linux/fs/btrfs/raid56.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT     1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT          2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT    3
  60
  61#define RBIO_CACHE_SIZE 1024
  62
  63enum btrfs_rbio_ops {
  64        BTRFS_RBIO_WRITE,
  65        BTRFS_RBIO_READ_REBUILD,
  66        BTRFS_RBIO_PARITY_SCRUB,
  67        BTRFS_RBIO_REBUILD_MISSING,
  68};
  69
  70struct btrfs_raid_bio {
  71        struct btrfs_fs_info *fs_info;
  72        struct btrfs_bio *bbio;
  73
  74        /* while we're doing rmw on a stripe
  75         * we put it into a hash table so we can
  76         * lock the stripe and merge more rbios
  77         * into it.
  78         */
  79        struct list_head hash_list;
  80
  81        /*
  82         * LRU list for the stripe cache
  83         */
  84        struct list_head stripe_cache;
  85
  86        /*
  87         * for scheduling work in the helper threads
  88         */
  89        struct btrfs_work work;
  90
  91        /*
  92         * bio list and bio_list_lock are used
  93         * to add more bios into the stripe
  94         * in hopes of avoiding the full rmw
  95         */
  96        struct bio_list bio_list;
  97        spinlock_t bio_list_lock;
  98
  99        /* also protected by the bio_list_lock, the
 100         * plug list is used by the plugging code
 101         * to collect partial bios while plugged.  The
 102         * stripe locking code also uses it to hand off
 103         * the stripe lock to the next pending IO
 104         */
 105        struct list_head plug_list;
 106
 107        /*
 108         * flags that tell us if it is safe to
 109         * merge with this bio
 110         */
 111        unsigned long flags;
 112
 113        /* size of each individual stripe on disk */
 114        int stripe_len;
 115
 116        /* number of data stripes (no p/q) */
 117        int nr_data;
 118
 119        int real_stripes;
 120
 121        int stripe_npages;
 122        /*
 123         * set if we're doing a parity rebuild
 124         * for a read from higher up, which is handled
 125         * differently from a parity rebuild as part of
 126         * rmw
 127         */
 128        enum btrfs_rbio_ops operation;
 129
 130        /* first bad stripe */
 131        int faila;
 132
 133        /* second bad stripe (for raid6 use) */
 134        int failb;
 135
 136        int scrubp;
 137        /*
 138         * number of pages needed to represent the full
 139         * stripe
 140         */
 141        int nr_pages;
 142
 143        /*
 144         * size of all the bios in the bio_list.  This
 145         * helps us decide if the rbio maps to a full
 146         * stripe or not
 147         */
 148        int bio_list_bytes;
 149
 150        int generic_bio_cnt;
 151
 152        atomic_t refs;
 153
 154        atomic_t stripes_pending;
 155
 156        atomic_t error;
 157        /*
 158         * these are two arrays of pointers.  We allocate the
 159         * rbio big enough to hold them both and setup their
 160         * locations when the rbio is allocated
 161         */
 162
 163        /* pointers to pages that we allocated for
 164         * reading/writing stripes directly from the disk (including P/Q)
 165         */
 166        struct page **stripe_pages;
 167
 168        /*
 169         * pointers to the pages in the bio_list.  Stored
 170         * here for faster lookup
 171         */
 172        struct page **bio_pages;
 173
 174        /*
 175         * bitmap to record which horizontal stripe has data
 176         */
 177        unsigned long *dbitmap;
 178};
 179
 180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 182static void rmw_work(struct btrfs_work *work);
 183static void read_rebuild_work(struct btrfs_work *work);
 184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 191
 192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 193                                         int need_check);
 194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 195
 196/*
 197 * the stripe hash table is used for locking, and to collect
 198 * bios in hopes of making a full stripe
 199 */
 200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 201{
 202        struct btrfs_stripe_hash_table *table;
 203        struct btrfs_stripe_hash_table *x;
 204        struct btrfs_stripe_hash *cur;
 205        struct btrfs_stripe_hash *h;
 206        int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 207        int i;
 208        int table_size;
 209
 210        if (info->stripe_hash_table)
 211                return 0;
 212
 213        /*
 214         * The table is large, starting with order 4 and can go as high as
 215         * order 7 in case lock debugging is turned on.
 216         *
 217         * Try harder to allocate and fallback to vmalloc to lower the chance
 218         * of a failing mount.
 219         */
 220        table_size = sizeof(*table) + sizeof(*h) * num_entries;
 221        table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 222        if (!table) {
 223                table = vzalloc(table_size);
 224                if (!table)
 225                        return -ENOMEM;
 226        }
 227
 228        spin_lock_init(&table->cache_lock);
 229        INIT_LIST_HEAD(&table->stripe_cache);
 230
 231        h = table->table;
 232
 233        for (i = 0; i < num_entries; i++) {
 234                cur = h + i;
 235                INIT_LIST_HEAD(&cur->hash_list);
 236                spin_lock_init(&cur->lock);
 237                init_waitqueue_head(&cur->wait);
 238        }
 239
 240        x = cmpxchg(&info->stripe_hash_table, NULL, table);
 241        if (x)
 242                kvfree(x);
 243        return 0;
 244}
 245
 246/*
 247 * caching an rbio means to copy anything from the
 248 * bio_pages array into the stripe_pages array.  We
 249 * use the page uptodate bit in the stripe cache array
 250 * to indicate if it has valid data
 251 *
 252 * once the caching is done, we set the cache ready
 253 * bit.
 254 */
 255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 256{
 257        int i;
 258        char *s;
 259        char *d;
 260        int ret;
 261
 262        ret = alloc_rbio_pages(rbio);
 263        if (ret)
 264                return;
 265
 266        for (i = 0; i < rbio->nr_pages; i++) {
 267                if (!rbio->bio_pages[i])
 268                        continue;
 269
 270                s = kmap(rbio->bio_pages[i]);
 271                d = kmap(rbio->stripe_pages[i]);
 272
 273                memcpy(d, s, PAGE_SIZE);
 274
 275                kunmap(rbio->bio_pages[i]);
 276                kunmap(rbio->stripe_pages[i]);
 277                SetPageUptodate(rbio->stripe_pages[i]);
 278        }
 279        set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 280}
 281
 282/*
 283 * we hash on the first logical address of the stripe
 284 */
 285static int rbio_bucket(struct btrfs_raid_bio *rbio)
 286{
 287        u64 num = rbio->bbio->raid_map[0];
 288
 289        /*
 290         * we shift down quite a bit.  We're using byte
 291         * addressing, and most of the lower bits are zeros.
 292         * This tends to upset hash_64, and it consistently
 293         * returns just one or two different values.
 294         *
 295         * shifting off the lower bits fixes things.
 296         */
 297        return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 298}
 299
 300/*
 301 * stealing an rbio means taking all the uptodate pages from the stripe
 302 * array in the source rbio and putting them into the destination rbio
 303 */
 304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 305{
 306        int i;
 307        struct page *s;
 308        struct page *d;
 309
 310        if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 311                return;
 312
 313        for (i = 0; i < dest->nr_pages; i++) {
 314                s = src->stripe_pages[i];
 315                if (!s || !PageUptodate(s)) {
 316                        continue;
 317                }
 318
 319                d = dest->stripe_pages[i];
 320                if (d)
 321                        __free_page(d);
 322
 323                dest->stripe_pages[i] = s;
 324                src->stripe_pages[i] = NULL;
 325        }
 326}
 327
 328/*
 329 * merging means we take the bio_list from the victim and
 330 * splice it into the destination.  The victim should
 331 * be discarded afterwards.
 332 *
 333 * must be called with dest->rbio_list_lock held
 334 */
 335static void merge_rbio(struct btrfs_raid_bio *dest,
 336                       struct btrfs_raid_bio *victim)
 337{
 338        bio_list_merge(&dest->bio_list, &victim->bio_list);
 339        dest->bio_list_bytes += victim->bio_list_bytes;
 340        dest->generic_bio_cnt += victim->generic_bio_cnt;
 341        bio_list_init(&victim->bio_list);
 342}
 343
 344/*
 345 * used to prune items that are in the cache.  The caller
 346 * must hold the hash table lock.
 347 */
 348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 349{
 350        int bucket = rbio_bucket(rbio);
 351        struct btrfs_stripe_hash_table *table;
 352        struct btrfs_stripe_hash *h;
 353        int freeit = 0;
 354
 355        /*
 356         * check the bit again under the hash table lock.
 357         */
 358        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 359                return;
 360
 361        table = rbio->fs_info->stripe_hash_table;
 362        h = table->table + bucket;
 363
 364        /* hold the lock for the bucket because we may be
 365         * removing it from the hash table
 366         */
 367        spin_lock(&h->lock);
 368
 369        /*
 370         * hold the lock for the bio list because we need
 371         * to make sure the bio list is empty
 372         */
 373        spin_lock(&rbio->bio_list_lock);
 374
 375        if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 376                list_del_init(&rbio->stripe_cache);
 377                table->cache_size -= 1;
 378                freeit = 1;
 379
 380                /* if the bio list isn't empty, this rbio is
 381                 * still involved in an IO.  We take it out
 382                 * of the cache list, and drop the ref that
 383                 * was held for the list.
