linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43#include "sysfs.h"
  44
  45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  46        [BTRFS_RAID_RAID10] = {
  47                .sub_stripes    = 2,
  48                .dev_stripes    = 1,
  49                .devs_max       = 0,    /* 0 == as many as possible */
  50                .devs_min       = 4,
  51                .tolerated_failures = 1,
  52                .devs_increment = 2,
  53                .ncopies        = 2,
  54        },
  55        [BTRFS_RAID_RAID1] = {
  56                .sub_stripes    = 1,
  57                .dev_stripes    = 1,
  58                .devs_max       = 2,
  59                .devs_min       = 2,
  60                .tolerated_failures = 1,
  61                .devs_increment = 2,
  62                .ncopies        = 2,
  63        },
  64        [BTRFS_RAID_DUP] = {
  65                .sub_stripes    = 1,
  66                .dev_stripes    = 2,
  67                .devs_max       = 1,
  68                .devs_min       = 1,
  69                .tolerated_failures = 0,
  70                .devs_increment = 1,
  71                .ncopies        = 2,
  72        },
  73        [BTRFS_RAID_RAID0] = {
  74                .sub_stripes    = 1,
  75                .dev_stripes    = 1,
  76                .devs_max       = 0,
  77                .devs_min       = 2,
  78                .tolerated_failures = 0,
  79                .devs_increment = 1,
  80                .ncopies        = 1,
  81        },
  82        [BTRFS_RAID_SINGLE] = {
  83                .sub_stripes    = 1,
  84                .dev_stripes    = 1,
  85                .devs_max       = 1,
  86                .devs_min       = 1,
  87                .tolerated_failures = 0,
  88                .devs_increment = 1,
  89                .ncopies        = 1,
  90        },
  91        [BTRFS_RAID_RAID5] = {
  92                .sub_stripes    = 1,
  93                .dev_stripes    = 1,
  94                .devs_max       = 0,
  95                .devs_min       = 2,
  96                .tolerated_failures = 1,
  97                .devs_increment = 1,
  98                .ncopies        = 2,
  99        },
 100        [BTRFS_RAID_RAID6] = {
 101                .sub_stripes    = 1,
 102                .dev_stripes    = 1,
 103                .devs_max       = 0,
 104                .devs_min       = 3,
 105                .tolerated_failures = 2,
 106                .devs_increment = 1,
 107                .ncopies        = 3,
 108        },
 109};
 110
 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
 112        [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
 113        [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
 114        [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
 115        [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
 116        [BTRFS_RAID_SINGLE] = 0,
 117        [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
 118        [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
 119};
 120
 121static int init_first_rw_device(struct btrfs_trans_handle *trans,
 122                                struct btrfs_root *root,
 123                                struct btrfs_device *device);
 124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 128static void btrfs_close_one_device(struct btrfs_device *device);
 129
 130DEFINE_MUTEX(uuid_mutex);
 131static LIST_HEAD(fs_uuids);
 132struct list_head *btrfs_get_fs_uuids(void)
 133{
 134        return &fs_uuids;
 135}
 136
 137static struct btrfs_fs_devices *__alloc_fs_devices(void)
 138{
 139        struct btrfs_fs_devices *fs_devs;
 140
 141        fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 142        if (!fs_devs)
 143                return ERR_PTR(-ENOMEM);
 144
 145        mutex_init(&fs_devs->device_list_mutex);
 146
 147        INIT_LIST_HEAD(&fs_devs->devices);
 148        INIT_LIST_HEAD(&fs_devs->resized_devices);
 149        INIT_LIST_HEAD(&fs_devs->alloc_list);
 150        INIT_LIST_HEAD(&fs_devs->list);
 151
 152        return fs_devs;
 153}
 154
 155/**
 156 * alloc_fs_devices - allocate struct btrfs_fs_devices
 157 * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
 158 *              generated.
 159 *
 160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
 161 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
 162 * can be destroyed with kfree() right away.
 163 */
 164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 165{
 166        struct btrfs_fs_devices *fs_devs;
 167
 168        fs_devs = __alloc_fs_devices();
 169        if (IS_ERR(fs_devs))
 170                return fs_devs;
 171
 172        if (fsid)
 173                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 174        else
 175                generate_random_uuid(fs_devs->fsid);
 176
 177        return fs_devs;
 178}
 179
 180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 181{
 182        struct btrfs_device *device;
 183        WARN_ON(fs_devices->opened);
 184        while (!list_empty(&fs_devices->devices)) {
 185                device = list_entry(fs_devices->devices.next,
 186                                    struct btrfs_device, dev_list);
 187                list_del(&device->dev_list);
 188                rcu_string_free(device->name);
 189                kfree(device);
 190        }
 191        kfree(fs_devices);
 192}
 193
 194static void btrfs_kobject_uevent(struct block_device *bdev,
 195                                 enum kobject_action action)
 196{
 197        int ret;
 198
 199        ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 200        if (ret)
 201                pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 202                        action,
 203                        kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 204                        &disk_to_dev(bdev->bd_disk)->kobj);
 205}
 206
 207void btrfs_cleanup_fs_uuids(void)
 208{
 209        struct btrfs_fs_devices *fs_devices;
 210
 211        while (!list_empty(&fs_uuids)) {
 212                fs_devices = list_entry(fs_uuids.next,
 213                                        struct btrfs_fs_devices, list);
 214                list_del(&fs_devices->list);
 215                free_fs_devices(fs_devices);
 216        }
 217}
 218
 219static struct btrfs_device *__alloc_device(void)
 220{
 221        struct btrfs_device *dev;
 222
 223        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 224        if (!dev)
 225                return ERR_PTR(-ENOMEM);
 226
 227        INIT_LIST_HEAD(&dev->dev_list);
 228        INIT_LIST_HEAD(&dev->dev_alloc_list);
 229        INIT_LIST_HEAD(&dev->resized_list);
 230
 231        spin_lock_init(&dev->io_lock);
 232
 233        spin_lock_init(&dev->reada_lock);
 234        atomic_set(&dev->reada_in_flight, 0);
 235        atomic_set(&dev->dev_stats_ccnt, 0);
 236        btrfs_device_data_ordered_init(dev);
 237        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 238        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 239
 240        return dev;
 241}
 242
 243static noinline struct btrfs_device *__find_device(struct list_head *head,
 244                                                   u64 devid, u8 *uuid)
 245{
 246        struct btrfs_device *dev;
 247
 248        list_for_each_entry(dev, head, dev_list) {
 249                if (dev->devid == devid &&
 250                    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 251                        return dev;
 252                }
 253        }
 254        return NULL;
 255}
 256
 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 258{
 259        struct btrfs_fs_devices *fs_devices;
 260
 261        list_for_each_entry(fs_devices, &fs_uuids, list) {
 262                if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 263                        return fs_devices;
 264        }
 265        return NULL;
 266}
 267
 268static int
 269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 270                      int flush, struct block_device **bdev,
 271                      struct buffer_head **bh)
 272{
 273        int ret;
 274
 275        *bdev = blkdev_get_by_path(device_path, flags, holder);
 276
 277        if (IS_ERR(*bdev)) {
 278                ret = PTR_ERR(*bdev);
 279                goto error;
 280        }
 281
 282        if (flush)
 283                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 284        ret = set_blocksize(*bdev, 4096);
 285        if (ret) {
 286                blkdev_put(*bdev, flags);
 287                goto error;
 288        }
 289        invalidate_bdev(*bdev);
 290        *bh = btrfs_read_dev_super(*bdev);
 291        if (IS_ERR(*bh)) {
 292                ret = PTR_ERR(*bh);
 293                blkdev_put(*bdev, flags);
 294                goto error;
 295        }
 296
 297        return 0;
 298
 299error:
 300        *bdev = NULL;
 301        *bh = NULL;
 302        return ret;
 303}
 304
 305static void requeue_list(struct btrfs_pending_bios *pending_bios,
 306                        struct bio *head, struct bio *tail)
 307{
 308
 309        struct bio *old_head;
 310
 311        old_head = pending_bios->head;
 312        pending_bios->head = head;
 313        if (pending_bios->tail)
 314                tail->bi_next = old_head;
 315        else
 316                pending_bios->tail = tail;
 317}
 318
 319/*
 320 * we try to collect pending bios for a device so we don't get a large
 321 * number of procs sending bios down to the same device.  This greatly
 322 * improves the schedulers ability to collect and merge the bios.
 323 *
 324 * But, it also turns into a long list of bios to process and that is sure
 325 * to eventually make the worker thread block.  The solution here is to
 326 * make some progress and then put this work struct back at the end of
 327 * the list if the block device is congested.  This way, multiple devices
 328 * can make progress from a single worker thread.
 329 */
 330static noinline void run_scheduled_bios(struct btrfs_device *device)
 331{
 332        struct bio *pending;
 333        struct backing_dev_info *bdi;
 334        struct btrfs_fs_info *fs_info;
 335        struct btrfs_pending_bios *pending_bios;
 336        struct bio *tail;
 337        struct bio *cur;
 338        int again = 0;
 339        unsigned long num_run;
 340        unsigned long batch_run = 0;
 341        unsigned long limit;
 342        unsigned long last_waited = 0;
 343        int force_reg = 0;
 344        int sync_pending = 0;
 345        struct blk_plug plug;
 346
 347        /*
 348         * this function runs all the bios we've collected for
 349         * a particular device.  We don't want to wander off to
 350         * another device without first sending all of these down.
 351         * So, setup a plug here and finish it off before we return
 352         */
 353        blk_start_plug(&plug);
 354
 355        bdi = blk_get_backing_dev_info(device->bdev);
 356        fs_info = device->dev_root->fs_info;
 357        limit = btrfs_async_submit_limit(fs_info);
 358        limit = limit * 2 / 3;
 359
 360loop:
 361        spin_lock(&device->io_lock);
 362
 363loop_lock:
 364        num_run = 0;
 365
 366        /* take all the bios off the list at once and process them
 367         * later on (without the lock held).  But, remember the
 368         * tail and other pointers so the bios can be properly reinserted
 369         * into the list if we hit congestion
 370         */
 371        if (!force_reg && device->pending_sync_bios.head) {
 372                pending_bios = &device->pending_sync_bios;
 373                force_reg = 1;
 374        } else {
 375                pending_bios = &device->pending_bios;
 376                force_reg = 0;
 377        }
 378
 379        pending = pending_bios->head;
 380        tail = pending_bios->tail;
 381        WARN_ON(pending && !tail);
 382
 383        /*
 384         * if pending was null this time around, no bios need processing
 385         * at all and we can stop.  Otherwise it'll loop back up again
 386         * and do an additional check so no bios are missed.
 387         *
 388         * device->running_pending is used to synchronize with the
 389         * schedule_bio code.
 390         */
 391        if (device->pending_sync_bios.head == NULL &&
 392            device->pending_bios.head == NULL) {
 393                again = 0;
 394                device->running_pending = 0;
 395        } else {
 396                again = 1;
 397                device->running_pending = 1;
 398        }
 399
 400        pending_bios->head = NULL;
 401        pending_bios->tail = NULL;
 402
 403        spin_unlock(&device->io_lock);
 404
 405        while (pending) {
 406
 407                rmb();
 408                /* we want to work on both lists, but do more bios on the
 409                 * sync list than the regular list
 410                 */
 411                if ((num_run > 32 &&
 412                    pending_bios != &device->pending_sync_bios &&
 413                    device->pending_sync_bios.head) ||
 414                   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 415                    device->pending_bios.head)) {
 416                        spin_lock(&device->io_lock);
 417                        requeue_list(pending_bios, pending, tail);
 418                        goto loop_lock;
 419                }
 420
 421                cur = pending;
 422                pending = pending->bi_next;
 423                cur->bi_next = NULL;
 424
 425                /*
 426                 * atomic_dec_return implies a barrier for waitqueue_active
 427                 */
 428                if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 429                    waitqueue_active(&fs_info->async_submit_wait))
 430                        wake_up(&fs_info->async_submit_wait);
 431
 432                BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 433
 434                /*
 435                 * if we're doing the sync list, record that our
 436                 * plug has some sync requests on it
 437                 *
 438                 * If we're doing the regular list and there are
 439                 * sync requests sitting around, unplug before
 440                 * we add more
 441                 */
 442                if (pending_bios == &device->pending_sync_bios) {
 443                        sync_pending = 1;
 444                } else if (sync_pending) {
 445                        blk_finish_plug(&plug);
 446                        blk_start_plug(&plug);
 447                        sync_pending = 0;
 448                }
 449
 450                btrfsic_submit_bio(cur->bi_rw, cur);
 451                num_run++;
 452                batch_run++;
 453
 454                cond_resched();
 455
 456                /*
 457                 * we made progress, there is more work to do and the bdi
 458                 * is now congested.  Back off and let other work structs
 459                 * run instead
 460                 */
 461                if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 462                    fs_info->fs_devices->open_devices > 1) {
 463                        struct io_context *ioc;
 464
 465                        ioc = current->io_context;
 466
 467                        /*
 468                         * the main goal here is that we don't want to
 469                         * block if we're going to be able to submit
 470                         * more requests without blocking.
