_items)
4570{
4571        struct super_block *sb = root->fs_info->sb;
4572
4573        if (down_read_trylock(&sb->s_umount)) {
4574                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4575                up_read(&sb->s_umount);
4576        } else {
4577                /*
4578                 * We needn't worry the filesystem going from r/w to r/o though
4579                 * we don't acquire ->s_umount mutex, because the filesystem
4580                 * should guarantee the delalloc inodes list be empty after
4581                 * the filesystem is readonly(all dirty pages are written to
4582                 * the disk).
4583                 */
4584                btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4585                if (!current->journal_info)
4586                        btrfs_wait_ordered_roots(root->fs_info, nr_items);
4587        }
4588}
4589
4590static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4591{
4592        u64 bytes;
4593        int nr;
4594
4595        bytes = btrfs_calc_trans_metadata_size(root, 1);
4596        nr = (int)div64_u64(to_reclaim, bytes);
4597        if (!nr)
4598                nr = 1;
4599        return nr;
4600}
4601
4602#define EXTENT_SIZE_PER_ITEM    SZ_256K
4603
4604/*
4605 * shrink metadata reservation for delalloc
4606 */
4607static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4608                            bool wait_ordered)
4609{
4610        struct btrfs_block_rsv *block_rsv;
4611        struct btrfs_space_info *space_info;
4612        struct btrfs_trans_handle *trans;
4613        u64 delalloc_bytes;
4614        u64 max_reclaim;
4615        long time_left;
4616        unsigned long nr_pages;
4617        int loops;
4618        int items;
4619        enum btrfs_reserve_flush_enum flush;
4620
4621        /* Calc the number of the pages we need flush for space reservation */
4622        items = calc_reclaim_items_nr(root, to_reclaim);
4623        to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4624
4625        trans = (struct btrfs_trans_handle *)current->journal_info;
4626        block_rsv = &root->fs_info->delalloc_block_rsv;
4627        space_info = block_rsv->space_info;
4628
4629        delalloc_bytes = percpu_counter_sum_positive(
4630                                                &root->fs_info->delalloc_bytes);
4631        if (delalloc_bytes == 0) {
4632                if (trans)
4633                        return;
4634                if (wait_ordered)
4635                        btrfs_wait_ordered_roots(root->fs_info, items);
4636                return;
4637        }
4638
4639        loops = 0;
4640        while (delalloc_bytes && loops < 3) {
4641                max_reclaim = min(delalloc_bytes, to_reclaim);
4642                nr_pages = max_reclaim >> PAGE_SHIFT;
4643                btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4644                /*
4645                 * We need to wait for the async pages to actually start before
4646                 * we do anything.
4647                 */
4648                max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4649                if (!max_reclaim)
4650                        goto skip_async;
4651
4652                if (max_reclaim <= nr_pages)
4653                        max_reclaim = 0;
4654                else
4655                        max_reclaim -= nr_pages;
4656
4657                wait_event(root->fs_info->async_submit_wait,
4658                           atomic_read(&root->fs_info->async_delalloc_pages) <=
4659                           (int)max_reclaim);
4660skip_async:
4661                if (!trans)
4662                        flush = BTRFS_RESERVE_FLUSH_ALL;
4663                else
4664                        flush = BTRFS_RESERVE_NO_FLUSH;
4665                spin_lock(&space_info->lock);
4666                if (can_overcommit(root, space_info, orig, flush)) {
4667                        spin_unlock(&space_info->lock);
4668                        break;
4669                }
4670                spin_unlock(&space_info->lock);
4671
4672                loops++;
4673                if (wait_ordered && !trans) {
4674                        btrfs_wait_ordered_roots(root->fs_info, items);
4675                } else {
4676                        time_left = schedule_timeout_killable(1);
4677                        if (time_left)
4678                                break;
4679                }
4680                delalloc_bytes = percpu_counter_sum_positive(
4681                                                &root->fs_info->delalloc_bytes);
4682        }
4683}
4684
4685/**
4686 * maybe_commit_transaction - possibly commit the transaction if its ok to
4687 * @root - the root we're allocating for
4688 * @bytes - the number of bytes we want to reserve
4689 * @force - force the commit
4690 *
4691 * This will check to make sure that committing the transaction will actually
4692 * get us somewhere and then commit the transaction if it does.  Otherwise it
4693 * will return -ENOSPC.
4694 */
4695static int may_commit_transaction(struct btrfs_root *root,
4696                                  struct btrfs_space_info *space_info,
4697                                  u64 bytes, int force)
4698{
4699        struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4700        struct btrfs_trans_handle *trans;
4701
4702        trans = (struct btrfs_trans_handle *)current->journal_info;
4703        if (trans)
4704                return -EAGAIN;
4705
4706        if (force)
4707                goto commit;
4708
4709        /* See if there is enough pinned space to make this reservation */
4710        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4711                                   bytes) >= 0)
4712                goto commit;
4713
4714        /*
4715         * See if there is some space in the delayed insertion reservation for
4716         * this reservation.
4717         */
4718        if (space_info != delayed_rsv->space_info)
4719                return -ENOSPC;
4720
4721        spin_lock(&delayed_rsv->lock);
4722        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4723                                   bytes - delayed_rsv->size) >= 0) {
4724                spin_unlock(&delayed_rsv->lock);
4725                return -ENOSPC;
4726        }
4727        spin_unlock(&delayed_rsv->lock);
4728
4729commit:
4730        trans = btrfs_join_transaction(root);
4731        if (IS_ERR(trans))
4732                return -ENOSPC;
4733
4734        return btrfs_commit_transaction(trans, root);
4735}
4736
4737enum flush_state {
4738        FLUSH_DELAYED_ITEMS_NR  =       1,
4739        FLUSH_DELAYED_ITEMS     =       2,
4740        FLUSH_DELALLOC          =       3,
4741        FLUSH_DELALLOC_WAIT     =       4,
4742        ALLOC_CHUNK             =       5,
4743        COMMIT_TRANS            =       6,
4744};
4745
4746static int flush_space(struct btrfs_root *root,
4747                       struct btrfs_space_info *space_info, u64 num_bytes,
4748                       u64 orig_bytes, int state)
4749{
4750        struct btrfs_trans_handle *trans;
4751        int nr;
4752        int ret = 0;
4753
4754        switch (state) {
4755        case FLUSH_DELAYED_ITEMS_NR:
4756        case FLUSH_DELAYED_ITEMS:
4757                if (state == FLUSH_DELAYED_ITEMS_NR)
4758                        nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4759                else
4760                        nr = -1;
4761
4762                trans = btrfs_join_transaction(root);
4763                if (IS_ERR(trans)) {
4764                        ret = PTR_ERR(trans);
4765                        break;
4766                }
4767                ret = btrfs_run_delayed_items_nr(trans, root, nr);
4768                btrfs_end_transaction(trans, root);
4769                break;
4770        case FLUSH_DELALLOC:
4771        case FLUSH_DELALLOC_WAIT:
4772                shrink_delalloc(root, num_bytes * 2, orig_bytes,
4773                                state == FLUSH_DELALLOC_WAIT);
4774                break;
4775        case ALLOC_CHUNK:
4776                trans = btrfs_join_transaction(root);
4777                if (IS_ERR(trans)) {
4778                        ret = PTR_ERR(trans);
4779                        break;
4780                }
4781                ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4782                                     btrfs_get_alloc_profile(root, 0),
4783                                     CHUNK_ALLOC_NO_FORCE);
4784                btrfs_end_transaction(trans, root);
4785                if (ret == -ENOSPC)
4786                        ret = 0;
4787                break;
4788        case COMMIT_TRANS:
4789                ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4790                break;
4791        default:
4792                ret = -ENOSPC;
4793                break;
4794        }
4795
4796        return ret;
4797}
4798
4799static inline u64
4800btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4801                                 struct btrfs_space_info *space_info)
4802{
4803        u64 used;
4804        u64 expected;
4805        u64 to_reclaim;
4806
4807        to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4808        spin_lock(&space_info->lock);
4809        if (can_overcommit(root, space_info, to_reclaim,
4810                           BTRFS_RESERVE_FLUSH_ALL)) {
4811                to_reclaim = 0;
4812                goto out;
4813        }
4814
4815        used = space_info->bytes_used + space_info->bytes_reserved +
4816               space_info->bytes_pinned + space_info->bytes_readonly +
4817               space_info->bytes_may_use;
4818        if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4819                expected = div_factor_fine(space_info->total_bytes, 95);
4820        else
4821                expected = div_factor_fine(space_info->total_bytes, 90);
4822
4823        if (used > expected)
4824                to_reclaim = used - expected;
4825        else
4826                to_reclaim = 0;
4827        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4828                                     space_info->bytes_reserved);
4829out:
4830        spin_unlock(&space_info->lock);
4831
4832        return to_reclaim;
4833}
4834
4835static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4836                                        struct btrfs_fs_info *fs_info, u64 used)
4837{
4838        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4839
4840        /* If we're just plain full then async reclaim just slows us down. */
4841        if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4842                return 0;
4843
4844        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4845                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4846}
4847
4848static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4849                                       struct btrfs_fs_info *fs_info,
4850                                       int flush_state)
4851{
4852        u64 used;
4853
4854        spin_lock(&space_info->lock);
4855        /*
4856         * We run out of space and have not got any free space via flush_space,
4857         * so don't bother doing async reclaim.
4858         */
4859        if (flush_state > COMMIT_TRANS && space_info->full) {
4860                spin_unlock(&space_info->lock);
4861                return 0;
4862        }
4863
4864        used = space_info->bytes_used + space_info->bytes_reserved +
4865               space_info->bytes_pinned + space_info->bytes_readonly +
4866               space_info->bytes_may_use;
4867        if (need_do_async_reclaim(space_info, fs_info, used)) {
4868                spin_unlock(&space_info->lock);
4869                return 1;
4870        }
4871        spin_unlock(&space_info->lock);
4872
4873        return 0;
4874}
4875
4876static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4877{
4878        struct btrfs_fs_info *fs_info;
4879        struct btrfs_space_info *space_info;
4880        u64 to_reclaim;
4881        int flush_state;
4882
4883        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4884        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4885
4886        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4887                                                      space_info);
4888        if (!to_reclaim)
4889                return;
4890
4891        flush_state = FLUSH_DELAYED_ITEMS_NR;
4892        do {
4893                flush_space(fs_info->fs_root, space_info, to_reclaim,
4894                            to_reclaim, flush_state);
4895                flush_state++;
4896                if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4897                                                 flush_state))
4898                        return;
4899        } while (flush_state < COMMIT_TRANS);
4900}
4901
4902void btrfs_init_async_reclaim_work(struct work_struct *work)
4903{
4904        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4905}
4906
4907/**
4908 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4909 * @root - the root we're allocating for
4910 * @block_rsv - the block_rsv we're allocating for
4911 * @orig_bytes - the number of bytes we want
4912 * @flush - whether or not we can flush to make our reservation
4913 *
4914 * This will reserve orgi_bytes number of bytes from the space info associated
4915 * with the block_rsv.  If there is not enough space it will make an attempt to
4916 * flush out space to make room.  It will do this by flushing delalloc if
4917 * possible or committing the transaction.  If flush is 0 then no attempts to
4918 * regain reservations will be made and this will fail if there is not enough
4919 * space already.
4920 */
4921static int reserve_metadata_bytes(struct btrfs_root *root,
4922                                  struct btrfs_block_rsv *block_rsv,
4923                                  u64 orig_bytes,
4924                                  enum btrfs_reserve_flush_enum flush)
4925{
4926        struct btrfs_space_info *space_info = block_rsv->space_info;
4927        u64 used;
4928        u64 num_bytes = orig_bytes;
4929        int flush_state = FLUSH_DELAYED_ITEMS_NR;
4930        int ret = 0;
4931        bool flushing = false;
4932
4933again:
4934        ret = 0;
4935        spin_lock(&space_info->lock);
4936        /*
4937         * We only want to wait if somebody other than us is flushing and we
4938         * are actually allowed to flush all things.
4939         */
4940        while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4941               space_info->flush) {
4942                spin_unlock(&space_info->lock);
4943                /*
4944                 * If we have a trans handle we can't wait because the flusher
4945                 * may have to commit the transaction, which would mean we would
4946                 * deadlock since we are waiting for the flusher to finish, but
4947                 * hold the current transaction open.
4948                 */
4949                if (current->journal_info)
4950                        return -EAGAIN;
4951                ret = wait_event_killable(space_info->wait, !space_info->flush);
4952                /* Must have been killed, return */
4953                if (ret)
4954                        return -EINTR;
4955
4956                spin_lock(&space_info->lock);
4957        }
4958
4959        ret = -ENOSPC;
4960        used = space_info->bytes_used + space_info->bytes_reserved +
4961                space_info->bytes_pinned + space_info->bytes_readonly +
4962                space_info->bytes_may_use;
4963
4964        /*
4965         * The idea here is that we've not already over-reserved the block group
4966         * then we can go ahead and save our reservation first and then start
4967         * flushing if we need to.  Otherwise if we've already overcommitted
4968         * lets start flushing stuff first and then come back and try to make
4969         * our reservation.
4970         */
4971        if (used <= space_info->total_bytes) {
4972                if (used + orig_bytes <= space_info->total_bytes) {
4973                        space_info->bytes_may_use += orig_bytes;
4974                        trace_btrfs_space_reservation(root->fs_info,
4975                                "space_info", space_info->flags, orig_bytes, 1);
4976                        ret = 0;
4977                } else {
4978                        /*
4979                         * Ok set num_bytes to orig_bytes since we aren't
4980                         * overocmmitted, this way we only try and reclaim what
4981                         * we need.
4982                         */
4983                        num_bytes = orig_bytes;
4984                }
4985        } else {
4986                /*
4987                 * Ok we're over committed, set num_bytes to the overcommitted
4988                 * amount plus the amount of bytes that we need for this
4989                 * reservation.
4990                 */
4991                num_bytes = used - space_info->total_bytes +
4992                        (orig_bytes * 2);
4993        }
4994
4995        if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4996                space_info->bytes_may_use += orig_bytes;
4997                trace_btrfs_space_reservation(root->fs_info, "space_info",
4998                                              space_info->flags, orig_bytes,
4999                                              1);
5000                ret = 0;
5001        }
5002
5003        /*
5004         * Couldn't make our reservation, save our place so while we're trying
5005         * to reclaim space we can actually use it instead of somebody else
5006         * stealing it from us.
5007         *
5008         * We make the other tasks wait for the flush only when we can flush
5009         * all things.
5010         */
5011        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5012                flushing = true;
5013                space_info->flush = 1;
5014        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5015                used += orig_bytes;
5016                /*
5017                 * We will do the space reservation dance during log replay,
5018                 * which means we won't have fs_info->fs_root set, so don't do
5019                 * the async reclaim as we will panic.
5020                 */
5021                if (!root->fs_info->log_root_recovering &&
5022                    need_do_async_reclaim(space_info, root->fs_info, used) &&
5023                    !work_busy(&root->fs_info->async_reclaim_work))
5024                        queue_work(system_unbound_wq,
5025                                   &root->fs_info->async_reclaim_work);
5026        }
5027        spin_unlock(&space_info->lock);
5028
5029        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5030                goto out;
5031
5032        ret = flush_space(root, space_info, num_bytes, orig_bytes,
5033                          flush_state);
5034        flush_state++;
5035
5036        /*
5037         * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5038         * would happen. So skip delalloc flush.
5039         */
5040        if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5041            (flush_state == FLUSH_DELALLOC ||
5042             flush_state == FLUSH_DELALLOC_WAIT))
5043                flush_state = ALLOC_CHUNK;
5044
5045        if (!ret)
5046                goto again;
5047        else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5048                 flush_state < COMMIT_TRANS)
5049                goto again;
5050        else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5051                 flush_state <= COMMIT_TRANS)
5052                goto again;
5053
5054out:
5055        if (ret == -ENOSPC &&
5056            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5057                struct btrfs_block_rsv *global_rsv =
5058                        &root->fs_info->global_block_rsv;
5059
5060                if (block_rsv != global_rsv &&
5061                    !block_rsv_use_bytes(global_rsv, orig_bytes))
5062                        ret = 0;
5063        }
5064        if (ret == -ENOSPC)
5065                trace_btrfs_space_reservation(root->fs_info,
5066                                              "space_info:enospc",
5067                                              space_info->flags, orig_bytes, 1);
5068        if (flushing) {
5069                spin_lock(&space_info->lock);
5070                space_info->flush = 0;
5071                wake_up_all(&space_info->wait);
5072                spin_unlock(&space_info->lock);
5073        }
5074        return ret;
5075}
5076
5077static struct btrfs_block_rsv *get_block_rsv(
5078                                        const struct btrfs_trans_handle *trans,
5079                                        const struct btrfs_root *root)
5080{
5081        struct btrfs_block_rsv *block_rsv = NULL;
5082
5083        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5084            (root == root->fs_info->csum_root && trans->adding_csums) ||
5085             (root == root->fs_info->uuid_root))
5086                block_rsv = trans->block_rsv;
5087
5088        if (!block_rsv)
5089                block_rsv = root->block_rsv;
5090
5091        if (!block_rsv)
5092                block_rsv = &root->fs_info->empty_block_rsv;
5093
5094        return block_rsv;
5095}
5096
5097static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5098                               u64 num_bytes)
5099{
5100        int ret = -ENOSPC;
5101        spin_lock(&block_rsv->lock);
5102        if (block_rsv->reserved >= num_bytes) {
5103                block_rsv->reserved -= num_bytes;
5104                if (block_rsv->reserved < block_rsv->size)
5105                        block_rsv->full = 0;
5106                ret = 0;
5107        }
5108        spin_unlock(&block_rsv->lock);
5109        return ret;
5110}
5111
5112static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5113                                u64 num_bytes, int update_size)
5114{
5115        spin_lock(&block_rsv->lock);
5116        block_rsv->reserved += num_bytes;
5117        if (update_size)
5118                block_rsv->size += num_bytes;
5119        else if (block_rsv->reserved >= block_rsv->size)
5120                block_rsv->full = 1;
5121        spin_unlock(&block_rsv->lock);
5122}
5123
5124int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5125                             struct btrfs_block_rsv *dest, u64 num_bytes,
5126                             int min_factor)
5127{
5128        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5129        u64 min_bytes;
5130
5131        if (global_rsv->space_info != dest->space_info)
5132                return -ENOSPC;
5133
5134        spin_lock(&global_rsv->lock);
5135        min_bytes = div_factor(global_rsv->size, min_factor);
5136        if (global_rsv->reserved < min_bytes + num_bytes) {
5137                spin_unlock(&global_rsv->lock);
5138                return -ENOSPC;
5139        }
5140        global_rsv->reserved -= num_bytes;
5141        if (global_rsv->reserved < global_rsv->size)
5142                global_rsv->full = 0;
5143        spin_unlock(&global_rsv->lock);
5144
5145        block_rsv_add_bytes(dest, num_bytes, 1);
5146        return 0;
5147}
5148
5149static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5150                                    struct btrfs_block_rsv *block_rsv,
5151                                    struct btrfs_block_rsv *dest, u64 num_bytes)
5152{
5153        struct btrfs_space_info *space_info = block_rsv->space_info;
5154
5155        spin_lock(&block_rsv->lock);
5156        if (num_bytes == (u64)-1)
5157                num_bytes = block_rsv->size;
5158        block_rsv->size -= num_bytes;
5159        if (block_rsv->reserved >= block_rsv->size) {
5160                num_bytes = block_rsv->reserved - block_rsv->size;
5161                block_rsv->reserved = block_rsv->size;
5162                block_rsv->full = 1;
5163        } else {
5164                num_bytes = 0;
5165        }
5166        spin_unlock(&block_rsv->lock);
5167
5168        if (num_bytes > 0) {
5169                if (dest) {
5170                        spin_lock(&dest->lock);
5171                        if (!dest->full) {
5172                                u64 bytes_to_add;
5173
5174                                bytes_to_add = dest->size - dest->reserved;
5175                                bytes_to_add = min(num_bytes, bytes_to_add);
5176                                dest->reserved += bytes_to_add;
5177                                if (dest->reserved >= dest->size)
5178                                        dest->full = 1;
5179                                num_bytes -= bytes_to_add;
5180                        }
5181                        spin_unlock(&dest->lock);
5182                }
5183                if (num_bytes) {
5184                        spin_lock(&space_info->lock);
5185                        space_info->bytes_may_use -= num_bytes;
5186                        trace_btrfs_space_reservation(fs_info, "space_info",
5187                                        space_info->flags, num_bytes, 0);
5188                        spin_unlock(&space_info->lock);
5189                }
5190        }
5191}
5192
5193static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5194                                   struct btrfs_block_rsv *dst, u64 num_bytes)
5195{
5196        int ret;
5197
5198        ret = block_rsv_use_bytes(src, num_bytes);
5199        if (ret)
5200                return ret;
5201
5202        block_rsv_add_bytes(dst, num_bytes, 1);
5203        return 0;
5204}
5205
5206void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5207{
5208        memset(rsv, 0, sizeof(*rsv));
5209        spin_lock_init(&rsv->lock);
5210        rsv->type = type;
5211}
5212
5213struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5214                                              unsigned short type)
5215{
5216        struct btrfs_block_rsv *block_rsv;
5217        struct btrfs_fs_info *fs_info = root->fs_info;
5218
5219        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5220        if (!block_rsv)
5221                return NULL;
5222
5223        btrfs_init_block_rsv(block_rsv, type);
5224        block_rsv->space_info = __find_space_info(fs_info,
5225                                                  BTRFS_BLOCK_GROUP_METADATA);
5226        return block_rsv;
5227}
5228
5229void btrfs_free_block_rsv(struct btrfs_root *root,
5230                          struct btrfs_block_rsv *rsv)
5231{
5232        if (!rsv)
5233                return;
5234        btrfs_block_rsv_release(root, rsv, (u64)-1);
5235        kfree(rsv);
5236}
5237
5238void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5239{
5240        kfree(rsv);
5241}
5242
5243int btrfs_block_rsv_add(struct btrfs_root *root,
5244                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5245                        enum btrfs_reserve_flush_enum flush)
5246{
5247        int ret;
5248
5249        if (num_bytes == 0)
5250                return 0;
5251
5252        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5253        if (!ret) {
5254                block_rsv_add_bytes(block_rsv, num_bytes, 1);
5255                return 0;
5256        }
5257
5258        return ret;
5259}
5260
5261int btrfs_block_rsv_check(struct btrfs_root *root,
5262                          struct btrfs_block_rsv *block_rsv, int min_factor)
5263{
5264        u64 num_bytes = 0;
5265        int ret = -ENOSPC;
5266
5267        if (!block_rsv)
5268                return 0;
5269
5270        spin_lock(&block_rsv->lock);
5271        num_bytes = div_factor(block_rsv->size, min_factor);
5272        if (block_rsv->reserved >= num_bytes)
5273                ret = 0;
5274        spin_unlock(&block_rsv->lock);
5275
5276        return ret;
5277}
5278
5279int btrfs_block_rsv_refill(struct btrfs_root *root,
5280                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5281                           enum btrfs_reserve_flush_enum flush)
5282{
5283        u64 num_bytes = 0;
5284        int ret = -ENOSPC;
5285
5286        if (!block_rsv)
5287                return 0;
5288
5289        spin_lock(&block_rsv->lock);
5290        num_bytes = min_reserved;
5291        if (block_rsv->reserved >= num_bytes)
5292                ret = 0;
5293        else
5294                num_bytes -= block_rsv->reserved;
5295        spin_unlock(&block_rsv->lock);
5296
5297        if (!ret)
5298                return 0;
5299
5300        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5301        if (!ret) {
5302                block_rsv_add_bytes(block_rsv, num_bytes, 0);
5303                return 0;
5304        }
5305
5306        return ret;
5307}
5308
5309int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5310                            struct btrfs_block_rsv *dst_rsv,
5311                            u64 num_bytes)
5312{
5313        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5314}
5315
5316void btrfs_block_rsv_release(struct btrfs_root *root,
5317                             struct btrfs_block_rsv *block_rsv,
5318                             u64 num_bytes)
5319{
5320        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5321        if (global_rsv == block_rsv ||
5322            block_rsv->space_info != global_rsv->space_info)
5323                global_rsv = NULL;
5324        block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5325                                num_bytes);
5326}
5327
5328/*
5329 * helper to calculate size of global block reservation.