 384                 *
 385                 * If the bio_list was empty, we also remove
 386                 * the rbio from the hash_table, and drop
 387                 * the corresponding ref
 388                 */
 389                if (bio_list_empty(&rbio->bio_list)) {
 390                        if (!list_empty(&rbio->hash_list)) {
 391                                list_del_init(&rbio->hash_list);
 392                                atomic_dec(&rbio->refs);
 393                                BUG_ON(!list_empty(&rbio->plug_list));
 394                        }
 395                }
 396        }
 397
 398        spin_unlock(&rbio->bio_list_lock);
 399        spin_unlock(&h->lock);
 400
 401        if (freeit)
 402                __free_raid_bio(rbio);
 403}
 404
 405/*
 406 * prune a given rbio from the cache
 407 */
 408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 409{
 410        struct btrfs_stripe_hash_table *table;
 411        unsigned long flags;
 412
 413        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 414                return;
 415
 416        table = rbio->fs_info->stripe_hash_table;
 417
 418        spin_lock_irqsave(&table->cache_lock, flags);
 419        __remove_rbio_from_cache(rbio);
 420        spin_unlock_irqrestore(&table->cache_lock, flags);
 421}
 422
 423/*
 424 * remove everything in the cache
 425 */
 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 427{
 428        struct btrfs_stripe_hash_table *table;
 429        unsigned long flags;
 430        struct btrfs_raid_bio *rbio;
 431
 432        table = info->stripe_hash_table;
 433
 434        spin_lock_irqsave(&table->cache_lock, flags);
 435        while (!list_empty(&table->stripe_cache)) {
 436                rbio = list_entry(table->stripe_cache.next,
 437                                  struct btrfs_raid_bio,
 438                                  stripe_cache);
 439                __remove_rbio_from_cache(rbio);
 440        }
 441        spin_unlock_irqrestore(&table->cache_lock, flags);
 442}
 443
 444/*
 445 * remove all cached entries and free the hash table
 446 * used by unmount
 447 */
 448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 449{
 450        if (!info->stripe_hash_table)
 451                return;
 452        btrfs_clear_rbio_cache(info);
 453        kvfree(info->stripe_hash_table);
 454        info->stripe_hash_table = NULL;
 455}
 456
 457/*
 458 * insert an rbio into the stripe cache.  It
 459 * must have already been prepared by calling
 460 * cache_rbio_pages
 461 *
 462 * If this rbio was already cached, it gets
 463 * moved to the front of the lru.
 464 *
 465 * If the size of the rbio cache is too big, we
 466 * prune an item.
 467 */
 468static void cache_rbio(struct btrfs_raid_bio *rbio)
 469{
 470        struct btrfs_stripe_hash_table *table;
 471        unsigned long flags;
 472
 473        if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 474                return;
 475
 476        table = rbio->fs_info->stripe_hash_table;
 477
 478        spin_lock_irqsave(&table->cache_lock, flags);
 479        spin_lock(&rbio->bio_list_lock);
 480
 481        /* bump our ref if we were not in the list before */
 482        if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 483                atomic_inc(&rbio->refs);
 484
 485        if (!list_empty(&rbio->stripe_cache)){
 486                list_move(&rbio->stripe_cache, &table->stripe_cache);
 487        } else {
 488                list_add(&rbio->stripe_cache, &table->stripe_cache);
 489                table->cache_size += 1;
 490        }
 491
 492        spin_unlock(&rbio->bio_list_lock);
 493
 494        if (table->cache_size > RBIO_CACHE_SIZE) {
 495                struct btrfs_raid_bio *found;
 496
 497                found = list_entry(table->stripe_cache.prev,
 498                                  struct btrfs_raid_bio,
 499                                  stripe_cache);
 500
 501                if (found != rbio)
 502                        __remove_rbio_from_cache(found);
 503        }
 504
 505        spin_unlock_irqrestore(&table->cache_lock, flags);
 506}
 507
 508/*
 509 * helper function to run the xor_blocks api.  It is only
 510 * able to do MAX_XOR_BLOCKS at a time, so we need to
 511 * loop through.
 512 */
 513static void run_xor(void **pages, int src_cnt, ssize_t len)
 514{
 515        int src_off = 0;
 516        int xor_src_cnt = 0;
 517        void *dest = pages[src_cnt];
 518
 519        while(src_cnt > 0) {
 520                xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 521                xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 522
 523                src_cnt -= xor_src_cnt;
 524                src_off += xor_src_cnt;
 525        }
 526}
 527
 528/*
 529 * returns true if the bio list inside this rbio
 530 * covers an entire stripe (no rmw required).
 531 * Must be called with the bio list lock held, or
 532 * at a time when you know it is impossible to add
 533 * new bios into the list
 534 */
 535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 536{
 537        unsigned long size = rbio->bio_list_bytes;
 538        int ret = 1;
 539
 540        if (size != rbio->nr_data * rbio->stripe_len)
 541                ret = 0;
 542
 543        BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 544        return ret;
 545}
 546
 547static int rbio_is_full(struct btrfs_raid_bio *rbio)
 548{
 549        unsigned long flags;
 550        int ret;
 551
 552        spin_lock_irqsave(&rbio->bio_list_lock, flags);
 553        ret = __rbio_is_full(rbio);
 554        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 555        return ret;
 556}
 557
 558/*
 559 * returns 1 if it is safe to merge two rbios together.
 560 * The merging is safe if the two rbios correspond to
 561 * the same stripe and if they are both going in the same
 562 * direction (read vs write), and if neither one is
 563 * locked for final IO
 564 *
 565 * The caller is responsible for locking such that
 566 * rmw_locked is safe to test
 567 */
 568static int rbio_can_merge(struct btrfs_raid_bio *last,
 569                          struct btrfs_raid_bio *cur)
 570{
 571        if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 572            test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 573                return 0;
 574
 575        /*
 576         * we can't merge with cached rbios, since the
 577         * idea is that when we merge the destination
 578         * rbio is going to run our IO for us.  We can
 579         * steal from cached rbio's though, other functions
 580         * handle that.
 581         */
 582        if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 583            test_bit(RBIO_CACHE_BIT, &cur->flags))
 584                return 0;
 585
 586        if (last->bbio->raid_map[0] !=
 587            cur->bbio->raid_map[0])
 588                return 0;
 589
 590        /* we can't merge with different operations */
 591        if (last->operation != cur->operation)
 592                return 0;
 593        /*
 594         * We've need read the full stripe from the drive.
 595         * check and repair the parity and write the new results.
 596         *
 597         * We're not allowed to add any new bios to the
 598         * bio list here, anyone else that wants to
 599         * change this stripe needs to do their own rmw.
 600         */
 601        if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 602            cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 603                return 0;
 604
 605        if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 606            cur->operation == BTRFS_RBIO_REBUILD_MISSING)
 607                return 0;
 608
 609        return 1;
 610}
 611
 612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 613                                  int index)
 614{
 615        return stripe * rbio->stripe_npages + index;
 616}
 617
 618/*
 619 * these are just the pages from the rbio array, not from anything
 620 * the FS sent down to us
 621 */
 622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 623                                     int index)
 624{
 625        return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 626}
 627
 628/*
 629 * helper to index into the pstripe
 630 */
 631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 632{
 633        return rbio_stripe_page(rbio, rbio->nr_data, index);
 634}
 635
 636/*
 637 * helper to index into the qstripe, returns null
 638 * if there is no qstripe
 639 */
 640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 641{
 642        if (rbio->nr_data + 1 == rbio->real_stripes)
 643                return NULL;
 644        return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 645}
 646
 647/*
 648 * The first stripe in the table for a logical address
 649 * has the lock.  rbios are added in one of three ways:
 650 *
 651 * 1) Nobody has the stripe locked yet.  The rbio is given
 652 * the lock and 0 is returned.  The caller must start the IO
 653 * themselves.
 654 *
 655 * 2) Someone has the stripe locked, but we're able to merge
 656 * with the lock owner.  The rbio is freed and the IO will
 657 * start automatically along with the existing rbio.  1 is returned.
 658 *
 659 * 3) Someone has the stripe locked, but we're not able to merge.
 660 * The rbio is added to the lock owner's plug list, or merged into
 661 * an rbio already on the plug list.  When the lock owner unlocks,
 662 * the next rbio on the list is run and the IO is started automatically.
 663 * 1 is returned
 664 *
 665 * If we return 0, the caller still owns the rbio and must continue with
 666 * IO submission.  If we return 1, the caller must assume the rbio has
 667 * already been freed.