 471                         *
 472                         * This code does two great things, it pokes into
 473                         * the elevator code from a filesystem _and_
 474                         * it makes assumptions about how batching works.
 475                         */
 476                        if (ioc && ioc->nr_batch_requests > 0 &&
 477                            time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 478                            (last_waited == 0 ||
 479                             ioc->last_waited == last_waited)) {
 480                                /*
 481                                 * we want to go through our batch of
 482                                 * requests and stop.  So, we copy out
 483                                 * the ioc->last_waited time and test
 484                                 * against it before looping
 485                                 */
 486                                last_waited = ioc->last_waited;
 487                                cond_resched();
 488                                continue;
 489                        }
 490                        spin_lock(&device->io_lock);
 491                        requeue_list(pending_bios, pending, tail);
 492                        device->running_pending = 1;
 493
 494                        spin_unlock(&device->io_lock);
 495                        btrfs_queue_work(fs_info->submit_workers,
 496                                         &device->work);
 497                        goto done;
 498                }
 499                /* unplug every 64 requests just for good measure */
 500                if (batch_run % 64 == 0) {
 501                        blk_finish_plug(&plug);
 502                        blk_start_plug(&plug);
 503                        sync_pending = 0;
 504                }
 505        }
 506
 507        cond_resched();
 508        if (again)
 509                goto loop;
 510
 511        spin_lock(&device->io_lock);
 512        if (device->pending_bios.head || device->pending_sync_bios.head)
 513                goto loop_lock;
 514        spin_unlock(&device->io_lock);
 515
 516done:
 517        blk_finish_plug(&plug);
 518}
 519
 520static void pending_bios_fn(struct btrfs_work *work)
 521{
 522        struct btrfs_device *device;
 523
 524        device = container_of(work, struct btrfs_device, work);
 525        run_scheduled_bios(device);
 526}
 527
 528
 529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
 530{
 531        struct btrfs_fs_devices *fs_devs;
 532        struct btrfs_device *dev;
 533
 534        if (!cur_dev->name)
 535                return;
 536
 537        list_for_each_entry(fs_devs, &fs_uuids, list) {
 538                int del = 1;
 539
 540                if (fs_devs->opened)
 541                        continue;
 542                if (fs_devs->seeding)
 543                        continue;
 544
 545                list_for_each_entry(dev, &fs_devs->devices, dev_list) {
 546
 547                        if (dev == cur_dev)
 548                                continue;
 549                        if (!dev->name)
 550                                continue;
 551
 552                        /*
 553                         * Todo: This won't be enough. What if the same device
 554                         * comes back (with new uuid and) with its mapper path?
 555                         * But for now, this does help as mostly an admin will
 556                         * either use mapper or non mapper path throughout.
 557                         */
 558                        rcu_read_lock();
 559                        del = strcmp(rcu_str_deref(dev->name),
 560                                                rcu_str_deref(cur_dev->name));
 561                        rcu_read_unlock();
 562                        if (!del)
 563                                break;
 564                }
 565
 566                if (!del) {
 567                        /* delete the stale device */
 568                        if (fs_devs->num_devices == 1) {
 569                                btrfs_sysfs_remove_fsid(fs_devs);
 570                                list_del(&fs_devs->list);
 571                                free_fs_devices(fs_devs);
 572                        } else {
 573                                fs_devs->num_devices--;
 574                                list_del(&dev->dev_list);
 575                                rcu_string_free(dev->name);
 576                                kfree(dev);
 577                        }
 578                        break;
 579                }
 580        }
 581}
 582
 583/*
 584 * Add new device to list of registered devices
 585 *
 586 * Returns:
 587 * 1   - first time device is seen
 588 * 0   - device already known
 589 * < 0 - error
 590 */
 591static noinline int device_list_add(const char *path,
 592                           struct btrfs_super_block *disk_super,
 593                           u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 594{
 595        struct btrfs_device *device;
 596        struct btrfs_fs_devices *fs_devices;
 597        struct rcu_string *name;
 598        int ret = 0;
 599        u64 found_transid = btrfs_super_generation(disk_super);
 600
 601        fs_devices = find_fsid(disk_super->fsid);
 602        if (!fs_devices) {
 603                fs_devices = alloc_fs_devices(disk_super->fsid);
 604                if (IS_ERR(fs_devices))
 605                        return PTR_ERR(fs_devices);
 606
 607                list_add(&fs_devices->list, &fs_uuids);
 608
 609                device = NULL;
 610        } else {
 611                device = __find_device(&fs_devices->devices, devid,
 612                                       disk_super->dev_item.uuid);
 613        }
 614
 615        if (!device) {
 616                if (fs_devices->opened)
 617                        return -EBUSY;
 618
 619                device = btrfs_alloc_device(NULL, &devid,
 620                                            disk_super->dev_item.uuid);
 621                if (IS_ERR(device)) {
 622                        /* we can safely leave the fs_devices entry around */
 623                        return PTR_ERR(device);
 624                }
 625
 626                name = rcu_string_strdup(path, GFP_NOFS);
 627                if (!name) {
 628                        kfree(device);
 629                        return -ENOMEM;
 630                }
 631                rcu_assign_pointer(device->name, name);
 632
 633                mutex_lock(&fs_devices->device_list_mutex);
 634                list_add_rcu(&device->dev_list, &fs_devices->devices);
 635                fs_devices->num_devices++;
 636                mutex_unlock(&fs_devices->device_list_mutex);
 637
 638                ret = 1;
 639                device->fs_devices = fs_devices;
 640        } else if (!device->name || strcmp(device->name->str, path)) {
 641                /*
 642                 * When FS is already mounted.
 643                 * 1. If you are here and if the device->name is NULL that
 644                 *    means this device was missing at time of FS mount.
 645                 * 2. If you are here and if the device->name is different
 646                 *    from 'path' that means either
 647                 *      a. The same device disappeared and reappeared with
 648                 *         different name. or
 649                 *      b. The missing-disk-which-was-replaced, has
 650                 *         reappeared now.
 651                 *
 652                 * We must allow 1 and 2a above. But 2b would be a spurious
 653                 * and unintentional.
 654                 *
 655                 * Further in case of 1 and 2a above, the disk at 'path'
 656                 * would have missed some transaction when it was away and
 657                 * in case of 2a the stale bdev has to be updated as well.
 658                 * 2b must not be allowed at all time.
 659                 */
 660
 661                /*
 662                 * For now, we do allow update to btrfs_fs_device through the
 663                 * btrfs dev scan cli after FS has been mounted.  We're still
 664                 * tracking a problem where systems fail mount by subvolume id
 665                 * when we reject replacement on a mounted FS.
 666                 */
 667                if (!fs_devices->opened && found_transid < device->generation) {
 668                        /*
 669                         * That is if the FS is _not_ mounted and if you
 670                         * are here, that means there is more than one
 671                         * disk with same uuid and devid.We keep the one
 672                         * with larger generation number or the last-in if
 673                         * generation are equal.
 674                         */
 675                        return -EEXIST;
 676                }
 677
 678                name = rcu_string_strdup(path, GFP_NOFS);
 679                if (!name)
 680                        return -ENOMEM;
 681                rcu_string_free(device->name);
 682                rcu_assign_pointer(device->name, name);
 683                if (device->missing) {
 684                        fs_devices->missing_devices--;
 685                        device->missing = 0;
 686                }
 687        }
 688
 689        /*
 690         * Unmount does not free the btrfs_device struct but would zero
 691         * generation along with most of the other members. So just update
 692         * it back. We need it to pick the disk with largest generation
 693         * (as above).
 694         */
 695        if (!fs_devices->opened)
 696                device->generation = found_transid;
 697
 698        /*
 699         * if there is new btrfs on an already registered device,
 700         * then remove the stale device entry.
 701         */
 702        btrfs_free_stale_device(device);
 703
 704        *fs_devices_ret = fs_devices;
 705
 706        return ret;
 707}
 708
 709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 710{
 711        struct btrfs_fs_devices *fs_devices;
 712        struct btrfs_device *device;
 713        struct btrfs_device *orig_dev;
 714
 715        fs_devices = alloc_fs_devices(orig->fsid);
 716        if (IS_ERR(fs_devices))
 717                return fs_devices;
 718
 719        mutex_lock(&orig->device_list_mutex);
 720        fs_devices->total_devices = orig->total_devices;
 721
 722        /* We have held the volume lock, it is safe to get the devices. */
 723        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 724                struct rcu_string *name;
 725
 726                device = btrfs_alloc_device(NULL, &orig_dev->devid,
 727                                            orig_dev->uuid);
 728                if (IS_ERR(device))
 729                        goto error;
 730
 731                /*
 732                 * This is ok to do without rcu read locked because we hold the
 733                 * uuid mutex so nothing we touch in here is going to disappear.
 734                 */
 735                if (orig_dev->name) {
 736                        name = rcu_string_strdup(orig_dev->name->str,
 737                                        GFP_KERNEL);
 738                        if (!name) {
 739                                kfree(device);
 740                                goto error;
 741                        }
 742                        rcu_assign_pointer(device->name, name);
 743                }
 744
 745                list_add(&device->dev_list, &fs_devices->devices);
 746                device->fs_devices = fs_devices;
 747                fs_devices->num_devices++;
 748        }
 749        mutex_unlock(&orig->device_list_mutex);
 750        return fs_devices;
 751error:
 752        mutex_unlock(&orig->device_list_mutex);
 753        free_fs_devices(fs_devices);
 754        return ERR_PTR(-ENOMEM);
 755}
 756
 757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
 758{
 759        struct btrfs_device *device, *next;
 760        struct btrfs_device *latest_dev = NULL;
 761
 762        mutex_lock(&uuid_mutex);
 763again:
 764        /* This is the initialized path, it is safe to release the devices. */
 765        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 766                if (device->in_fs_metadata) {
 767                        if (!device->is_tgtdev_for_dev_replace &&
 768                            (!latest_dev ||
 769                             device->generation > latest_dev->generation)) {
 770                                latest_dev = device;
 771                        }
 772                        continue;
 773                }
 774
 775                if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 776                        /*
 777                         * In the first step, keep the device which has
 778                         * the correct fsid and the devid that is used
 779                         * for the dev_replace procedure.
 780                         * In the second step, the dev_replace state is
 781                         * read from the device tree and it is known
 782                         * whether the procedure is really active or
 783                         * not, which means whether this device is
 784                         * used or whether it should be removed.
 785                         */
 786                        if (step == 0 || device->is_tgtdev_for_dev_replace) {
 787                                continue;
 788                        }
 789                }
 790                if (device->bdev) {
 791                        blkdev_put(device->bdev, device->mode);
 792                        device->bdev = NULL;
 793                        fs_devices->open_devices--;
 794                }
 795                if (device->writeable) {
 796                        list_del_init(&device->dev_alloc_list);
 797                        device->writeable = 0;
 798                        if (!device->is_tgtdev_for_dev_replace)
 799                                fs_devices->rw_devices--;
 800                }
 801                list_del_init(&device->dev_list);
 802                fs_devices->num_devices--;
 803                rcu_string_free(device->name);
 804                kfree(device);
 805        }
 806
 807        if (fs_devices->seed) {
 808                fs_devices = fs_devices->seed;
 809                goto again;
 810        }
 811
 812        fs_devices->latest_bdev = latest_dev->bdev;
 813
 814        mutex_unlock(&uuid_mutex);
 815}
 816
 817static void __free_device(struct work_struct *work)
 818{
 819        struct btrfs_device *device;
 820
 821        device = container_of(work, struct btrfs_device, rcu_work);
 822
 823        if (device->bdev)
 824                blkdev_put(device->bdev, device->mode);
 825
 826        rcu_string_free(device->name);
 827        kfree(device);
 828}
 829
 830static void free_device(struct rcu_head *head)
 831{
 832        struct btrfs_device *device;
 833
 834        device = container_of(head, struct btrfs_device, rcu);
 835
 836        INIT_WORK(&device->rcu_work, __free_device);
 837        schedule_work(&device->rcu_work);
 838}
 839
 840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 841{
 842        struct btrfs_device *device, *tmp;
 843
 844        if (--fs_devices->opened > 0)
 845                return 0;
 846
 847        mutex_lock(&fs_devices->device_list_mutex);
 848        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
 849                btrfs_close_one_device(device);
 850        }
 851        mutex_unlock(&fs_devices->device_list_mutex);
 852
 853        WARN_ON(fs_devices->open_devices);
 854        WARN_ON(fs_devices->rw_devices);
 855        fs_devices->opened = 0;
 856        fs_devices->seeding = 0;
 857
 858        return 0;
 859}
 860
 861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 862{
 863        struct btrfs_fs_devices *seed_devices = NULL;
 864        int ret;
 865
 866        mutex_lock(&uuid_mutex);
 867        ret = __btrfs_close_devices(fs_devices);
 868        if (!fs_devices->opened) {
 869                seed_devices = fs_devices->seed;
 870                fs_devices->seed = NULL;
 871        }
 872        mutex_unlock(&uuid_mutex);
 873
 874        while (seed_devices) {
 875                fs_devices = seed_devices;
 876                seed_devices = fs_devices->seed;
 877                __btrfs_close_devices(fs_devices);
 878                free_fs_devices(fs_devices);
 879        }
 880        /*
 881         * Wait for rcu kworkers under __btrfs_close_devices
 882         * to finish all blkdev_puts so device is really
 883         * free when umount is done.