5330 * the desired value is sum of space used by extent tree,
5331 * checksum tree and root tree
5332 */
5333static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5334{
5335        struct btrfs_space_info *sinfo;
5336        u64 num_bytes;
5337        u64 meta_used;
5338        u64 data_used;
5339        int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5340
5341        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5342        spin_lock(&sinfo->lock);
5343        data_used = sinfo->bytes_used;
5344        spin_unlock(&sinfo->lock);
5345
5346        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5347        spin_lock(&sinfo->lock);
5348        if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5349                data_used = 0;
5350        meta_used = sinfo->bytes_used;
5351        spin_unlock(&sinfo->lock);
5352
5353        num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5354                    csum_size * 2;
5355        num_bytes += div_u64(data_used + meta_used, 50);
5356
5357        if (num_bytes * 3 > meta_used)
5358                num_bytes = div_u64(meta_used, 3);
5359
5360        return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5361}
5362
5363static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5364{
5365        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5366        struct btrfs_space_info *sinfo = block_rsv->space_info;
5367        u64 num_bytes;
5368
5369        num_bytes = calc_global_metadata_size(fs_info);
5370
5371        spin_lock(&sinfo->lock);
5372        spin_lock(&block_rsv->lock);
5373
5374        block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5375
5376        if (block_rsv->reserved < block_rsv->size) {
5377                num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5378                        sinfo->bytes_reserved + sinfo->bytes_readonly +
5379                        sinfo->bytes_may_use;
5380                if (sinfo->total_bytes > num_bytes) {
5381                        num_bytes = sinfo->total_bytes - num_bytes;
5382                        num_bytes = min(num_bytes,
5383                                        block_rsv->size - block_rsv->reserved);
5384                        block_rsv->reserved += num_bytes;
5385                        sinfo->bytes_may_use += num_bytes;
5386                        trace_btrfs_space_reservation(fs_info, "space_info",
5387                                                      sinfo->flags, num_bytes,
5388                                                      1);
5389                }
5390        } else if (block_rsv->reserved > block_rsv->size) {
5391                num_bytes = block_rsv->reserved - block_rsv->size;
5392                sinfo->bytes_may_use -= num_bytes;
5393                trace_btrfs_space_reservation(fs_info, "space_info",
5394                                      sinfo->flags, num_bytes, 0);
5395                block_rsv->reserved = block_rsv->size;
5396        }
5397
5398        if (block_rsv->reserved == block_rsv->size)
5399                block_rsv->full = 1;
5400        else
5401                block_rsv->full = 0;
5402
5403        spin_unlock(&block_rsv->lock);
5404        spin_unlock(&sinfo->lock);
5405}
5406
5407static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5408{
5409        struct btrfs_space_info *space_info;
5410
5411        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5412        fs_info->chunk_block_rsv.space_info = space_info;
5413
5414        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5415        fs_info->global_block_rsv.space_info = space_info;
5416        fs_info->delalloc_block_rsv.space_info = space_info;
5417        fs_info->trans_block_rsv.space_info = space_info;
5418        fs_info->empty_block_rsv.space_info = space_info;
5419        fs_info->delayed_block_rsv.space_info = space_info;
5420
5421        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5422        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5423        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5424        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5425        if (fs_info->quota_root)
5426                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5427        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5428
5429        update_global_block_rsv(fs_info);
5430}
5431
5432static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5433{
5434        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5435                                (u64)-1);
5436        WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5437        WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5438        WARN_ON(fs_info->trans_block_rsv.size > 0);
5439        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5440        WARN_ON(fs_info->chunk_block_rsv.size > 0);
5441        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5442        WARN_ON(fs_info->delayed_block_rsv.size > 0);
5443        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5444}
5445
5446void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5447                                  struct btrfs_root *root)
5448{
5449        if (!trans->block_rsv)
5450                return;
5451
5452        if (!trans->bytes_reserved)
5453                return;
5454
5455        trace_btrfs_space_reservation(root->fs_info, "transaction",
5456                                      trans->transid, trans->bytes_reserved, 0);
5457        btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5458        trans->bytes_reserved = 0;
5459}
5460
5461/*
5462 * To be called after all the new block groups attached to the transaction
5463 * handle have been created (btrfs_create_pending_block_groups()).
5464 */
5465void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5466{
5467        struct btrfs_fs_info *fs_info = trans->root->fs_info;
5468
5469        if (!trans->chunk_bytes_reserved)
5470                return;
5471
5472        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5473
5474        block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5475                                trans->chunk_bytes_reserved);
5476        trans->chunk_bytes_reserved = 0;
5477}
5478
5479/* Can only return 0 or -ENOSPC */
5480int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5481                                  struct inode *inode)
5482{
5483        struct btrfs_root *root = BTRFS_I(inode)->root;
5484        struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5485        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5486
5487        /*
5488         * We need to hold space in order to delete our orphan item once we've
5489         * added it, so this takes the reservation so we can release it later
5490         * when we are truly done with the orphan item.
5491         */
5492        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5493        trace_btrfs_space_reservation(root->fs_info, "orphan",
5494                                      btrfs_ino(inode), num_bytes, 1);
5495        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5496}
5497
5498void btrfs_orphan_release_metadata(struct inode *inode)
5499{
5500        struct btrfs_root *root = BTRFS_I(inode)->root;
5501        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5502        trace_btrfs_space_reservation(root->fs_info, "orphan",
5503                                      btrfs_ino(inode), num_bytes, 0);
5504        btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5505}
5506
5507/*
5508 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5509 * root: the root of the parent directory
5510 * rsv: block reservation
5511 * items: the number of items that we need do reservation
5512 * qgroup_reserved: used to return the reserved size in qgroup
5513 *
5514 * This function is used to reserve the space for snapshot/subvolume
5515 * creation and deletion. Those operations are different with the
5516 * common file/directory operations, they change two fs/file trees
5517 * and root tree, the number of items that the qgroup reserves is
5518 * different with the free space reservation. So we can not use
5519 * the space reseravtion mechanism in start_transaction().
5520 */
5521int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5522                                     struct btrfs_block_rsv *rsv,
5523                                     int items,
5524                                     u64 *qgroup_reserved,
5525                                     bool use_global_rsv)
5526{
5527        u64 num_bytes;
5528        int ret;
5529        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5530
5531        if (root->fs_info->quota_enabled) {
5532                /* One for parent inode, two for dir entries */
5533                num_bytes = 3 * root->nodesize;
5534                ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5535                if (ret)
5536                        return ret;
5537        } else {
5538                num_bytes = 0;
5539        }
5540
5541        *qgroup_reserved = num_bytes;
5542
5543        num_bytes = btrfs_calc_trans_metadata_size(root, items);
5544        rsv->space_info = __find_space_info(root->fs_info,
5545                                            BTRFS_BLOCK_GROUP_METADATA);
5546        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5547                                  BTRFS_RESERVE_FLUSH_ALL);
5548
5549        if (ret == -ENOSPC && use_global_rsv)
5550                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5551
5552        if (ret && *qgroup_reserved)
5553                btrfs_qgroup_free_meta(root, *qgroup_reserved);
5554
5555        return ret;
5556}
5557
5558void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5559                                      struct btrfs_block_rsv *rsv,
5560                                      u64 qgroup_reserved)
5561{
5562        btrfs_block_rsv_release(root, rsv, (u64)-1);
5563}
5564
5565/**
5566 * drop_outstanding_extent - drop an outstanding extent
5567 * @inode: the inode we're dropping the extent for
5568 * @num_bytes: the number of bytes we're relaseing.
5569 *
5570 * This is called when we are freeing up an outstanding extent, either called
5571 * after an error or after an extent is written.  This will return the number of
5572 * reserved extents that need to be freed.  This must be called with
5573 * BTRFS_I(inode)->lock held.
5574 */
5575static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5576{
5577        unsigned drop_inode_space = 0;
5578        unsigned dropped_extents = 0;
5579        unsigned num_extents = 0;
5580
5581        num_extents = (unsigned)div64_u64(num_bytes +
5582                                          BTRFS_MAX_EXTENT_SIZE - 1,
5583                                          BTRFS_MAX_EXTENT_SIZE);
5584        ASSERT(num_extents);
5585        ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5586        BTRFS_I(inode)->outstanding_extents -= num_extents;
5587
5588        if (BTRFS_I(inode)->outstanding_extents == 0 &&
5589            test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5590                               &BTRFS_I(inode)->runtime_flags))
5591                drop_inode_space = 1;
5592
5593        /*
5594         * If we have more or the same amount of outsanding extents than we have
5595         * reserved then we need to leave the reserved extents count alone.
5596         */
5597        if (BTRFS_I(inode)->outstanding_extents >=
5598            BTRFS_I(inode)->reserved_extents)
5599                return drop_inode_space;
5600
5601        dropped_extents = BTRFS_I(inode)->reserved_extents -
5602                BTRFS_I(inode)->outstanding_extents;
5603        BTRFS_I(inode)->reserved_extents -= dropped_extents;
5604        return dropped_extents + drop_inode_space;
5605}
5606
5607/**
5608 * calc_csum_metadata_size - return the amount of metada space that must be
5609 *      reserved/free'd for the given bytes.
5610 * @inode: the inode we're manipulating
5611 * @num_bytes: the number of bytes in question
5612 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5613 *
5614 * This adjusts the number of csum_bytes in the inode and then returns the
5615 * correct amount of metadata that must either be reserved or freed.  We
5616 * calculate how many checksums we can fit into one leaf and then divide the
5617 * number of bytes that will need to be checksumed by this value to figure out
5618 * how many checksums will be required.  If we are adding bytes then the number
5619 * may go up and we will return the number of additional bytes that must be
5620 * reserved.  If it is going down we will return the number of bytes that must
5621 * be freed.
5622 *
5623 * This must be called with BTRFS_I(inode)->lock held.
5624 */
5625static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5626                                   int reserve)
5627{
5628        struct btrfs_root *root = BTRFS_I(inode)->root;
5629        u64 old_csums, num_csums;
5630
5631        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5632            BTRFS_I(inode)->csum_bytes == 0)
5633                return 0;
5634
5635        old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5636        if (reserve)
5637                BTRFS_I(inode)->csum_bytes += num_bytes;
5638        else
5639                BTRFS_I(inode)->csum_bytes -= num_bytes;
5640        num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5641
5642        /* No change, no need to reserve more */
5643        if (old_csums == num_csums)
5644                return 0;
5645
5646        if (reserve)
5647                return btrfs_calc_trans_metadata_size(root,
5648                                                      num_csums - old_csums);
5649
5650        return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5651}
5652
5653int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5654{
5655        struct btrfs_root *root = BTRFS_I(inode)->root;
5656        struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5657        u64 to_reserve = 0;
5658        u64 csum_bytes;
5659        unsigned nr_extents = 0;
5660        int extra_reserve = 0;
5661        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5662        int ret = 0;
5663        bool delalloc_lock = true;
5664        u64 to_free = 0;
5665        unsigned dropped;
5666
5667        /* If we are a free space inode we need to not flush since we will be in
5668         * the middle of a transaction commit.  We also don't need the delalloc
5669         * mutex since we won't race with anybody.  We need this mostly to make
5670         * lockdep shut its filthy mouth.
5671         */
5672        if (btrfs_is_free_space_inode(inode)) {
5673                flush = BTRFS_RESERVE_NO_FLUSH;
5674                delalloc_lock = false;
5675        }
5676
5677        if (flush != BTRFS_RESERVE_NO_FLUSH &&
5678            btrfs_transaction_in_commit(root->fs_info))
5679                schedule_timeout(1);
5680
5681        if (delalloc_lock)
5682                mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5683
5684        num_bytes = ALIGN(num_bytes, root->sectorsize);
5685
5686        spin_lock(&BTRFS_I(inode)->lock);
5687        nr_extents = (unsigned)div64_u64(num_bytes +
5688                                         BTRFS_MAX_EXTENT_SIZE - 1,
5689                                         BTRFS_MAX_EXTENT_SIZE);
5690        BTRFS_I(inode)->outstanding_extents += nr_extents;
5691        nr_extents = 0;
5692
5693        if (BTRFS_I(inode)->outstanding_extents >
5694            BTRFS_I(inode)->reserved_extents)
5695                nr_extents = BTRFS_I(inode)->outstanding_extents -
5696                        BTRFS_I(inode)->reserved_extents;
5697
5698        /*
5699         * Add an item to reserve for updating the inode when we complete the
5700         * delalloc io.
5701         */
5702        if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5703                      &BTRFS_I(inode)->runtime_flags)) {
5704                nr_extents++;
5705                extra_reserve = 1;
5706        }
5707
5708        to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5709        to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5710        csum_bytes = BTRFS_I(inode)->csum_bytes;
5711        spin_unlock(&BTRFS_I(inode)->lock);
5712
5713        if (root->fs_info->quota_enabled) {
5714                ret = btrfs_qgroup_reserve_meta(root,
5715                                nr_extents * root->nodesize);
5716                if (ret)
5717                        goto out_fail;
5718        }
5719
5720        ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5721        if (unlikely(ret)) {
5722                btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5723                goto out_fail;
5724        }
5725
5726        spin_lock(&BTRFS_I(inode)->lock);
5727        if (extra_reserve) {
5728                set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5729                        &BTRFS_I(inode)->runtime_flags);
5730                nr_extents--;
5731        }
5732        BTRFS_I(inode)->reserved_extents += nr_extents;
5733        spin_unlock(&BTRFS_I(inode)->lock);
5734
5735        if (delalloc_lock)
5736                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5737
5738        if (to_reserve)
5739                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5740                                              btrfs_ino(inode), to_reserve, 1);
5741        block_rsv_add_bytes(block_rsv, to_reserve, 1);
5742
5743        return 0;
5744
5745out_fail:
5746        spin_lock(&BTRFS_I(inode)->lock);
5747        dropped = drop_outstanding_extent(inode, num_bytes);
5748        /*
5749         * If the inodes csum_bytes is the same as the original
5750         * csum_bytes then we know we haven't raced with any free()ers
5751         * so we can just reduce our inodes csum bytes and carry on.
5752         */
5753        if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5754                calc_csum_metadata_size(inode, num_bytes, 0);
5755        } else {
5756                u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5757                u64 bytes;
5758
5759                /*
5760                 * This is tricky, but first we need to figure out how much we
5761                 * free'd from any free-ers that occurred during this
5762                 * reservation, so we reset ->csum_bytes to the csum_bytes
5763                 * before we dropped our lock, and then call the free for the
5764                 * number of bytes that were freed while we were trying our
5765                 * reservation.
5766                 */
5767                bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5768                BTRFS_I(inode)->csum_bytes = csum_bytes;
5769                to_free = calc_csum_metadata_size(inode, bytes, 0);
5770
5771
5772                /*
5773                 * Now we need to see how much we would have freed had we not
5774                 * been making this reservation and our ->csum_bytes were not
5775                 * artificially inflated.
5776                 */
5777                BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5778                bytes = csum_bytes - orig_csum_bytes;
5779                bytes = calc_csum_metadata_size(inode, bytes, 0);
5780
5781                /*
5782                 * Now reset ->csum_bytes to what it should be.  If bytes is
5783                 * more than to_free then we would have free'd more space had we
5784                 * not had an artificially high ->csum_bytes, so we need to free
5785                 * the remainder.  If bytes is the same or less then we don't
5786                 * need to do anything, the other free-ers did the correct
5787                 * thing.
5788                 */
5789                BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5790                if (bytes > to_free)
5791                        to_free = bytes - to_free;
5792                else
5793                        to_free = 0;
5794        }
5795        spin_unlock(&BTRFS_I(inode)->lock);
5796        if (dropped)
5797                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5798
5799        if (to_free) {
5800                btrfs_block_rsv_release(root, block_rsv, to_free);
5801                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5802                                              btrfs_ino(inode), to_free, 0);
5803        }
5804        if (delalloc_lock)
5805                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5806        return ret;
5807}
5808
5809/**
5810 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5811 * @inode: the inode to release the reservation for
5812 * @num_bytes: the number of bytes we're releasing
5813 *
5814 * This will release the metadata reservation for an inode.  This can be called
5815 * once we complete IO for a given set of bytes to release their metadata
5816 * reservations.
5817 */
5818void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5819{
5820        struct btrfs_root *root = BTRFS_I(inode)->root;
5821        u64 to_free = 0;
5822        unsigned dropped;
5823
5824        num_bytes = ALIGN(num_bytes, root->sectorsize);
5825        spin_lock(&BTRFS_I(inode)->lock);
5826        dropped = drop_outstanding_extent(inode, num_bytes);
5827
5828        if (num_bytes)
5829                to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5830        spin_unlock(&BTRFS_I(inode)->lock);
5831        if (dropped > 0)
5832                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5833
5834        if (btrfs_test_is_dummy_root(root))
5835                return;
5836
5837        trace_btrfs_space_reservation(root->fs_info, "delalloc",
5838                                      btrfs_ino(inode), to_free, 0);
5839
5840        btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5841                                to_free);
5842}
5843
5844/**
5845 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5846 * delalloc
5847 * @inode: inode we're writing to
5848 * @start: start range we are writing to
5849 * @len: how long the range we are writing to
5850 *
5851 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5852 *
5853 * This will do the following things
5854 *
5855 * o reserve space in data space info for num bytes
5856 *   and reserve precious corresponding qgroup space
5857 *   (Done in check_data_free_space)
5858 *
5859 * o reserve space for metadata space, based on the number of outstanding
5860 *   extents and how much csums will be needed
5861 *   also reserve metadata space in a per root over-reserve method.
5862 * o add to the inodes->delalloc_bytes
5863 * o add it to the fs_info's delalloc inodes list.
5864 *   (Above 3 all done in delalloc_reserve_metadata)
5865 *
5866 * Return 0 for success
5867 * Return <0 for error(-ENOSPC or -EQUOT)
5868 */
5869int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5870{
5871        int ret;
5872
5873        ret = btrfs_check_data_free_space(inode, start, len);
5874        if (ret < 0)
5875                return ret;
5876        ret = btrfs_delalloc_reserve_metadata(inode, len);
5877        if (ret < 0)
5878                btrfs_free_reserved_data_space(inode, start, len);
5879        return ret;
5880}
5881
5882/**
5883 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5884 * @inode: inode we're releasing space for
5885 * @start: start position of the space already reserved
5886 * @len: the len of the space already reserved
5887 *
5888 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5889 * called in the case that we don't need the metadata AND data reservations
5890 * anymore.  So if there is an error or we insert an inline extent.
5891 *
5892 * This function will release the metadata space that was not used and will
5893 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5894 * list if there are no delalloc bytes left.
5895 * Also it will handle the qgroup reserved space.
5896 */
5897void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5898{
5899        btrfs_delalloc_release_metadata(inode, len);
5900        btrfs_free_reserved_data_space(inode, start, len);
5901}
5902
5903static int update_block_group(struct btrfs_trans_handle *trans,
5904                              struct btrfs_root *root, u64 bytenr,
5905                              u64 num_bytes, int alloc)
5906{
5907        struct btrfs_block_group_cache *cache = NULL;
5908        struct btrfs_fs_info *info = root->fs_info;
5909        u64 total = num_bytes;
5910        u64 old_val;
5911        u64 byte_in_group;
5912        int factor;
5913
5914        /* block accounting for super block */
5915        spin_lock(&info->delalloc_root_lock);
5916        old_val = btrfs_super_bytes_used(info->super_copy);
5917        if (alloc)
5918                old_val += num_bytes;
5919        else
5920                old_val -= num_bytes;
5921        btrfs_set_super_bytes_used(info->super_copy, old_val);
5922        spin_unlock(&info->delalloc_root_lock);
5923
5924        while (total) {
5925                cache = btrfs_lookup_block_group(info, bytenr);
5926                if (!cache)
5927                        return -ENOENT;
5928                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5929                                    BTRFS_BLOCK_GROUP_RAID1 |
5930                                    BTRFS_BLOCK_GROUP_RAID10))
5931                        factor = 2;
5932                else
5933                        factor = 1;
5934                /*
5935                 * If this block group has free space cache written out, we
5936                 * need to make sure to load it if we are removing space.  This
5937                 * is because we need the unpinning stage to actually add the
5938                 * space back to the block group, otherwise we will leak space.
5939                 */
5940                if (!alloc && cache->cached == BTRFS_CACHE_NO)
5941                        cache_block_group(cache, 1);
5942
5943                byte_in_group = bytenr - cache->key.objectid;
5944                WARN_ON(byte_in_group > cache->key.offset);
5945
5946                spin_lock(&cache->space_info->lock);
5947                spin_lock(&cache->lock);
5948
5949                if (btrfs_test_opt(root, SPACE_CACHE) &&
5950                    cache->disk_cache_state < BTRFS_DC_CLEAR)
5951                        cache->disk_cache_state = BTRFS_DC_CLEAR;
5952
5953                old_val = btrfs_block_group_used(&cache->item);
5954                num_bytes = min(total, cache->key.offset - byte_in_group);
5955                if (alloc) {
5956                        old_val += num_bytes;
5957                        btrfs_set_block_group_used(&cache->item, old_val);
5958                        cache->reserved -= num_bytes;
5959                        cache->space_info->bytes_reserved -= num_bytes;
5960                        cache->space_info->bytes_used += num_bytes;
5961                        cache->space_info->disk_used += num_bytes * factor;
5962                        spin_unlock(&cache->lock);
5963                        spin_unlock(&cache->space_info->lock);
5964                } else {
5965                        old_val -= num_bytes;
5966                        btrfs_set_block_group_used(&cache->item, old_val);
5967                        cache->pinned += num_bytes;
5968                        cache->space_info->bytes_pinned += num_bytes;
5969                        cache->space_info->bytes_used -= num_bytes;
5970                        cache->space_info->disk_used -= num_bytes * factor;
5971                        spin_unlock(&cache->lock);
5972                        spin_unlock(&cache->space_info->lock);
5973
5974                        set_extent_dirty(info->pinned_extents,
5975                                         bytenr, bytenr + num_bytes - 1,
5976                                         GFP_NOFS | __GFP_NOFAIL);
5977                }
5978
5979                spin_lock(&trans->transaction->dirty_bgs_lock);
5980                if (list_empty(&cache->dirty_list)) {
5981                        list_add_tail(&cache->dirty_list,
5982                                      &trans->transaction->dirty_bgs);
5983                                trans->transaction->num_dirty_bgs++;
5984                        btrfs_get_block_group(cache);
5985                }
5986                spin_unlock(&trans->transaction->dirty_bgs_lock);
5987
5988                /*
5989                 * No longer have used bytes in this block group, queue it for
5990                 * deletion. We do this after adding the block group to the
5991                 * dirty list to avoid races between cleaner kthread and space
5992                 * cache writeout.
5993                 */
5994                if (!alloc && old_val == 0) {
5995                        spin_lock(&info->unused_bgs_lock);
5996                        if (list_empty(&cache->bg_list)) {
5997                                btrfs_get_block_group(cache);
5998                                list_add_tail(&cache->bg_list,
5999                                              &info->unused_bgs);
6000                        }
6001                        spin_unlock(&info->unused_bgs_lock);
6002                }
6003
6004                btrfs_put_block_group(cache);
6005                total -= num_bytes;
6006                bytenr += num_bytes;
6007        }
6008        return 0;
6009}
6010
6011static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6012{
6013        struct btrfs_block_group_cache *cache;
6014        u64 bytenr;
6015
6016        spin_lock(&root->fs_info->block_group_cache_lock);
6017        bytenr = root->fs_info->first_logical_byte;
6018        spin_unlock(&root->fs_info->block_group_cache_lock);
6019
6020        if (bytenr < (u64)-1)
6021                return bytenr;
6022
6023        cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6024        if (!cache)
6025                return 0;
6026
6027        bytenr = cache->key.objectid;
6028        btrfs_put_block_group(cache);
6029
6030        return bytenr;
6031}
6032
6033static int pin_down_extent(struct btrfs_root *root,
6034                           struct btrfs_block_group_cache *cache,
6035                           u64 bytenr, u64 num_bytes, int reserved)
6036{
6037        spin_lock(&cache->space_info->lock);
6038        spin_lock(&cache->lock);
6039        cache->pinned += num_bytes;
6040        cache->space_info->bytes_pinned += num_bytes;
6041        if (reserved) {
6042                cache->reserved -= num_bytes;
6043                cache->space_info->bytes_reserved -= num_bytes;
6044        }
6045        spin_unlock(&cache->lock);
6046        spin_unlock(&cache->space_info->lock);
6047
6048        set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6049                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6050        if (reserved)
6051                trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6052        return 0;
6053}
6054
6055/*
6056 * this function must be called within transaction
6057 */
6058int btrfs_pin_extent(struct btrfs_root *root,
6059                     u64 bytenr, u64 num_bytes, int reserved)
6060{
6061        struct btrfs_block_group_cache *cache;
6062
6063        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6064        BUG_ON(!cache); /* Logic error */
6065
6066        pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6067
6068        btrfs_put_block_group(cache);
6069        return 0;
6070}
6071
6072/*
6073 * this function must be called within transaction
6074 */
6075int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6076                                    u64 bytenr, u64 num_bytes)
6077{
6078        struct btrfs_block_group_cache *cache;
6079        int ret;
6080
6081        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6082        if (!cache)
6083                return -EINVAL;
6084
6085        /*
6086         * pull in the free space cache (if any) so that our pin
6087         * removes the free space from the cache.  We have load_only set
6088         * to one because the slow code to read in the free extents does check
6089         * the pinned extents.