 668 */
 669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 670{
 671        int bucket = rbio_bucket(rbio);
 672        struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 673        struct btrfs_raid_bio *cur;
 674        struct btrfs_raid_bio *pending;
 675        unsigned long flags;
 676        DEFINE_WAIT(wait);
 677        struct btrfs_raid_bio *freeit = NULL;
 678        struct btrfs_raid_bio *cache_drop = NULL;
 679        int ret = 0;
 680        int walk = 0;
 681
 682        spin_lock_irqsave(&h->lock, flags);
 683        list_for_each_entry(cur, &h->hash_list, hash_list) {
 684                walk++;
 685                if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 686                        spin_lock(&cur->bio_list_lock);
 687
 688                        /* can we steal this cached rbio's pages? */
 689                        if (bio_list_empty(&cur->bio_list) &&
 690                            list_empty(&cur->plug_list) &&
 691                            test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692                            !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693                                list_del_init(&cur->hash_list);
 694                                atomic_dec(&cur->refs);
 695
 696                                steal_rbio(cur, rbio);
 697                                cache_drop = cur;
 698                                spin_unlock(&cur->bio_list_lock);
 699
 700                                goto lockit;
 701                        }
 702
 703                        /* can we merge into the lock owner? */
 704                        if (rbio_can_merge(cur, rbio)) {
 705                                merge_rbio(cur, rbio);
 706                                spin_unlock(&cur->bio_list_lock);
 707                                freeit = rbio;
 708                                ret = 1;
 709                                goto out;
 710                        }
 711
 712
 713                        /*
 714                         * we couldn't merge with the running
 715                         * rbio, see if we can merge with the
 716                         * pending ones.  We don't have to
 717                         * check for rmw_locked because there
 718                         * is no way they are inside finish_rmw
 719                         * right now
 720                         */
 721                        list_for_each_entry(pending, &cur->plug_list,
 722                                            plug_list) {
 723                                if (rbio_can_merge(pending, rbio)) {
 724                                        merge_rbio(pending, rbio);
 725                                        spin_unlock(&cur->bio_list_lock);
 726                                        freeit = rbio;
 727                                        ret = 1;
 728                                        goto out;
 729                                }
 730                        }
 731
 732                        /* no merging, put us on the tail of the plug list,
 733                         * our rbio will be started with the currently
 734                         * running rbio unlocks
 735                         */
 736                        list_add_tail(&rbio->plug_list, &cur->plug_list);
 737                        spin_unlock(&cur->bio_list_lock);
 738                        ret = 1;
 739                        goto out;
 740                }
 741        }
 742lockit:
 743        atomic_inc(&rbio->refs);
 744        list_add(&rbio->hash_list, &h->hash_list);
 745out:
 746        spin_unlock_irqrestore(&h->lock, flags);
 747        if (cache_drop)
 748                remove_rbio_from_cache(cache_drop);
 749        if (freeit)
 750                __free_raid_bio(freeit);
 751        return ret;
 752}
 753
 754/*
 755 * called as rmw or parity rebuild is completed.  If the plug list has more
 756 * rbios waiting for this stripe, the next one on the list will be started
 757 */
 758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759{
 760        int bucket;
 761        struct btrfs_stripe_hash *h;
 762        unsigned long flags;
 763        int keep_cache = 0;
 764
 765        bucket = rbio_bucket(rbio);
 766        h = rbio->fs_info->stripe_hash_table->table + bucket;
 767
 768        if (list_empty(&rbio->plug_list))
 769                cache_rbio(rbio);
 770
 771        spin_lock_irqsave(&h->lock, flags);
 772        spin_lock(&rbio->bio_list_lock);
 773
 774        if (!list_empty(&rbio->hash_list)) {
 775                /*
 776                 * if we're still cached and there is no other IO
 777                 * to perform, just leave this rbio here for others
 778                 * to steal from later
 779                 */
 780                if (list_empty(&rbio->plug_list) &&
 781                    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782                        keep_cache = 1;
 783                        clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784                        BUG_ON(!bio_list_empty(&rbio->bio_list));
 785                        goto done;
 786                }
 787
 788                list_del_init(&rbio->hash_list);
 789                atomic_dec(&rbio->refs);
 790
 791                /*
 792                 * we use the plug list to hold all the rbios
 793                 * waiting for the chance to lock this stripe.
 794                 * hand the lock over to one of them.
 795                 */
 796                if (!list_empty(&rbio->plug_list)) {
 797                        struct btrfs_raid_bio *next;
 798                        struct list_head *head = rbio->plug_list.next;
 799
 800                        next = list_entry(head, struct btrfs_raid_bio,
 801                                          plug_list);
 802
 803                        list_del_init(&rbio->plug_list);
 804
 805                        list_add(&next->hash_list, &h->hash_list);
 806                        atomic_inc(&next->refs);
 807                        spin_unlock(&rbio->bio_list_lock);
 808                        spin_unlock_irqrestore(&h->lock, flags);
 809
 810                        if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811                                async_read_rebuild(next);
 812                        else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813                                steal_rbio(rbio, next);
 814                                async_read_rebuild(next);
 815                        } else if (next->operation == BTRFS_RBIO_WRITE) {
 816                                steal_rbio(rbio, next);
 817                                async_rmw_stripe(next);
 818                        } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819                                steal_rbio(rbio, next);
 820                                async_scrub_parity(next);
 821                        }
 822
 823                        goto done_nolock;
 824                        /*
 825                         * The barrier for this waitqueue_active is not needed,
 826                         * we're protected by h->lock and can't miss a wakeup.
 827                         */
 828                } else if (waitqueue_active(&h->wait)) {
 829                        spin_unlock(&rbio->bio_list_lock);
 830                        spin_unlock_irqrestore(&h->lock, flags);
 831                        wake_up(&h->wait);
 832                        goto done_nolock;
 833                }
 834        }
 835done:
 836        spin_unlock(&rbio->bio_list_lock);
 837        spin_unlock_irqrestore(&h->lock, flags);
 838
 839done_nolock:
 840        if (!keep_cache)
 841                remove_rbio_from_cache(rbio);
 842}
 843
 844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 845{
 846        int i;
 847
 848        WARN_ON(atomic_read(&rbio->refs) < 0);
 849        if (!atomic_dec_and_test(&rbio->refs))
 850                return;
 851
 852        WARN_ON(!list_empty(&rbio->stripe_cache));
 853        WARN_ON(!list_empty(&rbio->hash_list));
 854        WARN_ON(!bio_list_empty(&rbio->bio_list));
 855
 856        for (i = 0; i < rbio->nr_pages; i++) {
 857                if (rbio->stripe_pages[i]) {
 858                        __free_page(rbio->stripe_pages[i]);
 859                        rbio->stripe_pages[i] = NULL;
 860                }
 861        }
 862
 863        btrfs_put_bbio(rbio->bbio);
 864        kfree(rbio);
 865}
 866
 867static void free_raid_bio(struct btrfs_raid_bio *rbio)
 868{
 869        unlock_stripe(rbio);
 870        __free_raid_bio(rbio);
 871}
 872
 873/*
 874 * this frees the rbio and runs through all the bios in the
 875 * bio_list and calls end_io on them
 876 */
 877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
 878{
 879        struct bio *cur = bio_list_get(&rbio->bio_list);
 880        struct bio *next;
 881
 882        if (rbio->generic_bio_cnt)
 883                btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 884
 885        free_raid_bio(rbio);
 886
 887        while (cur) {
 888                next = cur->bi_next;
 889                cur->bi_next = NULL;
 890                cur->bi_error = err;
 891                bio_endio(cur);
 892                cur = next;
 893        }
 894}
 895
 896/*
 897 * end io function used by finish_rmw.  When we finally
 898 * get here, we've written a full stripe
 899 */
 900static void raid_write_end_io(struct bio *bio)
 901{
 902        struct btrfs_raid_bio *rbio = bio->bi_private;
 903        int err = bio->bi_error;
 904        int max_errors;
 905
 906        if (err)
 907                fail_bio_stripe(rbio, bio);
 908
 909        bio_put(bio);
 910
 911        if (!atomic_dec_and_test(&rbio->stripes_pending))
 912                return;
 913
 914        err = 0;
 915
 916        /* OK, we have read all the stripes we need to. */
 917        max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 918                     0 : rbio->bbio->max_errors;
 919        if (atomic_read(&rbio->error) > max_errors)
 920                err = -EIO;
 921
 922        rbio_orig_end_io(rbio, err);
 923}
 924
 925/*
 926 * the read/modify/write code wants to use the original bio for
 927 * any pages it included, and then use the rbio for everything
 928 * else.  This function decides if a given index (stripe number)
 929 * and page number in that stripe fall inside the original bio
 930 * or the rbio.
 931 *
 932 * if you set bio_list_only, you'll get a NULL back for any ranges
 933 * that are outside the bio_list
 934 *
 935 * This doesn't take any refs on anything, you get a bare page pointer
 936 * and the caller must bump refs as required.
 937 *
 938 * You must call index_rbio_pages once before you can trust
 939 * the answers from this function.
 940 */
 941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 942                                 int index, int pagenr, int bio_list_only)
 943{
 944        int chunk_page;
 945        struct page *p = NULL;
 946
 947        chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 948
 949        spin_lock_irq(&rbio->bio_list_lock);
 950        p = rbio->bio_pages[chunk_page];
 951        spin_unlock_irq(&rbio->bio_list_lock);
 952
 953        if (p || bio_list_only)
 954                return p;
 955
 956        return rbio->stripe_pages[chunk_page];
 957}
 958
 959/*
 960 * number of pages we need for the entire stripe across all the
 961 * drives
 962 */
 963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 964{
 965        return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 966}
 967
 968/*
 969 * allocation and initial setup for the btrfs_raid_bio.  Not
 970 * this does not allocate any pages for rbio->pages.