 884         */
 885        rcu_barrier();
 886        return ret;
 887}
 888
 889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 890                                fmode_t flags, void *holder)
 891{
 892        struct request_queue *q;
 893        struct block_device *bdev;
 894        struct list_head *head = &fs_devices->devices;
 895        struct btrfs_device *device;
 896        struct btrfs_device *latest_dev = NULL;
 897        struct buffer_head *bh;
 898        struct btrfs_super_block *disk_super;
 899        u64 devid;
 900        int seeding = 1;
 901        int ret = 0;
 902
 903        flags |= FMODE_EXCL;
 904
 905        list_for_each_entry(device, head, dev_list) {
 906                if (device->bdev)
 907                        continue;
 908                if (!device->name)
 909                        continue;
 910
 911                /* Just open everything we can; ignore failures here */
 912                if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 913                                            &bdev, &bh))
 914                        continue;
 915
 916                disk_super = (struct btrfs_super_block *)bh->b_data;
 917                devid = btrfs_stack_device_id(&disk_super->dev_item);
 918                if (devid != device->devid)
 919                        goto error_brelse;
 920
 921                if (memcmp(device->uuid, disk_super->dev_item.uuid,
 922                           BTRFS_UUID_SIZE))
 923                        goto error_brelse;
 924
 925                device->generation = btrfs_super_generation(disk_super);
 926                if (!latest_dev ||
 927                    device->generation > latest_dev->generation)
 928                        latest_dev = device;
 929
 930                if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 931                        device->writeable = 0;
 932                } else {
 933                        device->writeable = !bdev_read_only(bdev);
 934                        seeding = 0;
 935                }
 936
 937                q = bdev_get_queue(bdev);
 938                if (blk_queue_discard(q))
 939                        device->can_discard = 1;
 940
 941                device->bdev = bdev;
 942                device->in_fs_metadata = 0;
 943                device->mode = flags;
 944
 945                if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 946                        fs_devices->rotating = 1;
 947
 948                fs_devices->open_devices++;
 949                if (device->writeable &&
 950                    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 951                        fs_devices->rw_devices++;
 952                        list_add(&device->dev_alloc_list,
 953                                 &fs_devices->alloc_list);
 954                }
 955                brelse(bh);
 956                continue;
 957
 958error_brelse:
 959                brelse(bh);
 960                blkdev_put(bdev, flags);
 961                continue;
 962        }
 963        if (fs_devices->open_devices == 0) {
 964                ret = -EINVAL;
 965                goto out;
 966        }
 967        fs_devices->seeding = seeding;
 968        fs_devices->opened = 1;
 969        fs_devices->latest_bdev = latest_dev->bdev;
 970        fs_devices->total_rw_bytes = 0;
 971out:
 972        return ret;
 973}
 974
 975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 976                       fmode_t flags, void *holder)
 977{
 978        int ret;
 979
 980        mutex_lock(&uuid_mutex);
 981        if (fs_devices->opened) {
 982                fs_devices->opened++;
 983                ret = 0;
 984        } else {
 985                ret = __btrfs_open_devices(fs_devices, flags, holder);
 986        }
 987        mutex_unlock(&uuid_mutex);
 988        return ret;
 989}
 990
 991/*
 992 * Look for a btrfs signature on a device. This may be called out of the mount path
 993 * and we are not allowed to call set_blocksize during the scan. The superblock
 994 * is read via pagecache
 995 */
 996int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 997                          struct btrfs_fs_devices **fs_devices_ret)
 998{
 999        struct btrfs_super_block *disk_super;
1000        struct block_device *bdev;
1001        struct page *page;
1002        void *p;
1003        int ret = -EINVAL;
1004        u64 devid;
1005        u64 transid;
1006        u64 total_devices;
1007        u64 bytenr;
1008        pgoff_t index;
1009
1010        /*
1011         * we would like to check all the supers, but that would make
1012         * a btrfs mount succeed after a mkfs from a different FS.
1013         * So, we need to add a special mount option to scan for
1014         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015         */
1016        bytenr = btrfs_sb_offset(0);
1017        flags |= FMODE_EXCL;
1018        mutex_lock(&uuid_mutex);
1019
1020        bdev = blkdev_get_by_path(path, flags, holder);
1021
1022        if (IS_ERR(bdev)) {
1023                ret = PTR_ERR(bdev);
1024                goto error;
1025        }
1026
1027        /* make sure our super fits in the device */
1028        if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1029                goto error_bdev_put;
1030
1031        /* make sure our super fits in the page */
1032        if (sizeof(*disk_super) > PAGE_SIZE)
1033                goto error_bdev_put;
1034
1035        /* make sure our super doesn't straddle pages on disk */
1036        index = bytenr >> PAGE_SHIFT;
1037        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1038                goto error_bdev_put;
1039
1040        /* pull in the page with our super */
1041        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042                                   index, GFP_NOFS);
1043
1044        if (IS_ERR_OR_NULL(page))
1045                goto error_bdev_put;
1046
1047        p = kmap(page);
1048
1049        /* align our pointer to the offset of the super block */
1050        disk_super = p + (bytenr & ~PAGE_MASK);
1051
1052        if (btrfs_super_bytenr(disk_super) != bytenr ||
1053            btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1054                goto error_unmap;
1055
1056        devid = btrfs_stack_device_id(&disk_super->dev_item);
1057        transid = btrfs_super_generation(disk_super);
1058        total_devices = btrfs_super_num_devices(disk_super);
1059
1060        ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1061        if (ret > 0) {
1062                if (disk_super->label[0]) {
1063                        if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064                                disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065                        printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066                } else {
1067                        printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1068                }
1069
1070                printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071                ret = 0;
1072        }
1073        if (!ret && fs_devices_ret)
1074                (*fs_devices_ret)->total_devices = total_devices;
1075
1076error_unmap:
1077        kunmap(page);
1078        put_page(page);
1079
1080error_bdev_put:
1081        blkdev_put(bdev, flags);
1082error:
1083        mutex_unlock(&uuid_mutex);
1084        return ret;
1085}
1086
1087/* helper to account the used device space in the range */
1088int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089                                   u64 end, u64 *length)
1090{
1091        struct btrfs_key key;
1092        struct btrfs_root *root = device->dev_root;
1093        struct btrfs_dev_extent *dev_extent;
1094        struct btrfs_path *path;
1095        u64 extent_end;
1096        int ret;
1097        int slot;
1098        struct extent_buffer *l;
1099
1100        *length = 0;
1101
1102        if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1103                return 0;
1104
1105        path = btrfs_alloc_path();
1106        if (!path)
1107                return -ENOMEM;
1108        path->reada = READA_FORWARD;
1109
1110        key.objectid = device->devid;
1111        key.offset = start;
1112        key.type = BTRFS_DEV_EXTENT_KEY;
1113
1114        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115        if (ret < 0)
1116                goto out;
1117        if (ret > 0) {
1118                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119                if (ret < 0)
1120                        goto out;
1121        }
1122
1123        while (1) {
1124                l = path->nodes[0];
1125                slot = path->slots[0];
1126                if (slot >= btrfs_header_nritems(l)) {
1127                        ret = btrfs_next_leaf(root, path);
1128                        if (ret == 0)
1129                                continue;
1130                        if (ret < 0)
1131                                goto out;
1132
1133                        break;
1134                }
1135                btrfs_item_key_to_cpu(l, &key, slot);
1136
1137                if (key.objectid < device->devid)
1138                        goto next;
1139
1140                if (key.objectid > device->devid)
1141                        break;
1142
1143                if (key.type != BTRFS_DEV_EXTENT_KEY)
1144                        goto next;
1145
1146                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147                extent_end = key.offset + btrfs_dev_extent_length(l,
1148                                                                  dev_extent);
1149                if (key.offset <= start && extent_end > end) {
1150                        *length = end - start + 1;
1151                        break;
1152                } else if (key.offset <= start && extent_end > start)
1153                        *length += extent_end - start;
1154                else if (key.offset > start && extent_end <= end)
1155                        *length += extent_end - key.offset;
1156                else if (key.offset > start && key.offset <= end) {
1157                        *length += end - key.offset + 1;
1158                        break;
1159                } else if (key.offset > end)
1160                        break;
1161
1162next:
1163                path->slots[0]++;
1164        }
1165        ret = 0;
1166out:
1167        btrfs_free_path(path);
1168        return ret;
1169}
1170
1171static int contains_pending_extent(struct btrfs_transaction *transaction,
1172                                   struct btrfs_device *device,
1173                                   u64 *start, u64 len)
1174{
1175        struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1176        struct extent_map *em;
1177        struct list_head *search_list = &fs_info->pinned_chunks;
1178        int ret = 0;
1179        u64 physical_start = *start;
1180
1181        if (transaction)
1182                search_list = &transaction->pending_chunks;
1183again:
1184        list_for_each_entry(em, search_list, list) {
1185                struct map_lookup *map;
1186                int i;
1187
1188                map = em->map_lookup;
1189                for (i = 0; i < map->num_stripes; i++) {
1190                        u64 end;
1191
1192                        if (map->stripes[i].dev != device)
1193                                continue;
1194                        if (map->stripes[i].physical >= physical_start + len ||
1195                            map->stripes[i].physical + em->orig_block_len <=
1196                            physical_start)
1197                                continue;
1198                        /*
1199                         * Make sure that while processing the pinned list we do
1200                         * not override our *start with a lower value, because
1201                         * we can have pinned chunks that fall within this
1202                         * device hole and that have lower physical addresses
1203                         * than the pending chunks we processed before. If we
1204                         * do not take this special care we can end up getting
1205                         * 2 pending chunks that start at the same physical
1206                         * device offsets because the end offset of a pinned
1207                         * chunk can be equal to the start offset of some
1208                         * pending chunk.
1209                         */
1210                        end = map->stripes[i].physical + em->orig_block_len;
1211                        if (end > *start) {
1212                                *start = end;
1213                                ret = 1;
1214                        }
1215                }
1216        }
1217        if (search_list != &fs_info->pinned_chunks) {
1218                search_list = &fs_info->pinned_chunks;
1219                goto again;
1220        }
1221
1222        return ret;
1223}
1224
1225
1226/*
1227 * find_free_dev_extent_start - find free space in the specified device
1228 * @device:       the device which we search the free space in
1229 * @num_bytes:    the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start:        store the start of the free space.
1232 * @len:          the size of the free space. that we find, or the size
1233 *                of the max free space if we don't find suitable free space
1234 *
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
1246 */
1247int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248                               struct btrfs_device *device, u64 num_bytes,
1249                               u64 search_start, u64 *start, u64 *len)
1250{
1251        struct btrfs_key key;
1252        struct btrfs_root *root = device->dev_root;
1253        struct btrfs_dev_extent *dev_extent;
1254        struct btrfs_path *path;
1255        u64 hole_size;
1256        u64 max_hole_start;
1257        u64 max_hole_size;
1258        u64 extent_end;
1259        u64 search_end = device->total_bytes;
1260        int ret;
1261        int slot;
1262        struct extent_buffer *l;
1263        u64 min_search_start;
1264
1265        /*
1266         * We don't want to overwrite the superblock on the drive nor any area
1267         * used by the boot loader (grub for example), so we make sure to start
1268         * at an offset of at least 1MB.