6090         */
6091        cache_block_group(cache, 1);
6092
6093        pin_down_extent(root, cache, bytenr, num_bytes, 0);
6094
6095        /* remove us from the free space cache (if we're there at all) */
6096        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6097        btrfs_put_block_group(cache);
6098        return ret;
6099}
6100
6101static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6102{
6103        int ret;
6104        struct btrfs_block_group_cache *block_group;
6105        struct btrfs_caching_control *caching_ctl;
6106
6107        block_group = btrfs_lookup_block_group(root->fs_info, start);
6108        if (!block_group)
6109                return -EINVAL;
6110
6111        cache_block_group(block_group, 0);
6112        caching_ctl = get_caching_control(block_group);
6113
6114        if (!caching_ctl) {
6115                /* Logic error */
6116                BUG_ON(!block_group_cache_done(block_group));
6117                ret = btrfs_remove_free_space(block_group, start, num_bytes);
6118        } else {
6119                mutex_lock(&caching_ctl->mutex);
6120
6121                if (start >= caching_ctl->progress) {
6122                        ret = add_excluded_extent(root, start, num_bytes);
6123                } else if (start + num_bytes <= caching_ctl->progress) {
6124                        ret = btrfs_remove_free_space(block_group,
6125                                                      start, num_bytes);
6126                } else {
6127                        num_bytes = caching_ctl->progress - start;
6128                        ret = btrfs_remove_free_space(block_group,
6129                                                      start, num_bytes);
6130                        if (ret)
6131                                goto out_lock;
6132
6133                        num_bytes = (start + num_bytes) -
6134                                caching_ctl->progress;
6135                        start = caching_ctl->progress;
6136                        ret = add_excluded_extent(root, start, num_bytes);
6137                }
6138out_lock:
6139                mutex_unlock(&caching_ctl->mutex);
6140                put_caching_control(caching_ctl);
6141        }
6142        btrfs_put_block_group(block_group);
6143        return ret;
6144}
6145
6146int btrfs_exclude_logged_extents(struct btrfs_root *log,
6147                                 struct extent_buffer *eb)
6148{
6149        struct btrfs_file_extent_item *item;
6150        struct btrfs_key key;
6151        int found_type;
6152        int i;
6153
6154        if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6155                return 0;
6156
6157        for (i = 0; i < btrfs_header_nritems(eb); i++) {
6158                btrfs_item_key_to_cpu(eb, &key, i);
6159                if (key.type != BTRFS_EXTENT_DATA_KEY)
6160                        continue;
6161                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6162                found_type = btrfs_file_extent_type(eb, item);
6163                if (found_type == BTRFS_FILE_EXTENT_INLINE)
6164                        continue;
6165                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6166                        continue;
6167                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6168                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6169                __exclude_logged_extent(log, key.objectid, key.offset);
6170        }
6171
6172        return 0;
6173}
6174
6175/**
6176 * btrfs_update_reserved_bytes - update the block_group and space info counters
6177 * @cache:      The cache we are manipulating
6178 * @num_bytes:  The number of bytes in question
6179 * @reserve:    One of the reservation enums
6180 * @delalloc:   The blocks are allocated for the delalloc write
6181 *
6182 * This is called by the allocator when it reserves space, or by somebody who is
6183 * freeing space that was never actually used on disk.  For example if you
6184 * reserve some space for a new leaf in transaction A and before transaction A
6185 * commits you free that leaf, you call this with reserve set to 0 in order to
6186 * clear the reservation.
6187 *
6188 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6189 * ENOSPC accounting.  For data we handle the reservation through clearing the
6190 * delalloc bits in the io_tree.  We have to do this since we could end up
6191 * allocating less disk space for the amount of data we have reserved in the
6192 * case of compression.
6193 *
6194 * If this is a reservation and the block group has become read only we cannot
6195 * make the reservation and return -EAGAIN, otherwise this function always
6196 * succeeds.
6197 */
6198static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6199                                       u64 num_bytes, int reserve, int delalloc)
6200{
6201        struct btrfs_space_info *space_info = cache->space_info;
6202        int ret = 0;
6203
6204        spin_lock(&space_info->lock);
6205        spin_lock(&cache->lock);
6206        if (reserve != RESERVE_FREE) {
6207                if (cache->ro) {
6208                        ret = -EAGAIN;
6209                } else {
6210                        cache->reserved += num_bytes;
6211                        space_info->bytes_reserved += num_bytes;
6212                        if (reserve == RESERVE_ALLOC) {
6213                                trace_btrfs_space_reservation(cache->fs_info,
6214                                                "space_info", space_info->flags,
6215                                                num_bytes, 0);
6216                                space_info->bytes_may_use -= num_bytes;
6217                        }
6218
6219                        if (delalloc)
6220                                cache->delalloc_bytes += num_bytes;
6221                }
6222        } else {
6223                if (cache->ro)
6224                        space_info->bytes_readonly += num_bytes;
6225                cache->reserved -= num_bytes;
6226                space_info->bytes_reserved -= num_bytes;
6227
6228                if (delalloc)
6229                        cache->delalloc_bytes -= num_bytes;
6230        }
6231        spin_unlock(&cache->lock);
6232        spin_unlock(&space_info->lock);
6233        return ret;
6234}
6235
6236void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6237                                struct btrfs_root *root)
6238{
6239        struct btrfs_fs_info *fs_info = root->fs_info;
6240        struct btrfs_caching_control *next;
6241        struct btrfs_caching_control *caching_ctl;
6242        struct btrfs_block_group_cache *cache;
6243
6244        down_write(&fs_info->commit_root_sem);
6245
6246        list_for_each_entry_safe(caching_ctl, next,
6247                                 &fs_info->caching_block_groups, list) {
6248                cache = caching_ctl->block_group;
6249                if (block_group_cache_done(cache)) {
6250                        cache->last_byte_to_unpin = (u64)-1;
6251                        list_del_init(&caching_ctl->list);
6252                        put_caching_control(caching_ctl);
6253                } else {
6254                        cache->last_byte_to_unpin = caching_ctl->progress;
6255                }
6256        }
6257
6258        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6259                fs_info->pinned_extents = &fs_info->freed_extents[1];
6260        else
6261                fs_info->pinned_extents = &fs_info->freed_extents[0];
6262
6263        up_write(&fs_info->commit_root_sem);
6264
6265        update_global_block_rsv(fs_info);
6266}
6267
6268/*
6269 * Returns the free cluster for the given space info and sets empty_cluster to
6270 * what it should be based on the mount options.
6271 */
6272static struct btrfs_free_cluster *
6273fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6274                   u64 *empty_cluster)
6275{
6276        struct btrfs_free_cluster *ret = NULL;
6277        bool ssd = btrfs_test_opt(root, SSD);
6278
6279        *empty_cluster = 0;
6280        if (btrfs_mixed_space_info(space_info))
6281                return ret;
6282
6283        if (ssd)
6284                *empty_cluster = SZ_2M;
6285        if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6286                ret = &root->fs_info->meta_alloc_cluster;
6287                if (!ssd)
6288                        *empty_cluster = SZ_64K;
6289        } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6290                ret = &root->fs_info->data_alloc_cluster;
6291        }
6292
6293        return ret;
6294}
6295
6296static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6297                              const bool return_free_space)
6298{
6299        struct btrfs_fs_info *fs_info = root->fs_info;
6300        struct btrfs_block_group_cache *cache = NULL;
6301        struct btrfs_space_info *space_info;
6302        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6303        struct btrfs_free_cluster *cluster = NULL;
6304        u64 len;
6305        u64 total_unpinned = 0;
6306        u64 empty_cluster = 0;
6307        bool readonly;
6308
6309        while (start <= end) {
6310                readonly = false;
6311                if (!cache ||
6312                    start >= cache->key.objectid + cache->key.offset) {
6313                        if (cache)
6314                                btrfs_put_block_group(cache);
6315                        total_unpinned = 0;
6316                        cache = btrfs_lookup_block_group(fs_info, start);
6317                        BUG_ON(!cache); /* Logic error */
6318
6319                        cluster = fetch_cluster_info(root,
6320                                                     cache->space_info,
6321                                                     &empty_cluster);
6322                        empty_cluster <<= 1;
6323                }
6324
6325                len = cache->key.objectid + cache->key.offset - start;
6326                len = min(len, end + 1 - start);
6327
6328                if (start < cache->last_byte_to_unpin) {
6329                        len = min(len, cache->last_byte_to_unpin - start);
6330                        if (return_free_space)
6331                                btrfs_add_free_space(cache, start, len);
6332                }
6333
6334                start += len;
6335                total_unpinned += len;
6336                space_info = cache->space_info;
6337
6338                /*
6339                 * If this space cluster has been marked as fragmented and we've
6340                 * unpinned enough in this block group to potentially allow a
6341                 * cluster to be created inside of it go ahead and clear the
6342                 * fragmented check.
6343                 */
6344                if (cluster && cluster->fragmented &&
6345                    total_unpinned > empty_cluster) {
6346                        spin_lock(&cluster->lock);
6347                        cluster->fragmented = 0;
6348                        spin_unlock(&cluster->lock);
6349                }
6350
6351                spin_lock(&space_info->lock);
6352                spin_lock(&cache->lock);
6353                cache->pinned -= len;
6354                space_info->bytes_pinned -= len;
6355                space_info->max_extent_size = 0;
6356                percpu_counter_add(&space_info->total_bytes_pinned, -len);
6357                if (cache->ro) {
6358                        space_info->bytes_readonly += len;
6359                        readonly = true;
6360                }
6361                spin_unlock(&cache->lock);
6362                if (!readonly && global_rsv->space_info == space_info) {
6363                        spin_lock(&global_rsv->lock);
6364                        if (!global_rsv->full) {
6365                                len = min(len, global_rsv->size -
6366                                          global_rsv->reserved);
6367                                global_rsv->reserved += len;
6368                                space_info->bytes_may_use += len;
6369                                if (global_rsv->reserved >= global_rsv->size)
6370                                        global_rsv->full = 1;
6371                        }
6372                        spin_unlock(&global_rsv->lock);
6373                }
6374                spin_unlock(&space_info->lock);
6375        }
6376
6377        if (cache)
6378                btrfs_put_block_group(cache);
6379        return 0;
6380}
6381
6382int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6383                               struct btrfs_root *root)
6384{
6385        struct btrfs_fs_info *fs_info = root->fs_info;
6386        struct btrfs_block_group_cache *block_group, *tmp;
6387        struct list_head *deleted_bgs;
6388        struct extent_io_tree *unpin;
6389        u64 start;
6390        u64 end;
6391        int ret;
6392
6393        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6394                unpin = &fs_info->freed_extents[1];
6395        else
6396                unpin = &fs_info->freed_extents[0];
6397
6398        while (!trans->aborted) {
6399                mutex_lock(&fs_info->unused_bg_unpin_mutex);
6400                ret = find_first_extent_bit(unpin, 0, &start, &end,
6401                                            EXTENT_DIRTY, NULL);
6402                if (ret) {
6403                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6404                        break;
6405                }
6406
6407                if (btrfs_test_opt(root, DISCARD))
6408                        ret = btrfs_discard_extent(root, start,
6409                                                   end + 1 - start, NULL);
6410
6411                clear_extent_dirty(unpin, start, end, GFP_NOFS);
6412                unpin_extent_range(root, start, end, true);
6413                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6414                cond_resched();
6415        }
6416
6417        /*
6418         * Transaction is finished.  We don't need the lock anymore.  We
6419         * do need to clean up the block groups in case of a transaction
6420         * abort.
6421         */
6422        deleted_bgs = &trans->transaction->deleted_bgs;
6423        list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6424                u64 trimmed = 0;
6425
6426                ret = -EROFS;
6427                if (!trans->aborted)
6428                        ret = btrfs_discard_extent(root,
6429                                                   block_group->key.objectid,
6430                                                   block_group->key.offset,
6431                                                   &trimmed);
6432
6433                list_del_init(&block_group->bg_list);
6434                btrfs_put_block_group_trimming(block_group);
6435                btrfs_put_block_group(block_group);
6436
6437                if (ret) {
6438                        const char *errstr = btrfs_decode_error(ret);
6439                        btrfs_warn(fs_info,
6440                                   "Discard failed while removing blockgroup: errno=%d %s\n",
6441                                   ret, errstr);
6442                }
6443        }
6444
6445        return 0;
6446}
6447
6448static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6449                             u64 owner, u64 root_objectid)
6450{
6451        struct btrfs_space_info *space_info;
6452        u64 flags;
6453
6454        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6455                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6456                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
6457                else
6458                        flags = BTRFS_BLOCK_GROUP_METADATA;
6459        } else {
6460                flags = BTRFS_BLOCK_GROUP_DATA;
6461        }
6462
6463        space_info = __find_space_info(fs_info, flags);
6464        BUG_ON(!space_info); /* Logic bug */
6465        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6466}
6467
6468
6469static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6470                                struct btrfs_root *root,
6471                                struct btrfs_delayed_ref_node *node, u64 parent,
6472                                u64 root_objectid, u64 owner_objectid,
6473                                u64 owner_offset, int refs_to_drop,
6474                                struct btrfs_delayed_extent_op *extent_op)
6475{
6476        struct btrfs_key key;
6477        struct btrfs_path *path;
6478        struct btrfs_fs_info *info = root->fs_info;
6479        struct btrfs_root *extent_root = info->extent_root;
6480        struct extent_buffer *leaf;
6481        struct btrfs_extent_item *ei;
6482        struct btrfs_extent_inline_ref *iref;
6483        int ret;
6484        int is_data;
6485        int extent_slot = 0;
6486        int found_extent = 0;
6487        int num_to_del = 1;
6488        u32 item_size;
6489        u64 refs;
6490        u64 bytenr = node->bytenr;
6491        u64 num_bytes = node->num_bytes;
6492        int last_ref = 0;
6493        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6494                                                 SKINNY_METADATA);
6495
6496        path = btrfs_alloc_path();
6497        if (!path)
6498                return -ENOMEM;
6499
6500        path->reada = READA_FORWARD;
6501        path->leave_spinning = 1;
6502
6503        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6504        BUG_ON(!is_data && refs_to_drop != 1);
6505
6506        if (is_data)
6507                skinny_metadata = 0;
6508
6509        ret = lookup_extent_backref(trans, extent_root, path, &iref,
6510                                    bytenr, num_bytes, parent,
6511                                    root_objectid, owner_objectid,
6512                                    owner_offset);
6513        if (ret == 0) {
6514                extent_slot = path->slots[0];
6515                while (extent_slot >= 0) {
6516                        btrfs_item_key_to_cpu(path->nodes[0], &key,
6517                                              extent_slot);
6518                        if (key.objectid != bytenr)
6519                                break;
6520                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6521                            key.offset == num_bytes) {
6522                                found_extent = 1;
6523                                break;
6524                        }
6525                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
6526                            key.offset == owner_objectid) {
6527                                found_extent = 1;
6528                                break;
6529                        }
6530                        if (path->slots[0] - extent_slot > 5)
6531                                break;
6532                        extent_slot--;
6533                }
6534#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6535                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6536                if (found_extent && item_size < sizeof(*ei))
6537                        found_extent = 0;
6538#endif
6539                if (!found_extent) {
6540                        BUG_ON(iref);
6541                        ret = remove_extent_backref(trans, extent_root, path,
6542                                                    NULL, refs_to_drop,
6543                                                    is_data, &last_ref);
6544                        if (ret) {
6545                                btrfs_abort_transaction(trans, extent_root, ret);
6546                                goto out;
6547                        }
6548                        btrfs_release_path(path);
6549                        path->leave_spinning = 1;
6550
6551                        key.objectid = bytenr;
6552                        key.type = BTRFS_EXTENT_ITEM_KEY;
6553                        key.offset = num_bytes;
6554
6555                        if (!is_data && skinny_metadata) {
6556                                key.type = BTRFS_METADATA_ITEM_KEY;
6557                                key.offset = owner_objectid;
6558                        }
6559
6560                        ret = btrfs_search_slot(trans, extent_root,
6561                                                &key, path, -1, 1);
6562                        if (ret > 0 && skinny_metadata && path->slots[0]) {
6563                                /*
6564                                 * Couldn't find our skinny metadata item,
6565                                 * see if we have ye olde extent item.
6566                                 */
6567                                path->slots[0]--;
6568                                btrfs_item_key_to_cpu(path->nodes[0], &key,
6569                                                      path->slots[0]);
6570                                if (key.objectid == bytenr &&
6571                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
6572                                    key.offset == num_bytes)
6573                                        ret = 0;
6574                        }
6575
6576                        if (ret > 0 && skinny_metadata) {
6577                                skinny_metadata = false;
6578                                key.objectid = bytenr;
6579                                key.type = BTRFS_EXTENT_ITEM_KEY;
6580                                key.offset = num_bytes;
6581                                btrfs_release_path(path);
6582                                ret = btrfs_search_slot(trans, extent_root,
6583                                                        &key, path, -1, 1);
6584                        }
6585
6586                        if (ret) {
6587                                btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6588                                        ret, bytenr);
6589                                if (ret > 0)
6590                                        btrfs_print_leaf(extent_root,
6591                                                         path->nodes[0]);
6592                        }
6593                        if (ret < 0) {
6594                                btrfs_abort_transaction(trans, extent_root, ret);
6595                                goto out;
6596                        }
6597                        extent_slot = path->slots[0];
6598                }
6599        } else if (WARN_ON(ret == -ENOENT)) {
6600                btrfs_print_leaf(extent_root, path->nodes[0]);
6601                btrfs_err(info,
6602                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6603                        bytenr, parent, root_objectid, owner_objectid,
6604                        owner_offset);
6605                btrfs_abort_transaction(trans, extent_root, ret);
6606                goto out;
6607        } else {
6608                btrfs_abort_transaction(trans, extent_root, ret);
6609                goto out;
6610        }
6611
6612        leaf = path->nodes[0];
6613        item_size = btrfs_item_size_nr(leaf, extent_slot);
6614#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6615        if (item_size < sizeof(*ei)) {
6616                BUG_ON(found_extent || extent_slot != path->slots[0]);
6617                ret = convert_extent_item_v0(trans, extent_root, path,
6618                                             owner_objectid, 0);
6619                if (ret < 0) {
6620                        btrfs_abort_transaction(trans, extent_root, ret);
6621                        goto out;
6622                }
6623
6624                btrfs_release_path(path);
6625                path->leave_spinning = 1;
6626
6627                key.objectid = bytenr;
6628                key.type = BTRFS_EXTENT_ITEM_KEY;
6629                key.offset = num_bytes;
6630
6631                ret = btrfs_search_slot(trans, extent_root, &key, path,
6632                                        -1, 1);
6633                if (ret) {
6634                        btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6635                                ret, bytenr);
6636                        btrfs_print_leaf(extent_root, path->nodes[0]);
6637                }
6638                if (ret < 0) {
6639                        btrfs_abort_transaction(trans, extent_root, ret);
6640                        goto out;
6641                }
6642
6643                extent_slot = path->slots[0];
6644                leaf = path->nodes[0];
6645                item_size = btrfs_item_size_nr(leaf, extent_slot);
6646        }
6647#endif
6648        BUG_ON(item_size < sizeof(*ei));
6649        ei = btrfs_item_ptr(leaf, extent_slot,
6650                            struct btrfs_extent_item);
6651        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6652            key.type == BTRFS_EXTENT_ITEM_KEY) {
6653                struct btrfs_tree_block_info *bi;
6654                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6655                bi = (struct btrfs_tree_block_info *)(ei + 1);
6656                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6657        }
6658
6659        refs = btrfs_extent_refs(leaf, ei);
6660        if (refs < refs_to_drop) {
6661                btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6662                          "for bytenr %Lu", refs_to_drop, refs, bytenr);
6663                ret = -EINVAL;
6664                btrfs_abort_transaction(trans, extent_root, ret);
6665                goto out;
6666        }
6667        refs -= refs_to_drop;
6668
6669        if (refs > 0) {
6670                if (extent_op)
6671                        __run_delayed_extent_op(extent_op, leaf, ei);
6672                /*
6673                 * In the case of inline back ref, reference count will
6674                 * be updated by remove_extent_backref
6675                 */
6676                if (iref) {
6677                        BUG_ON(!found_extent);
6678                } else {
6679                        btrfs_set_extent_refs(leaf, ei, refs);
6680                        btrfs_mark_buffer_dirty(leaf);
6681                }
6682                if (found_extent) {
6683                        ret = remove_extent_backref(trans, extent_root, path,
6684                                                    iref, refs_to_drop,
6685                                                    is_data, &last_ref);
6686                        if (ret) {
6687                                btrfs_abort_transaction(trans, extent_root, ret);
6688                                goto out;
6689                        }
6690                }
6691                add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6692                                 root_objectid);
6693        } else {
6694                if (found_extent) {
6695                        BUG_ON(is_data && refs_to_drop !=
6696                               extent_data_ref_count(path, iref));
6697                        if (iref) {
6698                                BUG_ON(path->slots[0] != extent_slot);
6699                        } else {
6700                                BUG_ON(path->slots[0] != extent_slot + 1);
6701                                path->slots[0] = extent_slot;
6702                                num_to_del = 2;
6703                        }
6704                }
6705
6706                last_ref = 1;
6707                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6708                                      num_to_del);
6709                if (ret) {
6710                        btrfs_abort_transaction(trans, extent_root, ret);
6711                        goto out;
6712                }
6713                btrfs_release_path(path);
6714
6715                if (is_data) {
6716                        ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6717                        if (ret) {
6718                                btrfs_abort_transaction(trans, extent_root, ret);
6719                                goto out;
6720                        }
6721                }
6722
6723                ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6724                                             num_bytes);
6725                if (ret) {
6726                        btrfs_abort_transaction(trans, extent_root, ret);
6727                        goto out;
6728                }
6729
6730                ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6731                if (ret) {
6732                        btrfs_abort_transaction(trans, extent_root, ret);
6733                        goto out;
6734                }
6735        }
6736        btrfs_release_path(path);
6737
6738out:
6739        btrfs_free_path(path);
6740        return ret;
6741}
6742
6743/*
6744 * when we free an block, it is possible (and likely) that we free the last
6745 * delayed ref for that extent as well.  This searches the delayed ref tree for
6746 * a given extent, and if there are no other delayed refs to be processed, it
6747 * removes it from the tree.
6748 */
6749static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6750                                      struct btrfs_root *root, u64 bytenr)
6751{
6752        struct btrfs_delayed_ref_head *head;
6753        struct btrfs_delayed_ref_root *delayed_refs;
6754        int ret = 0;
6755
6756        delayed_refs = &trans->transaction->delayed_refs;
6757        spin_lock(&delayed_refs->lock);
6758        head = btrfs_find_delayed_ref_head(trans, bytenr);
6759        if (!head)
6760                goto out_delayed_unlock;
6761
6762        spin_lock(&head->lock);
6763        if (!list_empty(&head->ref_list))
6764                goto out;
6765
6766        if (head->extent_op) {
6767                if (!head->must_insert_reserved)
6768                        goto out;
6769                btrfs_free_delayed_extent_op(head->extent_op);
6770                head->extent_op = NULL;
6771        }
6772
6773        /*
6774         * waiting for the lock here would deadlock.  If someone else has it
6775         * locked they are already in the process of dropping it anyway
6776         */
6777        if (!mutex_trylock(&head->mutex))
6778                goto out;
6779
6780        /*
6781         * at this point we have a head with no other entries.  Go
6782         * ahead and process it.
6783         */
6784        head->node.in_tree = 0;
6785        rb_erase(&head->href_node, &delayed_refs->href_root);
6786
6787        atomic_dec(&delayed_refs->num_entries);
6788
6789        /*
6790         * we don't take a ref on the node because we're removing it from the
6791         * tree, so we just steal the ref the tree was holding.
6792         */
6793        delayed_refs->num_heads--;
6794        if (head->processing == 0)
6795                delayed_refs->num_heads_ready--;
6796        head->processing = 0;
6797        spin_unlock(&head->lock);
6798        spin_unlock(&delayed_refs->lock);
6799
6800        BUG_ON(head->extent_op);
6801        if (head->must_insert_reserved)
6802                ret = 1;
6803
6804        mutex_unlock(&head->mutex);
6805        btrfs_put_delayed_ref(&head->node);
6806        return ret;
6807out:
6808        spin_unlock(&head->lock);
6809
6810out_delayed_unlock:
6811        spin_unlock(&delayed_refs->lock);
6812        return 0;
6813}
6814
6815void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6816                           struct btrfs_root *root,
6817                           struct extent_buffer *buf,
6818                           u64 parent, int last_ref)
6819{
6820        int pin = 1;
6821        int ret;
6822
6823        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6824                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6825                                        buf->start, buf->len,
6826                                        parent, root->root_key.objectid,
6827                                        btrfs_header_level(buf),
6828                                        BTRFS_DROP_DELAYED_REF, NULL);
6829                BUG_ON(ret); /* -ENOMEM */
6830        }
6831
6832        if (!last_ref)
6833                return;
6834
6835        if (btrfs_header_generation(buf) == trans->transid) {
6836                struct btrfs_block_group_cache *cache;
6837
6838                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6839                        ret = check_ref_cleanup(trans, root, buf->start);
6840                        if (!ret)
6841                                goto out;
6842                }
6843
6844                cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6845
6846                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6847                        pin_down_extent(root, cache, buf->start, buf->len, 1);
6848                        btrfs_put_block_group(cache);
6849                        goto out;
6850                }
6851
6852                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6853
6854                btrfs_add_free_space(cache, buf->start, buf->len);
6855                btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6856                btrfs_put_block_group(cache);
6857                trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6858                pin = 0;
6859        }
6860out:
6861        if (pin)
6862                add_pinned_bytes(root->fs_info, buf->len,
6863                                 btrfs_header_level(buf),
6864                                 root->root_key.objectid);
6865
6866        /*
6867         * Deleting the buffer, clear the corrupt flag since it doesn't matter
6868         * anymore.
6869         */
6870        clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6871}
6872
6873/* Can return -ENOMEM */
6874int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6875                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6876                      u64 owner, u64 offset)
6877{
6878        int ret;
6879        struct btrfs_fs_info *fs_info = root->fs_info;
6880
6881        if (btrfs_test_is_dummy_root(root))
6882                return 0;
6883
6884        add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6885
6886        /*
6887         * tree log blocks never actually go into the extent allocation
6888         * tree, just update pinning info and exit early.
6889         */
6890        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6891                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6892                /* unlocks the pinned mutex */
6893                btrfs_pin_extent(root, bytenr, num_bytes, 1);
6894                ret = 0;
6895        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6896                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6897                                        num_bytes,
6898                                        parent, root_objectid, (int)owner,
6899                                        BTRFS_DROP_DELAYED_REF, NULL);
6900        } else {
6901                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6902                                                num_bytes,
6903                                                parent, root_objectid, owner,
6904                                                offset, 0,
6905                                                BTRFS_DROP_DELAYED_REF, NULL);
6906        }
6907        return ret;
6908}
6909
6910/*
6911 * when we wait for progress in the block group caching, its because
6912 * our allocation attempt failed at least once.  So, we must sleep
6913 * and let some progress happen before we try again.