 971 */
 972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 973                          struct btrfs_bio *bbio, u64 stripe_len)
 974{
 975        struct btrfs_raid_bio *rbio;
 976        int nr_data = 0;
 977        int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978        int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979        int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980        void *p;
 981
 982        rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 983                       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
 984                       sizeof(long), GFP_NOFS);
 985        if (!rbio)
 986                return ERR_PTR(-ENOMEM);
 987
 988        bio_list_init(&rbio->bio_list);
 989        INIT_LIST_HEAD(&rbio->plug_list);
 990        spin_lock_init(&rbio->bio_list_lock);
 991        INIT_LIST_HEAD(&rbio->stripe_cache);
 992        INIT_LIST_HEAD(&rbio->hash_list);
 993        rbio->bbio = bbio;
 994        rbio->fs_info = root->fs_info;
 995        rbio->stripe_len = stripe_len;
 996        rbio->nr_pages = num_pages;
 997        rbio->real_stripes = real_stripes;
 998        rbio->stripe_npages = stripe_npages;
 999        rbio->faila = -1;
1000        rbio->failb = -1;
1001        atomic_set(&rbio->refs, 1);
1002        atomic_set(&rbio->error, 0);
1003        atomic_set(&rbio->stripes_pending, 0);
1004
1005        /*
1006         * the stripe_pages and bio_pages array point to the extra
1007         * memory we allocated past the end of the rbio
1008         */
1009        p = rbio + 1;
1010        rbio->stripe_pages = p;
1011        rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012        rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013
1014        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015                nr_data = real_stripes - 1;
1016        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017                nr_data = real_stripes - 2;
1018        else
1019                BUG();
1020
1021        rbio->nr_data = nr_data;
1022        return rbio;
1023}
1024
1025/* allocate pages for all the stripes in the bio, including parity */
1026static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027{
1028        int i;
1029        struct page *page;
1030
1031        for (i = 0; i < rbio->nr_pages; i++) {
1032                if (rbio->stripe_pages[i])
1033                        continue;
1034                page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035                if (!page)
1036                        return -ENOMEM;
1037                rbio->stripe_pages[i] = page;
1038        }
1039        return 0;
1040}
1041
1042/* only allocate pages for p/q stripes */
1043static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044{
1045        int i;
1046        struct page *page;
1047
1048        i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049
1050        for (; i < rbio->nr_pages; i++) {
1051                if (rbio->stripe_pages[i])
1052                        continue;
1053                page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054                if (!page)
1055                        return -ENOMEM;
1056                rbio->stripe_pages[i] = page;
1057        }
1058        return 0;
1059}
1060
1061/*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067                            struct bio_list *bio_list,
1068                            struct page *page,
1069                            int stripe_nr,
1070                            unsigned long page_index,
1071                            unsigned long bio_max_len)
1072{
1073        struct bio *last = bio_list->tail;
1074        u64 last_end = 0;
1075        int ret;
1076        struct bio *bio;
1077        struct btrfs_bio_stripe *stripe;
1078        u64 disk_start;
1079
1080        stripe = &rbio->bbio->stripes[stripe_nr];
1081        disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082
1083        /* if the device is missing, just fail this stripe */
1084        if (!stripe->dev->bdev)
1085                return fail_rbio_index(rbio, stripe_nr);
1086
1087        /* see if we can add this page onto our existing bio */
1088        if (last) {
1089                last_end = (u64)last->bi_iter.bi_sector << 9;
1090                last_end += last->bi_iter.bi_size;
1091
1092                /*
1093                 * we can't merge these if they are from different
1094                 * devices or if they are not contiguous
1095                 */
1096                if (last_end == disk_start && stripe->dev->bdev &&
1097                    !last->bi_error &&
1098                    last->bi_bdev == stripe->dev->bdev) {
1099                        ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100                        if (ret == PAGE_SIZE)
1101                                return 0;
1102                }
1103        }
1104
1105        /* put a new bio on the list */
1106        bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107        if (!bio)
1108                return -ENOMEM;
1109
1110        bio->bi_iter.bi_size = 0;
1111        bio->bi_bdev = stripe->dev->bdev;
1112        bio->bi_iter.bi_sector = disk_start >> 9;
1113
1114        bio_add_page(bio, page, PAGE_SIZE, 0);
1115        bio_list_add(bio_list, bio);
1116        return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128        if (rbio->faila >= 0 || rbio->failb >= 0) {
1129                BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130                __raid56_parity_recover(rbio);
1131        } else {
1132                finish_rmw(rbio);
1133        }
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146        struct bio *bio;
1147        u64 start;
1148        unsigned long stripe_offset;
1149        unsigned long page_index;
1150        struct page *p;
1151        int i;
1152
1153        spin_lock_irq(&rbio->bio_list_lock);
1154        bio_list_for_each(bio, &rbio->bio_list) {
1155                start = (u64)bio->bi_iter.bi_sector << 9;
1156                stripe_offset = start - rbio->bbio->raid_map[0];
1157                page_index = stripe_offset >> PAGE_SHIFT;
1158
1159                for (i = 0; i < bio->bi_vcnt; i++) {
1160                        p = bio->bi_io_vec[i].bv_page;
1161                        rbio->bio_pages[page_index + i] = p;
1162                }
1163        }
1164        spin_unlock_irq(&rbio->bio_list_lock);
1165}
1166
1167/*
1168 * this is called from one of two situations.  We either
1169 * have a full stripe from the higher layers, or we've read all
1170 * the missing bits off disk.
1171 *
1172 * This will calculate the parity and then send down any
1173 * changed blocks.
1174 */
1175static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176{
1177        struct btrfs_bio *bbio = rbio->bbio;
1178        void *pointers[rbio->real_stripes];
1179        int nr_data = rbio->nr_data;
1180        int stripe;
1181        int pagenr;
1182        int p_stripe = -1;
1183        int q_stripe = -1;
1184        struct bio_list bio_list;
1185        struct bio *bio;
1186        int ret;
1187
1188        bio_list_init(&bio_list);
1189
1190        if (rbio->real_stripes - rbio->nr_data == 1) {
1191                p_stripe = rbio->real_stripes - 1;
1192        } else if (rbio->real_stripes - rbio->nr_data == 2) {
1193                p_stripe = rbio->real_stripes - 2;
1194                q_stripe = rbio->real_stripes - 1;
1195        } else {
1196                BUG();
1197        }
1198
1199        /* at this point we either have a full stripe,
1200         * or we've read the full stripe from the drive.
1201         * recalculate the parity and write the new results.
1202         *
1203         * We're not allowed to add any new bios to the
1204         * bio list here, anyone else that wants to
1205         * change this stripe needs to do their own rmw.
1206         */
1207        spin_lock_irq(&rbio->bio_list_lock);
1208        set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209        spin_unlock_irq(&rbio->bio_list_lock);
1210
1211        atomic_set(&rbio->error, 0);
1212
1213        /*
1214         * now that we've set rmw_locked, run through the
1215         * bio list one last time and map the page pointers
1216         *
1217         * We don't cache full rbios because we're assuming
1218         * the higher layers are unlikely to use this area of
1219         * the disk again soon.  If they do use it again,
1220         * hopefully they will send another full bio.
1221         */
1222        index_rbio_pages(rbio);
1223        if (!rbio_is_full(rbio))
1224                cache_rbio_pages(rbio);
1225        else
1226                clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227
1228        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229                struct page *p;
1230                /* first collect one page from each data stripe */
1231                for (stripe = 0; stripe < nr_data; stripe++) {
1232                        p = page_in_rbio(rbio, stripe, pagenr, 0);
1233                        pointers[stripe] = kmap(p);
1234                }
1235
1236                /* then add the parity stripe */
1237                p = rbio_pstripe_page(rbio, pagenr);
1238                SetPageUptodate(p);
1239                pointers[stripe++] = kmap(p);
1240
1241                if (q_stripe != -1) {
1242
1243                        /*
1244                         * raid6, add the qstripe and call the
1245                         * library function to fill in our p/q
1246                         */
1247                        p = rbio_qstripe_page(rbio, pagenr);
1248                        SetPageUptodate(p);
1249                        pointers[stripe++] = kmap(p);
1250
1251                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252                                                pointers);
1253                } else {
1254                        /* raid5 */
1255                        memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257                }
1258
1259
1260                for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261                        kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262        }
1263
1264        /*
1265         * time to start writing.  Make bios for everything from the
1266         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267         * everything else.
1268         */
1269        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271                        struct page *page;
1272                        if (stripe < rbio->nr_data) {
1273                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1274                                if (!page)
1275                                        continue;
1276                        } else {
1277                               page = rbio_stripe_page(rbio, stripe, pagenr);
1278                        }
1279
1280                        ret = rbio_add_io_page(rbio, &bio_list,
1281                                       page, stripe, pagenr, rbio->stripe_len);
1282                        if (ret)
1283                                goto cleanup;
1284                }
1285        }
1286
1287        if (likely(!bbio->num_tgtdevs))
1288                goto write_data;
1289
1290        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291                if (!bbio->tgtdev_map[stripe])
1292                        continue;
1293
1294                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295                        struct page *page;
1296                        if (stripe < rbio->nr_data) {
1297                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1298                                if (!page)
1299                                        continue;
1300                        } else {
1301                               page = rbio_stripe_page(rbio, stripe, pagenr);
1302                        }
1303
1304                        ret = rbio_add_io_page(rbio, &bio_list, page,
1305                                               rbio->bbio->tgtdev_map[stripe],
1306                                               pagenr, rbio->stripe_len);
1307                        if (ret)
1308                                goto cleanup;
1309                }
1310        }
1311
1312write_data:
1313        atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314        BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316        while (1) {
1317                bio = bio_list_pop(&bio_list);
1318                if (!bio)
1319                        break;
1320
1321                bio->bi_private = rbio;
1322                bio->bi_end_io = raid_write_end_io;
1323                submit_bio(WRITE, bio);
1324        }
1325        return;
1326
1327cleanup:
1328        rbio_orig_end_io(rbio, -EIO);
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio.  Used to figure out which
1333 * stripe has failed.  This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337                           struct bio *bio)
1338{
1339        u64 physical = bio->bi_iter.bi_sector;
1340        u64 stripe_start;
1341        int i;
1342        struct btrfs_bio_stripe *stripe;
1343
1344        physical <<= 9;
1345
1346        for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347                stripe = &rbio->bbio->stripes[i];
1348                stripe_start = stripe->physical;
1349                if (physical >= stripe_start &&
1350                    physical < stripe_start + rbio->stripe_len &&
1351                    bio->bi_bdev == stripe->dev->bdev) {
1352                        return i;
1353                }
1354        }
1355        return -1;
1356}
1357
1358/*
1359 * helper to find the stripe number for a given
1360 * bio (before mapping).  Used to figure out which stripe has
1361 * failed.  This looks up based on logical block numbers.