1269         */
1270        min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271        search_start = max(search_start, min_search_start);
1272
1273        path = btrfs_alloc_path();
1274        if (!path)
1275                return -ENOMEM;
1276
1277        max_hole_start = search_start;
1278        max_hole_size = 0;
1279
1280again:
1281        if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1282                ret = -ENOSPC;
1283                goto out;
1284        }
1285
1286        path->reada = READA_FORWARD;
1287        path->search_commit_root = 1;
1288        path->skip_locking = 1;
1289
1290        key.objectid = device->devid;
1291        key.offset = search_start;
1292        key.type = BTRFS_DEV_EXTENT_KEY;
1293
1294        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1295        if (ret < 0)
1296                goto out;
1297        if (ret > 0) {
1298                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299                if (ret < 0)
1300                        goto out;
1301        }
1302
1303        while (1) {
1304                l = path->nodes[0];
1305                slot = path->slots[0];
1306                if (slot >= btrfs_header_nritems(l)) {
1307                        ret = btrfs_next_leaf(root, path);
1308                        if (ret == 0)
1309                                continue;
1310                        if (ret < 0)
1311                                goto out;
1312
1313                        break;
1314                }
1315                btrfs_item_key_to_cpu(l, &key, slot);
1316
1317                if (key.objectid < device->devid)
1318                        goto next;
1319
1320                if (key.objectid > device->devid)
1321                        break;
1322
1323                if (key.type != BTRFS_DEV_EXTENT_KEY)
1324                        goto next;
1325
1326                if (key.offset > search_start) {
1327                        hole_size = key.offset - search_start;
1328
1329                        /*
1330                         * Have to check before we set max_hole_start, otherwise
1331                         * we could end up sending back this offset anyway.
1332                         */
1333                        if (contains_pending_extent(transaction, device,
1334                                                    &search_start,
1335                                                    hole_size)) {
1336                                if (key.offset >= search_start) {
1337                                        hole_size = key.offset - search_start;
1338                                } else {
1339                                        WARN_ON_ONCE(1);
1340                                        hole_size = 0;
1341                                }
1342                        }
1343
1344                        if (hole_size > max_hole_size) {
1345                                max_hole_start = search_start;
1346                                max_hole_size = hole_size;
1347                        }
1348
1349                        /*
1350                         * If this free space is greater than which we need,
1351                         * it must be the max free space that we have found
1352                         * until now, so max_hole_start must point to the start
1353                         * of this free space and the length of this free space
1354                         * is stored in max_hole_size. Thus, we return
1355                         * max_hole_start and max_hole_size and go back to the
1356                         * caller.
1357                         */
1358                        if (hole_size >= num_bytes) {
1359                                ret = 0;
1360                                goto out;
1361                        }
1362                }
1363
1364                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1365                extent_end = key.offset + btrfs_dev_extent_length(l,
1366                                                                  dev_extent);
1367                if (extent_end > search_start)
1368                        search_start = extent_end;
1369next:
1370                path->slots[0]++;
1371                cond_resched();
1372        }
1373
1374        /*
1375         * At this point, search_start should be the end of
1376         * allocated dev extents, and when shrinking the device,
1377         * search_end may be smaller than search_start.
1378         */
1379        if (search_end > search_start) {
1380                hole_size = search_end - search_start;
1381
1382                if (contains_pending_extent(transaction, device, &search_start,
1383                                            hole_size)) {
1384                        btrfs_release_path(path);
1385                        goto again;
1386                }
1387
1388                if (hole_size > max_hole_size) {
1389                        max_hole_start = search_start;
1390                        max_hole_size = hole_size;
1391                }
1392        }
1393
1394        /* See above. */
1395        if (max_hole_size < num_bytes)
1396                ret = -ENOSPC;
1397        else
1398                ret = 0;
1399
1400out:
1401        btrfs_free_path(path);
1402        *start = max_hole_start;
1403        if (len)
1404                *len = max_hole_size;
1405        return ret;
1406}
1407
1408int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409                         struct btrfs_device *device, u64 num_bytes,
1410                         u64 *start, u64 *len)
1411{
1412        /* FIXME use last free of some kind */
1413        return find_free_dev_extent_start(trans->transaction, device,
1414                                          num_bytes, 0, start, len);
1415}
1416
1417static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1418                          struct btrfs_device *device,
1419                          u64 start, u64 *dev_extent_len)
1420{
1421        int ret;
1422        struct btrfs_path *path;
1423        struct btrfs_root *root = device->dev_root;
1424        struct btrfs_key key;
1425        struct btrfs_key found_key;
1426        struct extent_buffer *leaf = NULL;
1427        struct btrfs_dev_extent *extent = NULL;
1428
1429        path = btrfs_alloc_path();
1430        if (!path)
1431                return -ENOMEM;
1432
1433        key.objectid = device->devid;
1434        key.offset = start;
1435        key.type = BTRFS_DEV_EXTENT_KEY;
1436again:
1437        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1438        if (ret > 0) {
1439                ret = btrfs_previous_item(root, path, key.objectid,
1440                                          BTRFS_DEV_EXTENT_KEY);
1441                if (ret)
1442                        goto out;
1443                leaf = path->nodes[0];
1444                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445                extent = btrfs_item_ptr(leaf, path->slots[0],
1446                                        struct btrfs_dev_extent);
1447                BUG_ON(found_key.offset > start || found_key.offset +
1448                       btrfs_dev_extent_length(leaf, extent) < start);
1449                key = found_key;
1450                btrfs_release_path(path);
1451                goto again;
1452        } else if (ret == 0) {
1453                leaf = path->nodes[0];
1454                extent = btrfs_item_ptr(leaf, path->slots[0],
1455                                        struct btrfs_dev_extent);
1456        } else {
1457                btrfs_std_error(root->fs_info, ret, "Slot search failed");
1458                goto out;
1459        }
1460
1461        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
1463        ret = btrfs_del_item(trans, root, path);
1464        if (ret) {
1465                btrfs_std_error(root->fs_info, ret,
1466                            "Failed to remove dev extent item");
1467        } else {
1468                set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1469        }
1470out:
1471        btrfs_free_path(path);
1472        return ret;
1473}
1474
1475static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476                                  struct btrfs_device *device,
1477                                  u64 chunk_tree, u64 chunk_objectid,
1478                                  u64 chunk_offset, u64 start, u64 num_bytes)
1479{
1480        int ret;
1481        struct btrfs_path *path;
1482        struct btrfs_root *root = device->dev_root;
1483        struct btrfs_dev_extent *extent;
1484        struct extent_buffer *leaf;
1485        struct btrfs_key key;
1486
1487        WARN_ON(!device->in_fs_metadata);
1488        WARN_ON(device->is_tgtdev_for_dev_replace);
1489        path = btrfs_alloc_path();
1490        if (!path)
1491                return -ENOMEM;
1492
1493        key.objectid = device->devid;
1494        key.offset = start;
1495        key.type = BTRFS_DEV_EXTENT_KEY;
1496        ret = btrfs_insert_empty_item(trans, root, path, &key,
1497                                      sizeof(*extent));
1498        if (ret)
1499                goto out;
1500
1501        leaf = path->nodes[0];
1502        extent = btrfs_item_ptr(leaf, path->slots[0],
1503                                struct btrfs_dev_extent);
1504        btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505        btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508        write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1509                    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1510
1511        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512        btrfs_mark_buffer_dirty(leaf);
1513out:
1514        btrfs_free_path(path);
1515        return ret;
1516}
1517
1518static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1519{
1520        struct extent_map_tree *em_tree;
1521        struct extent_map *em;
1522        struct rb_node *n;
1523        u64 ret = 0;
1524
1525        em_tree = &fs_info->mapping_tree.map_tree;
1526        read_lock(&em_tree->lock);
1527        n = rb_last(&em_tree->map);
1528        if (n) {
1529                em = rb_entry(n, struct extent_map, rb_node);
1530                ret = em->start + em->len;
1531        }
1532        read_unlock(&em_tree->lock);
1533
1534        return ret;
1535}
1536
1537static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538                                    u64 *devid_ret)
1539{
1540        int ret;
1541        struct btrfs_key key;
1542        struct btrfs_key found_key;
1543        struct btrfs_path *path;
1544
1545        path = btrfs_alloc_path();
1546        if (!path)
1547                return -ENOMEM;
1548
1549        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550        key.type = BTRFS_DEV_ITEM_KEY;
1551        key.offset = (u64)-1;
1552
1553        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1554        if (ret < 0)
1555                goto error;
1556
1557        BUG_ON(ret == 0); /* Corruption */
1558
1559        ret = btrfs_previous_item(fs_info->chunk_root, path,
1560                                  BTRFS_DEV_ITEMS_OBJECTID,
1561                                  BTRFS_DEV_ITEM_KEY);
1562        if (ret) {
1563                *devid_ret = 1;
1564        } else {
1565                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566                                      path->slots[0]);
1567                *devid_ret = found_key.offset + 1;
1568        }
1569        ret = 0;
1570error:
1571        btrfs_free_path(path);
1572        return ret;
1573}
1574
1575/*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
1579static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580                            struct btrfs_root *root,
1581                            struct btrfs_device *device)
1582{
1583        int ret;
1584        struct btrfs_path *path;
1585        struct btrfs_dev_item *dev_item;
1586        struct extent_buffer *leaf;
1587        struct btrfs_key key;
1588        unsigned long ptr;
1589
1590        root = root->fs_info->chunk_root;
1591
1592        path = btrfs_alloc_path();
1593        if (!path)
1594                return -ENOMEM;
1595
1596        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597        key.type = BTRFS_DEV_ITEM_KEY;
1598        key.offset = device->devid;
1599
1600        ret = btrfs_insert_empty_item(trans, root, path, &key,
1601                                      sizeof(*dev_item));
1602        if (ret)
1603                goto out;
1604
1605        leaf = path->nodes[0];
1606        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608        btrfs_set_device_id(leaf, dev_item, device->devid);
1609        btrfs_set_device_generation(leaf, dev_item, 0);
1610        btrfs_set_device_type(leaf, dev_item, device->type);
1611        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1614        btrfs_set_device_total_bytes(leaf, dev_item,
1615                                     btrfs_device_get_disk_total_bytes(device));
1616        btrfs_set_device_bytes_used(leaf, dev_item,
1617                                    btrfs_device_get_bytes_used(device));
1618        btrfs_set_device_group(leaf, dev_item, 0);
1619        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1621        btrfs_set_device_start_offset(leaf, dev_item, 0);
1622
1623        ptr = btrfs_device_uuid(dev_item);
1624        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1625        ptr = btrfs_device_fsid(dev_item);
1626        write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1627        btrfs_mark_buffer_dirty(leaf);
1628
1629        ret = 0;
1630out:
1631        btrfs_free_path(path);
1632        return ret;
1633}
1634
1635/*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
1638 */
1639static void update_dev_time(char *path_name)
1640{
1641        struct file *filp;
1642
1643        filp = filp_open(path_name, O_RDWR, 0);
1644        if (IS_ERR(filp))
1645                return;
1646        file_update_time(filp);
1647        filp_close(filp, NULL);
1648}
1649
1650static int btrfs_rm_dev_item(struct btrfs_root *root,
1651                             struct btrfs_device *device)
1652{
1653        int ret;
1654        struct btrfs_path *path;
1655        struct btrfs_key key;
1656        struct btrfs_trans_handle *trans;
1657
1658        root = root->fs_info->chunk_root;
1659
1660        path = btrfs_alloc_path();
1661        if (!path)
1662                return -ENOMEM;
1663
1664        trans = btrfs_start_transaction(root, 0);
1665        if (IS_ERR(trans)) {
1666                btrfs_free_path(path);
1667                return PTR_ERR(trans);
1668        }
1669        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670        key.type = BTRFS_DEV_ITEM_KEY;
1671        key.offset = device->devid;
1672
1673        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674        if (ret < 0)
1675                goto out;
1676
1677        if (ret > 0) {
1678                ret = -ENOENT;
1679                goto out;
1680        }
1681
1682        ret = btrfs_del_item(trans, root, path);
1683        if (ret)
1684                goto out;
1685out:
1686        btrfs_free_path(path);
1687        btrfs_commit_transaction(trans, root);
1688        return ret;
1689}
1690
1691int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692{
1693        struct btrfs_device *device;
1694        struct btrfs_device *next_device;
1695        struct block_device *bdev;
1696        struct buffer_head *bh = NULL;
1697        struct btrfs_super_block *disk_super;
1698        struct btrfs_fs_devices *cur_devices;
1699        u64 all_avail;
1700        u64 devid;
1701        u64 num_devices;
1702        u8 *dev_uuid;
1703        unsigned seq;
1704        int ret = 0;
1705        bool clear_super = false;
1706
1707        mutex_lock(&uuid_mutex);
1708
1709        do {
1710                seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712                all_avail = root->fs_info->avail_data_alloc_bits |
1713                            root->fs_info->avail_system_alloc_bits |
1714                            root->fs_info->avail_metadata_alloc_bits;
1715        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717        num_devices = root->fs_info->fs_devices->num_devices;
1718        btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1719        if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720                WARN_ON(num_devices < 1);
1721                num_devices--;
1722        }
1723        btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1724
1725        if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726                ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727                goto out;
1728        }
1729
1730        if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731                ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732                goto out;
1733        }
1734
1735        if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736            root->fs_info->fs_devices->rw_devices <= 2) {
1737                ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738                goto out;
1739        }
1740        if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741            root->fs_info->fs_devices->rw_devices <= 3) {
1742                ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743                goto out;
1744        }
1745
1746        if (strcmp(device_path, "missing") == 0) {
1747                struct list_head *devices;
1748                struct btrfs_device *tmp;
1749
1750                device = NULL;
1751                devices = &root->fs_info->fs_devices->devices;
1752                /*
1753                 * It is safe to read the devices since the volume_mutex
1754                 * is held.