6914 *
6915 * This function will sleep at least once waiting for new free space to
6916 * show up, and then it will check the block group free space numbers
6917 * for our min num_bytes.  Another option is to have it go ahead
6918 * and look in the rbtree for a free extent of a given size, but this
6919 * is a good start.
6920 *
6921 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6922 * any of the information in this block group.
6923 */
6924static noinline void
6925wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6926                                u64 num_bytes)
6927{
6928        struct btrfs_caching_control *caching_ctl;
6929
6930        caching_ctl = get_caching_control(cache);
6931        if (!caching_ctl)
6932                return;
6933
6934        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6935                   (cache->free_space_ctl->free_space >= num_bytes));
6936
6937        put_caching_control(caching_ctl);
6938}
6939
6940static noinline int
6941wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6942{
6943        struct btrfs_caching_control *caching_ctl;
6944        int ret = 0;
6945
6946        caching_ctl = get_caching_control(cache);
6947        if (!caching_ctl)
6948                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6949
6950        wait_event(caching_ctl->wait, block_group_cache_done(cache));
6951        if (cache->cached == BTRFS_CACHE_ERROR)
6952                ret = -EIO;
6953        put_caching_control(caching_ctl);
6954        return ret;
6955}
6956
6957int __get_raid_index(u64 flags)
6958{
6959        if (flags & BTRFS_BLOCK_GROUP_RAID10)
6960                return BTRFS_RAID_RAID10;
6961        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6962                return BTRFS_RAID_RAID1;
6963        else if (flags & BTRFS_BLOCK_GROUP_DUP)
6964                return BTRFS_RAID_DUP;
6965        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6966                return BTRFS_RAID_RAID0;
6967        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6968                return BTRFS_RAID_RAID5;
6969        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6970                return BTRFS_RAID_RAID6;
6971
6972        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6973}
6974
6975int get_block_group_index(struct btrfs_block_group_cache *cache)
6976{
6977        return __get_raid_index(cache->flags);
6978}
6979
6980static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6981        [BTRFS_RAID_RAID10]     = "raid10",
6982        [BTRFS_RAID_RAID1]      = "raid1",
6983        [BTRFS_RAID_DUP]        = "dup",
6984        [BTRFS_RAID_RAID0]      = "raid0",
6985        [BTRFS_RAID_SINGLE]     = "single",
6986        [BTRFS_RAID_RAID5]      = "raid5",
6987        [BTRFS_RAID_RAID6]      = "raid6",
6988};
6989
6990static const char *get_raid_name(enum btrfs_raid_types type)
6991{
6992        if (type >= BTRFS_NR_RAID_TYPES)
6993                return NULL;
6994
6995        return btrfs_raid_type_names[type];
6996}
6997
6998enum btrfs_loop_type {
6999        LOOP_CACHING_NOWAIT = 0,
7000        LOOP_CACHING_WAIT = 1,
7001        LOOP_ALLOC_CHUNK = 2,
7002        LOOP_NO_EMPTY_SIZE = 3,
7003};
7004
7005static inline void
7006btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7007                       int delalloc)
7008{
7009        if (delalloc)
7010                down_read(&cache->data_rwsem);
7011}
7012
7013static inline void
7014btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7015                       int delalloc)
7016{
7017        btrfs_get_block_group(cache);
7018        if (delalloc)
7019                down_read(&cache->data_rwsem);
7020}
7021
7022static struct btrfs_block_group_cache *
7023btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7024                   struct btrfs_free_cluster *cluster,
7025                   int delalloc)
7026{
7027        struct btrfs_block_group_cache *used_bg = NULL;
7028        bool locked = false;
7029again:
7030        spin_lock(&cluster->refill_lock);
7031        if (locked) {
7032                if (used_bg == cluster->block_group)
7033                        return used_bg;
7034
7035                up_read(&used_bg->data_rwsem);
7036                btrfs_put_block_group(used_bg);
7037        }
7038
7039        used_bg = cluster->block_group;
7040        if (!used_bg)
7041                return NULL;
7042
7043        if (used_bg == block_group)
7044                return used_bg;
7045
7046        btrfs_get_block_group(used_bg);
7047
7048        if (!delalloc)
7049                return used_bg;
7050
7051        if (down_read_trylock(&used_bg->data_rwsem))
7052                return used_bg;
7053
7054        spin_unlock(&cluster->refill_lock);
7055        down_read(&used_bg->data_rwsem);
7056        locked = true;
7057        goto again;
7058}
7059
7060static inline void
7061btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7062                         int delalloc)
7063{
7064        if (delalloc)
7065                up_read(&cache->data_rwsem);
7066        btrfs_put_block_group(cache);
7067}
7068
7069/*
7070 * walks the btree of allocated extents and find a hole of a given size.
7071 * The key ins is changed to record the hole:
7072 * ins->objectid == start position
7073 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7074 * ins->offset == the size of the hole.
7075 * Any available blocks before search_start are skipped.
7076 *
7077 * If there is no suitable free space, we will record the max size of
7078 * the free space extent currently.
7079 */
7080static noinline int find_free_extent(struct btrfs_root *orig_root,
7081                                     u64 num_bytes, u64 empty_size,
7082                                     u64 hint_byte, struct btrfs_key *ins,
7083                                     u64 flags, int delalloc)
7084{
7085        int ret = 0;
7086        struct btrfs_root *root = orig_root->fs_info->extent_root;
7087        struct btrfs_free_cluster *last_ptr = NULL;
7088        struct btrfs_block_group_cache *block_group = NULL;
7089        u64 search_start = 0;
7090        u64 max_extent_size = 0;
7091        u64 empty_cluster = 0;
7092        struct btrfs_space_info *space_info;
7093        int loop = 0;
7094        int index = __get_raid_index(flags);
7095        int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7096                RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7097        bool failed_cluster_refill = false;
7098        bool failed_alloc = false;
7099        bool use_cluster = true;
7100        bool have_caching_bg = false;
7101        bool orig_have_caching_bg = false;
7102        bool full_search = false;
7103
7104        WARN_ON(num_bytes < root->sectorsize);
7105        ins->type = BTRFS_EXTENT_ITEM_KEY;
7106        ins->objectid = 0;
7107        ins->offset = 0;
7108
7109        trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7110
7111        space_info = __find_space_info(root->fs_info, flags);
7112        if (!space_info) {
7113                btrfs_err(root->fs_info, "No space info for %llu", flags);
7114                return -ENOSPC;
7115        }
7116
7117        /*
7118         * If our free space is heavily fragmented we may not be able to make
7119         * big contiguous allocations, so instead of doing the expensive search
7120         * for free space, simply return ENOSPC with our max_extent_size so we
7121         * can go ahead and search for a more manageable chunk.
7122         *
7123         * If our max_extent_size is large enough for our allocation simply
7124         * disable clustering since we will likely not be able to find enough
7125         * space to create a cluster and induce latency trying.
7126         */
7127        if (unlikely(space_info->max_extent_size)) {
7128                spin_lock(&space_info->lock);
7129                if (space_info->max_extent_size &&
7130                    num_bytes > space_info->max_extent_size) {
7131                        ins->offset = space_info->max_extent_size;
7132                        spin_unlock(&space_info->lock);
7133                        return -ENOSPC;
7134                } else if (space_info->max_extent_size) {
7135                        use_cluster = false;
7136                }
7137                spin_unlock(&space_info->lock);
7138        }
7139
7140        last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7141        if (last_ptr) {
7142                spin_lock(&last_ptr->lock);
7143                if (last_ptr->block_group)
7144                        hint_byte = last_ptr->window_start;
7145                if (last_ptr->fragmented) {
7146                        /*
7147                         * We still set window_start so we can keep track of the
7148                         * last place we found an allocation to try and save
7149                         * some time.
7150                         */
7151                        hint_byte = last_ptr->window_start;
7152                        use_cluster = false;
7153                }
7154                spin_unlock(&last_ptr->lock);
7155        }
7156
7157        search_start = max(search_start, first_logical_byte(root, 0));
7158        search_start = max(search_start, hint_byte);
7159        if (search_start == hint_byte) {
7160                block_group = btrfs_lookup_block_group(root->fs_info,
7161                                                       search_start);
7162                /*
7163                 * we don't want to use the block group if it doesn't match our
7164                 * allocation bits, or if its not cached.
7165                 *
7166                 * However if we are re-searching with an ideal block group
7167                 * picked out then we don't care that the block group is cached.
7168                 */
7169                if (block_group && block_group_bits(block_group, flags) &&
7170                    block_group->cached != BTRFS_CACHE_NO) {
7171                        down_read(&space_info->groups_sem);
7172                        if (list_empty(&block_group->list) ||
7173                            block_group->ro) {
7174                                /*
7175                                 * someone is removing this block group,
7176                                 * we can't jump into the have_block_group
7177                                 * target because our list pointers are not
7178                                 * valid
7179                                 */
7180                                btrfs_put_block_group(block_group);
7181                                up_read(&space_info->groups_sem);
7182                        } else {
7183                                index = get_block_group_index(block_group);
7184                                btrfs_lock_block_group(block_group, delalloc);
7185                                goto have_block_group;
7186                        }
7187                } else if (block_group) {
7188                        btrfs_put_block_group(block_group);
7189                }
7190        }
7191search:
7192        have_caching_bg = false;
7193        if (index == 0 || index == __get_raid_index(flags))
7194                full_search = true;
7195        down_read(&space_info->groups_sem);
7196        list_for_each_entry(block_group, &space_info->block_groups[index],
7197                            list) {
7198                u64 offset;
7199                int cached;
7200
7201                btrfs_grab_block_group(block_group, delalloc);
7202                search_start = block_group->key.objectid;
7203
7204                /*
7205                 * this can happen if we end up cycling through all the
7206                 * raid types, but we want to make sure we only allocate
7207                 * for the proper type.
7208                 */
7209                if (!block_group_bits(block_group, flags)) {
7210                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7211                                BTRFS_BLOCK_GROUP_RAID1 |
7212                                BTRFS_BLOCK_GROUP_RAID5 |
7213                                BTRFS_BLOCK_GROUP_RAID6 |
7214                                BTRFS_BLOCK_GROUP_RAID10;
7215
7216                        /*
7217                         * if they asked for extra copies and this block group
7218                         * doesn't provide them, bail.  This does allow us to
7219                         * fill raid0 from raid1.
7220                         */
7221                        if ((flags & extra) && !(block_group->flags & extra))
7222                                goto loop;
7223                }
7224
7225have_block_group:
7226                cached = block_group_cache_done(block_group);
7227                if (unlikely(!cached)) {
7228                        have_caching_bg = true;
7229                        ret = cache_block_group(block_group, 0);
7230                        BUG_ON(ret < 0);
7231                        ret = 0;
7232                }
7233
7234                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7235                        goto loop;
7236                if (unlikely(block_group->ro))
7237                        goto loop;
7238
7239                /*
7240                 * Ok we want to try and use the cluster allocator, so
7241                 * lets look there
7242                 */
7243                if (last_ptr && use_cluster) {
7244                        struct btrfs_block_group_cache *used_block_group;
7245                        unsigned long aligned_cluster;
7246                        /*
7247                         * the refill lock keeps out other
7248                         * people trying to start a new cluster
7249                         */
7250                        used_block_group = btrfs_lock_cluster(block_group,
7251                                                              last_ptr,
7252                                                              delalloc);
7253                        if (!used_block_group)
7254                                goto refill_cluster;
7255
7256                        if (used_block_group != block_group &&
7257                            (used_block_group->ro ||
7258                             !block_group_bits(used_block_group, flags)))
7259                                goto release_cluster;
7260
7261                        offset = btrfs_alloc_from_cluster(used_block_group,
7262                                                last_ptr,
7263                                                num_bytes,
7264                                                used_block_group->key.objectid,
7265                                                &max_extent_size);
7266                        if (offset) {
7267                                /* we have a block, we're done */
7268                                spin_unlock(&last_ptr->refill_lock);
7269                                trace_btrfs_reserve_extent_cluster(root,
7270                                                used_block_group,
7271                                                search_start, num_bytes);
7272                                if (used_block_group != block_group) {
7273                                        btrfs_release_block_group(block_group,
7274                                                                  delalloc);
7275                                        block_group = used_block_group;
7276                                }
7277                                goto checks;
7278                        }
7279
7280                        WARN_ON(last_ptr->block_group != used_block_group);
7281release_cluster:
7282                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7283                         * set up a new clusters, so lets just skip it
7284                         * and let the allocator find whatever block
7285                         * it can find.  If we reach this point, we
7286                         * will have tried the cluster allocator
7287                         * plenty of times and not have found
7288                         * anything, so we are likely way too
7289                         * fragmented for the clustering stuff to find
7290                         * anything.
7291                         *
7292                         * However, if the cluster is taken from the
7293                         * current block group, release the cluster
7294                         * first, so that we stand a better chance of
7295                         * succeeding in the unclustered
7296                         * allocation.  */
7297                        if (loop >= LOOP_NO_EMPTY_SIZE &&
7298                            used_block_group != block_group) {
7299                                spin_unlock(&last_ptr->refill_lock);
7300                                btrfs_release_block_group(used_block_group,
7301                                                          delalloc);
7302                                goto unclustered_alloc;
7303                        }
7304
7305                        /*
7306                         * this cluster didn't work out, free it and
7307                         * start over
7308                         */
7309                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7310
7311                        if (used_block_group != block_group)
7312                                btrfs_release_block_group(used_block_group,
7313                                                          delalloc);
7314refill_cluster:
7315                        if (loop >= LOOP_NO_EMPTY_SIZE) {
7316                                spin_unlock(&last_ptr->refill_lock);
7317                                goto unclustered_alloc;
7318                        }
7319
7320                        aligned_cluster = max_t(unsigned long,
7321                                                empty_cluster + empty_size,
7322                                              block_group->full_stripe_len);
7323
7324                        /* allocate a cluster in this block group */
7325                        ret = btrfs_find_space_cluster(root, block_group,
7326                                                       last_ptr, search_start,
7327                                                       num_bytes,
7328                                                       aligned_cluster);
7329                        if (ret == 0) {
7330                                /*
7331                                 * now pull our allocation out of this
7332                                 * cluster
7333                                 */
7334                                offset = btrfs_alloc_from_cluster(block_group,
7335                                                        last_ptr,
7336                                                        num_bytes,
7337                                                        search_start,
7338                                                        &max_extent_size);
7339                                if (offset) {
7340                                        /* we found one, proceed */
7341                                        spin_unlock(&last_ptr->refill_lock);
7342                                        trace_btrfs_reserve_extent_cluster(root,
7343                                                block_group, search_start,
7344                                                num_bytes);
7345                                        goto checks;
7346                                }
7347                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
7348                                   && !failed_cluster_refill) {
7349                                spin_unlock(&last_ptr->refill_lock);
7350
7351                                failed_cluster_refill = true;
7352                                wait_block_group_cache_progress(block_group,
7353                                       num_bytes + empty_cluster + empty_size);
7354                                goto have_block_group;
7355                        }
7356
7357                        /*
7358                         * at this point we either didn't find a cluster
7359                         * or we weren't able to allocate a block from our
7360                         * cluster.  Free the cluster we've been trying
7361                         * to use, and go to the next block group
7362                         */
7363                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7364                        spin_unlock(&last_ptr->refill_lock);
7365                        goto loop;
7366                }
7367
7368unclustered_alloc:
7369                /*
7370                 * We are doing an unclustered alloc, set the fragmented flag so
7371                 * we don't bother trying to setup a cluster again until we get
7372                 * more space.
7373                 */
7374                if (unlikely(last_ptr)) {
7375                        spin_lock(&last_ptr->lock);
7376                        last_ptr->fragmented = 1;
7377                        spin_unlock(&last_ptr->lock);
7378                }
7379                spin_lock(&block_group->free_space_ctl->tree_lock);
7380                if (cached &&
7381                    block_group->free_space_ctl->free_space <
7382                    num_bytes + empty_cluster + empty_size) {
7383                        if (block_group->free_space_ctl->free_space >
7384                            max_extent_size)
7385                                max_extent_size =
7386                                        block_group->free_space_ctl->free_space;
7387                        spin_unlock(&block_group->free_space_ctl->tree_lock);
7388                        goto loop;
7389                }
7390                spin_unlock(&block_group->free_space_ctl->tree_lock);
7391
7392                offset = btrfs_find_space_for_alloc(block_group, search_start,
7393                                                    num_bytes, empty_size,
7394                                                    &max_extent_size);
7395                /*
7396                 * If we didn't find a chunk, and we haven't failed on this
7397                 * block group before, and this block group is in the middle of
7398                 * caching and we are ok with waiting, then go ahead and wait
7399                 * for progress to be made, and set failed_alloc to true.
7400                 *
7401                 * If failed_alloc is true then we've already waited on this
7402                 * block group once and should move on to the next block group.
7403                 */
7404                if (!offset && !failed_alloc && !cached &&
7405                    loop > LOOP_CACHING_NOWAIT) {
7406                        wait_block_group_cache_progress(block_group,
7407                                                num_bytes + empty_size);
7408                        failed_alloc = true;
7409                        goto have_block_group;
7410                } else if (!offset) {
7411                        goto loop;
7412                }
7413checks:
7414                search_start = ALIGN(offset, root->stripesize);
7415
7416                /* move on to the next group */
7417                if (search_start + num_bytes >
7418                    block_group->key.objectid + block_group->key.offset) {
7419                        btrfs_add_free_space(block_group, offset, num_bytes);
7420                        goto loop;
7421                }
7422
7423                if (offset < search_start)
7424                        btrfs_add_free_space(block_group, offset,
7425                                             search_start - offset);
7426                BUG_ON(offset > search_start);
7427
7428                ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7429                                                  alloc_type, delalloc);
7430                if (ret == -EAGAIN) {
7431                        btrfs_add_free_space(block_group, offset, num_bytes);
7432                        goto loop;
7433                }
7434
7435                /* we are all good, lets return */
7436                ins->objectid = search_start;
7437                ins->offset = num_bytes;
7438
7439                trace_btrfs_reserve_extent(orig_root, block_group,
7440                                           search_start, num_bytes);
7441                btrfs_release_block_group(block_group, delalloc);
7442                break;
7443loop:
7444                failed_cluster_refill = false;
7445                failed_alloc = false;
7446                BUG_ON(index != get_block_group_index(block_group));
7447                btrfs_release_block_group(block_group, delalloc);
7448        }
7449        up_read(&space_info->groups_sem);
7450
7451        if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7452                && !orig_have_caching_bg)
7453                orig_have_caching_bg = true;
7454
7455        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7456                goto search;
7457
7458        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7459                goto search;
7460
7461        /*
7462         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7463         *                      caching kthreads as we move along
7464         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7465         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7466         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7467         *                      again
7468         */
7469        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7470                index = 0;
7471                if (loop == LOOP_CACHING_NOWAIT) {
7472                        /*
7473                         * We want to skip the LOOP_CACHING_WAIT step if we
7474                         * don't have any unached bgs and we've alrelady done a
7475                         * full search through.
7476                         */
7477                        if (orig_have_caching_bg || !full_search)
7478                                loop = LOOP_CACHING_WAIT;
7479                        else
7480                                loop = LOOP_ALLOC_CHUNK;
7481                } else {
7482                        loop++;
7483                }
7484
7485                if (loop == LOOP_ALLOC_CHUNK) {
7486                        struct btrfs_trans_handle *trans;
7487                        int exist = 0;
7488
7489                        trans = current->journal_info;
7490                        if (trans)
7491                                exist = 1;
7492                        else
7493                                trans = btrfs_join_transaction(root);
7494
7495                        if (IS_ERR(trans)) {
7496                                ret = PTR_ERR(trans);
7497                                goto out;
7498                        }
7499
7500                        ret = do_chunk_alloc(trans, root, flags,
7501                                             CHUNK_ALLOC_FORCE);
7502
7503                        /*
7504                         * If we can't allocate a new chunk we've already looped
7505                         * through at least once, move on to the NO_EMPTY_SIZE
7506                         * case.
7507                         */
7508                        if (ret == -ENOSPC)
7509                                loop = LOOP_NO_EMPTY_SIZE;
7510
7511                        /*
7512                         * Do not bail out on ENOSPC since we
7513                         * can do more things.
7514                         */
7515                        if (ret < 0 && ret != -ENOSPC)
7516                                btrfs_abort_transaction(trans,
7517                                                        root, ret);
7518                        else
7519                                ret = 0;
7520                        if (!exist)
7521                                btrfs_end_transaction(trans, root);
7522                        if (ret)
7523                                goto out;
7524                }
7525
7526                if (loop == LOOP_NO_EMPTY_SIZE) {
7527                        /*
7528                         * Don't loop again if we already have no empty_size and
7529                         * no empty_cluster.