1362 */
1363static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364                                   struct bio *bio)
1365{
1366        u64 logical = bio->bi_iter.bi_sector;
1367        u64 stripe_start;
1368        int i;
1369
1370        logical <<= 9;
1371
1372        for (i = 0; i < rbio->nr_data; i++) {
1373                stripe_start = rbio->bbio->raid_map[i];
1374                if (logical >= stripe_start &&
1375                    logical < stripe_start + rbio->stripe_len) {
1376                        return i;
1377                }
1378        }
1379        return -1;
1380}
1381
1382/*
1383 * returns -EIO if we had too many failures
1384 */
1385static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386{
1387        unsigned long flags;
1388        int ret = 0;
1389
1390        spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391
1392        /* we already know this stripe is bad, move on */
1393        if (rbio->faila == failed || rbio->failb == failed)
1394                goto out;
1395
1396        if (rbio->faila == -1) {
1397                /* first failure on this rbio */
1398                rbio->faila = failed;
1399                atomic_inc(&rbio->error);
1400        } else if (rbio->failb == -1) {
1401                /* second failure on this rbio */
1402                rbio->failb = failed;
1403                atomic_inc(&rbio->error);
1404        } else {
1405                ret = -EIO;
1406        }
1407out:
1408        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409
1410        return ret;
1411}
1412
1413/*
1414 * helper to fail a stripe based on a physical disk
1415 * bio.
1416 */
1417static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418                           struct bio *bio)
1419{
1420        int failed = find_bio_stripe(rbio, bio);
1421
1422        if (failed < 0)
1423                return -EIO;
1424
1425        return fail_rbio_index(rbio, failed);
1426}
1427
1428/*
1429 * this sets each page in the bio uptodate.  It should only be used on private
1430 * rbio pages, nothing that comes in from the higher layers
1431 */
1432static void set_bio_pages_uptodate(struct bio *bio)
1433{
1434        int i;
1435        struct page *p;
1436
1437        for (i = 0; i < bio->bi_vcnt; i++) {
1438                p = bio->bi_io_vec[i].bv_page;
1439                SetPageUptodate(p);
1440        }
1441}
1442
1443/*
1444 * end io for the read phase of the rmw cycle.  All the bios here are physical
1445 * stripe bios we've read from the disk so we can recalculate the parity of the
1446 * stripe.
1447 *
1448 * This will usually kick off finish_rmw once all the bios are read in, but it
1449 * may trigger parity reconstruction if we had any errors along the way
1450 */
1451static void raid_rmw_end_io(struct bio *bio)
1452{
1453        struct btrfs_raid_bio *rbio = bio->bi_private;
1454
1455        if (bio->bi_error)
1456                fail_bio_stripe(rbio, bio);
1457        else
1458                set_bio_pages_uptodate(bio);
1459
1460        bio_put(bio);
1461
1462        if (!atomic_dec_and_test(&rbio->stripes_pending))
1463                return;
1464
1465        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466                goto cleanup;
1467
1468        /*
1469         * this will normally call finish_rmw to start our write
1470         * but if there are any failed stripes we'll reconstruct
1471         * from parity first
1472         */
1473        validate_rbio_for_rmw(rbio);
1474        return;
1475
1476cleanup:
1477
1478        rbio_orig_end_io(rbio, -EIO);
1479}
1480
1481static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482{
1483        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484                        rmw_work, NULL, NULL);
1485
1486        btrfs_queue_work(rbio->fs_info->rmw_workers,
1487                         &rbio->work);
1488}
1489
1490static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491{
1492        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493                        read_rebuild_work, NULL, NULL);
1494
1495        btrfs_queue_work(rbio->fs_info->rmw_workers,
1496                         &rbio->work);
1497}
1498
1499/*
1500 * the stripe must be locked by the caller.  It will
1501 * unlock after all the writes are done
1502 */
1503static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504{
1505        int bios_to_read = 0;
1506        struct bio_list bio_list;
1507        int ret;
1508        int pagenr;
1509        int stripe;
1510        struct bio *bio;
1511
1512        bio_list_init(&bio_list);
1513
1514        ret = alloc_rbio_pages(rbio);
1515        if (ret)
1516                goto cleanup;
1517
1518        index_rbio_pages(rbio);
1519
1520        atomic_set(&rbio->error, 0);
1521        /*
1522         * build a list of bios to read all the missing parts of this
1523         * stripe
1524         */
1525        for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527                        struct page *page;
1528                        /*
1529                         * we want to find all the pages missing from
1530                         * the rbio and read them from the disk.  If
1531                         * page_in_rbio finds a page in the bio list
1532                         * we don't need to read it off the stripe.
1533                         */
1534                        page = page_in_rbio(rbio, stripe, pagenr, 1);
1535                        if (page)
1536                                continue;
1537
1538                        page = rbio_stripe_page(rbio, stripe, pagenr);
1539                        /*
1540                         * the bio cache may have handed us an uptodate
1541                         * page.  If so, be happy and use it
1542                         */
1543                        if (PageUptodate(page))
1544                                continue;
1545
1546                        ret = rbio_add_io_page(rbio, &bio_list, page,
1547                                       stripe, pagenr, rbio->stripe_len);
1548                        if (ret)
1549                                goto cleanup;
1550                }
1551        }
1552
1553        bios_to_read = bio_list_size(&bio_list);
1554        if (!bios_to_read) {
1555                /*
1556                 * this can happen if others have merged with
1557                 * us, it means there is nothing left to read.
1558                 * But if there are missing devices it may not be
1559                 * safe to do the full stripe write yet.
1560                 */
1561                goto finish;
1562        }
1563
1564        /*
1565         * the bbio may be freed once we submit the last bio.  Make sure
1566         * not to touch it after that
1567         */
1568        atomic_set(&rbio->stripes_pending, bios_to_read);
1569        while (1) {
1570                bio = bio_list_pop(&bio_list);
1571                if (!bio)
1572                        break;
1573
1574                bio->bi_private = rbio;
1575                bio->bi_end_io = raid_rmw_end_io;
1576
1577                btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578                                    BTRFS_WQ_ENDIO_RAID56);
1579
1580                submit_bio(READ, bio);
1581        }
1582        /* the actual write will happen once the reads are done */
1583        return 0;
1584
1585cleanup:
1586        rbio_orig_end_io(rbio, -EIO);
1587        return -EIO;
1588
1589finish:
1590        validate_rbio_for_rmw(rbio);
1591        return 0;
1592}
1593
1594/*
1595 * if the upper layers pass in a full stripe, we thank them by only allocating
1596 * enough pages to hold the parity, and sending it all down quickly.
1597 */
1598static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599{
1600        int ret;
1601
1602        ret = alloc_rbio_parity_pages(rbio);
1603        if (ret) {
1604                __free_raid_bio(rbio);
1605                return ret;
1606        }
1607
1608        ret = lock_stripe_add(rbio);
1609        if (ret == 0)
1610                finish_rmw(rbio);
1611        return 0;
1612}
1613
1614/*
1615 * partial stripe writes get handed over to async helpers.
1616 * We're really hoping to merge a few more writes into this
1617 * rbio before calculating new parity
1618 */
1619static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620{
1621        int ret;
1622
1623        ret = lock_stripe_add(rbio);
1624        if (ret == 0)
1625                async_rmw_stripe(rbio);
1626        return 0;
1627}
1628
1629/*
1630 * sometimes while we were reading from the drive to
1631 * recalculate parity, enough new bios come into create
1632 * a full stripe.  So we do a check here to see if we can
1633 * go directly to finish_rmw
1634 */
1635static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636{
1637        /* head off into rmw land if we don't have a full stripe */
1638        if (!rbio_is_full(rbio))
1639                return partial_stripe_write(rbio);
1640        return full_stripe_write(rbio);
1641}
1642
1643/*
1644 * We use plugging call backs to collect full stripes.
1645 * Any time we get a partial stripe write while plugged
1646 * we collect it into a list.  When the unplug comes down,
1647 * we sort the list by logical block number and merge
1648 * everything we can into the same rbios
1649 */
1650struct btrfs_plug_cb {
1651        struct blk_plug_cb cb;
1652        struct btrfs_fs_info *info;
1653        struct list_head rbio_list;
1654        struct btrfs_work work;
1655};
1656
1657/*
1658 * rbios on the plug list are sorted for easier merging.
1659 */
1660static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1661{
1662        struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663                                                 plug_list);
1664        struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665                                                 plug_list);
1666        u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667        u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668
1669        if (a_sector < b_sector)
1670                return -1;
1671        if (a_sector > b_sector)
1672                return 1;
1673        return 0;
1674}
1675
1676static void run_plug(struct btrfs_plug_cb *plug)
1677{
1678        struct btrfs_raid_bio *cur;
1679        struct btrfs_raid_bio *last = NULL;
1680
1681        /*
1682         * sort our plug list then try to merge
1683         * everything we can in hopes of creating full
1684         * stripes.
1685         */
1686        list_sort(NULL, &plug->rbio_list, plug_cmp);
1687        while (!list_empty(&plug->rbio_list)) {
1688                cur = list_entry(plug->rbio_list.next,
1689                                 struct btrfs_raid_bio, plug_list);
1690                list_del_init(&cur->plug_list);
1691
1692                if (rbio_is_full(cur)) {
1693                        /* we have a full stripe, send it down */
1694                        full_stripe_write(cur);
1695                        continue;
1696                }
1697                if (last) {
1698                        if (rbio_can_merge(last, cur)) {
1699                                merge_rbio(last, cur);
1700                                __free_raid_bio(cur);
1701                                continue;
1702
1703                        }
1704                        __raid56_parity_write(last);
1705                }
1706                last = cur;
1707        }
1708        if (last) {
1709                __raid56_parity_write(last);
1710        }
1711        kfree(plug);
1712}
1713
1714/*
1715 * if the unplug comes from schedule, we have to push the
1716 * work off to a helper thread
1717 */
1718static void unplug_work(struct btrfs_work *work)
1719{
1720        struct btrfs_plug_cb *plug;
1721        plug = container_of(work, struct btrfs_plug_cb, work);
1722        run_plug(plug);
1723}
1724
1725static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726{
1727        struct btrfs_plug_cb *plug;
1728        plug = container_of(cb, struct btrfs_plug_cb, cb);
1729
1730        if (from_schedule) {
1731                btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732                                unplug_work, NULL, NULL);
1733                btrfs_queue_work(plug->info->rmw_workers,
1734                                 &plug->work);
1735                return;
1736        }
1737        run_plug(plug);
1738}
1739
1740/*
1741 * our main entry point for writes from the rest of the FS.