1755                 */
1756                list_for_each_entry(tmp, devices, dev_list) {
1757                        if (tmp->in_fs_metadata &&
1758                            !tmp->is_tgtdev_for_dev_replace &&
1759                            !tmp->bdev) {
1760                                device = tmp;
1761                                break;
1762                        }
1763                }
1764                bdev = NULL;
1765                bh = NULL;
1766                disk_super = NULL;
1767                if (!device) {
1768                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769                        goto out;
1770                }
1771        } else {
1772                ret = btrfs_get_bdev_and_sb(device_path,
1773                                            FMODE_WRITE | FMODE_EXCL,
1774                                            root->fs_info->bdev_holder, 0,
1775                                            &bdev, &bh);
1776                if (ret)
1777                        goto out;
1778                disk_super = (struct btrfs_super_block *)bh->b_data;
1779                devid = btrfs_stack_device_id(&disk_super->dev_item);
1780                dev_uuid = disk_super->dev_item.uuid;
1781                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782                                           disk_super->fsid);
1783                if (!device) {
1784                        ret = -ENOENT;
1785                        goto error_brelse;
1786                }
1787        }
1788
1789        if (device->is_tgtdev_for_dev_replace) {
1790                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791                goto error_brelse;
1792        }
1793
1794        if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796                goto error_brelse;
1797        }
1798
1799        if (device->writeable) {
1800                lock_chunks(root);
1801                list_del_init(&device->dev_alloc_list);
1802                device->fs_devices->rw_devices--;
1803                unlock_chunks(root);
1804                clear_super = true;
1805        }
1806
1807        mutex_unlock(&uuid_mutex);
1808        ret = btrfs_shrink_device(device, 0);
1809        mutex_lock(&uuid_mutex);
1810        if (ret)
1811                goto error_undo;
1812
1813        /*
1814         * TODO: the superblock still includes this device in its num_devices
1815         * counter although write_all_supers() is not locked out. This
1816         * could give a filesystem state which requires a degraded mount.
1817         */
1818        ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819        if (ret)
1820                goto error_undo;
1821
1822        device->in_fs_metadata = 0;
1823        btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825        /*
1826         * the device list mutex makes sure that we don't change
1827         * the device list while someone else is writing out all
1828         * the device supers. Whoever is writing all supers, should
1829         * lock the device list mutex before getting the number of
1830         * devices in the super block (super_copy). Conversely,
1831         * whoever updates the number of devices in the super block
1832         * (super_copy) should hold the device list mutex.
1833         */
1834
1835        cur_devices = device->fs_devices;
1836        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837        list_del_rcu(&device->dev_list);
1838
1839        device->fs_devices->num_devices--;
1840        device->fs_devices->total_devices--;
1841
1842        if (device->missing)
1843                device->fs_devices->missing_devices--;
1844
1845        next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846                                 struct btrfs_device, dev_list);
1847        if (device->bdev == root->fs_info->sb->s_bdev)
1848                root->fs_info->sb->s_bdev = next_device->bdev;
1849        if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850                root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852        if (device->bdev) {
1853                device->fs_devices->open_devices--;
1854                /* remove sysfs entry */
1855                btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856        }
1857
1858        call_rcu(&device->rcu, free_device);
1859
1860        num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861        btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864        if (cur_devices->open_devices == 0) {
1865                struct btrfs_fs_devices *fs_devices;
1866                fs_devices = root->fs_info->fs_devices;
1867                while (fs_devices) {
1868                        if (fs_devices->seed == cur_devices) {
1869                                fs_devices->seed = cur_devices->seed;
1870                                break;
1871                        }
1872                        fs_devices = fs_devices->seed;
1873                }
1874                cur_devices->seed = NULL;
1875                __btrfs_close_devices(cur_devices);
1876                free_fs_devices(cur_devices);
1877        }
1878
1879        root->fs_info->num_tolerated_disk_barrier_failures =
1880                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882        /*
1883         * at this point, the device is zero sized.  We want to
1884         * remove it from the devices list and zero out the old super
1885         */
1886        if (clear_super && disk_super) {
1887                u64 bytenr;
1888                int i;
1889
1890                /* make sure this device isn't detected as part of
1891                 * the FS anymore
1892                 */
1893                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894                set_buffer_dirty(bh);
1895                sync_dirty_buffer(bh);
1896
1897                /* clear the mirror copies of super block on the disk
1898                 * being removed, 0th copy is been taken care above and
1899                 * the below would take of the rest
1900                 */
1901                for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902                        bytenr = btrfs_sb_offset(i);
1903                        if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904                                        i_size_read(bdev->bd_inode))
1905                                break;
1906
1907                        brelse(bh);
1908                        bh = __bread(bdev, bytenr / 4096,
1909                                        BTRFS_SUPER_INFO_SIZE);
1910                        if (!bh)
1911                                continue;
1912
1913                        disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915                        if (btrfs_super_bytenr(disk_super) != bytenr ||
1916                                btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917                                continue;
1918                        }
1919                        memset(&disk_super->magic, 0,
1920                                                sizeof(disk_super->magic));
1921                        set_buffer_dirty(bh);
1922                        sync_dirty_buffer(bh);
1923                }
1924        }
1925
1926        ret = 0;
1927
1928        if (bdev) {
1929                /* Notify udev that device has changed */
1930                btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932                /* Update ctime/mtime for device path for libblkid */
1933                update_dev_time(device_path);
1934        }
1935
1936error_brelse:
1937        brelse(bh);
1938        if (bdev)
1939                blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940out:
1941        mutex_unlock(&uuid_mutex);
1942        return ret;
1943error_undo:
1944        if (device->writeable) {
1945                lock_chunks(root);
1946                list_add(&device->dev_alloc_list,
1947                         &root->fs_info->fs_devices->alloc_list);
1948                device->fs_devices->rw_devices++;
1949                unlock_chunks(root);
1950        }
1951        goto error_brelse;
1952}
1953
1954void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955                                        struct btrfs_device *srcdev)
1956{
1957        struct btrfs_fs_devices *fs_devices;
1958
1959        WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961        /*
1962         * in case of fs with no seed, srcdev->fs_devices will point
1963         * to fs_devices of fs_info. However when the dev being replaced is
1964         * a seed dev it will point to the seed's local fs_devices. In short
1965         * srcdev will have its correct fs_devices in both the cases.
1966         */
1967        fs_devices = srcdev->fs_devices;
1968
1969        list_del_rcu(&srcdev->dev_list);
1970        list_del_rcu(&srcdev->dev_alloc_list);
1971        fs_devices->num_devices--;
1972        if (srcdev->missing)
1973                fs_devices->missing_devices--;
1974
1975        if (srcdev->writeable) {
1976                fs_devices->rw_devices--;
1977                /* zero out the old super if it is writable */
1978                btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979        }
1980
1981        if (srcdev->bdev)
1982                fs_devices->open_devices--;
1983}
1984
1985void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986                                      struct btrfs_device *srcdev)
1987{
1988        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990        call_rcu(&srcdev->rcu, free_device);
1991
1992        /*
1993         * unless fs_devices is seed fs, num_devices shouldn't go
1994         * zero
1995         */
1996        BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998        /* if this is no devs we rather delete the fs_devices */
1999        if (!fs_devices->num_devices) {
2000                struct btrfs_fs_devices *tmp_fs_devices;
2001
2002                tmp_fs_devices = fs_info->fs_devices;
2003                while (tmp_fs_devices) {
2004                        if (tmp_fs_devices->seed == fs_devices) {
2005                                tmp_fs_devices->seed = fs_devices->seed;
2006                                break;
2007                        }
2008                        tmp_fs_devices = tmp_fs_devices->seed;
2009                }
2010                fs_devices->seed = NULL;
2011                __btrfs_close_devices(fs_devices);
2012                free_fs_devices(fs_devices);
2013        }
2014}
2015
2016void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017                                      struct btrfs_device *tgtdev)
2018{
2019        struct btrfs_device *next_device;
2020
2021        mutex_lock(&uuid_mutex);
2022        WARN_ON(!tgtdev);
2023        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025        btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027        if (tgtdev->bdev) {
2028                btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029                fs_info->fs_devices->open_devices--;
2030        }
2031        fs_info->fs_devices->num_devices--;
2032
2033        next_device = list_entry(fs_info->fs_devices->devices.next,
2034                                 struct btrfs_device, dev_list);
2035        if (tgtdev->bdev == fs_info->sb->s_bdev)
2036                fs_info->sb->s_bdev = next_device->bdev;
2037        if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038                fs_info->fs_devices->latest_bdev = next_device->bdev;
2039        list_del_rcu(&tgtdev->dev_list);
2040
2041        call_rcu(&tgtdev->rcu, free_device);
2042
2043        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044        mutex_unlock(&uuid_mutex);
2045}
2046
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048                                     struct btrfs_device **device)
2049{
2050        int ret = 0;
2051        struct btrfs_super_block *disk_super;
2052        u64 devid;
2053        u8 *dev_uuid;
2054        struct block_device *bdev;
2055        struct buffer_head *bh;
2056
2057        *device = NULL;
2058        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059                                    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060        if (ret)
2061                return ret;
2062        disk_super = (struct btrfs_super_block *)bh->b_data;
2063        devid = btrfs_stack_device_id(&disk_super->dev_item);
2064        dev_uuid = disk_super->dev_item.uuid;
2065        *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066                                    disk_super->fsid);
2067        brelse(bh);
2068        if (!*device)
2069                ret = -ENOENT;
2070        blkdev_put(bdev, FMODE_READ);
2071        return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075                                         char *device_path,
2076                                         struct btrfs_device **device)
2077{
2078        *device = NULL;
2079        if (strcmp(device_path, "missing") == 0) {
2080                struct list_head *devices;
2081                struct btrfs_device *tmp;
2082
2083                devices = &root->fs_info->fs_devices->devices;
2084                /*
2085                 * It is safe to read the devices since the volume_mutex
2086                 * is held by the caller.