7530                         */
7531                        if (empty_size == 0 &&
7532                            empty_cluster == 0) {
7533                                ret = -ENOSPC;
7534                                goto out;
7535                        }
7536                        empty_size = 0;
7537                        empty_cluster = 0;
7538                }
7539
7540                goto search;
7541        } else if (!ins->objectid) {
7542                ret = -ENOSPC;
7543        } else if (ins->objectid) {
7544                if (!use_cluster && last_ptr) {
7545                        spin_lock(&last_ptr->lock);
7546                        last_ptr->window_start = ins->objectid;
7547                        spin_unlock(&last_ptr->lock);
7548                }
7549                ret = 0;
7550        }
7551out:
7552        if (ret == -ENOSPC) {
7553                spin_lock(&space_info->lock);
7554                space_info->max_extent_size = max_extent_size;
7555                spin_unlock(&space_info->lock);
7556                ins->offset = max_extent_size;
7557        }
7558        return ret;
7559}
7560
7561static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7562                            int dump_block_groups)
7563{
7564        struct btrfs_block_group_cache *cache;
7565        int index = 0;
7566
7567        spin_lock(&info->lock);
7568        printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7569               info->flags,
7570               info->total_bytes - info->bytes_used - info->bytes_pinned -
7571               info->bytes_reserved - info->bytes_readonly,
7572               (info->full) ? "" : "not ");
7573        printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7574               "reserved=%llu, may_use=%llu, readonly=%llu\n",
7575               info->total_bytes, info->bytes_used, info->bytes_pinned,
7576               info->bytes_reserved, info->bytes_may_use,
7577               info->bytes_readonly);
7578        spin_unlock(&info->lock);
7579
7580        if (!dump_block_groups)
7581                return;
7582
7583        down_read(&info->groups_sem);
7584again:
7585        list_for_each_entry(cache, &info->block_groups[index], list) {
7586                spin_lock(&cache->lock);
7587                printk(KERN_INFO "BTRFS: "
7588                           "block group %llu has %llu bytes, "
7589                           "%llu used %llu pinned %llu reserved %s\n",
7590                       cache->key.objectid, cache->key.offset,
7591                       btrfs_block_group_used(&cache->item), cache->pinned,
7592                       cache->reserved, cache->ro ? "[readonly]" : "");
7593                btrfs_dump_free_space(cache, bytes);
7594                spin_unlock(&cache->lock);
7595        }
7596        if (++index < BTRFS_NR_RAID_TYPES)
7597                goto again;
7598        up_read(&info->groups_sem);
7599}
7600
7601int btrfs_reserve_extent(struct btrfs_root *root,
7602                         u64 num_bytes, u64 min_alloc_size,
7603                         u64 empty_size, u64 hint_byte,
7604                         struct btrfs_key *ins, int is_data, int delalloc)
7605{
7606        bool final_tried = num_bytes == min_alloc_size;
7607        u64 flags;
7608        int ret;
7609
7610        flags = btrfs_get_alloc_profile(root, is_data);
7611again:
7612        WARN_ON(num_bytes < root->sectorsize);
7613        ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7614                               flags, delalloc);
7615
7616        if (ret == -ENOSPC) {
7617                if (!final_tried && ins->offset) {
7618                        num_bytes = min(num_bytes >> 1, ins->offset);
7619                        num_bytes = round_down(num_bytes, root->sectorsize);
7620                        num_bytes = max(num_bytes, min_alloc_size);
7621                        if (num_bytes == min_alloc_size)
7622                                final_tried = true;
7623                        goto again;
7624                } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7625                        struct btrfs_space_info *sinfo;
7626
7627                        sinfo = __find_space_info(root->fs_info, flags);
7628                        btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7629                                flags, num_bytes);
7630                        if (sinfo)
7631                                dump_space_info(sinfo, num_bytes, 1);
7632                }
7633        }
7634
7635        return ret;
7636}
7637
7638static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7639                                        u64 start, u64 len,
7640                                        int pin, int delalloc)
7641{
7642        struct btrfs_block_group_cache *cache;
7643        int ret = 0;
7644
7645        cache = btrfs_lookup_block_group(root->fs_info, start);
7646        if (!cache) {
7647                btrfs_err(root->fs_info, "Unable to find block group for %llu",
7648                        start);
7649                return -ENOSPC;
7650        }
7651
7652        if (pin)
7653                pin_down_extent(root, cache, start, len, 1);
7654        else {
7655                if (btrfs_test_opt(root, DISCARD))
7656                        ret = btrfs_discard_extent(root, start, len, NULL);
7657                btrfs_add_free_space(cache, start, len);
7658                btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7659        }
7660
7661        btrfs_put_block_group(cache);
7662
7663        trace_btrfs_reserved_extent_free(root, start, len);
7664
7665        return ret;
7666}
7667
7668int btrfs_free_reserved_extent(struct btrfs_root *root,
7669                               u64 start, u64 len, int delalloc)
7670{
7671        return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7672}
7673
7674int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7675                                       u64 start, u64 len)
7676{
7677        return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7678}
7679
7680static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7681                                      struct btrfs_root *root,
7682                                      u64 parent, u64 root_objectid,
7683                                      u64 flags, u64 owner, u64 offset,
7684                                      struct btrfs_key *ins, int ref_mod)
7685{
7686        int ret;
7687        struct btrfs_fs_info *fs_info = root->fs_info;
7688        struct btrfs_extent_item *extent_item;
7689        struct btrfs_extent_inline_ref *iref;
7690        struct btrfs_path *path;
7691        struct extent_buffer *leaf;
7692        int type;
7693        u32 size;
7694
7695        if (parent > 0)
7696                type = BTRFS_SHARED_DATA_REF_KEY;
7697        else
7698                type = BTRFS_EXTENT_DATA_REF_KEY;
7699
7700        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7701
7702        path = btrfs_alloc_path();
7703        if (!path)
7704                return -ENOMEM;
7705
7706        path->leave_spinning = 1;
7707        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7708                                      ins, size);
7709        if (ret) {
7710                btrfs_free_path(path);
7711                return ret;
7712        }
7713
7714        leaf = path->nodes[0];
7715        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7716                                     struct btrfs_extent_item);
7717        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7718        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7719        btrfs_set_extent_flags(leaf, extent_item,
7720                               flags | BTRFS_EXTENT_FLAG_DATA);
7721
7722        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7723        btrfs_set_extent_inline_ref_type(leaf, iref, type);
7724        if (parent > 0) {
7725                struct btrfs_shared_data_ref *ref;
7726                ref = (struct btrfs_shared_data_ref *)(iref + 1);
7727                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7728                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7729        } else {
7730                struct btrfs_extent_data_ref *ref;
7731                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7732                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7733                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7734                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7735                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7736        }
7737
7738        btrfs_mark_buffer_dirty(path->nodes[0]);
7739        btrfs_free_path(path);
7740
7741        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7742                                          ins->offset);
7743        if (ret)
7744                return ret;
7745
7746        ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7747        if (ret) { /* -ENOENT, logic error */
7748                btrfs_err(fs_info, "update block group failed for %llu %llu",
7749                        ins->objectid, ins->offset);
7750                BUG();
7751        }
7752        trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7753        return ret;
7754}
7755
7756static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7757                                     struct btrfs_root *root,
7758                                     u64 parent, u64 root_objectid,
7759                                     u64 flags, struct btrfs_disk_key *key,
7760                                     int level, struct btrfs_key *ins)
7761{
7762        int ret;
7763        struct btrfs_fs_info *fs_info = root->fs_info;
7764        struct btrfs_extent_item *extent_item;
7765        struct btrfs_tree_block_info *block_info;
7766        struct btrfs_extent_inline_ref *iref;
7767        struct btrfs_path *path;
7768        struct extent_buffer *leaf;
7769        u32 size = sizeof(*extent_item) + sizeof(*iref);
7770        u64 num_bytes = ins->offset;
7771        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7772                                                 SKINNY_METADATA);
7773
7774        if (!skinny_metadata)
7775                size += sizeof(*block_info);
7776
7777        path = btrfs_alloc_path();
7778        if (!path) {
7779                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7780                                                   root->nodesize);
7781                return -ENOMEM;
7782        }
7783
7784        path->leave_spinning = 1;
7785        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7786                                      ins, size);
7787        if (ret) {
7788                btrfs_free_path(path);
7789                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7790                                                   root->nodesize);
7791                return ret;
7792        }
7793
7794        leaf = path->nodes[0];
7795        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7796                                     struct btrfs_extent_item);
7797        btrfs_set_extent_refs(leaf, extent_item, 1);
7798        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7799        btrfs_set_extent_flags(leaf, extent_item,
7800                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7801
7802        if (skinny_metadata) {
7803                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7804                num_bytes = root->nodesize;
7805        } else {
7806                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7807                btrfs_set_tree_block_key(leaf, block_info, key);
7808                btrfs_set_tree_block_level(leaf, block_info, level);
7809                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7810        }
7811
7812        if (parent > 0) {
7813                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7814                btrfs_set_extent_inline_ref_type(leaf, iref,
7815                                                 BTRFS_SHARED_BLOCK_REF_KEY);
7816                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7817        } else {
7818                btrfs_set_extent_inline_ref_type(leaf, iref,
7819                                                 BTRFS_TREE_BLOCK_REF_KEY);
7820                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7821        }
7822
7823        btrfs_mark_buffer_dirty(leaf);
7824        btrfs_free_path(path);
7825
7826        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7827                                          num_bytes);
7828        if (ret)
7829                return ret;
7830
7831        ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7832                                 1);
7833        if (ret) { /* -ENOENT, logic error */
7834                btrfs_err(fs_info, "update block group failed for %llu %llu",
7835                        ins->objectid, ins->offset);
7836                BUG();
7837        }
7838
7839        trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7840        return ret;
7841}
7842
7843int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7844                                     struct btrfs_root *root,
7845                                     u64 root_objectid, u64 owner,
7846                                     u64 offset, u64 ram_bytes,
7847                                     struct btrfs_key *ins)
7848{
7849        int ret;
7850
7851        BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7852
7853        ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7854                                         ins->offset, 0,
7855                                         root_objectid, owner, offset,
7856                                         ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7857                                         NULL);
7858        return ret;
7859}
7860
7861/*
7862 * this is used by the tree logging recovery code.  It records that
7863 * an extent has been allocated and makes sure to clear the free
7864 * space cache bits as well
7865 */
7866int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7867                                   struct btrfs_root *root,
7868                                   u64 root_objectid, u64 owner, u64 offset,
7869                                   struct btrfs_key *ins)
7870{
7871        int ret;
7872        struct btrfs_block_group_cache *block_group;
7873
7874        /*
7875         * Mixed block groups will exclude before processing the log so we only
7876         * need to do the exlude dance if this fs isn't mixed.
7877         */
7878        if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7879                ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7880                if (ret)
7881                        return ret;
7882        }
7883
7884        block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7885        if (!block_group)
7886                return -EINVAL;
7887
7888        ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7889                                          RESERVE_ALLOC_NO_ACCOUNT, 0);
7890        BUG_ON(ret); /* logic error */
7891        ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7892                                         0, owner, offset, ins, 1);
7893        btrfs_put_block_group(block_group);
7894        return ret;
7895}
7896
7897static struct extent_buffer *
7898btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7899                      u64 bytenr, int level)
7900{
7901        struct extent_buffer *buf;
7902
7903        buf = btrfs_find_create_tree_block(root, bytenr);
7904        if (!buf)
7905                return ERR_PTR(-ENOMEM);
7906        btrfs_set_header_generation(buf, trans->transid);
7907        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7908        btrfs_tree_lock(buf);
7909        clean_tree_block(trans, root->fs_info, buf);
7910        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7911
7912        btrfs_set_lock_blocking(buf);
7913        set_extent_buffer_uptodate(buf);
7914
7915        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7916                buf->log_index = root->log_transid % 2;
7917                /*
7918                 * we allow two log transactions at a time, use different
7919                 * EXENT bit to differentiate dirty pages.
7920                 */
7921                if (buf->log_index == 0)
7922                        set_extent_dirty(&root->dirty_log_pages, buf->start,
7923                                        buf->start + buf->len - 1, GFP_NOFS);
7924                else
7925                        set_extent_new(&root->dirty_log_pages, buf->start,
7926                                        buf->start + buf->len - 1, GFP_NOFS);
7927        } else {
7928                buf->log_index = -1;
7929                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7930                         buf->start + buf->len - 1, GFP_NOFS);
7931        }
7932        trans->blocks_used++;
7933        /* this returns a buffer locked for blocking */
7934        return buf;
7935}
7936
7937static struct btrfs_block_rsv *
7938use_block_rsv(struct btrfs_trans_handle *trans,
7939              struct btrfs_root *root, u32 blocksize)
7940{
7941        struct btrfs_block_rsv *block_rsv;
7942        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7943        int ret;
7944        bool global_updated = false;
7945
7946        block_rsv = get_block_rsv(trans, root);
7947
7948        if (unlikely(block_rsv->size == 0))
7949                goto try_reserve;
7950again:
7951        ret = block_rsv_use_bytes(block_rsv, blocksize);
7952        if (!ret)
7953                return block_rsv;
7954
7955        if (block_rsv->failfast)
7956                return ERR_PTR(ret);
7957
7958        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7959                global_updated = true;
7960                update_global_block_rsv(root->fs_info);
7961                goto again;
7962        }
7963
7964        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7965                static DEFINE_RATELIMIT_STATE(_rs,
7966                                DEFAULT_RATELIMIT_INTERVAL * 10,
7967                                /*DEFAULT_RATELIMIT_BURST*/ 1);
7968                if (__ratelimit(&_rs))
7969                        WARN(1, KERN_DEBUG
7970                                "BTRFS: block rsv returned %d\n", ret);
7971        }
7972try_reserve:
7973        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7974                                     BTRFS_RESERVE_NO_FLUSH);
7975        if (!ret)
7976                return block_rsv;
7977        /*
7978         * If we couldn't reserve metadata bytes try and use some from
7979         * the global reserve if its space type is the same as the global
7980         * reservation.
7981         */
7982        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7983            block_rsv->space_info == global_rsv->space_info) {
7984                ret = block_rsv_use_bytes(global_rsv, blocksize);
7985                if (!ret)
7986                        return global_rsv;
7987        }
7988        return ERR_PTR(ret);
7989}
7990
7991static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7992                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
7993{
7994        block_rsv_add_bytes(block_rsv, blocksize, 0);
7995        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7996}
7997
7998/*
7999 * finds a free extent and does all the dirty work required for allocation
8000 * returns the tree buffer or an ERR_PTR on error.
8001 */
8002struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8003                                        struct btrfs_root *root,
8004                                        u64 parent, u64 root_objectid,
8005                                        struct btrfs_disk_key *key, int level,
8006                                        u64 hint, u64 empty_size)
8007{
8008        struct btrfs_key ins;
8009        struct btrfs_block_rsv *block_rsv;
8010        struct extent_buffer *buf;
8011        struct btrfs_delayed_extent_op *extent_op;
8012        u64 flags = 0;
8013        int ret;
8014        u32 blocksize = root->nodesize;
8015        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8016                                                 SKINNY_METADATA);
8017
8018        if (btrfs_test_is_dummy_root(root)) {
8019                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8020                                            level);
8021                if (!IS_ERR(buf))
8022                        root->alloc_bytenr += blocksize;
8023                return buf;
8024        }
8025
8026        block_rsv = use_block_rsv(trans, root, blocksize);
8027        if (IS_ERR(block_rsv))
8028                return ERR_CAST(block_rsv);
8029
8030        ret = btrfs_reserve_extent(root, blocksize, blocksize,
8031                                   empty_size, hint, &ins, 0, 0);
8032        if (ret)
8033                goto out_unuse;
8034
8035        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8036        if (IS_ERR(buf)) {
8037                ret = PTR_ERR(buf);
8038                goto out_free_reserved;
8039        }
8040
8041        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8042                if (parent == 0)
8043                        parent = ins.objectid;
8044                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8045        } else
8046                BUG_ON(parent > 0);
8047
8048        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8049                extent_op = btrfs_alloc_delayed_extent_op();
8050                if (!extent_op) {
8051                        ret = -ENOMEM;
8052                        goto out_free_buf;
8053                }
8054                if (key)
8055                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
8056                else
8057                        memset(&extent_op->key, 0, sizeof(extent_op->key));
8058                extent_op->flags_to_set = flags;
8059                extent_op->update_key = skinny_metadata ? false : true;
8060                extent_op->update_flags = true;
8061                extent_op->is_data = false;
8062                extent_op->level = level;
8063
8064                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8065                                                 ins.objectid, ins.offset,
8066                                                 parent, root_objectid, level,
8067                                                 BTRFS_ADD_DELAYED_EXTENT,
8068                                                 extent_op);
8069                if (ret)
8070                        goto out_free_delayed;
8071        }
8072        return buf;
8073
8074out_free_delayed:
8075        btrfs_free_delayed_extent_op(extent_op);
8076out_free_buf:
8077        free_extent_buffer(buf);
8078out_free_reserved:
8079        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8080out_unuse:
8081        unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8082        return ERR_PTR(ret);
8083}
8084
8085struct walk_control {
8086        u64 refs[BTRFS_MAX_LEVEL];
8087        u64 flags[BTRFS_MAX_LEVEL];
8088        struct btrfs_key update_progress;
8089        int stage;
8090        int level;
8091        int shared_level;
8092        int update_ref;
8093        int keep_locks;
8094        int reada_slot;
8095        int reada_count;
8096        int for_reloc;
8097};
8098
8099#define DROP_REFERENCE  1
8100#define UPDATE_BACKREF  2
8101
8102static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8103                                     struct btrfs_root *root,
8104                                     struct walk_control *wc,
8105                                     struct btrfs_path *path)
8106{
8107        u64 bytenr;
8108        u64 generation;
8109        u64 refs;
8110        u64 flags;
8111        u32 nritems;
8112        u32 blocksize;
8113        struct btrfs_key key;
8114        struct extent_buffer *eb;
8115        int ret;
8116        int slot;
8117        int nread = 0;
8118
8119        if (path->slots[wc->level] < wc->reada_slot) {
8120                wc->reada_count = wc->reada_count * 2 / 3;
8121                wc->reada_count = max(wc->reada_count, 2);
8122        } else {
8123                wc->reada_count = wc->reada_count * 3 / 2;
8124                wc->reada_count = min_t(int, wc->reada_count,
8125                                        BTRFS_NODEPTRS_PER_BLOCK(root));
8126        }
8127
8128        eb = path->nodes[wc->level];
8129        nritems = btrfs_header_nritems(eb);
8130        blocksize = root->nodesize;
8131
8132        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8133                if (nread >= wc->reada_count)
8134                        break;
8135
8136                cond_resched();
8137                bytenr = btrfs_node_blockptr(eb, slot);
8138                generation = btrfs_node_ptr_generation(eb, slot);
8139
8140                if (slot == path->slots[wc->level])
8141                        goto reada;
8142
8143                if (wc->stage == UPDATE_BACKREF &&
8144                    generation <= root->root_key.offset)
8145                        continue;
8146
8147                /* We don't lock the tree block, it's OK to be racy here */
8148                ret = btrfs_lookup_extent_info(trans, root, bytenr,
8149                                               wc->level - 1, 1, &refs,
8150                                               &flags);
8151                /* We don't care about errors in readahead. */
8152                if (ret < 0)
8153                        continue;
8154                BUG_ON(refs == 0);
8155
8156                if (wc->stage == DROP_REFERENCE) {
8157                        if (refs == 1)
8158                                goto reada;
8159
8160                        if (wc->level == 1 &&
8161                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8162                                continue;
8163                        if (!wc->update_ref ||
8164                            generation <= root->root_key.offset)
8165                                continue;
8166                        btrfs_node_key_to_cpu(eb, &key, slot);
8167                        ret = btrfs_comp_cpu_keys(&key,
8168                                                  &wc->update_progress);
8169                        if (ret < 0)
8170                                continue;
8171                } else {
8172                        if (wc->level == 1 &&
8173                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8174                                continue;
8175                }
8176reada:
8177                readahead_tree_block(root, bytenr);
8178                nread++;
8179        }
8180        wc->reada_slot = slot;
8181}
8182
8183/*
8184 * These may not be seen by the usual inc/dec ref code so we have to
8185 * add them here.
8186 */
8187static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8188                                     struct btrfs_root *root, u64 bytenr,
8189                                     u64 num_bytes)
8190{
8191        struct btrfs_qgroup_extent_record *qrecord;
8192        struct btrfs_delayed_ref_root *delayed_refs;
8193
8194        qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8195        if (!qrecord)
8196                return -ENOMEM;
8197
8198        qrecord->bytenr = bytenr;
8199        qrecord->num_bytes = num_bytes;
8200        qrecord->old_roots = NULL;
8201
8202        delayed_refs = &trans->transaction->delayed_refs;
8203        spin_lock(&delayed_refs->lock);
8204        if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8205                kfree(qrecord);
8206        spin_unlock(&delayed_refs->lock);
8207
8208        return 0;
8209}
8210
8211static int account_leaf_items(struct btrfs_trans_handle *trans,
8212                              struct btrfs_root *root,
8213                              struct extent_buffer *eb)
8214{
8215        int nr = btrfs_header_nritems(eb);
8216        int i, extent_type, ret;
8217        struct btrfs_key key;
8218        struct btrfs_file_extent_item *fi;
8219        u64 bytenr, num_bytes;
8220
8221        /* We can be called directly from walk_up_proc() */
8222        if (!root->fs_info->quota_enabled)
8223                return 0;
8224
8225        for (i = 0; i < nr; i++) {
8226                btrfs_item_key_to_cpu(eb, &key, i);
8227
8228                if (key.type != BTRFS_EXTENT_DATA_KEY)
8229                        continue;
8230
8231                fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8232                /* filter out non qgroup-accountable extents  */
8233                extent_type = btrfs_file_extent_type(eb, fi);
8234
8235                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8236                        continue;
8237
8238                bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8239                if (!bytenr)
8240                        continue;
8241
8242                num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8243
8244                ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8245                if (ret)
8246                        return ret;
8247        }
8248        return 0;
8249}
8250
8251/*
8252 * Walk up the tree from the bottom, freeing leaves and any interior
8253 * nodes which have had all slots visited. If a node (leaf or
8254 * interior) is freed, the node above it will have it's slot
8255 * incremented. The root node will never be freed.
8256 *
8257 * At the end of this function, we should have a path which has all
8258 * slots incremented to the next position for a search. If we need to
8259 * read a new node it will be NULL and the node above it will have the
8260 * correct slot selected for a later read.
8261 *
8262 * If we increment the root nodes slot counter past the number of
8263 * elements, 1 is returned to signal completion of the search.
8264 */
8265static int adjust_slots_upwards(struct btrfs_root *root,
8266                                struct btrfs_path *path, int root_level)
8267{
8268        int level = 0;
8269        int nr, slot;
8270        struct extent_buffer *eb;
8271
8272        if (root_level == 0)
8273                return 1;
8274
8275        while (level <= root_level) {
8276                eb = path->nodes[level];
8277                nr = btrfs_header_nritems(eb);
8278                path->slots[level]++;
8279                slot = path->slots[level];
8280                if (slot >= nr || level == 0) {
8281                        /*
8282                         * Don't free the root -  we will detect this
8283                         * condition after our loop and return a
8284                         * positive value for caller to stop walking the tree.
8285                         */
8286                        if (level != root_level) {
8287                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8288                                path->locks[level] = 0;
8289
8290                                free_extent_buffer(eb);
8291                                path->nodes[level] = NULL;
8292                                path->slots[level] = 0;
8293                        }
8294                } else {
8295                        /*
8296                         * We have a valid slot to walk back down
8297                         * from. Stop here so caller can process these
8298                         * new nodes.
8299                         */
8300                        break;
8301                }
8302
8303                level++;
8304        }
8305
8306        eb = path->nodes[root_level];
8307        if (path->slots[root_level] >= btrfs_header_nritems(eb))
8308                return 1;
8309
8310        return 0;
8311}
8312
8313/*
8314 * root_eb is the subtree root and is locked before this function is called.
8315 */
8316static int account_shared_subtree(struct btrfs_trans_handle *trans,
8317                                  struct btrfs_root *root,
8318                                  struct extent_buffer *root_eb,
8319                                  u64 root_gen,
8320                                  int root_level)
8321{
8322        int ret = 0;
8323        int level;
8324        struct extent_buffer *eb = root_eb;
8325        struct btrfs_path *path = NULL;
8326
8327        BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8328        BUG_ON(root_eb == NULL);
8329
8330        if (!root->fs_info->quota_enabled)
8331                return 0;
8332
8333        if (!extent_buffer_uptodate(root_eb)) {
8334                ret = btrfs_read_buffer(root_eb, root_gen);
8335                if (ret)
8336                        goto out;
8337        }
8338
8339        if (root_level == 0) {
8340                ret = account_leaf_items(trans, root, root_eb);
8341                goto out;
8342        }
8343
8344        path = btrfs_alloc_path();
8345        if (!path)
8346                return -ENOMEM;
8347
8348        /*
8349         * Walk down the tree.  Missing extent blocks are filled in as
8350         * we go. Metadata is accounted every time we read a new
8351         * extent block.
8352         *
8353         * When we reach a leaf, we account for file extent items in it,
8354         * walk back up the tree (adjusting slot pointers as we go)
8355         * and restart the search process.
8356         */
8357        extent_buffer_get(root_eb); /* For path */
8358        path->nodes[root_level] = root_eb;
8359        path->slots[root_level] = 0;
8360        path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8361walk_down:
8362        level = root_level;
8363        while (level >= 0) {
8364                if (path->nodes[level] == NULL) {
8365                        int parent_slot;
8366                        u64 child_gen;
8367                        u64 child_bytenr;
8368
8369                        /* We need to get child blockptr/gen from
8370                         * parent before we can read it. */
8371                        eb = path->nodes[level + 1];
8372                        parent_slot = path->slots[level + 1];
8373                        child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8374                        child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8375
8376                        eb = read_tree_block(root, child_bytenr, child_gen);
8377                        if (IS_ERR(eb)) {
8378                                ret = PTR_ERR(eb);
8379                                goto out;
8380                        } else if (!extent_buffer_uptodate(eb)) {
8381                                free_extent_buffer(eb);
8382                                ret = -EIO;
8383                                goto out;
8384                        }
8385
8386                        path->nodes[level] = eb;
8387                        path->slots[level] = 0;
8388
8389                        btrfs_tree_read_lock(eb);
8390                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8391                        path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8392
8393                        ret = record_one_subtree_extent(trans, root, child_bytenr,
8394                                                        root->nodesize);
8395                        if (ret)
8396                                goto out;
8397                }
8398
8399                if (level == 0) {
8400                        ret = account_leaf_items(trans, root, path->nodes[level]);
8401                        if (ret)
8402                                goto out;
8403
8404                        /* Nonzero return here means we completed our search */
8405                        ret = adjust_slots_upwards(root, path, root_level);
8406                        if (ret)
8407                                break;
8408
8409                        /* Restart search with new slots */
8410                        goto walk_down;
8411                }
8412
8413                level--;
8414        }
8415
8416        ret = 0;
8417out:
8418        btrfs_free_path(path);
8419
8420        return ret;
8421}
8422
8423/*
8424 * helper to process tree block while walking down the tree.
8425 *
8426 * when wc->stage == UPDATE_BACKREF, this function updates
8427 * back refs for pointers in the block.
8428 *
8429 * NOTE: return value 1 means we should stop walking down.
8430 */
8431static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8432                                   struct btrfs_root *root,
8433                                   struct btrfs_path *path,
8434                                   struct walk_control *wc, int lookup_info)
8435{
8436        int level = wc->level;
8437        struct extent_buffer *eb = path->nodes[level];
8438        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8439        int ret;
8440
8441        if (wc->stage == UPDATE_BACKREF &&
8442            btrfs_header_owner(eb) != root->root_key.objectid)
8443                return 1;
8444
8445        /*
8446         * when reference count of tree block is 1, it won't increase
8447         * again. once full backref flag is set, we never clear it.
8448         */
8449        if (lookup_info &&
8450            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8451             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8452                BUG_ON(!path->locks[level]);
8453                ret = btrfs_lookup_extent_info(trans, root,
8454                                               eb->start, level, 1,
8455                                               &wc->refs[level],
8456                                               &wc->flags[level]);
8457                BUG_ON(ret == -ENOMEM);
8458                if (ret)
8459                        return ret;
8460                BUG_ON(wc->refs[level] == 0);
8461        }
8462
8463        if (wc->stage == DROP_REFERENCE) {
8464                if (wc->refs[level] > 1)
8465                        return 1;
8466
8467                if (path->locks[level] && !wc->keep_locks) {
8468                        btrfs_tree_unlock_rw(eb, path->locks[level]);
8469                        path->locks[level] = 0;
8470                }
8471                return 0;
8472        }
8473
8474        /* wc->stage == UPDATE_BACKREF */
8475        if (!(wc->flags[level] & flag)) {
8476                BUG_ON(!path->locks[level]);
8477                ret = btrfs_inc_ref(trans, root, eb, 1);
8478                BUG_ON(ret); /* -ENOMEM */
8479                ret = btrfs_dec_ref(trans, root, eb, 0);
8480                BUG_ON(ret); /* -ENOMEM */
8481                ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8482                                                  eb->len, flag,
8483                                                  btrfs_header_level(eb), 0);
8484                BUG_ON(ret); /* -ENOMEM */
8485                wc->flags[level] |= flag;
8486        }
8487
8488        /*
8489         * the block is shared by multiple trees, so it's not good to
8490         * keep the tree lock
8491         */
8492        if (path->locks[level] && level > 0) {
8493                btrfs_tree_unlock_rw(eb, path->locks[level]);
8494                path->locks[level] = 0;
8495        }
8496        return 0;
8497}
8498
8499/*
8500 * helper to process tree block pointer.
8501 *
8502 * when wc->stage == DROP_REFERENCE, this function checks
8503 * reference count of the block pointed to. if the block
8504 * is shared and we need update back refs for the subtree
8505 * rooted at the block, this function changes wc->stage to
8506 * UPDATE_BACKREF. if the block is shared and there is no
8507 * need to update back, this function drops the reference
8508 * to the block.
8509 *
8510 * NOTE: return value 1 means we should stop walking down.