1742 */
1743int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744                        struct btrfs_bio *bbio, u64 stripe_len)
1745{
1746        struct btrfs_raid_bio *rbio;
1747        struct btrfs_plug_cb *plug = NULL;
1748        struct blk_plug_cb *cb;
1749        int ret;
1750
1751        rbio = alloc_rbio(root, bbio, stripe_len);
1752        if (IS_ERR(rbio)) {
1753                btrfs_put_bbio(bbio);
1754                return PTR_ERR(rbio);
1755        }
1756        bio_list_add(&rbio->bio_list, bio);
1757        rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758        rbio->operation = BTRFS_RBIO_WRITE;
1759
1760        btrfs_bio_counter_inc_noblocked(root->fs_info);
1761        rbio->generic_bio_cnt = 1;
1762
1763        /*
1764         * don't plug on full rbios, just get them out the door
1765         * as quickly as we can
1766         */
1767        if (rbio_is_full(rbio)) {
1768                ret = full_stripe_write(rbio);
1769                if (ret)
1770                        btrfs_bio_counter_dec(root->fs_info);
1771                return ret;
1772        }
1773
1774        cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775                               sizeof(*plug));
1776        if (cb) {
1777                plug = container_of(cb, struct btrfs_plug_cb, cb);
1778                if (!plug->info) {
1779                        plug->info = root->fs_info;
1780                        INIT_LIST_HEAD(&plug->rbio_list);
1781                }
1782                list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783                ret = 0;
1784        } else {
1785                ret = __raid56_parity_write(rbio);
1786                if (ret)
1787                        btrfs_bio_counter_dec(root->fs_info);
1788        }
1789        return ret;
1790}
1791
1792/*
1793 * all parity reconstruction happens here.  We've read in everything
1794 * we can find from the drives and this does the heavy lifting of
1795 * sorting the good from the bad.
1796 */
1797static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798{
1799        int pagenr, stripe;
1800        void **pointers;
1801        int faila = -1, failb = -1;
1802        struct page *page;
1803        int err;
1804        int i;
1805
1806        pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807        if (!pointers) {
1808                err = -ENOMEM;
1809                goto cleanup_io;
1810        }
1811
1812        faila = rbio->faila;
1813        failb = rbio->failb;
1814
1815        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816            rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817                spin_lock_irq(&rbio->bio_list_lock);
1818                set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819                spin_unlock_irq(&rbio->bio_list_lock);
1820        }
1821
1822        index_rbio_pages(rbio);
1823
1824        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1825                /*
1826                 * Now we just use bitmap to mark the horizontal stripes in
1827                 * which we have data when doing parity scrub.
1828                 */
1829                if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830                    !test_bit(pagenr, rbio->dbitmap))
1831                        continue;
1832
1833                /* setup our array of pointers with pages
1834                 * from each stripe
1835                 */
1836                for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1837                        /*
1838                         * if we're rebuilding a read, we have to use
1839                         * pages from the bio list
1840                         */
1841                        if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842                             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843                            (stripe == faila || stripe == failb)) {
1844                                page = page_in_rbio(rbio, stripe, pagenr, 0);
1845                        } else {
1846                                page = rbio_stripe_page(rbio, stripe, pagenr);
1847                        }
1848                        pointers[stripe] = kmap(page);
1849                }
1850
1851                /* all raid6 handling here */
1852                if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853                        /*
1854                         * single failure, rebuild from parity raid5
1855                         * style
1856                         */
1857                        if (failb < 0) {
1858                                if (faila == rbio->nr_data) {
1859                                        /*
1860                                         * Just the P stripe has failed, without
1861                                         * a bad data or Q stripe.
1862                                         * TODO, we should redo the xor here.
1863                                         */
1864                                        err = -EIO;
1865                                        goto cleanup;
1866                                }
1867                                /*
1868                                 * a single failure in raid6 is rebuilt
1869                                 * in the pstripe code below
1870                                 */
1871                                goto pstripe;
1872                        }
1873
1874                        /* make sure our ps and qs are in order */
1875                        if (faila > failb) {
1876                                int tmp = failb;
1877                                failb = faila;
1878                                faila = tmp;
1879                        }
1880
1881                        /* if the q stripe is failed, do a pstripe reconstruction
1882                         * from the xors.
1883                         * If both the q stripe and the P stripe are failed, we're
1884                         * here due to a crc mismatch and we can't give them the
1885                         * data they want
1886                         */
1887                        if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888                                if (rbio->bbio->raid_map[faila] ==
1889                                    RAID5_P_STRIPE) {
1890                                        err = -EIO;
1891                                        goto cleanup;
1892                                }
1893                                /*
1894                                 * otherwise we have one bad data stripe and
1895                                 * a good P stripe.  raid5!
1896                                 */
1897                                goto pstripe;
1898                        }
1899
1900                        if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901                                raid6_datap_recov(rbio->real_stripes,
1902                                                  PAGE_SIZE, faila, pointers);
1903                        } else {
1904                                raid6_2data_recov(rbio->real_stripes,
1905                                                  PAGE_SIZE, faila, failb,
1906                                                  pointers);
1907                        }
1908                } else {
1909                        void *p;
1910
1911                        /* rebuild from P stripe here (raid5 or raid6) */
1912                        BUG_ON(failb != -1);
1913pstripe:
1914                        /* Copy parity block into failed block to start with */
1915                        memcpy(pointers[faila],
1916                               pointers[rbio->nr_data],
1917                               PAGE_SIZE);
1918
1919                        /* rearrange the pointer array */
1920                        p = pointers[faila];
1921                        for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922                                pointers[stripe] = pointers[stripe + 1];
1923                        pointers[rbio->nr_data - 1] = p;
1924
1925                        /* xor in the rest */
1926                        run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927                }
1928                /* if we're doing this rebuild as part of an rmw, go through
1929                 * and set all of our private rbio pages in the
1930                 * failed stripes as uptodate.  This way finish_rmw will
1931                 * know they can be trusted.  If this was a read reconstruction,
1932                 * other endio functions will fiddle the uptodate bits
1933                 */
1934                if (rbio->operation == BTRFS_RBIO_WRITE) {
1935                        for (i = 0;  i < rbio->stripe_npages; i++) {
1936                                if (faila != -1) {
1937                                        page = rbio_stripe_page(rbio, faila, i);
1938                                        SetPageUptodate(page);
1939                                }
1940                                if (failb != -1) {
1941                                        page = rbio_stripe_page(rbio, failb, i);
1942                                        SetPageUptodate(page);
1943                                }
1944                        }
1945                }
1946                for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947                        /*
1948                         * if we're rebuilding a read, we have to use
1949                         * pages from the bio list
1950                         */
1951                        if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952                             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953                            (stripe == faila || stripe == failb)) {
1954                                page = page_in_rbio(rbio, stripe, pagenr, 0);
1955                        } else {
1956                                page = rbio_stripe_page(rbio, stripe, pagenr);
1957                        }
1958                        kunmap(page);
1959                }
1960        }
1961
1962        err = 0;
1963cleanup:
1964        kfree(pointers);
1965
1966cleanup_io:
1967        if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968                if (err == 0)
1969                        cache_rbio_pages(rbio);
1970                else
1971                        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1972
1973                rbio_orig_end_io(rbio, err);
1974        } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975                rbio_orig_end_io(rbio, err);
1976        } else if (err == 0) {
1977                rbio->faila = -1;
1978                rbio->failb = -1;
1979
1980                if (rbio->operation == BTRFS_RBIO_WRITE)
1981                        finish_rmw(rbio);
1982                else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983                        finish_parity_scrub(rbio, 0);
1984                else
1985                        BUG();
1986        } else {
1987                rbio_orig_end_io(rbio, err);
1988        }
1989}
1990
1991/*
1992 * This is called only for stripes we've read from disk to
1993 * reconstruct the parity.
1994 */
1995static void raid_recover_end_io(struct bio *bio)
1996{
1997        struct btrfs_raid_bio *rbio = bio->bi_private;
1998
1999        /*
2000         * we only read stripe pages off the disk, set them
2001         * up to date if there were no errors
2002         */
2003        if (bio->bi_error)
2004                fail_bio_stripe(rbio, bio);
2005        else
2006                set_bio_pages_uptodate(bio);
2007        bio_put(bio);
2008
2009        if (!atomic_dec_and_test(&rbio->stripes_pending))
2010                return;
2011
2012        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013                rbio_orig_end_io(rbio, -EIO);
2014        else
2015                __raid_recover_end_io(rbio);
2016}
2017
2018/*
2019 * reads everything we need off the disk to reconstruct
2020 * the parity. endio handlers trigger final reconstruction
2021 * when the IO is done.
2022 *
2023 * This is used both for reads from the higher layers and for
2024 * parity construction required to finish a rmw cycle.