2087                 */
2088                list_for_each_entry(tmp, devices, dev_list) {
2089                        if (tmp->in_fs_metadata && !tmp->bdev) {
2090                                *device = tmp;
2091                                break;
2092                        }
2093                }
2094
2095                if (!*device)
2096                        return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097
2098                return 0;
2099        } else {
2100                return btrfs_find_device_by_path(root, device_path, device);
2101        }
2102}
2103
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2108{
2109        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110        struct btrfs_fs_devices *old_devices;
2111        struct btrfs_fs_devices *seed_devices;
2112        struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113        struct btrfs_device *device;
2114        u64 super_flags;
2115
2116        BUG_ON(!mutex_is_locked(&uuid_mutex));
2117        if (!fs_devices->seeding)
2118                return -EINVAL;
2119
2120        seed_devices = __alloc_fs_devices();
2121        if (IS_ERR(seed_devices))
2122                return PTR_ERR(seed_devices);
2123
2124        old_devices = clone_fs_devices(fs_devices);
2125        if (IS_ERR(old_devices)) {
2126                kfree(seed_devices);
2127                return PTR_ERR(old_devices);
2128        }
2129
2130        list_add(&old_devices->list, &fs_uuids);
2131
2132        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133        seed_devices->opened = 1;
2134        INIT_LIST_HEAD(&seed_devices->devices);
2135        INIT_LIST_HEAD(&seed_devices->alloc_list);
2136        mutex_init(&seed_devices->device_list_mutex);
2137
2138        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140                              synchronize_rcu);
2141        list_for_each_entry(device, &seed_devices->devices, dev_list)
2142                device->fs_devices = seed_devices;
2143
2144        lock_chunks(root);
2145        list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146        unlock_chunks(root);
2147
2148        fs_devices->seeding = 0;
2149        fs_devices->num_devices = 0;
2150        fs_devices->open_devices = 0;
2151        fs_devices->missing_devices = 0;
2152        fs_devices->rotating = 0;
2153        fs_devices->seed = seed_devices;
2154
2155        generate_random_uuid(fs_devices->fsid);
2156        memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160        super_flags = btrfs_super_flags(disk_super) &
2161                      ~BTRFS_SUPER_FLAG_SEEDING;
2162        btrfs_set_super_flags(disk_super, super_flags);
2163
2164        return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171                               struct btrfs_root *root)
2172{
2173        struct btrfs_path *path;
2174        struct extent_buffer *leaf;
2175        struct btrfs_dev_item *dev_item;
2176        struct btrfs_device *device;
2177        struct btrfs_key key;
2178        u8 fs_uuid[BTRFS_UUID_SIZE];
2179        u8 dev_uuid[BTRFS_UUID_SIZE];
2180        u64 devid;
2181        int ret;
2182
2183        path = btrfs_alloc_path();
2184        if (!path)
2185                return -ENOMEM;
2186
2187        root = root->fs_info->chunk_root;
2188        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189        key.offset = 0;
2190        key.type = BTRFS_DEV_ITEM_KEY;
2191
2192        while (1) {
2193                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194                if (ret < 0)
2195                        goto error;
2196
2197                leaf = path->nodes[0];
2198next_slot:
2199                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200                        ret = btrfs_next_leaf(root, path);
2201                        if (ret > 0)
2202                                break;
2203                        if (ret < 0)
2204                                goto error;
2205                        leaf = path->nodes[0];
2206                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207                        btrfs_release_path(path);
2208                        continue;
2209                }
2210
2211                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213                    key.type != BTRFS_DEV_ITEM_KEY)
2214                        break;
2215
2216                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217                                          struct btrfs_dev_item);
2218                devid = btrfs_device_id(leaf, dev_item);
2219                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220                                   BTRFS_UUID_SIZE);
2221                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222                                   BTRFS_UUID_SIZE);
2223                device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224                                           fs_uuid);
2225                BUG_ON(!device); /* Logic error */
2226
2227                if (device->fs_devices->seeding) {
2228                        btrfs_set_device_generation(leaf, dev_item,
2229                                                    device->generation);
2230                        btrfs_mark_buffer_dirty(leaf);
2231                }
2232
2233                path->slots[0]++;
2234                goto next_slot;
2235        }
2236        ret = 0;
2237error:
2238        btrfs_free_path(path);
2239        return ret;
2240}
2241
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
2244        struct request_queue *q;
2245        struct btrfs_trans_handle *trans;
2246        struct btrfs_device *device;
2247        struct block_device *bdev;
2248        struct list_head *devices;
2249        struct super_block *sb = root->fs_info->sb;
2250        struct rcu_string *name;
2251        u64 tmp;
2252        int seeding_dev = 0;
2253        int ret = 0;
2254
2255        if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256                return -EROFS;
2257
2258        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259                                  root->fs_info->bdev_holder);
2260        if (IS_ERR(bdev))
2261                return PTR_ERR(bdev);
2262
2263        if (root->fs_info->fs_devices->seeding) {
2264                seeding_dev = 1;
2265                down_write(&sb->s_umount);
2266                mutex_lock(&uuid_mutex);
2267        }
2268
2269        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271        devices = &root->fs_info->fs_devices->devices;
2272
2273        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274        list_for_each_entry(device, devices, dev_list) {
2275                if (device->bdev == bdev) {
2276                        ret = -EEXIST;
2277                        mutex_unlock(
2278                                &root->fs_info->fs_devices->device_list_mutex);
2279                        goto error;
2280                }
2281        }
2282        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284        device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285        if (IS_ERR(device)) {
2286                /* we can safely leave the fs_devices entry around */
2287                ret = PTR_ERR(device);
2288                goto error;
2289        }
2290
2291        name = rcu_string_strdup(device_path, GFP_KERNEL);
2292        if (!name) {
2293                kfree(device);
2294                ret = -ENOMEM;
2295                goto error;
2296        }
2297        rcu_assign_pointer(device->name, name);
2298
2299        trans = btrfs_start_transaction(root, 0);
2300        if (IS_ERR(trans)) {
2301                rcu_string_free(device->name);
2302                kfree(device);
2303                ret = PTR_ERR(trans);
2304                goto error;
2305        }
2306
2307        q = bdev_get_queue(bdev);
2308        if (blk_queue_discard(q))
2309                device->can_discard = 1;
2310        device->writeable = 1;
2311        device->generation = trans->transid;
2312        device->io_width = root->sectorsize;
2313        device->io_align = root->sectorsize;
2314        device->sector_size = root->sectorsize;
2315        device->total_bytes = i_size_read(bdev->bd_inode);
2316        device->disk_total_bytes = device->total_bytes;
2317        device->commit_total_bytes = device->total_bytes;
2318        device->dev_root = root->fs_info->dev_root;
2319        device->bdev = bdev;
2320        device->in_fs_metadata = 1;
2321        device->is_tgtdev_for_dev_replace = 0;
2322        device->mode = FMODE_EXCL;
2323        device->dev_stats_valid = 1;
2324        set_blocksize(device->bdev, 4096);
2325
2326        if (seeding_dev) {
2327                sb->s_flags &= ~MS_RDONLY;
2328                ret = btrfs_prepare_sprout(root);
2329                BUG_ON(ret); /* -ENOMEM */
2330        }
2331
2332        device->fs_devices = root->fs_info->fs_devices;
2333
2334        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335        lock_chunks(root);
2336        list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337        list_add(&device->dev_alloc_list,
2338                 &root->fs_info->fs_devices->alloc_list);
2339        root->fs_info->fs_devices->num_devices++;
2340        root->fs_info->fs_devices->open_devices++;
2341        root->fs_info->fs_devices->rw_devices++;
2342        root->fs_info->fs_devices->total_devices++;
2343        root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345        spin_lock(&root->fs_info->free_chunk_lock);
2346        root->fs_info->free_chunk_space += device->total_bytes;
2347        spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349        if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350                root->fs_info->fs_devices->rotating = 1;
2351
2352        tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353        btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354                                    tmp + device->total_bytes);
2355
2356        tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357        btrfs_set_super_num_devices(root->fs_info->super_copy,
2358                                    tmp + 1);
2359
2360        /* add sysfs device entry */
2361        btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362
2363        /*
2364         * we've got more storage, clear any full flags on the space
2365         * infos
2366         */
2367        btrfs_clear_space_info_full(root->fs_info);
2368
2369        unlock_chunks(root);
2370        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371
2372        if (seeding_dev) {
2373                lock_chunks(root);
2374                ret = init_first_rw_device(trans, root, device);
2375                unlock_chunks(root);
2376                if (ret) {
2377                        btrfs_abort_transaction(trans, root, ret);
2378                        goto error_trans;
2379                }
2380        }
2381
2382        ret = btrfs_add_device(trans, root, device);
2383        if (ret) {
2384                btrfs_abort_transaction(trans, root, ret);
2385                goto error_trans;
2386        }
2387
2388        if (seeding_dev) {
2389                char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2391                ret = btrfs_finish_sprout(trans, root);
2392                if (ret) {
2393                        btrfs_abort_transaction(trans, root, ret);
2394                        goto error_trans;
2395                }
2396
2397                /* Sprouting would change fsid of the mounted root,
2398                 * so rename the fsid on the sysfs
2399                 */
2400                snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401                                                root->fs_info->fsid);
2402                if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403                                                                fsid_buf))
2404                        btrfs_warn(root->fs_info,
2405                                "sysfs: failed to create fsid for sprout");
2406        }
2407
2408        root->fs_info->num_tolerated_disk_barrier_failures =
2409                btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410        ret = btrfs_commit_transaction(trans, root);
2411
2412        if (seeding_dev) {
2413                mutex_unlock(&uuid_mutex);
2414                up_write(&sb->s_umount);
2415
2416                if (ret) /* transaction commit */
2417                        return ret;
2418
2419                ret = btrfs_relocate_sys_chunks(root);
2420                if (ret < 0)
2421                        btrfs_std_error(root->fs_info, ret,
2422                                    "Failed to relocate sys chunks after "
2423                                    "device initialization. This can be fixed "
2424                                    "using the \"btrfs balance\" command.");
2425                trans = btrfs_attach_transaction(root);
2426                if (IS_ERR(trans)) {
2427                        if (PTR_ERR(trans) == -ENOENT)
2428                                return 0;
2429                        return PTR_ERR(trans);
2430                }
2431                ret = btrfs_commit_transaction(trans, root);
2432        }
2433
2434        /* Update ctime/mtime for libblkid */
2435        update_dev_time(device_path);
2436        return ret;
2437
2438error_trans:
2439        btrfs_end_transaction(trans, root);
2440        rcu_string_free(device->name);
2441        btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442        kfree(device);
2443error:
2444        blkdev_put(bdev, FMODE_EXCL);
2445        if (seeding_dev) {
2446                mutex_unlock(&uuid_mutex);
2447                up_write(&sb->s_umount);
2448        }
2449        return ret;
2450}
2451
2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453                                  struct btrfs_device *srcdev,
2454                                  struct btrfs_device **device_out)
2455{
2456        struct request_queue *q;
2457        struct btrfs_device *device;
2458        struct block_device *bdev;
2459        struct btrfs_fs_info *fs_info = root->fs_info;
2460        struct list_head *devices;
2461        struct rcu_string *name;
2462        u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463        int ret = 0;
2464
2465        *device_out = NULL;
2466        if (fs_info->fs_devices->seeding) {
2467                btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468                return -EINVAL;
2469        }
2470
2471        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472                                  fs_info->bdev_holder);
2473        if (IS_ERR(bdev)) {
2474                btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475                return PTR_ERR(bdev);
2476        }
2477
2478        filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480        devices = &fs_info->fs_devices->devices;
2481        list_for_each_entry(device, devices, dev_list) {
2482                if (device->bdev == bdev) {
2483                        btrfs_err(fs_info, "target device is in the filesystem!");
2484                        ret = -EEXIST;
2485                        goto error;
2486                }
2487        }
2488
2489
2490        if (i_size_read(bdev->bd_inode) <
2491            btrfs_device_get_total_bytes(srcdev)) {
2492                btrfs_err(fs_info, "target device is smaller than source device!");
2493                ret = -EINVAL;
2494                goto error;
2495        }
2496
2497
2498        device = btrfs_alloc_device(NULL, &devid, NULL);
2499        if (IS_ERR(device)) {
2500                ret = PTR_ERR(device);
2501                goto error;
2502        }
2503
2504        name = rcu_string_strdup(device_path, GFP_NOFS);
2505        if (!name) {
2506                kfree(device);
2507                ret = -ENOMEM;
2508                goto error;
2509        }
2510        rcu_assign_pointer(device->name, name);
2511
2512        q = bdev_get_queue(bdev);
2513        if (blk_queue_discard(q))
2514                device->can_discard = 1;
2515        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516        device->writeable = 1;
2517        device->generation = 0;
2518        device->io_width = root->sectorsize;
2519        device->io_align = root->sectorsize;
2520        device->sector_size = root->sectorsize;
2521        device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522        device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523        device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524        ASSERT(list_empty(&srcdev->resized_list));
2525        device->commit_total_bytes = srcdev->commit_total_bytes;
2526        device->commit_bytes_used = device->bytes_used;
2527        device->dev_root = fs_info->dev_root;
2528        device->bdev = bdev;
2529        device->in_fs_metadata = 1;
2530        device->is_tgtdev_for_dev_replace = 1;
2531        device->mode = FMODE_EXCL;
2532        device->dev_stats_valid = 1;
2533        set_blocksize(device->bdev, 4096);
2534        device->fs_devices = fs_info->fs_devices;
2535        list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536        fs_info->fs_devices->num_devices++;
2537        fs_info->fs_devices->open_devices++;
2538        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540        *device_out = device;
2541        return ret;
2542
2543error:
2544        blkdev_put(bdev, FMODE_EXCL);
2545        return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549                                              struct btrfs_device *tgtdev)
2550{
2551        WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552        tgtdev->io_width = fs_info->dev_root->sectorsize;
2553        tgtdev->io_align = fs_info->dev_root->sectorsize;