8511 */
8512static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8513                                 struct btrfs_root *root,
8514                                 struct btrfs_path *path,
8515                                 struct walk_control *wc, int *lookup_info)
8516{
8517        u64 bytenr;
8518        u64 generation;
8519        u64 parent;
8520        u32 blocksize;
8521        struct btrfs_key key;
8522        struct extent_buffer *next;
8523        int level = wc->level;
8524        int reada = 0;
8525        int ret = 0;
8526        bool need_account = false;
8527
8528        generation = btrfs_node_ptr_generation(path->nodes[level],
8529                                               path->slots[level]);
8530        /*
8531         * if the lower level block was created before the snapshot
8532         * was created, we know there is no need to update back refs
8533         * for the subtree
8534         */
8535        if (wc->stage == UPDATE_BACKREF &&
8536            generation <= root->root_key.offset) {
8537                *lookup_info = 1;
8538                return 1;
8539        }
8540
8541        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8542        blocksize = root->nodesize;
8543
8544        next = btrfs_find_tree_block(root->fs_info, bytenr);
8545        if (!next) {
8546                next = btrfs_find_create_tree_block(root, bytenr);
8547                if (!next)
8548                        return -ENOMEM;
8549                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8550                                               level - 1);
8551                reada = 1;
8552        }
8553        btrfs_tree_lock(next);
8554        btrfs_set_lock_blocking(next);
8555
8556        ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8557                                       &wc->refs[level - 1],
8558                                       &wc->flags[level - 1]);
8559        if (ret < 0) {
8560                btrfs_tree_unlock(next);
8561                return ret;
8562        }
8563
8564        if (unlikely(wc->refs[level - 1] == 0)) {
8565                btrfs_err(root->fs_info, "Missing references.");
8566                BUG();
8567        }
8568        *lookup_info = 0;
8569
8570        if (wc->stage == DROP_REFERENCE) {
8571                if (wc->refs[level - 1] > 1) {
8572                        need_account = true;
8573                        if (level == 1 &&
8574                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8575                                goto skip;
8576
8577                        if (!wc->update_ref ||
8578                            generation <= root->root_key.offset)
8579                                goto skip;
8580
8581                        btrfs_node_key_to_cpu(path->nodes[level], &key,
8582                                              path->slots[level]);
8583                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8584                        if (ret < 0)
8585                                goto skip;
8586
8587                        wc->stage = UPDATE_BACKREF;
8588                        wc->shared_level = level - 1;
8589                }
8590        } else {
8591                if (level == 1 &&
8592                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8593                        goto skip;
8594        }
8595
8596        if (!btrfs_buffer_uptodate(next, generation, 0)) {
8597                btrfs_tree_unlock(next);
8598                free_extent_buffer(next);
8599                next = NULL;
8600                *lookup_info = 1;
8601        }
8602
8603        if (!next) {
8604                if (reada && level == 1)
8605                        reada_walk_down(trans, root, wc, path);
8606                next = read_tree_block(root, bytenr, generation);
8607                if (IS_ERR(next)) {
8608                        return PTR_ERR(next);
8609                } else if (!extent_buffer_uptodate(next)) {
8610                        free_extent_buffer(next);
8611                        return -EIO;
8612                }
8613                btrfs_tree_lock(next);
8614                btrfs_set_lock_blocking(next);
8615        }
8616
8617        level--;
8618        BUG_ON(level != btrfs_header_level(next));
8619        path->nodes[level] = next;
8620        path->slots[level] = 0;
8621        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8622        wc->level = level;
8623        if (wc->level == 1)
8624                wc->reada_slot = 0;
8625        return 0;
8626skip:
8627        wc->refs[level - 1] = 0;
8628        wc->flags[level - 1] = 0;
8629        if (wc->stage == DROP_REFERENCE) {
8630                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8631                        parent = path->nodes[level]->start;
8632                } else {
8633                        BUG_ON(root->root_key.objectid !=
8634                               btrfs_header_owner(path->nodes[level]));
8635                        parent = 0;
8636                }
8637
8638                if (need_account) {
8639                        ret = account_shared_subtree(trans, root, next,
8640                                                     generation, level - 1);
8641                        if (ret) {
8642                                btrfs_err_rl(root->fs_info,
8643                                        "Error "
8644                                        "%d accounting shared subtree. Quota "
8645                                        "is out of sync, rescan required.",
8646                                        ret);
8647                        }
8648                }
8649                ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8650                                root->root_key.objectid, level - 1, 0);
8651                BUG_ON(ret); /* -ENOMEM */
8652        }
8653        btrfs_tree_unlock(next);
8654        free_extent_buffer(next);
8655        *lookup_info = 1;
8656        return 1;
8657}
8658
8659/*
8660 * helper to process tree block while walking up the tree.
8661 *
8662 * when wc->stage == DROP_REFERENCE, this function drops
8663 * reference count on the block.
8664 *
8665 * when wc->stage == UPDATE_BACKREF, this function changes
8666 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8667 * to UPDATE_BACKREF previously while processing the block.
8668 *
8669 * NOTE: return value 1 means we should stop walking up.
8670 */
8671static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8672                                 struct btrfs_root *root,
8673                                 struct btrfs_path *path,
8674                                 struct walk_control *wc)
8675{
8676        int ret;
8677        int level = wc->level;
8678        struct extent_buffer *eb = path->nodes[level];
8679        u64 parent = 0;
8680
8681        if (wc->stage == UPDATE_BACKREF) {
8682                BUG_ON(wc->shared_level < level);
8683                if (level < wc->shared_level)
8684                        goto out;
8685
8686                ret = find_next_key(path, level + 1, &wc->update_progress);
8687                if (ret > 0)
8688                        wc->update_ref = 0;
8689
8690                wc->stage = DROP_REFERENCE;
8691                wc->shared_level = -1;
8692                path->slots[level] = 0;
8693
8694                /*
8695                 * check reference count again if the block isn't locked.
8696                 * we should start walking down the tree again if reference
8697                 * count is one.
8698                 */
8699                if (!path->locks[level]) {
8700                        BUG_ON(level == 0);
8701                        btrfs_tree_lock(eb);
8702                        btrfs_set_lock_blocking(eb);
8703                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8704
8705                        ret = btrfs_lookup_extent_info(trans, root,
8706                                                       eb->start, level, 1,
8707                                                       &wc->refs[level],
8708                                                       &wc->flags[level]);
8709                        if (ret < 0) {
8710                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8711                                path->locks[level] = 0;
8712                                return ret;
8713                        }
8714                        BUG_ON(wc->refs[level] == 0);
8715                        if (wc->refs[level] == 1) {
8716                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8717                                path->locks[level] = 0;
8718                                return 1;
8719                        }
8720                }
8721        }
8722
8723        /* wc->stage == DROP_REFERENCE */
8724        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8725
8726        if (wc->refs[level] == 1) {
8727                if (level == 0) {
8728                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8729                                ret = btrfs_dec_ref(trans, root, eb, 1);
8730                        else
8731                                ret = btrfs_dec_ref(trans, root, eb, 0);
8732                        BUG_ON(ret); /* -ENOMEM */
8733                        ret = account_leaf_items(trans, root, eb);
8734                        if (ret) {
8735                                btrfs_err_rl(root->fs_info,
8736                                        "error "
8737                                        "%d accounting leaf items. Quota "
8738                                        "is out of sync, rescan required.",
8739                                        ret);
8740                        }
8741                }
8742                /* make block locked assertion in clean_tree_block happy */
8743                if (!path->locks[level] &&
8744                    btrfs_header_generation(eb) == trans->transid) {
8745                        btrfs_tree_lock(eb);
8746                        btrfs_set_lock_blocking(eb);
8747                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8748                }
8749                clean_tree_block(trans, root->fs_info, eb);
8750        }
8751
8752        if (eb == root->node) {
8753                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8754                        parent = eb->start;
8755                else
8756                        BUG_ON(root->root_key.objectid !=
8757                               btrfs_header_owner(eb));
8758        } else {
8759                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8760                        parent = path->nodes[level + 1]->start;
8761                else
8762                        BUG_ON(root->root_key.objectid !=
8763                               btrfs_header_owner(path->nodes[level + 1]));
8764        }
8765
8766        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8767out:
8768        wc->refs[level] = 0;
8769        wc->flags[level] = 0;
8770        return 0;
8771}
8772
8773static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8774                                   struct btrfs_root *root,
8775                                   struct btrfs_path *path,
8776                                   struct walk_control *wc)
8777{
8778        int level = wc->level;
8779        int lookup_info = 1;
8780        int ret;
8781
8782        while (level >= 0) {
8783                ret = walk_down_proc(trans, root, path, wc, lookup_info);
8784                if (ret > 0)
8785                        break;
8786
8787                if (level == 0)
8788                        break;
8789
8790                if (path->slots[level] >=
8791                    btrfs_header_nritems(path->nodes[level]))
8792                        break;
8793
8794                ret = do_walk_down(trans, root, path, wc, &lookup_info);
8795                if (ret > 0) {
8796                        path->slots[level]++;
8797                        continue;
8798                } else if (ret < 0)
8799                        return ret;
8800                level = wc->level;
8801        }
8802        return 0;
8803}
8804
8805static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8806                                 struct btrfs_root *root,
8807                                 struct btrfs_path *path,
8808                                 struct walk_control *wc, int max_level)
8809{
8810        int level = wc->level;
8811        int ret;
8812
8813        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8814        while (level < max_level && path->nodes[level]) {
8815                wc->level = level;
8816                if (path->slots[level] + 1 <
8817                    btrfs_header_nritems(path->nodes[level])) {
8818                        path->slots[level]++;
8819                        return 0;
8820                } else {
8821                        ret = walk_up_proc(trans, root, path, wc);
8822                        if (ret > 0)
8823                                return 0;
8824
8825                        if (path->locks[level]) {
8826                                btrfs_tree_unlock_rw(path->nodes[level],
8827                                                     path->locks[level]);
8828                                path->locks[level] = 0;
8829                        }
8830                        free_extent_buffer(path->nodes[level]);
8831                        path->nodes[level] = NULL;
8832                        level++;
8833                }
8834        }
8835        return 1;
8836}
8837
8838/*
8839 * drop a subvolume tree.
8840 *
8841 * this function traverses the tree freeing any blocks that only
8842 * referenced by the tree.
8843 *
8844 * when a shared tree block is found. this function decreases its
8845 * reference count by one. if update_ref is true, this function
8846 * also make sure backrefs for the shared block and all lower level
8847 * blocks are properly updated.
8848 *
8849 * If called with for_reloc == 0, may exit early with -EAGAIN
8850 */
8851int btrfs_drop_snapshot(struct btrfs_root *root,
8852                         struct btrfs_block_rsv *block_rsv, int update_ref,
8853                         int for_reloc)
8854{
8855        struct btrfs_path *path;
8856        struct btrfs_trans_handle *trans;
8857        struct btrfs_root *tree_root = root->fs_info->tree_root;
8858        struct btrfs_root_item *root_item = &root->root_item;
8859        struct walk_control *wc;
8860        struct btrfs_key key;
8861        int err = 0;
8862        int ret;
8863        int level;
8864        bool root_dropped = false;
8865
8866        btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8867
8868        path = btrfs_alloc_path();
8869        if (!path) {
8870                err = -ENOMEM;
8871                goto out;
8872        }
8873
8874        wc = kzalloc(sizeof(*wc), GFP_NOFS);
8875        if (!wc) {
8876                btrfs_free_path(path);
8877                err = -ENOMEM;
8878                goto out;
8879        }
8880
8881        trans = btrfs_start_transaction(tree_root, 0);
8882        if (IS_ERR(trans)) {
8883                err = PTR_ERR(trans);
8884                goto out_free;
8885        }
8886
8887        if (block_rsv)
8888                trans->block_rsv = block_rsv;
8889
8890        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8891                level = btrfs_header_level(root->node);
8892                path->nodes[level] = btrfs_lock_root_node(root);
8893                btrfs_set_lock_blocking(path->nodes[level]);
8894                path->slots[level] = 0;
8895                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8896                memset(&wc->update_progress, 0,
8897                       sizeof(wc->update_progress));
8898        } else {
8899                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8900                memcpy(&wc->update_progress, &key,
8901                       sizeof(wc->update_progress));
8902
8903                level = root_item->drop_level;
8904                BUG_ON(level == 0);
8905                path->lowest_level = level;
8906                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8907                path->lowest_level = 0;
8908                if (ret < 0) {
8909                        err = ret;
8910                        goto out_end_trans;
8911                }
8912                WARN_ON(ret > 0);
8913
8914                /*
8915                 * unlock our path, this is safe because only this
8916                 * function is allowed to delete this snapshot
8917                 */
8918                btrfs_unlock_up_safe(path, 0);
8919
8920                level = btrfs_header_level(root->node);
8921                while (1) {
8922                        btrfs_tree_lock(path->nodes[level]);
8923                        btrfs_set_lock_blocking(path->nodes[level]);
8924                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8925
8926                        ret = btrfs_lookup_extent_info(trans, root,
8927                                                path->nodes[level]->start,
8928                                                level, 1, &wc->refs[level],
8929                                                &wc->flags[level]);
8930                        if (ret < 0) {
8931                                err = ret;
8932                                goto out_end_trans;
8933                        }
8934                        BUG_ON(wc->refs[level] == 0);
8935
8936                        if (level == root_item->drop_level)
8937                                break;
8938
8939                        btrfs_tree_unlock(path->nodes[level]);
8940                        path->locks[level] = 0;
8941                        WARN_ON(wc->refs[level] != 1);
8942                        level--;
8943                }
8944        }
8945
8946        wc->level = level;
8947        wc->shared_level = -1;
8948        wc->stage = DROP_REFERENCE;
8949        wc->update_ref = update_ref;
8950        wc->keep_locks = 0;
8951        wc->for_reloc = for_reloc;
8952        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8953
8954        while (1) {
8955
8956                ret = walk_down_tree(trans, root, path, wc);
8957                if (ret < 0) {
8958                        err = ret;
8959                        break;
8960                }
8961
8962                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8963                if (ret < 0) {
8964                        err = ret;
8965                        break;
8966                }
8967
8968                if (ret > 0) {
8969                        BUG_ON(wc->stage != DROP_REFERENCE);
8970                        break;
8971                }
8972
8973                if (wc->stage == DROP_REFERENCE) {
8974                        level = wc->level;
8975                        btrfs_node_key(path->nodes[level],
8976                                       &root_item->drop_progress,
8977                                       path->slots[level]);
8978                        root_item->drop_level = level;
8979                }
8980
8981                BUG_ON(wc->level == 0);
8982                if (btrfs_should_end_transaction(trans, tree_root) ||
8983                    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8984                        ret = btrfs_update_root(trans, tree_root,
8985                                                &root->root_key,
8986                                                root_item);
8987                        if (ret) {
8988                                btrfs_abort_transaction(trans, tree_root, ret);
8989                                err = ret;
8990                                goto out_end_trans;
8991                        }
8992
8993                        btrfs_end_transaction_throttle(trans, tree_root);
8994                        if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8995                                pr_debug("BTRFS: drop snapshot early exit\n");
8996                                err = -EAGAIN;
8997                                goto out_free;
8998                        }
8999
9000                        trans = btrfs_start_transaction(tree_root, 0);
9001                        if (IS_ERR(trans)) {
9002                                err = PTR_ERR(trans);
9003                                goto out_free;
9004                        }
9005                        if (block_rsv)
9006                                trans->block_rsv = block_rsv;
9007                }
9008        }
9009        btrfs_release_path(path);
9010        if (err)
9011                goto out_end_trans;
9012
9013        ret = btrfs_del_root(trans, tree_root, &root->root_key);
9014        if (ret) {
9015                btrfs_abort_transaction(trans, tree_root, ret);
9016                goto out_end_trans;
9017        }
9018
9019        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9020                ret = btrfs_find_root(tree_root, &root->root_key, path,
9021                                      NULL, NULL);
9022                if (ret < 0) {
9023                        btrfs_abort_transaction(trans, tree_root, ret);
9024                        err = ret;
9025                        goto out_end_trans;
9026                } else if (ret > 0) {
9027                        /* if we fail to delete the orphan item this time
9028                         * around, it'll get picked up the next time.
9029                         *
9030                         * The most common failure here is just -ENOENT.
9031                         */
9032                        btrfs_del_orphan_item(trans, tree_root,
9033                                              root->root_key.objectid);
9034                }
9035        }
9036
9037        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9038                btrfs_add_dropped_root(trans, root);
9039        } else {
9040                free_extent_buffer(root->node);
9041                free_extent_buffer(root->commit_root);
9042                btrfs_put_fs_root(root);
9043        }
9044        root_dropped = true;
9045out_end_trans:
9046        btrfs_end_transaction_throttle(trans, tree_root);
9047out_free:
9048        kfree(wc);
9049        btrfs_free_path(path);
9050out:
9051        /*
9052         * So if we need to stop dropping the snapshot for whatever reason we
9053         * need to make sure to add it back to the dead root list so that we
9054         * keep trying to do the work later.  This also cleans up roots if we
9055         * don't have it in the radix (like when we recover after a power fail
9056         * or unmount) so we don't leak memory.
9057         */
9058        if (!for_reloc && root_dropped == false)
9059                btrfs_add_dead_root(root);
9060        if (err && err != -EAGAIN)
9061                btrfs_std_error(root->fs_info, err, NULL);
9062        return err;
9063}
9064
9065/*
9066 * drop subtree rooted at tree block 'node'.
9067 *
9068 * NOTE: this function will unlock and release tree block 'node'
9069 * only used by relocation code
9070 */
9071int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9072                        struct btrfs_root *root,
9073                        struct extent_buffer *node,
9074                        struct extent_buffer *parent)
9075{
9076        struct btrfs_path *path;
9077        struct walk_control *wc;
9078        int level;
9079        int parent_level;
9080        int ret = 0;
9081        int wret;
9082
9083        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9084
9085        path = btrfs_alloc_path();
9086        if (!path)
9087                return -ENOMEM;
9088
9089        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9090        if (!wc) {
9091                btrfs_free_path(path);
9092                return -ENOMEM;
9093        }
9094
9095        btrfs_assert_tree_locked(parent);
9096        parent_level = btrfs_header_level(parent);
9097        extent_buffer_get(parent);
9098        path->nodes[parent_level] = parent;
9099        path->slots[parent_level] = btrfs_header_nritems(parent);
9100
9101        btrfs_assert_tree_locked(node);
9102        level = btrfs_header_level(node);
9103        path->nodes[level] = node;
9104        path->slots[level] = 0;
9105        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9106
9107        wc->refs[parent_level] = 1;
9108        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9109        wc->level = level;
9110        wc->shared_level = -1;
9111        wc->stage = DROP_REFERENCE;
9112        wc->update_ref = 0;
9113        wc->keep_locks = 1;
9114        wc->for_reloc = 1;
9115        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9116
9117        while (1) {
9118                wret = walk_down_tree(trans, root, path, wc);
9119                if (wret < 0) {
9120                        ret = wret;
9121                        break;
9122                }
9123
9124                wret = walk_up_tree(trans, root, path, wc, parent_level);
9125                if (wret < 0)
9126                        ret = wret;
9127                if (wret != 0)
9128                        break;
9129        }
9130
9131        kfree(wc);
9132        btrfs_free_path(path);
9133        return ret;
9134}
9135
9136static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9137{
9138        u64 num_devices;
9139        u64 stripped;
9140
9141        /*
9142         * if restripe for this chunk_type is on pick target profile and
9143         * return, otherwise do the usual balance
9144         */
9145        stripped = get_restripe_target(root->fs_info, flags);
9146        if (stripped)
9147                return extended_to_chunk(stripped);
9148
9149        num_devices = root->fs_info->fs_devices->rw_devices;
9150
9151        stripped = BTRFS_BLOCK_GROUP_RAID0 |
9152                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9153                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9154
9155        if (num_devices == 1) {
9156                stripped |= BTRFS_BLOCK_GROUP_DUP;
9157                stripped = flags & ~stripped;
9158
9159                /* turn raid0 into single device chunks */
9160                if (flags & BTRFS_BLOCK_GROUP_RAID0)
9161                        return stripped;
9162
9163                /* turn mirroring into duplication */
9164                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9165                             BTRFS_BLOCK_GROUP_RAID10))
9166                        return stripped | BTRFS_BLOCK_GROUP_DUP;
9167        } else {
9168                /* they already had raid on here, just return */
9169                if (flags & stripped)
9170                        return flags;
9171
9172                stripped |= BTRFS_BLOCK_GROUP_DUP;
9173                stripped = flags & ~stripped;
9174
9175                /* switch duplicated blocks with raid1 */
9176                if (flags & BTRFS_BLOCK_GROUP_DUP)
9177                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
9178
9179                /* this is drive concat, leave it alone */
9180        }
9181
9182        return flags;
9183}
9184
9185static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9186{
9187        struct btrfs_space_info *sinfo = cache->space_info;
9188        u64 num_bytes;
9189        u64 min_allocable_bytes;
9190        int ret = -ENOSPC;
9191
9192        /*
9193         * We need some metadata space and system metadata space for
9194         * allocating chunks in some corner cases until we force to set
9195         * it to be readonly.
9196         */
9197        if ((sinfo->flags &
9198             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9199            !force)
9200                min_allocable_bytes = SZ_1M;
9201        else
9202                min_allocable_bytes = 0;
9203
9204        spin_lock(&sinfo->lock);
9205        spin_lock(&cache->lock);
9206
9207        if (cache->ro) {
9208                cache->ro++;
9209                ret = 0;
9210                goto out;
9211        }
9212
9213        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9214                    cache->bytes_super - btrfs_block_group_used(&cache->item);
9215
9216        if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9217            sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9218            min_allocable_bytes <= sinfo->total_bytes) {
9219                sinfo->bytes_readonly += num_bytes;
9220                cache->ro++;
9221                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9222                ret = 0;
9223        }
9224out:
9225        spin_unlock(&cache->lock);
9226        spin_unlock(&sinfo->lock);
9227        return ret;
9228}
9229
9230int btrfs_inc_block_group_ro(struct btrfs_root *root,
9231                             struct btrfs_block_group_cache *cache)
9232
9233{
9234        struct btrfs_trans_handle *trans;
9235        u64 alloc_flags;
9236        int ret;
9237
9238again:
9239        trans = btrfs_join_transaction(root);
9240        if (IS_ERR(trans))
9241                return PTR_ERR(trans);
9242
9243        /*
9244         * we're not allowed to set block groups readonly after the dirty
9245         * block groups cache has started writing.  If it already started,
9246         * back off and let this transaction commit
9247         */
9248        mutex_lock(&root->fs_info->ro_block_group_mutex);
9249        if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9250                u64 transid = trans->transid;
9251
9252                mutex_unlock(&root->fs_info->ro_block_group_mutex);
9253                btrfs_end_transaction(trans, root);
9254
9255                ret = btrfs_wait_for_commit(root, transid);
9256                if (ret)
9257                        return ret;
9258                goto again;
9259        }
9260
9261        /*
9262         * if we are changing raid levels, try to allocate a corresponding
9263         * block group with the new raid level.
9264         */
9265        alloc_flags = update_block_group_flags(root, cache->flags);
9266        if (alloc_flags != cache->flags) {
9267                ret = do_chunk_alloc(trans, root, alloc_flags,
9268                                     CHUNK_ALLOC_FORCE);
9269                /*
9270                 * ENOSPC is allowed here, we may have enough space
9271                 * already allocated at the new raid level to
9272                 * carry on
9273                 */
9274                if (ret == -ENOSPC)
9275                        ret = 0;
9276                if (ret < 0)
9277                        goto out;
9278        }
9279
9280        ret = inc_block_group_ro(cache, 0);
9281        if (!ret)
9282                goto out;
9283        alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9284        ret = do_chunk_alloc(trans, root, alloc_flags,
9285                             CHUNK_ALLOC_FORCE);
9286        if (ret < 0)
9287                goto out;
9288        ret = inc_block_group_ro(cache, 0);
9289out:
9290        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9291                alloc_flags = update_block_group_flags(root, cache->flags);
9292                lock_chunks(root->fs_info->chunk_root);
9293                check_system_chunk(trans, root, alloc_flags);
9294                unlock_chunks(root->fs_info->chunk_root);
9295        }
9296        mutex_unlock(&root->fs_info->ro_block_group_mutex);
9297
9298        btrfs_end_transaction(trans, root);
9299        return ret;
9300}
9301
9302int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9303                            struct btrfs_root *root, u64 type)
9304{
9305        u64 alloc_flags = get_alloc_profile(root, type);
9306        return do_chunk_alloc(trans, root, alloc_flags,
9307                              CHUNK_ALLOC_FORCE);
9308}
9309
9310/*
9311 * helper to account the unused space of all the readonly block group in the
9312 * space_info. takes mirrors into account.
9313 */
9314u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9315{
9316        struct btrfs_block_group_cache *block_group;
9317        u64 free_bytes = 0;
9318        int factor;
9319
9320        /* It's df, we don't care if it's racey */
9321        if (list_empty(&sinfo->ro_bgs))
9322                return 0;
9323
9324        spin_lock(&sinfo->lock);
9325        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9326                spin_lock(&block_group->lock);
9327
9328                if (!block_group->ro) {
9329                        spin_unlock(&block_group->lock);
9330                        continue;
9331                }
9332
9333                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9334                                          BTRFS_BLOCK_GROUP_RAID10 |
9335                                          BTRFS_BLOCK_GROUP_DUP))
9336                        factor = 2;
9337                else
9338                        factor = 1;
9339
9340                free_bytes += (block_group->key.offset -
9341                               btrfs_block_group_used(&block_group->item)) *
9342                               factor;
9343
9344                spin_unlock(&block_group->lock);
9345        }
9346        spin_unlock(&sinfo->lock);
9347
9348        return free_bytes;
9349}
9350
9351void btrfs_dec_block_group_ro(struct btrfs_root *root,
9352                              struct btrfs_block_group_cache *cache)
9353{
9354        struct btrfs_space_info *sinfo = cache->space_info;
9355        u64 num_bytes;
9356
9357        BUG_ON(!cache->ro);
9358
9359        spin_lock(&sinfo->lock);
9360        spin_lock(&cache->lock);
9361        if (!--cache->ro) {
9362                num_bytes = cache->key.offset - cache->reserved -
9363                            cache->pinned - cache->bytes_super -
9364                            btrfs_block_group_used(&cache->item);
9365                sinfo->bytes_readonly -= num_bytes;
9366                list_del_init(&cache->ro_list);
9367        }
9368        spin_unlock(&cache->lock);
9369        spin_unlock(&sinfo->lock);
9370}
9371
9372/*
9373 * checks to see if its even possible to relocate this block group.