2025 */
2026static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027{
2028        int bios_to_read = 0;
2029        struct bio_list bio_list;
2030        int ret;
2031        int pagenr;
2032        int stripe;
2033        struct bio *bio;
2034
2035        bio_list_init(&bio_list);
2036
2037        ret = alloc_rbio_pages(rbio);
2038        if (ret)
2039                goto cleanup;
2040
2041        atomic_set(&rbio->error, 0);
2042
2043        /*
2044         * read everything that hasn't failed.  Thanks to the
2045         * stripe cache, it is possible that some or all of these
2046         * pages are going to be uptodate.
2047         */
2048        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049                if (rbio->faila == stripe || rbio->failb == stripe) {
2050                        atomic_inc(&rbio->error);
2051                        continue;
2052                }
2053
2054                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055                        struct page *p;
2056
2057                        /*
2058                         * the rmw code may have already read this
2059                         * page in
2060                         */
2061                        p = rbio_stripe_page(rbio, stripe, pagenr);
2062                        if (PageUptodate(p))
2063                                continue;
2064
2065                        ret = rbio_add_io_page(rbio, &bio_list,
2066                                       rbio_stripe_page(rbio, stripe, pagenr),
2067                                       stripe, pagenr, rbio->stripe_len);
2068                        if (ret < 0)
2069                                goto cleanup;
2070                }
2071        }
2072
2073        bios_to_read = bio_list_size(&bio_list);
2074        if (!bios_to_read) {
2075                /*
2076                 * we might have no bios to read just because the pages
2077                 * were up to date, or we might have no bios to read because
2078                 * the devices were gone.
2079                 */
2080                if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081                        __raid_recover_end_io(rbio);
2082                        goto out;
2083                } else {
2084                        goto cleanup;
2085                }
2086        }
2087
2088        /*
2089         * the bbio may be freed once we submit the last bio.  Make sure
2090         * not to touch it after that
2091         */
2092        atomic_set(&rbio->stripes_pending, bios_to_read);
2093        while (1) {
2094                bio = bio_list_pop(&bio_list);
2095                if (!bio)
2096                        break;
2097
2098                bio->bi_private = rbio;
2099                bio->bi_end_io = raid_recover_end_io;
2100
2101                btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102                                    BTRFS_WQ_ENDIO_RAID56);
2103
2104                submit_bio(READ, bio);
2105        }
2106out:
2107        return 0;
2108
2109cleanup:
2110        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111            rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112                rbio_orig_end_io(rbio, -EIO);
2113        return -EIO;
2114}
2115
2116/*
2117 * the main entry point for reads from the higher layers.  This
2118 * is really only called when the normal read path had a failure,
2119 * so we assume the bio they send down corresponds to a failed part
2120 * of the drive.
2121 */
2122int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123                          struct btrfs_bio *bbio, u64 stripe_len,
2124                          int mirror_num, int generic_io)
2125{
2126        struct btrfs_raid_bio *rbio;
2127        int ret;
2128
2129        rbio = alloc_rbio(root, bbio, stripe_len);
2130        if (IS_ERR(rbio)) {
2131                if (generic_io)
2132                        btrfs_put_bbio(bbio);
2133                return PTR_ERR(rbio);
2134        }
2135
2136        rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137        bio_list_add(&rbio->bio_list, bio);
2138        rbio->bio_list_bytes = bio->bi_iter.bi_size;
2139
2140        rbio->faila = find_logical_bio_stripe(rbio, bio);
2141        if (rbio->faila == -1) {
2142                BUG();
2143                if (generic_io)
2144                        btrfs_put_bbio(bbio);
2145                kfree(rbio);
2146                return -EIO;
2147        }
2148
2149        if (generic_io) {
2150                btrfs_bio_counter_inc_noblocked(root->fs_info);
2151                rbio->generic_bio_cnt = 1;
2152        } else {
2153                btrfs_get_bbio(bbio);
2154        }
2155
2156        /*
2157         * reconstruct from the q stripe if they are
2158         * asking for mirror 3
2159         */
2160        if (mirror_num == 3)
2161                rbio->failb = rbio->real_stripes - 2;
2162
2163        ret = lock_stripe_add(rbio);
2164
2165        /*
2166         * __raid56_parity_recover will end the bio with
2167         * any errors it hits.  We don't want to return
2168         * its error value up the stack because our caller
2169         * will end up calling bio_endio with any nonzero
2170         * return
2171         */
2172        if (ret == 0)
2173                __raid56_parity_recover(rbio);
2174        /*
2175         * our rbio has been added to the list of
2176         * rbios that will be handled after the
2177         * currently lock owner is done
2178         */
2179        return 0;
2180
2181}
2182
2183static void rmw_work(struct btrfs_work *work)
2184{
2185        struct btrfs_raid_bio *rbio;
2186
2187        rbio = container_of(work, struct btrfs_raid_bio, work);
2188        raid56_rmw_stripe(rbio);
2189}
2190
2191static void read_rebuild_work(struct btrfs_work *work)
2192{
2193        struct btrfs_raid_bio *rbio;
2194
2195        rbio = container_of(work, struct btrfs_raid_bio, work);
2196        __raid56_parity_recover(rbio);
2197}
2198
2199/*
2200 * The following code is used to scrub/replace the parity stripe
2201 *
2202 * Note: We need make sure all the pages that add into the scrub/replace
2203 * raid bio are correct and not be changed during the scrub/replace. That
2204 * is those pages just hold metadata or file data with checksum.
2205 */
2206
2207struct btrfs_raid_bio *
2208raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209                               struct btrfs_bio *bbio, u64 stripe_len,
2210                               struct btrfs_device *scrub_dev,
2211                               unsigned long *dbitmap, int stripe_nsectors)
2212{
2213        struct btrfs_raid_bio *rbio;
2214        int i;
2215
2216        rbio = alloc_rbio(root, bbio, stripe_len);
2217        if (IS_ERR(rbio))
2218                return NULL;
2219        bio_list_add(&rbio->bio_list, bio);
2220        /*
2221         * This is a special bio which is used to hold the completion handler
2222         * and make the scrub rbio is similar to the other types
2223         */
2224        ASSERT(!bio->bi_iter.bi_size);
2225        rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226
2227        for (i = 0; i < rbio->real_stripes; i++) {
2228                if (bbio->stripes[i].dev == scrub_dev) {
2229                        rbio->scrubp = i;
2230                        break;
2231                }
2232        }
2233
2234        /* Now we just support the sectorsize equals to page size */
2235        ASSERT(root->sectorsize == PAGE_SIZE);
2236        ASSERT(rbio->stripe_npages == stripe_nsectors);
2237        bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238
2239        return rbio;
2240}
2241
2242/* Used for both parity scrub and missing. */
2243void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244                            u64 logical)
2245{
2246        int stripe_offset;
2247        int index;
2248
2249        ASSERT(logical >= rbio->bbio->raid_map[0]);
2250        ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251                                rbio->stripe_len * rbio->nr_data);
2252        stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253        index = stripe_offset >> PAGE_SHIFT;
2254        rbio->bio_pages[index] = page;
2255}
2256
2257/*
2258 * We just scrub the parity that we have correct data on the same horizontal,
2259 * so we needn't allocate all pages for all the stripes.
2260 */
2261static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262{
2263        int i;
2264        int bit;
2265        int index;
2266        struct page *page;
2267
2268        for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269                for (i = 0; i < rbio->real_stripes; i++) {
2270                        index = i * rbio->stripe_npages + bit;
2271                        if (rbio->stripe_pages[index])
2272                                continue;
2273
2274                        page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275                        if (!page)
2276                                return -ENOMEM;
2277                        rbio->stripe_pages[index] = page;
2278                }
2279        }
2280        return 0;
2281}
2282
2283static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284                                         int need_check)
2285{
2286        struct btrfs_bio *bbio = rbio->bbio;
2287        void *pointers[rbio->real_stripes];
2288        DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2289        int nr_data = rbio->nr_data;
2290        int stripe;
2291        int pagenr;
2292        int p_stripe = -1;
2293        int q_stripe = -1;
2294        struct page *p_page = NULL;
2295        struct page *q_page = NULL;
2296        struct bio_list bio_list;
2297        struct bio *bio;
2298        int is_replace = 0;
2299        int ret;
2300
2301        bio_list_init(&bio_list);
2302
2303        if (rbio->real_stripes - rbio->nr_data == 1) {
2304                p_stripe = rbio->real_stripes - 1;
2305        } else if (rbio->real_stripes - rbio->nr_data == 2) {
2306                p_stripe = rbio->real_stripes - 2;
2307                q_stripe = rbio->real_stripes - 1;
2308        } else {
2309                BUG();
2310        }
2311
2312        if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2313                is_replace = 1;
2314                bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315        }
2316
2317        /*
2318         * Because the higher layers(scrubber) are unlikely to
2319         * use this area of the disk again soon, so don't cache
2320         * it.