2554        tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555        tgtdev->dev_root = fs_info->dev_root;
2556        tgtdev->in_fs_metadata = 1;
2557}
2558
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560                                        struct btrfs_device *device)
2561{
2562        int ret;
2563        struct btrfs_path *path;
2564        struct btrfs_root *root;
2565        struct btrfs_dev_item *dev_item;
2566        struct extent_buffer *leaf;
2567        struct btrfs_key key;
2568
2569        root = device->dev_root->fs_info->chunk_root;
2570
2571        path = btrfs_alloc_path();
2572        if (!path)
2573                return -ENOMEM;
2574
2575        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576        key.type = BTRFS_DEV_ITEM_KEY;
2577        key.offset = device->devid;
2578
2579        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580        if (ret < 0)
2581                goto out;
2582
2583        if (ret > 0) {
2584                ret = -ENOENT;
2585                goto out;
2586        }
2587
2588        leaf = path->nodes[0];
2589        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591        btrfs_set_device_id(leaf, dev_item, device->devid);
2592        btrfs_set_device_type(leaf, dev_item, device->type);
2593        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596        btrfs_set_device_total_bytes(leaf, dev_item,
2597                                     btrfs_device_get_disk_total_bytes(device));
2598        btrfs_set_device_bytes_used(leaf, dev_item,
2599                                    btrfs_device_get_bytes_used(device));
2600        btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603        btrfs_free_path(path);
2604        return ret;
2605}
2606
2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608                      struct btrfs_device *device, u64 new_size)
2609{
2610        struct btrfs_super_block *super_copy =
2611                device->dev_root->fs_info->super_copy;
2612        struct btrfs_fs_devices *fs_devices;
2613        u64 old_total;
2614        u64 diff;
2615
2616        if (!device->writeable)
2617                return -EACCES;
2618
2619        lock_chunks(device->dev_root);
2620        old_total = btrfs_super_total_bytes(super_copy);
2621        diff = new_size - device->total_bytes;
2622
2623        if (new_size <= device->total_bytes ||
2624            device->is_tgtdev_for_dev_replace) {
2625                unlock_chunks(device->dev_root);
2626                return -EINVAL;
2627        }
2628
2629        fs_devices = device->dev_root->fs_info->fs_devices;
2630
2631        btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632        device->fs_devices->total_rw_bytes += diff;
2633
2634        btrfs_device_set_total_bytes(device, new_size);
2635        btrfs_device_set_disk_total_bytes(device, new_size);
2636        btrfs_clear_space_info_full(device->dev_root->fs_info);
2637        if (list_empty(&device->resized_list))
2638                list_add_tail(&device->resized_list,
2639                              &fs_devices->resized_devices);
2640        unlock_chunks(device->dev_root);
2641
2642        return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646                            struct btrfs_root *root, u64 chunk_objectid,
2647                            u64 chunk_offset)
2648{
2649        int ret;
2650        struct btrfs_path *path;
2651        struct btrfs_key key;
2652
2653        root = root->fs_info->chunk_root;
2654        path = btrfs_alloc_path();
2655        if (!path)
2656                return -ENOMEM;
2657
2658        key.objectid = chunk_objectid;
2659        key.offset = chunk_offset;
2660        key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663        if (ret < 0)
2664                goto out;
2665        else if (ret > 0) { /* Logic error or corruption */
2666                btrfs_std_error(root->fs_info, -ENOENT,
2667                            "Failed lookup while freeing chunk.");
2668                ret = -ENOENT;
2669                goto out;
2670        }
2671
2672        ret = btrfs_del_item(trans, root, path);
2673        if (ret < 0)
2674                btrfs_std_error(root->fs_info, ret,
2675                            "Failed to delete chunk item.");
2676out:
2677        btrfs_free_path(path);
2678        return ret;
2679}
2680
2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682                        chunk_offset)
2683{
2684        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685        struct btrfs_disk_key *disk_key;
2686        struct btrfs_chunk *chunk;
2687        u8 *ptr;
2688        int ret = 0;
2689        u32 num_stripes;
2690        u32 array_size;
2691        u32 len = 0;
2692        u32 cur;
2693        struct btrfs_key key;
2694
2695        lock_chunks(root);
2696        array_size = btrfs_super_sys_array_size(super_copy);
2697
2698        ptr = super_copy->sys_chunk_array;
2699        cur = 0;
2700
2701        while (cur < array_size) {
2702                disk_key = (struct btrfs_disk_key *)ptr;
2703                btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705                len = sizeof(*disk_key);
2706
2707                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708                        chunk = (struct btrfs_chunk *)(ptr + len);
2709                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710                        len += btrfs_chunk_item_size(num_stripes);
2711                } else {
2712                        ret = -EIO;
2713                        break;
2714                }
2715                if (key.objectid == chunk_objectid &&
2716                    key.offset == chunk_offset) {
2717                        memmove(ptr, ptr + len, array_size - (cur + len));
2718                        array_size -= len;
2719                        btrfs_set_super_sys_array_size(super_copy, array_size);
2720                } else {
2721                        ptr += len;
2722                        cur += len;
2723                }
2724        }
2725        unlock_chunks(root);
2726        return ret;
2727}
2728
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730                       struct btrfs_root *root, u64 chunk_offset)
2731{
2732        struct extent_map_tree *em_tree;
2733        struct extent_map *em;
2734        struct btrfs_root *extent_root = root->fs_info->extent_root;
2735        struct map_lookup *map;
2736        u64 dev_extent_len = 0;
2737        u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738        int i, ret = 0;
2739
2740        /* Just in case */
2741        root = root->fs_info->chunk_root;
2742        em_tree = &root->fs_info->mapping_tree.map_tree;
2743
2744        read_lock(&em_tree->lock);
2745        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746        read_unlock(&em_tree->lock);
2747
2748        if (!em || em->start > chunk_offset ||
2749            em->start + em->len < chunk_offset) {
2750                /*
2751                 * This is a logic error, but we don't want to just rely on the
2752                 * user having built with ASSERT enabled, so if ASSERT doesn't
2753                 * do anything we still error out.
2754                 */
2755                ASSERT(0);
2756                if (em)
2757                        free_extent_map(em);
2758                return -EINVAL;
2759        }
2760        map = em->map_lookup;
2761        lock_chunks(root->fs_info->chunk_root);
2762        check_system_chunk(trans, extent_root, map->type);
2763        unlock_chunks(root->fs_info->chunk_root);
2764
2765        for (i = 0; i < map->num_stripes; i++) {
2766                struct btrfs_device *device = map->stripes[i].dev;
2767                ret = btrfs_free_dev_extent(trans, device,
2768                                            map->stripes[i].physical,
2769                                            &dev_extent_len);
2770                if (ret) {
2771                        btrfs_abort_transaction(trans, root, ret);
2772                        goto out;
2773                }
2774
2775                if (device->bytes_used > 0) {
2776                        lock_chunks(root);
2777                        btrfs_device_set_bytes_used(device,
2778                                        device->bytes_used - dev_extent_len);
2779                        spin_lock(&root->fs_info->free_chunk_lock);
2780                        root->fs_info->free_chunk_space += dev_extent_len;
2781                        spin_unlock(&root->fs_info->free_chunk_lock);
2782                        btrfs_clear_space_info_full(root->fs_info);
2783                        unlock_chunks(root);
2784                }
2785
2786                if (map->stripes[i].dev) {
2787                        ret = btrfs_update_device(trans, map->stripes[i].dev);
2788                        if (ret) {
2789                                btrfs_abort_transaction(trans, root, ret);
2790                                goto out;
2791                        }
2792                }
2793        }
2794        ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795        if (ret) {
2796                btrfs_abort_transaction(trans, root, ret);
2797                goto out;
2798        }
2799
2800        trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
2802        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803                ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804                if (ret) {
2805                        btrfs_abort_transaction(trans, root, ret);
2806                        goto out;
2807                }
2808        }
2809
2810        ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811        if (ret) {
2812                btrfs_abort_transaction(trans, extent_root, ret);
2813                goto out;
2814        }
2815
2816out:
2817        /* once for us */
2818        free_extent_map(em);
2819        return ret;
2820}
2821
2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823{
2824        struct btrfs_root *extent_root;
2825        struct btrfs_trans_handle *trans;
2826        int ret;
2827
2828        root = root->fs_info->chunk_root;
2829        extent_root = root->fs_info->extent_root;
2830
2831        /*
2832         * Prevent races with automatic removal of unused block groups.
2833         * After we relocate and before we remove the chunk with offset
2834         * chunk_offset, automatic removal of the block group can kick in,
2835         * resulting in a failure when calling btrfs_remove_chunk() below.
2836         *
2837         * Make sure to acquire this mutex before doing a tree search (dev
2838         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840         * we release the path used to search the chunk/dev tree and before
2841         * the current task acquires this mutex and calls us.
2842         */
2843        ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
2845        ret = btrfs_can_relocate(extent_root, chunk_offset);
2846        if (ret)
2847                return -ENOSPC;
2848
2849        /* step one, relocate all the extents inside this chunk */
2850        btrfs_scrub_pause(root);
2851        ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852        btrfs_scrub_continue(root);
2853        if (ret)
2854                return ret;
2855
2856        trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857                                                     chunk_offset);
2858        if (IS_ERR(trans)) {
2859                ret = PTR_ERR(trans);
2860                btrfs_std_error(root->fs_info, ret, NULL);
2861                return ret;
2862        }
2863
2864        /*
2865         * step two, delete the device extents and the
2866         * chunk tree entries
2867         */
2868        ret = btrfs_remove_chunk(trans, root, chunk_offset);
2869        btrfs_end_transaction(trans, root);
2870        return ret;
2871}
2872
2873static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874{
2875        struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876        struct btrfs_path *path;
2877        struct extent_buffer *leaf;
2878        struct btrfs_chunk *chunk;
2879        struct btrfs_key key;
2880        struct btrfs_key found_key;
2881        u64 chunk_type;
2882        bool retried = false;
2883        int failed = 0;
2884        int ret;
2885
2886        path = btrfs_alloc_path();
2887        if (!path)
2888                return -ENOMEM;
2889
2890again:
2891        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892        key.offset = (u64)-1;
2893        key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895        while (1) {
2896                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2897                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898                if (ret < 0) {
2899                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2900                        goto error;
2901                }
2902                BUG_ON(ret == 0); /* Corruption */
2903
2904                ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905                                          key.type);
2906                if (ret)
2907                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2908                if (ret < 0)
2909                        goto error;
2910                if (ret > 0)
2911                        break;
2912
2913                leaf = path->nodes[0];
2914                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916                chunk = btrfs_item_ptr(leaf, path->slots[0],
2917                                       struct btrfs_chunk);
2918                chunk_type = btrfs_chunk_type(leaf, chunk);
2919                btrfs_release_path(path);
2920
2921                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922                        ret = btrfs_relocate_chunk(chunk_root,
2923                                                   found_key.offset);
2924                        if (ret == -ENOSPC)
2925                                failed++;
2926                        else
2927                                BUG_ON(ret);
2928                }
2929                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2930
2931                if (found_key.offset == 0)
2932                        break;
2933                key.offset = found_key.offset - 1;
2934        }
2935        ret = 0;
2936        if (failed && !retried) {
2937                failed = 0;
2938                retried = true;
2939                goto again;
2940        } else if (WARN_ON(failed && retried)) {
2941                ret = -ENOSPC;
2942        }
2943error:
2944        btrfs_free_path(path);
2945        return ret;
2946}
2947
2948static int insert_balance_item(struct btrfs_root *root,
2949                               struct btrfs_balance_control *bctl)
2950{
2951        struct btrfs_trans_handle *trans;
2952        struct btrfs_balance_item *item;
2953        struct btrfs_disk_balance_args disk_bargs;
2954        struct btrfs_path *path;
2955        struct extent_buffer *leaf;
2956        struct btrfs_key key;
2957        int ret, err;
2958
2959        path = btrfs_alloc_path();
2960        if (!path)
2961                return -ENOMEM;
2962
2963        trans = btrfs_start_transaction(root, 0);
2964        if (IS_ERR(trans)) {
2965                btrfs_free_path(path);
2966                return PTR_ERR(trans);
2967        }
2968
2969        key.objectid = BTRFS_BALANCE_OBJECTID;
2970        key.type = BTRFS_TEMPORARY_ITEM_KEY;
2971        key.offset = 0;
2972
2973        ret = btrfs_insert_empty_item(trans, root, path, &key,
2974                                      sizeof(*item));
2975        if (ret)
2976                goto out;
2977
2978        leaf = path->nodes[0];
2979        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981        memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984        btrfs_set_balance_data(leaf, item, &disk_bargs);
2985        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986        btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988        btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990        btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992        btrfs_mark_buffer_dirty(leaf);
2993out:
2994        btrfs_free_path(path);
2995        err = btrfs_commit_transaction(trans, root);
2996        if (err && !ret)
2997                ret = err;
2998        return ret;
2999}
3000
3001static int del_balance_item(struct btrfs_root *root)
3002{
3003        struct btrfs_trans_handle *trans;
3004        struct btrfs_path *path;
3005        struct btrfs_key key;
3006        int ret, err;
3007
3008        path = btrfs_alloc_path();
3009        if (!path)
3010                return -ENOMEM;
3011
3012        trans = btrfs_start_transaction(root, 0);
3013        if (IS_ERR(trans)) {
3014                btrfs_free_path(path);
3015                return PTR_ERR(trans);
3016        }
3017
3018        key.objectid = BTRFS_BALANCE_OBJECTID;
3019        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3020        key.offset = 0;
3021
3022        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023        if (ret < 0)
3024                goto out;
3025        if (ret > 0) {
3026                ret = -ENOENT;
3027                goto out;
3028        }
3029
3030        ret = btrfs_del_item(trans, root, path);
3031out:
3032        btrfs_free_path(path);
3033        err = btrfs_commit_transaction(trans, root);
3034        if (err && !ret)
3035                ret = err;
3036        return ret;
3037}
3038
3039/*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043static void update_balance_args(struct btrfs_balance_control *bctl)
3044{
3045        /*
3046         * Turn on soft mode for chunk types that were being converted.