9374 *
9375 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9376 * ok to go ahead and try.
9377 */
9378int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9379{
9380        struct btrfs_block_group_cache *block_group;
9381        struct btrfs_space_info *space_info;
9382        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9383        struct btrfs_device *device;
9384        struct btrfs_trans_handle *trans;
9385        u64 min_free;
9386        u64 dev_min = 1;
9387        u64 dev_nr = 0;
9388        u64 target;
9389        int debug;
9390        int index;
9391        int full = 0;
9392        int ret = 0;
9393
9394        debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9395
9396        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9397
9398        /* odd, couldn't find the block group, leave it alone */
9399        if (!block_group) {
9400                if (debug)
9401                        btrfs_warn(root->fs_info,
9402                                   "can't find block group for bytenr %llu",
9403                                   bytenr);
9404                return -1;
9405        }
9406
9407        min_free = btrfs_block_group_used(&block_group->item);
9408
9409        /* no bytes used, we're good */
9410        if (!min_free)
9411                goto out;
9412
9413        space_info = block_group->space_info;
9414        spin_lock(&space_info->lock);
9415
9416        full = space_info->full;
9417
9418        /*
9419         * if this is the last block group we have in this space, we can't
9420         * relocate it unless we're able to allocate a new chunk below.
9421         *
9422         * Otherwise, we need to make sure we have room in the space to handle
9423         * all of the extents from this block group.  If we can, we're good
9424         */
9425        if ((space_info->total_bytes != block_group->key.offset) &&
9426            (space_info->bytes_used + space_info->bytes_reserved +
9427             space_info->bytes_pinned + space_info->bytes_readonly +
9428             min_free < space_info->total_bytes)) {
9429                spin_unlock(&space_info->lock);
9430                goto out;
9431        }
9432        spin_unlock(&space_info->lock);
9433
9434        /*
9435         * ok we don't have enough space, but maybe we have free space on our
9436         * devices to allocate new chunks for relocation, so loop through our
9437         * alloc devices and guess if we have enough space.  if this block
9438         * group is going to be restriped, run checks against the target
9439         * profile instead of the current one.
9440         */
9441        ret = -1;
9442
9443        /*
9444         * index:
9445         *      0: raid10
9446         *      1: raid1
9447         *      2: dup
9448         *      3: raid0
9449         *      4: single
9450         */
9451        target = get_restripe_target(root->fs_info, block_group->flags);
9452        if (target) {
9453                index = __get_raid_index(extended_to_chunk(target));
9454        } else {
9455                /*
9456                 * this is just a balance, so if we were marked as full
9457                 * we know there is no space for a new chunk
9458                 */
9459                if (full) {
9460                        if (debug)
9461                                btrfs_warn(root->fs_info,
9462                                        "no space to alloc new chunk for block group %llu",
9463                                        block_group->key.objectid);
9464                        goto out;
9465                }
9466
9467                index = get_block_group_index(block_group);
9468        }
9469
9470        if (index == BTRFS_RAID_RAID10) {
9471                dev_min = 4;
9472                /* Divide by 2 */
9473                min_free >>= 1;
9474        } else if (index == BTRFS_RAID_RAID1) {
9475                dev_min = 2;
9476        } else if (index == BTRFS_RAID_DUP) {
9477                /* Multiply by 2 */
9478                min_free <<= 1;
9479        } else if (index == BTRFS_RAID_RAID0) {
9480                dev_min = fs_devices->rw_devices;
9481                min_free = div64_u64(min_free, dev_min);
9482        }
9483
9484        /* We need to do this so that we can look at pending chunks */
9485        trans = btrfs_join_transaction(root);
9486        if (IS_ERR(trans)) {
9487                ret = PTR_ERR(trans);
9488                goto out;
9489        }
9490
9491        mutex_lock(&root->fs_info->chunk_mutex);
9492        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9493                u64 dev_offset;
9494
9495                /*
9496                 * check to make sure we can actually find a chunk with enough
9497                 * space to fit our block group in.
9498                 */
9499                if (device->total_bytes > device->bytes_used + min_free &&
9500                    !device->is_tgtdev_for_dev_replace) {
9501                        ret = find_free_dev_extent(trans, device, min_free,
9502                                                   &dev_offset, NULL);
9503                        if (!ret)
9504                                dev_nr++;
9505
9506                        if (dev_nr >= dev_min)
9507                                break;
9508
9509                        ret = -1;
9510                }
9511        }
9512        if (debug && ret == -1)
9513                btrfs_warn(root->fs_info,
9514                        "no space to allocate a new chunk for block group %llu",
9515                        block_group->key.objectid);
9516        mutex_unlock(&root->fs_info->chunk_mutex);
9517        btrfs_end_transaction(trans, root);
9518out:
9519        btrfs_put_block_group(block_group);
9520        return ret;
9521}
9522
9523static int find_first_block_group(struct btrfs_root *root,
9524                struct btrfs_path *path, struct btrfs_key *key)
9525{
9526        int ret = 0;
9527        struct btrfs_key found_key;
9528        struct extent_buffer *leaf;
9529        int slot;
9530
9531        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9532        if (ret < 0)
9533                goto out;
9534
9535        while (1) {
9536                slot = path->slots[0];
9537                leaf = path->nodes[0];
9538                if (slot >= btrfs_header_nritems(leaf)) {
9539                        ret = btrfs_next_leaf(root, path);
9540                        if (ret == 0)
9541                                continue;
9542                        if (ret < 0)
9543                                goto out;
9544                        break;
9545                }
9546                btrfs_item_key_to_cpu(leaf, &found_key, slot);
9547
9548                if (found_key.objectid >= key->objectid &&
9549                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9550                        ret = 0;
9551                        goto out;
9552                }
9553                path->slots[0]++;
9554        }
9555out:
9556        return ret;
9557}
9558
9559void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9560{
9561        struct btrfs_block_group_cache *block_group;
9562        u64 last = 0;
9563
9564        while (1) {
9565                struct inode *inode;
9566
9567                block_group = btrfs_lookup_first_block_group(info, last);
9568                while (block_group) {
9569                        spin_lock(&block_group->lock);
9570                        if (block_group->iref)
9571                                break;
9572                        spin_unlock(&block_group->lock);
9573                        block_group = next_block_group(info->tree_root,
9574                                                       block_group);
9575                }
9576                if (!block_group) {
9577                        if (last == 0)
9578                                break;
9579                        last = 0;
9580                        continue;
9581                }
9582
9583                inode = block_group->inode;
9584                block_group->iref = 0;
9585                block_group->inode = NULL;
9586                spin_unlock(&block_group->lock);
9587                iput(inode);
9588                last = block_group->key.objectid + block_group->key.offset;
9589                btrfs_put_block_group(block_group);
9590        }
9591}
9592
9593int btrfs_free_block_groups(struct btrfs_fs_info *info)
9594{
9595        struct btrfs_block_group_cache *block_group;
9596        struct btrfs_space_info *space_info;
9597        struct btrfs_caching_control *caching_ctl;
9598        struct rb_node *n;
9599
9600        down_write(&info->commit_root_sem);
9601        while (!list_empty(&info->caching_block_groups)) {
9602                caching_ctl = list_entry(info->caching_block_groups.next,
9603                                         struct btrfs_caching_control, list);
9604                list_del(&caching_ctl->list);
9605                put_caching_control(caching_ctl);
9606        }
9607        up_write(&info->commit_root_sem);
9608
9609        spin_lock(&info->unused_bgs_lock);
9610        while (!list_empty(&info->unused_bgs)) {
9611                block_group = list_first_entry(&info->unused_bgs,
9612                                               struct btrfs_block_group_cache,
9613                                               bg_list);
9614                list_del_init(&block_group->bg_list);
9615                btrfs_put_block_group(block_group);
9616        }
9617        spin_unlock(&info->unused_bgs_lock);
9618
9619        spin_lock(&info->block_group_cache_lock);
9620        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9621                block_group = rb_entry(n, struct btrfs_block_group_cache,
9622                                       cache_node);
9623                rb_erase(&block_group->cache_node,
9624                         &info->block_group_cache_tree);
9625                RB_CLEAR_NODE(&block_group->cache_node);
9626                spin_unlock(&info->block_group_cache_lock);
9627
9628                down_write(&block_group->space_info->groups_sem);
9629                list_del(&block_group->list);
9630                up_write(&block_group->space_info->groups_sem);
9631
9632                if (block_group->cached == BTRFS_CACHE_STARTED)
9633                        wait_block_group_cache_done(block_group);
9634
9635                /*
9636                 * We haven't cached this block group, which means we could
9637                 * possibly have excluded extents on this block group.
9638                 */
9639                if (block_group->cached == BTRFS_CACHE_NO ||
9640                    block_group->cached == BTRFS_CACHE_ERROR)
9641                        free_excluded_extents(info->extent_root, block_group);
9642
9643                btrfs_remove_free_space_cache(block_group);
9644                btrfs_put_block_group(block_group);
9645
9646                spin_lock(&info->block_group_cache_lock);
9647        }
9648        spin_unlock(&info->block_group_cache_lock);
9649
9650        /* now that all the block groups are freed, go through and
9651         * free all the space_info structs.  This is only called during
9652         * the final stages of unmount, and so we know nobody is
9653         * using them.  We call synchronize_rcu() once before we start,
9654         * just to be on the safe side.
9655         */
9656        synchronize_rcu();
9657
9658        release_global_block_rsv(info);
9659
9660        while (!list_empty(&info->space_info)) {
9661                int i;
9662
9663                space_info = list_entry(info->space_info.next,
9664                                        struct btrfs_space_info,
9665                                        list);
9666                if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9667                        if (WARN_ON(space_info->bytes_pinned > 0 ||
9668                            space_info->bytes_reserved > 0 ||
9669                            space_info->bytes_may_use > 0)) {
9670                                dump_space_info(space_info, 0, 0);
9671                        }
9672                }
9673                list_del(&space_info->list);
9674                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9675                        struct kobject *kobj;
9676                        kobj = space_info->block_group_kobjs[i];
9677                        space_info->block_group_kobjs[i] = NULL;
9678                        if (kobj) {
9679                                kobject_del(kobj);
9680                                kobject_put(kobj);
9681                        }
9682                }
9683                kobject_del(&space_info->kobj);
9684                kobject_put(&space_info->kobj);
9685        }
9686        return 0;
9687}
9688
9689static void __link_block_group(struct btrfs_space_info *space_info,
9690                               struct btrfs_block_group_cache *cache)
9691{
9692        int index = get_block_group_index(cache);
9693        bool first = false;
9694
9695        down_write(&space_info->groups_sem);
9696        if (list_empty(&space_info->block_groups[index]))
9697                first = true;
9698        list_add_tail(&cache->list, &space_info->block_groups[index]);
9699        up_write(&space_info->groups_sem);
9700
9701        if (first) {
9702                struct raid_kobject *rkobj;
9703                int ret;
9704
9705                rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9706                if (!rkobj)
9707                        goto out_err;
9708                rkobj->raid_type = index;
9709                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9710                ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9711                                  "%s", get_raid_name(index));
9712                if (ret) {
9713                        kobject_put(&rkobj->kobj);
9714                        goto out_err;
9715                }
9716                space_info->block_group_kobjs[index] = &rkobj->kobj;
9717        }
9718
9719        return;
9720out_err:
9721        pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9722}
9723
9724static struct btrfs_block_group_cache *
9725btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9726{
9727        struct btrfs_block_group_cache *cache;
9728
9729        cache = kzalloc(sizeof(*cache), GFP_NOFS);
9730        if (!cache)
9731                return NULL;
9732
9733        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9734                                        GFP_NOFS);
9735        if (!cache->free_space_ctl) {
9736                kfree(cache);
9737                return NULL;
9738        }
9739
9740        cache->key.objectid = start;
9741        cache->key.offset = size;
9742        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9743
9744        cache->sectorsize = root->sectorsize;
9745        cache->fs_info = root->fs_info;
9746        cache->full_stripe_len = btrfs_full_stripe_len(root,
9747                                               &root->fs_info->mapping_tree,
9748                                               start);
9749        set_free_space_tree_thresholds(cache);
9750
9751        atomic_set(&cache->count, 1);
9752        spin_lock_init(&cache->lock);
9753        init_rwsem(&cache->data_rwsem);
9754        INIT_LIST_HEAD(&cache->list);
9755        INIT_LIST_HEAD(&cache->cluster_list);
9756        INIT_LIST_HEAD(&cache->bg_list);
9757        INIT_LIST_HEAD(&cache->ro_list);
9758        INIT_LIST_HEAD(&cache->dirty_list);
9759        INIT_LIST_HEAD(&cache->io_list);
9760        btrfs_init_free_space_ctl(cache);
9761        atomic_set(&cache->trimming, 0);
9762        mutex_init(&cache->free_space_lock);
9763
9764        return cache;
9765}
9766
9767int btrfs_read_block_groups(struct btrfs_root *root)
9768{
9769        struct btrfs_path *path;
9770        int ret;
9771        struct btrfs_block_group_cache *cache;
9772        struct btrfs_fs_info *info = root->fs_info;
9773        struct btrfs_space_info *space_info;
9774        struct btrfs_key key;
9775        struct btrfs_key found_key;
9776        struct extent_buffer *leaf;
9777        int need_clear = 0;
9778        u64 cache_gen;
9779
9780        root = info->extent_root;
9781        key.objectid = 0;
9782        key.offset = 0;
9783        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9784        path = btrfs_alloc_path();
9785        if (!path)
9786                return -ENOMEM;
9787        path->reada = READA_FORWARD;
9788
9789        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9790        if (btrfs_test_opt(root, SPACE_CACHE) &&
9791            btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9792                need_clear = 1;
9793        if (btrfs_test_opt(root, CLEAR_CACHE))
9794                need_clear = 1;
9795
9796        while (1) {
9797                ret = find_first_block_group(root, path, &key);
9798                if (ret > 0)
9799                        break;
9800                if (ret != 0)
9801                        goto error;
9802
9803                leaf = path->nodes[0];
9804                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9805
9806                cache = btrfs_create_block_group_cache(root, found_key.objectid,
9807                                                       found_key.offset);
9808                if (!cache) {
9809                        ret = -ENOMEM;
9810                        goto error;
9811                }
9812
9813                if (need_clear) {
9814                        /*
9815                         * When we mount with old space cache, we need to
9816                         * set BTRFS_DC_CLEAR and set dirty flag.
9817                         *
9818                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9819                         *    truncate the old free space cache inode and
9820                         *    setup a new one.
9821                         * b) Setting 'dirty flag' makes sure that we flush
9822                         *    the new space cache info onto disk.
9823                         */
9824                        if (btrfs_test_opt(root, SPACE_CACHE))
9825                                cache->disk_cache_state = BTRFS_DC_CLEAR;
9826                }
9827
9828                read_extent_buffer(leaf, &cache->item,
9829                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
9830                                   sizeof(cache->item));
9831                cache->flags = btrfs_block_group_flags(&cache->item);
9832
9833                key.objectid = found_key.objectid + found_key.offset;
9834                btrfs_release_path(path);
9835
9836                /*
9837                 * We need to exclude the super stripes now so that the space
9838                 * info has super bytes accounted for, otherwise we'll think
9839                 * we have more space than we actually do.
9840                 */
9841                ret = exclude_super_stripes(root, cache);
9842                if (ret) {
9843                        /*
9844                         * We may have excluded something, so call this just in
9845                         * case.
9846                         */
9847                        free_excluded_extents(root, cache);
9848                        btrfs_put_block_group(cache);
9849                        goto error;
9850                }
9851
9852                /*
9853                 * check for two cases, either we are full, and therefore
9854                 * don't need to bother with the caching work since we won't
9855                 * find any space, or we are empty, and we can just add all
9856                 * the space in and be done with it.  This saves us _alot_ of
9857                 * time, particularly in the full case.
9858                 */
9859                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9860                        cache->last_byte_to_unpin = (u64)-1;
9861                        cache->cached = BTRFS_CACHE_FINISHED;
9862                        free_excluded_extents(root, cache);
9863                } else if (btrfs_block_group_used(&cache->item) == 0) {
9864                        cache->last_byte_to_unpin = (u64)-1;
9865                        cache->cached = BTRFS_CACHE_FINISHED;
9866                        add_new_free_space(cache, root->fs_info,
9867                                           found_key.objectid,
9868                                           found_key.objectid +
9869                                           found_key.offset);
9870                        free_excluded_extents(root, cache);
9871                }
9872
9873                ret = btrfs_add_block_group_cache(root->fs_info, cache);
9874                if (ret) {
9875                        btrfs_remove_free_space_cache(cache);
9876                        btrfs_put_block_group(cache);
9877                        goto error;
9878                }
9879
9880                ret = update_space_info(info, cache->flags, found_key.offset,
9881                                        btrfs_block_group_used(&cache->item),
9882                                        &space_info);
9883                if (ret) {
9884                        btrfs_remove_free_space_cache(cache);
9885                        spin_lock(&info->block_group_cache_lock);
9886                        rb_erase(&cache->cache_node,
9887                                 &info->block_group_cache_tree);
9888                        RB_CLEAR_NODE(&cache->cache_node);
9889                        spin_unlock(&info->block_group_cache_lock);
9890                        btrfs_put_block_group(cache);
9891                        goto error;
9892                }
9893
9894                cache->space_info = space_info;
9895                spin_lock(&cache->space_info->lock);
9896                cache->space_info->bytes_readonly += cache->bytes_super;
9897                spin_unlock(&cache->space_info->lock);
9898
9899                __link_block_group(space_info, cache);
9900
9901                set_avail_alloc_bits(root->fs_info, cache->flags);
9902                if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9903                        inc_block_group_ro(cache, 1);
9904                } else if (btrfs_block_group_used(&cache->item) == 0) {
9905                        spin_lock(&info->unused_bgs_lock);
9906                        /* Should always be true but just in case. */
9907                        if (list_empty(&cache->bg_list)) {
9908                                btrfs_get_block_group(cache);
9909                                list_add_tail(&cache->bg_list,
9910                                              &info->unused_bgs);
9911                        }
9912                        spin_unlock(&info->unused_bgs_lock);
9913                }
9914        }
9915
9916        list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9917                if (!(get_alloc_profile(root, space_info->flags) &
9918                      (BTRFS_BLOCK_GROUP_RAID10 |
9919                       BTRFS_BLOCK_GROUP_RAID1 |
9920                       BTRFS_BLOCK_GROUP_RAID5 |
9921                       BTRFS_BLOCK_GROUP_RAID6 |
9922                       BTRFS_BLOCK_GROUP_DUP)))
9923                        continue;
9924                /*
9925                 * avoid allocating from un-mirrored block group if there are
9926                 * mirrored block groups.
9927                 */
9928                list_for_each_entry(cache,
9929                                &space_info->block_groups[BTRFS_RAID_RAID0],
9930                                list)
9931                        inc_block_group_ro(cache, 1);
9932                list_for_each_entry(cache,
9933                                &space_info->block_groups[BTRFS_RAID_SINGLE],
9934                                list)
9935                        inc_block_group_ro(cache, 1);
9936        }
9937
9938        init_global_block_rsv(info);
9939        ret = 0;
9940error:
9941        btrfs_free_path(path);
9942        return ret;
9943}
9944
9945void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9946                                       struct btrfs_root *root)
9947{
9948        struct btrfs_block_group_cache *block_group, *tmp;
9949        struct btrfs_root *extent_root = root->fs_info->extent_root;
9950        struct btrfs_block_group_item item;
9951        struct btrfs_key key;
9952        int ret = 0;
9953        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9954
9955        trans->can_flush_pending_bgs = false;
9956        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9957                if (ret)
9958                        goto next;
9959
9960                spin_lock(&block_group->lock);
9961                memcpy(&item, &block_group->item, sizeof(item));
9962                memcpy(&key, &block_group->key, sizeof(key));
9963                spin_unlock(&block_group->lock);
9964
9965                ret = btrfs_insert_item(trans, extent_root, &key, &item,
9966                                        sizeof(item));
9967                if (ret)
9968                        btrfs_abort_transaction(trans, extent_root, ret);
9969                ret = btrfs_finish_chunk_alloc(trans, extent_root,
9970                                               key.objectid, key.offset);
9971                if (ret)
9972                        btrfs_abort_transaction(trans, extent_root, ret);
9973                add_block_group_free_space(trans, root->fs_info, block_group);
9974                /* already aborted the transaction if it failed. */
9975next:
9976                list_del_init(&block_group->bg_list);
9977        }
9978        trans->can_flush_pending_bgs = can_flush_pending_bgs;
9979}
9980
9981int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9982                           struct btrfs_root *root, u64 bytes_used,
9983                           u64 type, u64 chunk_objectid, u64 chunk_offset,
9984                           u64 size)
9985{
9986        int ret;
9987        struct btrfs_root *extent_root;
9988        struct btrfs_block_group_cache *cache;
9989
9990        extent_root = root->fs_info->extent_root;
9991
9992        btrfs_set_log_full_commit(root->fs_info, trans);
9993
9994        cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9995        if (!cache)
9996                return -ENOMEM;
9997
9998        btrfs_set_block_group_used(&cache->item, bytes_used);
9999        btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10000        btrfs_set_block_group_flags(&cache->item, type);
10001
10002        cache->flags = type;
10003        cache->last_byte_to_unpin = (u64)-1;
10004        cache->cached = BTRFS_CACHE_FINISHED;
10005        cache->needs_free_space = 1;
10006        ret = exclude_super_stripes(root, cache);
10007        if (ret) {
10008                /*
10009                 * We may have excluded something, so call this just in
10010                 * case.
10011                 */
10012                free_excluded_extents(root, cache);
10013                btrfs_put_block_group(cache);
10014                return ret;
10015        }
10016
10017        add_new_free_space(cache, root->fs_info, chunk_offset,
10018                           chunk_offset + size);
10019
10020        free_excluded_extents(root, cache);
10021
10022#ifdef CONFIG_BTRFS_DEBUG
10023        if (btrfs_should_fragment_free_space(root, cache)) {
10024                u64 new_bytes_used = size - bytes_used;
10025
10026                bytes_used += new_bytes_used >> 1;
10027                fragment_free_space(root, cache);
10028        }
10029#endif
10030        /*
10031         * Call to ensure the corresponding space_info object is created and
10032         * assigned to our block group, but don't update its counters just yet.
10033         * We want our bg to be added to the rbtree with its ->space_info set.
10034         */
10035        ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10036                                &cache->space_info);
10037        if (ret) {
10038                btrfs_remove_free_space_cache(cache);
10039                btrfs_put_block_group(cache);
10040                return ret;
10041        }
10042
10043        ret = btrfs_add_block_group_cache(root->fs_info, cache);
10044        if (ret) {
10045                btrfs_remove_free_space_cache(cache);
10046                btrfs_put_block_group(cache);
10047                return ret;
10048        }
10049
10050        /*
10051         * Now that our block group has its ->space_info set and is inserted in
10052         * the rbtree, update the space info's counters.
10053         */
10054        ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10055                                &cache->space_info);
10056        if (ret) {
10057                btrfs_remove_free_space_cache(cache);
10058                spin_lock(&root->fs_info->block_group_cache_lock);
10059                rb_erase(&cache->cache_node,
10060                         &root->fs_info->block_group_cache_tree);
10061                RB_CLEAR_NODE(&cache->cache_node);
10062                spin_unlock(&root->fs_info->block_group_cache_lock);
10063                btrfs_put_block_group(cache);
10064                return ret;
10065        }
10066        update_global_block_rsv(root->fs_info);
10067
10068        spin_lock(&cache->space_info->lock);
10069        cache->space_info->bytes_readonly += cache->bytes_super;
10070        spin_unlock(&cache->space_info->lock);
10071
10072        __link_block_group(cache->space_info, cache);
10073
10074        list_add_tail(&cache->bg_list, &trans->new_bgs);
10075
10076        set_avail_alloc_bits(extent_root->fs_info, type);
10077
10078        return 0;
10079}
10080
10081static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10082{
10083        u64 extra_flags = chunk_to_extended(flags) &
10084                                BTRFS_EXTENDED_PROFILE_MASK;
10085
10086        write_seqlock(&fs_info->profiles_lock);
10087        if (flags & BTRFS_BLOCK_GROUP_DATA)
10088                fs_info->avail_data_alloc_bits &= ~extra_flags;
10089        if (flags & BTRFS_BLOCK_GROUP_METADATA)
10090                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10091        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10092                fs_info->avail_system_alloc_bits &= ~extra_flags;
10093        write_sequnlock(&fs_info->profiles_lock);
10094}
10095
10096int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10097                             struct btrfs_root *root, u64 group_start,
10098                             struct extent_map *em)
10099{
10100        struct btrfs_path *path;
10101        struct btrfs_block_group_cache *block_group;
10102        struct btrfs_free_cluster *cluster;
10103        struct btrfs_root *tree_root = root->fs_info->tree_root;
10104        struct btrfs_key key;
10105        struct inode *inode;
10106        struct kobject *kobj = NULL;
10107        int ret;
10108        int index;
10109        int factor;
10110        struct btrfs_caching_control *caching_ctl = NULL;
10111        bool remove_em;
10112
10113        root = root->fs_info->extent_root;
10114
10115        block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10116        BUG_ON(!block_group);
10117        BUG_ON(!block_group->ro);
10118
10119        /*
10120         * Free the reserved super bytes from this block group before
10121         * remove it.