2321         */
2322        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323
2324        if (!need_check)
2325                goto writeback;
2326
2327        p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328        if (!p_page)
2329                goto cleanup;
2330        SetPageUptodate(p_page);
2331
2332        if (q_stripe != -1) {
2333                q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334                if (!q_page) {
2335                        __free_page(p_page);
2336                        goto cleanup;
2337                }
2338                SetPageUptodate(q_page);
2339        }
2340
2341        atomic_set(&rbio->error, 0);
2342
2343        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344                struct page *p;
2345                void *parity;
2346                /* first collect one page from each data stripe */
2347                for (stripe = 0; stripe < nr_data; stripe++) {
2348                        p = page_in_rbio(rbio, stripe, pagenr, 0);
2349                        pointers[stripe] = kmap(p);
2350                }
2351
2352                /* then add the parity stripe */
2353                pointers[stripe++] = kmap(p_page);
2354
2355                if (q_stripe != -1) {
2356
2357                        /*
2358                         * raid6, add the qstripe and call the
2359                         * library function to fill in our p/q
2360                         */
2361                        pointers[stripe++] = kmap(q_page);
2362
2363                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364                                                pointers);
2365                } else {
2366                        /* raid5 */
2367                        memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369                }
2370
2371                /* Check scrubbing pairty and repair it */
2372                p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373                parity = kmap(p);
2374                if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375                        memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376                else
2377                        /* Parity is right, needn't writeback */
2378                        bitmap_clear(rbio->dbitmap, pagenr, 1);
2379                kunmap(p);
2380
2381                for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382                        kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383        }
2384
2385        __free_page(p_page);
2386        if (q_page)
2387                __free_page(q_page);
2388
2389writeback:
2390        /*
2391         * time to start writing.  Make bios for everything from the
2392         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2393         * everything else.
2394         */
2395        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396                struct page *page;
2397
2398                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399                ret = rbio_add_io_page(rbio, &bio_list,
2400                               page, rbio->scrubp, pagenr, rbio->stripe_len);
2401                if (ret)
2402                        goto cleanup;
2403        }
2404
2405        if (!is_replace)
2406                goto submit_write;
2407
2408        for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409                struct page *page;
2410
2411                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412                ret = rbio_add_io_page(rbio, &bio_list, page,
2413                                       bbio->tgtdev_map[rbio->scrubp],
2414                                       pagenr, rbio->stripe_len);
2415                if (ret)
2416                        goto cleanup;
2417        }
2418
2419submit_write:
2420        nr_data = bio_list_size(&bio_list);
2421        if (!nr_data) {
2422                /* Every parity is right */
2423                rbio_orig_end_io(rbio, 0);
2424                return;
2425        }
2426
2427        atomic_set(&rbio->stripes_pending, nr_data);
2428
2429        while (1) {
2430                bio = bio_list_pop(&bio_list);
2431                if (!bio)
2432                        break;
2433
2434                bio->bi_private = rbio;
2435                bio->bi_end_io = raid_write_end_io;
2436                submit_bio(WRITE, bio);
2437        }
2438        return;
2439
2440cleanup:
2441        rbio_orig_end_io(rbio, -EIO);
2442}
2443
2444static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445{
2446        if (stripe >= 0 && stripe < rbio->nr_data)
2447                return 1;
2448        return 0;
2449}
2450
2451/*
2452 * While we're doing the parity check and repair, we could have errors
2453 * in reading pages off the disk.  This checks for errors and if we're
2454 * not able to read the page it'll trigger parity reconstruction.  The
2455 * parity scrub will be finished after we've reconstructed the failed
2456 * stripes
2457 */
2458static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459{
2460        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461                goto cleanup;
2462
2463        if (rbio->faila >= 0 || rbio->failb >= 0) {
2464                int dfail = 0, failp = -1;
2465
2466                if (is_data_stripe(rbio, rbio->faila))
2467                        dfail++;
2468                else if (is_parity_stripe(rbio->faila))
2469                        failp = rbio->faila;
2470
2471                if (is_data_stripe(rbio, rbio->failb))
2472                        dfail++;
2473                else if (is_parity_stripe(rbio->failb))
2474                        failp = rbio->failb;
2475
2476                /*
2477                 * Because we can not use a scrubbing parity to repair
2478                 * the data, so the capability of the repair is declined.
2479                 * (In the case of RAID5, we can not repair anything)
2480                 */
2481                if (dfail > rbio->bbio->max_errors - 1)
2482                        goto cleanup;
2483
2484                /*
2485                 * If all data is good, only parity is correctly, just
2486                 * repair the parity.
2487                 */
2488                if (dfail == 0) {
2489                        finish_parity_scrub(rbio, 0);
2490                        return;
2491                }
2492
2493                /*
2494                 * Here means we got one corrupted data stripe and one
2495                 * corrupted parity on RAID6, if the corrupted parity
2496                 * is scrubbing parity, luckly, use the other one to repair
2497                 * the data, or we can not repair the data stripe.
2498                 */
2499                if (failp != rbio->scrubp)
2500                        goto cleanup;
2501
2502                __raid_recover_end_io(rbio);
2503        } else {
2504                finish_parity_scrub(rbio, 1);
2505        }
2506        return;
2507
2508cleanup:
2509        rbio_orig_end_io(rbio, -EIO);
2510}
2511
2512/*
2513 * end io for the read phase of the rmw cycle.  All the bios here are physical
2514 * stripe bios we've read from the disk so we can recalculate the parity of the
2515 * stripe.
2516 *
2517 * This will usually kick off finish_rmw once all the bios are read in, but it
2518 * may trigger parity reconstruction if we had any errors along the way
2519 */
2520static void raid56_parity_scrub_end_io(struct bio *bio)
2521{
2522        struct btrfs_raid_bio *rbio = bio->bi_private;
2523
2524        if (bio->bi_error)
2525                fail_bio_stripe(rbio, bio);
2526        else
2527                set_bio_pages_uptodate(bio);
2528
2529        bio_put(bio);
2530
2531        if (!atomic_dec_and_test(&rbio->stripes_pending))
2532                return;
2533
2534        /*
2535         * this will normally call finish_rmw to start our write
2536         * but if there are any failed stripes we'll reconstruct
2537         * from parity first
2538         */
2539        validate_rbio_for_parity_scrub(rbio);
2540}
2541
2542static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543{
2544        int bios_to_read = 0;
2545        struct bio_list bio_list;
2546        int ret;
2547        int pagenr;
2548        int stripe;
2549        struct bio *bio;
2550
2551        ret = alloc_rbio_essential_pages(rbio);
2552        if (ret)
2553                goto cleanup;
2554
2555        bio_list_init(&bio_list);
2556
2557        atomic_set(&rbio->error, 0);
2558        /*
2559         * build a list of bios to read all the missing parts of this
2560         * stripe
2561         */
2562        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563                for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564                        struct page *page;
2565                        /*
2566                         * we want to find all the pages missing from
2567                         * the rbio and read them from the disk.  If
2568                         * page_in_rbio finds a page in the bio list
2569                         * we don't need to read it off the stripe.
2570                         */
2571                        page = page_in_rbio(rbio, stripe, pagenr, 1);
2572                        if (page)
2573                                continue;
2574
2575                        page = rbio_stripe_page(rbio, stripe, pagenr);
2576                        /*
2577                         * the bio cache may have handed us an uptodate
2578                         * page.  If so, be happy and use it
2579                         */
2580                        if (PageUptodate(page))
2581                                continue;
2582
2583                        ret = rbio_add_io_page(rbio, &bio_list, page,
2584                                       stripe, pagenr, rbio->stripe_len);
2585                        if (ret)
2586                                goto cleanup;
2587                }
2588        }
2589
2590        bios_to_read = bio_list_size(&bio_list);
2591        if (!bios_to_read) {
2592                /*
2593                 * this can happen if others have merged with
2594                 * us, it means there is nothing left to read.
2595                 * But if there are missing devices it may not be
2596                 * safe to do the full stripe write yet.
2597                 */
2598                goto finish;
2599        }
2600
2601        /*
2602         * the bbio may be freed once we submit the last bio.  Make sure
2603         * not to touch it after that
2604         */
2605        atomic_set(&rbio->stripes_pending, bios_to_read);
2606        while (1) {
2607                bio = bio_list_pop(&bio_list);
2608                if (!bio)
2609                        break;
2610
2611                bio->bi_private = rbio;
2612                bio->bi_end_io = raid56_parity_scrub_end_io;
2613
2614                btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615                                    BTRFS_WQ_ENDIO_RAID56);
2616
2617                submit_bio(READ, bio);
2618        }
2619        /* the actual write will happen once the reads are done */
2620        return;
2621
2622cleanup:
2623        rbio_orig_end_io(rbio, -EIO);
2624        return;
2625
2626finish:
2627        validate_rbio_for_parity_scrub(rbio);
2628}
2629
2630static void scrub_parity_work(struct btrfs_work *work)
2631{
2632        struct btrfs_raid_bio *rbio;
2633
2634        rbio = container_of(work, struct btrfs_raid_bio, work);
2635        raid56_parity_scrub_stripe(rbio);
2636}
2637
2638static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639{
2640        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641                        scrub_parity_work, NULL, NULL);
2642
2643        btrfs_queue_work(rbio->fs_info->rmw_workers,
2644                         &rbio->work);
2645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649        if (!lock_stripe_add(rbio))
2650                async_scrub_parity(rbio);
2651}
2652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
2656raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657                          struct btrfs_bio *bbio, u64 length)
2658{
2659        struct btrfs_raid_bio *rbio;
2660
2661        rbio = alloc_rbio(root, bbio, length);
2662        if (IS_ERR(rbio))
2663                return NULL;
2664
2665        rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666        bio_list_add(&rbio->bio_list, bio);
2667        /*
2668         * This is a special bio which is used to hold the completion handler
2669         * and make the scrub rbio is similar to the other types
2670         */
2671        ASSERT(!bio->bi_iter.bi_size);
2672
2673        rbio->faila = find_logical_bio_stripe(rbio, bio);
2674        if (rbio->faila == -1) {
2675                BUG();
2676                kfree(rbio);
2677                return NULL;
2678        }
2679
2680        return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685        struct btrfs_raid_bio *rbio;
2686
2687        rbio = container_of(work, struct btrfs_raid_bio, work);
2688        __raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694                        missing_raid56_work, NULL, NULL);
2695
2696        btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701        if (!lock_stripe_add(rbio))
2702                async_missing_raid56(rbio);
2703}
2704