10122         */
10123        free_excluded_extents(root, block_group);
10124
10125        memcpy(&key, &block_group->key, sizeof(key));
10126        index = get_block_group_index(block_group);
10127        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10128                                  BTRFS_BLOCK_GROUP_RAID1 |
10129                                  BTRFS_BLOCK_GROUP_RAID10))
10130                factor = 2;
10131        else
10132                factor = 1;
10133
10134        /* make sure this block group isn't part of an allocation cluster */
10135        cluster = &root->fs_info->data_alloc_cluster;
10136        spin_lock(&cluster->refill_lock);
10137        btrfs_return_cluster_to_free_space(block_group, cluster);
10138        spin_unlock(&cluster->refill_lock);
10139
10140        /*
10141         * make sure this block group isn't part of a metadata
10142         * allocation cluster
10143         */
10144        cluster = &root->fs_info->meta_alloc_cluster;
10145        spin_lock(&cluster->refill_lock);
10146        btrfs_return_cluster_to_free_space(block_group, cluster);
10147        spin_unlock(&cluster->refill_lock);
10148
10149        path = btrfs_alloc_path();
10150        if (!path) {
10151                ret = -ENOMEM;
10152                goto out;
10153        }
10154
10155        /*
10156         * get the inode first so any iput calls done for the io_list
10157         * aren't the final iput (no unlinks allowed now)
10158         */
10159        inode = lookup_free_space_inode(tree_root, block_group, path);
10160
10161        mutex_lock(&trans->transaction->cache_write_mutex);
10162        /*
10163         * make sure our free spache cache IO is done before remove the
10164         * free space inode
10165         */
10166        spin_lock(&trans->transaction->dirty_bgs_lock);
10167        if (!list_empty(&block_group->io_list)) {
10168                list_del_init(&block_group->io_list);
10169
10170                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10171
10172                spin_unlock(&trans->transaction->dirty_bgs_lock);
10173                btrfs_wait_cache_io(root, trans, block_group,
10174                                    &block_group->io_ctl, path,
10175                                    block_group->key.objectid);
10176                btrfs_put_block_group(block_group);
10177                spin_lock(&trans->transaction->dirty_bgs_lock);
10178        }
10179
10180        if (!list_empty(&block_group->dirty_list)) {
10181                list_del_init(&block_group->dirty_list);
10182                btrfs_put_block_group(block_group);
10183        }
10184        spin_unlock(&trans->transaction->dirty_bgs_lock);
10185        mutex_unlock(&trans->transaction->cache_write_mutex);
10186
10187        if (!IS_ERR(inode)) {
10188                ret = btrfs_orphan_add(trans, inode);
10189                if (ret) {
10190                        btrfs_add_delayed_iput(inode);
10191                        goto out;
10192                }
10193                clear_nlink(inode);
10194                /* One for the block groups ref */
10195                spin_lock(&block_group->lock);
10196                if (block_group->iref) {
10197                        block_group->iref = 0;
10198                        block_group->inode = NULL;
10199                        spin_unlock(&block_group->lock);
10200                        iput(inode);
10201                } else {
10202                        spin_unlock(&block_group->lock);
10203                }
10204                /* One for our lookup ref */
10205                btrfs_add_delayed_iput(inode);
10206        }
10207
10208        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10209        key.offset = block_group->key.objectid;
10210        key.type = 0;
10211
10212        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10213        if (ret < 0)
10214                goto out;
10215        if (ret > 0)
10216                btrfs_release_path(path);
10217        if (ret == 0) {
10218                ret = btrfs_del_item(trans, tree_root, path);
10219                if (ret)
10220                        goto out;
10221                btrfs_release_path(path);
10222        }
10223
10224        spin_lock(&root->fs_info->block_group_cache_lock);
10225        rb_erase(&block_group->cache_node,
10226                 &root->fs_info->block_group_cache_tree);
10227        RB_CLEAR_NODE(&block_group->cache_node);
10228
10229        if (root->fs_info->first_logical_byte == block_group->key.objectid)
10230                root->fs_info->first_logical_byte = (u64)-1;
10231        spin_unlock(&root->fs_info->block_group_cache_lock);
10232
10233        down_write(&block_group->space_info->groups_sem);
10234        /*
10235         * we must use list_del_init so people can check to see if they
10236         * are still on the list after taking the semaphore
10237         */
10238        list_del_init(&block_group->list);
10239        if (list_empty(&block_group->space_info->block_groups[index])) {
10240                kobj = block_group->space_info->block_group_kobjs[index];
10241                block_group->space_info->block_group_kobjs[index] = NULL;
10242                clear_avail_alloc_bits(root->fs_info, block_group->flags);
10243        }
10244        up_write(&block_group->space_info->groups_sem);
10245        if (kobj) {
10246                kobject_del(kobj);
10247                kobject_put(kobj);
10248        }
10249
10250        if (block_group->has_caching_ctl)
10251                caching_ctl = get_caching_control(block_group);
10252        if (block_group->cached == BTRFS_CACHE_STARTED)
10253                wait_block_group_cache_done(block_group);
10254        if (block_group->has_caching_ctl) {
10255                down_write(&root->fs_info->commit_root_sem);
10256                if (!caching_ctl) {
10257                        struct btrfs_caching_control *ctl;
10258
10259                        list_for_each_entry(ctl,
10260                                    &root->fs_info->caching_block_groups, list)
10261                                if (ctl->block_group == block_group) {
10262                                        caching_ctl = ctl;
10263                                        atomic_inc(&caching_ctl->count);
10264                                        break;
10265                                }
10266                }
10267                if (caching_ctl)
10268                        list_del_init(&caching_ctl->list);
10269                up_write(&root->fs_info->commit_root_sem);
10270                if (caching_ctl) {
10271                        /* Once for the caching bgs list and once for us. */
10272                        put_caching_control(caching_ctl);
10273                        put_caching_control(caching_ctl);
10274                }
10275        }
10276
10277        spin_lock(&trans->transaction->dirty_bgs_lock);
10278        if (!list_empty(&block_group->dirty_list)) {
10279                WARN_ON(1);
10280        }
10281        if (!list_empty(&block_group->io_list)) {
10282                WARN_ON(1);
10283        }
10284        spin_unlock(&trans->transaction->dirty_bgs_lock);
10285        btrfs_remove_free_space_cache(block_group);
10286
10287        spin_lock(&block_group->space_info->lock);
10288        list_del_init(&block_group->ro_list);
10289
10290        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10291                WARN_ON(block_group->space_info->total_bytes
10292                        < block_group->key.offset);
10293                WARN_ON(block_group->space_info->bytes_readonly
10294                        < block_group->key.offset);
10295                WARN_ON(block_group->space_info->disk_total
10296                        < block_group->key.offset * factor);
10297        }
10298        block_group->space_info->total_bytes -= block_group->key.offset;
10299        block_group->space_info->bytes_readonly -= block_group->key.offset;
10300        block_group->space_info->disk_total -= block_group->key.offset * factor;
10301
10302        spin_unlock(&block_group->space_info->lock);
10303
10304        memcpy(&key, &block_group->key, sizeof(key));
10305
10306        lock_chunks(root);
10307        if (!list_empty(&em->list)) {
10308                /* We're in the transaction->pending_chunks list. */
10309                free_extent_map(em);
10310        }
10311        spin_lock(&block_group->lock);
10312        block_group->removed = 1;
10313        /*
10314         * At this point trimming can't start on this block group, because we
10315         * removed the block group from the tree fs_info->block_group_cache_tree
10316         * so no one can't find it anymore and even if someone already got this
10317         * block group before we removed it from the rbtree, they have already
10318         * incremented block_group->trimming - if they didn't, they won't find
10319         * any free space entries because we already removed them all when we
10320         * called btrfs_remove_free_space_cache().
10321         *
10322         * And we must not remove the extent map from the fs_info->mapping_tree
10323         * to prevent the same logical address range and physical device space
10324         * ranges from being reused for a new block group. This is because our
10325         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10326         * completely transactionless, so while it is trimming a range the
10327         * currently running transaction might finish and a new one start,
10328         * allowing for new block groups to be created that can reuse the same
10329         * physical device locations unless we take this special care.
10330         *
10331         * There may also be an implicit trim operation if the file system
10332         * is mounted with -odiscard. The same protections must remain
10333         * in place until the extents have been discarded completely when
10334         * the transaction commit has completed.
10335         */
10336        remove_em = (atomic_read(&block_group->trimming) == 0);
10337        /*
10338         * Make sure a trimmer task always sees the em in the pinned_chunks list
10339         * if it sees block_group->removed == 1 (needs to lock block_group->lock
10340         * before checking block_group->removed).
10341         */
10342        if (!remove_em) {
10343                /*
10344                 * Our em might be in trans->transaction->pending_chunks which
10345                 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10346                 * and so is the fs_info->pinned_chunks list.
10347                 *
10348                 * So at this point we must be holding the chunk_mutex to avoid
10349                 * any races with chunk allocation (more specifically at
10350                 * volumes.c:contains_pending_extent()), to ensure it always
10351                 * sees the em, either in the pending_chunks list or in the
10352                 * pinned_chunks list.
10353                 */
10354                list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10355        }
10356        spin_unlock(&block_group->lock);
10357
10358        if (remove_em) {
10359                struct extent_map_tree *em_tree;
10360
10361                em_tree = &root->fs_info->mapping_tree.map_tree;
10362                write_lock(&em_tree->lock);
10363                /*
10364                 * The em might be in the pending_chunks list, so make sure the
10365                 * chunk mutex is locked, since remove_extent_mapping() will
10366                 * delete us from that list.
10367                 */
10368                remove_extent_mapping(em_tree, em);
10369                write_unlock(&em_tree->lock);
10370                /* once for the tree */
10371                free_extent_map(em);
10372        }
10373
10374        unlock_chunks(root);
10375
10376        ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10377        if (ret)
10378                goto out;
10379
10380        btrfs_put_block_group(block_group);
10381        btrfs_put_block_group(block_group);
10382
10383        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10384        if (ret > 0)
10385                ret = -EIO;
10386        if (ret < 0)
10387                goto out;
10388
10389        ret = btrfs_del_item(trans, root, path);
10390out:
10391        btrfs_free_path(path);
10392        return ret;
10393}
10394
10395struct btrfs_trans_handle *
10396btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10397                                     const u64 chunk_offset)
10398{
10399        struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10400        struct extent_map *em;
10401        struct map_lookup *map;
10402        unsigned int num_items;
10403
10404        read_lock(&em_tree->lock);
10405        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10406        read_unlock(&em_tree->lock);
10407        ASSERT(em && em->start == chunk_offset);
10408
10409        /*
10410         * We need to reserve 3 + N units from the metadata space info in order
10411         * to remove a block group (done at btrfs_remove_chunk() and at
10412         * btrfs_remove_block_group()), which are used for:
10413         *
10414         * 1 unit for adding the free space inode's orphan (located in the tree
10415         * of tree roots).
10416         * 1 unit for deleting the block group item (located in the extent
10417         * tree).
10418         * 1 unit for deleting the free space item (located in tree of tree
10419         * roots).
10420         * N units for deleting N device extent items corresponding to each
10421         * stripe (located in the device tree).
10422         *
10423         * In order to remove a block group we also need to reserve units in the
10424         * system space info in order to update the chunk tree (update one or
10425         * more device items and remove one chunk item), but this is done at
10426         * btrfs_remove_chunk() through a call to check_system_chunk().
10427         */
10428        map = em->map_lookup;
10429        num_items = 3 + map->num_stripes;
10430        free_extent_map(em);
10431
10432        return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10433                                                           num_items, 1);
10434}
10435
10436/*
10437 * Process the unused_bgs list and remove any that don't have any allocated
10438 * space inside of them.
10439 */
10440void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10441{
10442        struct btrfs_block_group_cache *block_group;
10443        struct btrfs_space_info *space_info;
10444        struct btrfs_root *root = fs_info->extent_root;
10445        struct btrfs_trans_handle *trans;
10446        int ret = 0;
10447
10448        if (!fs_info->open)
10449                return;
10450
10451        spin_lock(&fs_info->unused_bgs_lock);
10452        while (!list_empty(&fs_info->unused_bgs)) {
10453                u64 start, end;
10454                int trimming;
10455
10456                block_group = list_first_entry(&fs_info->unused_bgs,
10457                                               struct btrfs_block_group_cache,
10458                                               bg_list);
10459                list_del_init(&block_group->bg_list);
10460
10461                space_info = block_group->space_info;
10462
10463                if (ret || btrfs_mixed_space_info(space_info)) {
10464                        btrfs_put_block_group(block_group);
10465                        continue;
10466                }
10467                spin_unlock(&fs_info->unused_bgs_lock);
10468
10469                mutex_lock(&fs_info->delete_unused_bgs_mutex);
10470
10471                /* Don't want to race with allocators so take the groups_sem */
10472                down_write(&space_info->groups_sem);
10473                spin_lock(&block_group->lock);
10474                if (block_group->reserved ||
10475                    btrfs_block_group_used(&block_group->item) ||
10476                    block_group->ro ||
10477                    list_is_singular(&block_group->list)) {
10478                        /*
10479                         * We want to bail if we made new allocations or have
10480                         * outstanding allocations in this block group.  We do
10481                         * the ro check in case balance is currently acting on
10482                         * this block group.
10483                         */
10484                        spin_unlock(&block_group->lock);
10485                        up_write(&space_info->groups_sem);
10486                        goto next;
10487                }
10488                spin_unlock(&block_group->lock);
10489
10490                /* We don't want to force the issue, only flip if it's ok. */
10491                ret = inc_block_group_ro(block_group, 0);
10492                up_write(&space_info->groups_sem);
10493                if (ret < 0) {
10494                        ret = 0;
10495                        goto next;
10496                }
10497
10498                /*
10499                 * Want to do this before we do anything else so we can recover
10500                 * properly if we fail to join the transaction.
10501                 */
10502                trans = btrfs_start_trans_remove_block_group(fs_info,
10503                                                     block_group->key.objectid);
10504                if (IS_ERR(trans)) {
10505                        btrfs_dec_block_group_ro(root, block_group);
10506                        ret = PTR_ERR(trans);
10507                        goto next;
10508                }
10509
10510                /*
10511                 * We could have pending pinned extents for this block group,
10512                 * just delete them, we don't care about them anymore.
10513                 */
10514                start = block_group->key.objectid;
10515                end = start + block_group->key.offset - 1;
10516                /*
10517                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10518                 * btrfs_finish_extent_commit(). If we are at transaction N,
10519                 * another task might be running finish_extent_commit() for the
10520                 * previous transaction N - 1, and have seen a range belonging
10521                 * to the block group in freed_extents[] before we were able to
10522                 * clear the whole block group range from freed_extents[]. This
10523                 * means that task can lookup for the block group after we
10524                 * unpinned it from freed_extents[] and removed it, leading to
10525                 * a BUG_ON() at btrfs_unpin_extent_range().
10526                 */
10527                mutex_lock(&fs_info->unused_bg_unpin_mutex);
10528                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10529                                  EXTENT_DIRTY, GFP_NOFS);
10530                if (ret) {
10531                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10532                        btrfs_dec_block_group_ro(root, block_group);
10533                        goto end_trans;
10534                }
10535                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10536                                  EXTENT_DIRTY, GFP_NOFS);
10537                if (ret) {
10538                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10539                        btrfs_dec_block_group_ro(root, block_group);
10540                        goto end_trans;
10541                }
10542                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10543
10544                /* Reset pinned so btrfs_put_block_group doesn't complain */
10545                spin_lock(&space_info->lock);
10546                spin_lock(&block_group->lock);
10547
10548                space_info->bytes_pinned -= block_group->pinned;
10549                space_info->bytes_readonly += block_group->pinned;
10550                percpu_counter_add(&space_info->total_bytes_pinned,
10551                                   -block_group->pinned);
10552                block_group->pinned = 0;
10553
10554                spin_unlock(&block_group->lock);
10555                spin_unlock(&space_info->lock);
10556
10557                /* DISCARD can flip during remount */
10558                trimming = btrfs_test_opt(root, DISCARD);
10559
10560                /* Implicit trim during transaction commit. */
10561                if (trimming)
10562                        btrfs_get_block_group_trimming(block_group);
10563
10564                /*
10565                 * Btrfs_remove_chunk will abort the transaction if things go
10566                 * horribly wrong.
10567                 */
10568                ret = btrfs_remove_chunk(trans, root,
10569                                         block_group->key.objectid);
10570
10571                if (ret) {
10572                        if (trimming)
10573                                btrfs_put_block_group_trimming(block_group);
10574                        goto end_trans;
10575                }
10576
10577                /*
10578                 * If we're not mounted with -odiscard, we can just forget
10579                 * about this block group. Otherwise we'll need to wait
10580                 * until transaction commit to do the actual discard.
10581                 */
10582                if (trimming) {
10583                        spin_lock(&fs_info->unused_bgs_lock);
10584                        /*
10585                         * A concurrent scrub might have added us to the list
10586                         * fs_info->unused_bgs, so use a list_move operation
10587                         * to add the block group to the deleted_bgs list.
10588                         */
10589                        list_move(&block_group->bg_list,
10590                                  &trans->transaction->deleted_bgs);
10591                        spin_unlock(&fs_info->unused_bgs_lock);
10592                        btrfs_get_block_group(block_group);
10593                }
10594end_trans:
10595                btrfs_end_transaction(trans, root);
10596next:
10597                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10598                btrfs_put_block_group(block_group);
10599                spin_lock(&fs_info->unused_bgs_lock);
10600        }
10601        spin_unlock(&fs_info->unused_bgs_lock);
10602}
10603
10604int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10605{
10606        struct btrfs_space_info *space_info;
10607        struct btrfs_super_block *disk_super;
10608        u64 features;
10609        u64 flags;
10610        int mixed = 0;
10611        int ret;
10612
10613        disk_super = fs_info->super_copy;
10614        if (!btrfs_super_root(disk_super))
10615                return -EINVAL;
10616
10617        features = btrfs_super_incompat_flags(disk_super);
10618        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10619                mixed = 1;
10620
10621        flags = BTRFS_BLOCK_GROUP_SYSTEM;
10622        ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10623        if (ret)
10624                goto out;
10625
10626        if (mixed) {
10627                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10628                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10629        } else {
10630                flags = BTRFS_BLOCK_GROUP_METADATA;
10631                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10632                if (ret)
10633                        goto out;
10634
10635                flags = BTRFS_BLOCK_GROUP_DATA;
10636                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10637        }
10638out:
10639        return ret;
10640}
10641
10642int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10643{
10644        return unpin_extent_range(root, start, end, false);
10645}
10646
10647/*
10648 * It used to be that old block groups would be left around forever.
10649 * Iterating over them would be enough to trim unused space.  Since we
10650 * now automatically remove them, we also need to iterate over unallocated
10651 * space.
10652 *
10653 * We don't want a transaction for this since the discard may take a
10654 * substantial amount of time.  We don't require that a transaction be
10655 * running, but we do need to take a running transaction into account
10656 * to ensure that we're not discarding chunks that were released in
10657 * the current transaction.
10658 *
10659 * Holding the chunks lock will prevent other threads from allocating
10660 * or releasing chunks, but it won't prevent a running transaction
10661 * from committing and releasing the memory that the pending chunks
10662 * list head uses.  For that, we need to take a reference to the
10663 * transaction.
10664 */
10665static int btrfs_trim_free_extents(struct btrfs_device *device,
10666                                   u64 minlen, u64 *trimmed)
10667{
10668        u64 start = 0, len = 0;
10669        int ret;
10670
10671        *trimmed = 0;
10672
10673        /* Not writeable = nothing to do. */
10674        if (!device->writeable)
10675                return 0;
10676
10677        /* No free space = nothing to do. */
10678        if (device->total_bytes <= device->bytes_used)
10679                return 0;
10680
10681        ret = 0;
10682
10683        while (1) {
10684                struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10685                struct btrfs_transaction *trans;
10686                u64 bytes;
10687
10688                ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10689                if (ret)
10690                        return ret;
10691
10692                down_read(&fs_info->commit_root_sem);
10693
10694                spin_lock(&fs_info->trans_lock);
10695                trans = fs_info->running_transaction;
10696                if (trans)
10697                        atomic_inc(&trans->use_count);
10698                spin_unlock(&fs_info->trans_lock);
10699
10700                ret = find_free_dev_extent_start(trans, device, minlen, start,
10701                                                 &start, &len);
10702                if (trans)
10703                        btrfs_put_transaction(trans);
10704
10705                if (ret) {
10706                        up_read(&fs_info->commit_root_sem);
10707                        mutex_unlock(&fs_info->chunk_mutex);
10708                        if (ret == -ENOSPC)
10709                                ret = 0;
10710                        break;
10711                }
10712
10713                ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10714                up_read(&fs_info->commit_root_sem);
10715                mutex_unlock(&fs_info->chunk_mutex);
10716
10717                if (ret)
10718                        break;
10719
10720                start += len;
10721                *trimmed += bytes;
10722
10723                if (fatal_signal_pending(current)) {
10724                        ret = -ERESTARTSYS;
10725                        break;
10726                }
10727
10728                cond_resched();
10729        }
10730
10731        return ret;
10732}
10733
10734int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10735{
10736        struct btrfs_fs_info *fs_info = root->fs_info;
10737        struct btrfs_block_group_cache *cache = NULL;
10738        struct btrfs_device *device;
10739        struct list_head *devices;
10740        u64 group_trimmed;
10741        u64 start;
10742        u64 end;
10743        u64 trimmed = 0;
10744        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10745        int ret = 0;
10746
10747        /*
10748         * try to trim all FS space, our block group may start from non-zero.
10749         */
10750        if (range->len == total_bytes)
10751                cache = btrfs_lookup_first_block_group(fs_info, range->start);
10752        else
10753                cache = btrfs_lookup_block_group(fs_info, range->start);
10754
10755        while (cache) {
10756                if (cache->key.objectid >= (range->start + range->len)) {
10757                        btrfs_put_block_group(cache);
10758                        break;
10759                }
10760
10761                start = max(range->start, cache->key.objectid);
10762                end = min(range->start + range->len,
10763                                cache->key.objectid + cache->key.offset);
10764
10765                if (end - start >= range->minlen) {
10766                        if (!block_group_cache_done(cache)) {
10767                                ret = cache_block_group(cache, 0);
10768                                if (ret) {
10769                                        btrfs_put_block_group(cache);
10770                                        break;
10771                                }
10772                                ret = wait_block_group_cache_done(cache);
10773                                if (ret) {
10774                                        btrfs_put_block_group(cache);
10775                                        break;
10776                                }
10777                        }
10778                        ret = btrfs_trim_block_group(cache,
10779                                                     &group_trimmed,
10780                                                     start,
10781                                                     end,
10782                                                     range->minlen);
10783
10784                        trimmed += group_trimmed;
10785                        if (ret) {
10786                                btrfs_put_block_group(cache);
10787                                break;
10788                        }
10789                }
10790
10791                cache = next_block_group(fs_info->tree_root, cache);
10792        }
10793
10794        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10795        devices = &root->fs_info->fs_devices->alloc_list;
10796        list_for_each_entry(device, devices, dev_alloc_list) {
10797                ret = btrfs_trim_free_extents(device, range->minlen,
10798                                              &group_trimmed);
10799                if (ret)
10800                        break;
10801
10802                trimmed += group_trimmed;
10803        }
10804        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10805
10806        range->len = trimmed;
10807        return ret;
10808}
10809
10810/*
10811 * btrfs_{start,end}_write_no_snapshoting() are similar to
10812 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10813 * data into the page cache through nocow before the subvolume is snapshoted,
10814 * but flush the data into disk after the snapshot creation, or to prevent
10815 * operations while snapshoting is ongoing and that cause the snapshot to be
10816 * inconsistent (writes followed by expanding truncates for example).
10817 */
10818void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10819{
10820        percpu_counter_dec(&root->subv_writers->counter);
10821        /*
10822         * Make sure counter is updated before we wake up waiters.
10823         */
10824        smp_mb();
10825        if (waitqueue_active(&root->subv_writers->wait))
10826                wake_up(&root->subv_writers->wait);
10827}
10828
10829int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10830{
10831        if (atomic_read(&root->will_be_snapshoted))
10832                return 0;
10833
10834        percpu_counter_inc(&root->subv_writers->counter);
10835        /*
10836         * Make sure counter is updated before we check for snapshot creation.
10837         */
10838        smp_mb();
10839        if (atomic_read(&root->will_be_snapshoted)) {
10840                btrfs_end_write_no_snapshoting(root);
10841                return 0;
10842        }
10843        return 1;
10844}
10845
10846static int wait_snapshoting_atomic_t(atomic_t *a)
10847{
10848        schedule();
10849        return 0;
10850}
10851
10852void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10853{
10854        while (true) {
10855                int ret;
10856
10857                ret = btrfs_start_write_no_snapshoting(root);
10858                if (ret)
10859                        break;
10860                wait_on_atomic_t(&root->will_be_snapshoted,
10861                                 wait_snapshoting_atomic_t,
10862                                 TASK_UNINTERRUPTIBLE);
10863        }
10864}
10865