3047         */
3048        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055        /*
3056         * Turn on usage filter if is not already used.  The idea is
3057         * that chunks that we have already balanced should be
3058         * reasonably full.  Don't do it for chunks that are being
3059         * converted - that will keep us from relocating unconverted
3060         * (albeit full) chunks.
3061         */
3062        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3063            !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3064            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066                bctl->data.usage = 90;
3067        }
3068        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3069            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3070            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072                bctl->sys.usage = 90;
3073        }
3074        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3075            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3076            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078                bctl->meta.usage = 90;
3079        }
3080}
3081
3082/*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper.  Same goes for unset_balance_control.
3086 */
3087static void set_balance_control(struct btrfs_balance_control *bctl)
3088{
3089        struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091        BUG_ON(fs_info->balance_ctl);
3092
3093        spin_lock(&fs_info->balance_lock);
3094        fs_info->balance_ctl = bctl;
3095        spin_unlock(&fs_info->balance_lock);
3096}
3097
3098static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099{
3100        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3101
3102        BUG_ON(!fs_info->balance_ctl);
3103
3104        spin_lock(&fs_info->balance_lock);
3105        fs_info->balance_ctl = NULL;
3106        spin_unlock(&fs_info->balance_lock);
3107
3108        kfree(bctl);
3109}
3110
3111/*
3112 * Balance filters.  Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
3115static int chunk_profiles_filter(u64 chunk_type,
3116                                 struct btrfs_balance_args *bargs)
3117{
3118        chunk_type = chunk_to_extended(chunk_type) &
3119                                BTRFS_EXTENDED_PROFILE_MASK;
3120
3121        if (bargs->profiles & chunk_type)
3122                return 0;
3123
3124        return 1;
3125}
3126
3127static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3128                              struct btrfs_balance_args *bargs)
3129{
3130        struct btrfs_block_group_cache *cache;
3131        u64 chunk_used;
3132        u64 user_thresh_min;
3133        u64 user_thresh_max;
3134        int ret = 1;
3135
3136        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137        chunk_used = btrfs_block_group_used(&cache->item);
3138
3139        if (bargs->usage_min == 0)
3140                user_thresh_min = 0;
3141        else
3142                user_thresh_min = div_factor_fine(cache->key.offset,
3143                                        bargs->usage_min);
3144
3145        if (bargs->usage_max == 0)
3146                user_thresh_max = 1;
3147        else if (bargs->usage_max > 100)
3148                user_thresh_max = cache->key.offset;
3149        else
3150                user_thresh_max = div_factor_fine(cache->key.offset,
3151                                        bargs->usage_max);
3152
3153        if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154                ret = 0;
3155
3156        btrfs_put_block_group(cache);
3157        return ret;
3158}
3159
3160static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3161                u64 chunk_offset, struct btrfs_balance_args *bargs)
3162{
3163        struct btrfs_block_group_cache *cache;
3164        u64 chunk_used, user_thresh;
3165        int ret = 1;
3166
3167        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168        chunk_used = btrfs_block_group_used(&cache->item);
3169
3170        if (bargs->usage_min == 0)
3171                user_thresh = 1;
3172        else if (bargs->usage > 100)
3173                user_thresh = cache->key.offset;
3174        else
3175                user_thresh = div_factor_fine(cache->key.offset,
3176                                              bargs->usage);
3177
3178        if (chunk_used < user_thresh)
3179                ret = 0;
3180
3181        btrfs_put_block_group(cache);
3182        return ret;
3183}
3184
3185static int chunk_devid_filter(struct extent_buffer *leaf,
3186                              struct btrfs_chunk *chunk,
3187                              struct btrfs_balance_args *bargs)
3188{
3189        struct btrfs_stripe *stripe;
3190        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191        int i;
3192
3193        for (i = 0; i < num_stripes; i++) {
3194                stripe = btrfs_stripe_nr(chunk, i);
3195                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196                        return 0;
3197        }
3198
3199        return 1;
3200}
3201
3202/* [pstart, pend) */
3203static int chunk_drange_filter(struct extent_buffer *leaf,
3204                               struct btrfs_chunk *chunk,
3205                               u64 chunk_offset,
3206                               struct btrfs_balance_args *bargs)
3207{
3208        struct btrfs_stripe *stripe;
3209        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210        u64 stripe_offset;
3211        u64 stripe_length;
3212        int factor;
3213        int i;
3214
3215        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216                return 0;
3217
3218        if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3219             BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220                factor = num_stripes / 2;
3221        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222                factor = num_stripes - 1;
3223        } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224                factor = num_stripes - 2;
3225        } else {
3226                factor = num_stripes;
3227        }
3228
3229        for (i = 0; i < num_stripes; i++) {
3230                stripe = btrfs_stripe_nr(chunk, i);
3231                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232                        continue;
3233
3234                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235                stripe_length = btrfs_chunk_length(leaf, chunk);
3236                stripe_length = div_u64(stripe_length, factor);
3237
3238                if (stripe_offset < bargs->pend &&
3239                    stripe_offset + stripe_length > bargs->pstart)
3240                        return 0;
3241        }
3242
3243        return 1;
3244}
3245
3246/* [vstart, vend) */
3247static int chunk_vrange_filter(struct extent_buffer *leaf,
3248                               struct btrfs_chunk *chunk,
3249                               u64 chunk_offset,
3250                               struct btrfs_balance_args *bargs)
3251{
3252        if (chunk_offset < bargs->vend &&
3253            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254                /* at least part of the chunk is inside this vrange */
3255                return 0;
3256
3257        return 1;
3258}
3259
3260static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261                               struct btrfs_chunk *chunk,
3262                               struct btrfs_balance_args *bargs)
3263{
3264        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266        if (bargs->stripes_min <= num_stripes
3267                        && num_stripes <= bargs->stripes_max)
3268                return 0;
3269
3270        return 1;
3271}
3272
3273static int chunk_soft_convert_filter(u64 chunk_type,
3274                                     struct btrfs_balance_args *bargs)
3275{
3276        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277                return 0;
3278
3279        chunk_type = chunk_to_extended(chunk_type) &
3280                                BTRFS_EXTENDED_PROFILE_MASK;
3281
3282        if (bargs->target == chunk_type)
3283                return 1;
3284
3285        return 0;
3286}
3287
3288static int should_balance_chunk(struct btrfs_root *root,
3289                                struct extent_buffer *leaf,
3290                                struct btrfs_chunk *chunk, u64 chunk_offset)
3291{
3292        struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3293        struct btrfs_balance_args *bargs = NULL;
3294        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296        /* type filter */
3297        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299                return 0;
3300        }
3301
3302        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303                bargs = &bctl->data;
3304        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305                bargs = &bctl->sys;
3306        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307                bargs = &bctl->meta;
3308
3309        /* profiles filter */
3310        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311            chunk_profiles_filter(chunk_type, bargs)) {
3312                return 0;
3313        }
3314
3315        /* usage filter */
3316        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317            chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318                return 0;
3319        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320            chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321                return 0;
3322        }
3323
3324        /* devid filter */
3325        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326            chunk_devid_filter(leaf, chunk, bargs)) {
3327                return 0;
3328        }
3329
3330        /* drange filter, makes sense only with devid filter */
3331        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332            chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333                return 0;
3334        }
3335
3336        /* vrange filter */
3337        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339                return 0;
3340        }
3341
3342        /* stripes filter */
3343        if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344            chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345                return 0;
3346        }
3347
3348        /* soft profile changing mode */
3349        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350            chunk_soft_convert_filter(chunk_type, bargs)) {
3351                return 0;
3352        }
3353
3354        /*
3355         * limited by count, must be the last filter
3356         */
3357        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358                if (bargs->limit == 0)
3359                        return 0;
3360                else
3361                        bargs->limit--;
3362        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363                /*
3364                 * Same logic as the 'limit' filter; the minimum cannot be
3365                 * determined here because we do not have the global informatoin
3366                 * about the count of all chunks that satisfy the filters.
3367                 */
3368                if (bargs->limit_max == 0)
3369                        return 0;
3370                else
3371                        bargs->limit_max--;
3372        }
3373
3374        return 1;
3375}
3376
3377static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3378{
3379        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380        struct btrfs_root *chunk_root = fs_info->chunk_root;
3381        struct btrfs_root *dev_root = fs_info->dev_root;
3382        struct list_head *devices;
3383        struct btrfs_device *device;
3384        u64 old_size;
3385        u64 size_to_free;
3386        u64 chunk_type;
3387        struct btrfs_chunk *chunk;
3388        struct btrfs_path *path;
3389        struct btrfs_key key;
3390        struct btrfs_key found_key;
3391        struct btrfs_trans_handle *trans;
3392        struct extent_buffer *leaf;
3393        int slot;
3394        int ret;
3395        int enospc_errors = 0;
3396        bool counting = true;
3397        /* The single value limit and min/max limits use the same bytes in the */
3398        u64 limit_data = bctl->data.limit;
3399        u64 limit_meta = bctl->meta.limit;
3400        u64 limit_sys = bctl->sys.limit;
3401        u32 count_data = 0;
3402        u32 count_meta = 0;
3403        u32 count_sys = 0;
3404        int chunk_reserved = 0;
3405
3406        /* step one make some room on all the devices */
3407        devices = &fs_info->fs_devices->devices;
3408        list_for_each_entry(device, devices, dev_list) {
3409                old_size = btrfs_device_get_total_bytes(device);
3410                size_to_free = div_factor(old_size, 1);
3411                size_to_free = min_t(u64, size_to_free, SZ_1M);
3412                if (!device->writeable ||
3413                    btrfs_device_get_total_bytes(device) -
3414                    btrfs_device_get_bytes_used(device) > size_to_free ||
3415                    device->is_tgtdev_for_dev_replace)
3416                        continue;
3417
3418                ret = btrfs_shrink_device(device, old_size - size_to_free);
3419                if (ret == -ENOSPC)
3420                        break;
3421                BUG_ON(ret);
3422
3423                trans = btrfs_start_transaction(dev_root, 0);
3424                BUG_ON(IS_ERR(trans));
3425
3426                ret = btrfs_grow_device(trans, device, old_size);
3427                BUG_ON(ret);
3428
3429                btrfs_end_transaction(trans, dev_root);
3430        }
3431
3432        /* step two, relocate all the chunks */
3433        path = btrfs_alloc_path();
3434        if (!path) {
3435                ret = -ENOMEM;
3436                goto error;
3437        }
3438
3439        /* zero out stat counters */
3440        spin_lock(&fs_info->balance_lock);
3441        memset(&bctl->stat, 0, sizeof(bctl->stat));
3442        spin_unlock(&fs_info->balance_lock);
3443again:
3444        if (!counting) {
3445                /*
3446                 * The single value limit and min/max limits use the same bytes
3447                 * in the
3448                 */
3449                bctl->data.limit = limit_data;
3450                bctl->meta.limit = limit_meta;
3451                bctl->sys.limit = limit_sys;
3452        }
3453        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454        key.offset = (u64)-1;
3455        key.type = BTRFS_CHUNK_ITEM_KEY;
3456
3457        while (1) {
3458                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3459                    atomic_read(&fs_info->balance_cancel_req)) {
3460                        ret = -ECANCELED;
3461                        goto error;
3462                }
3463
3464                mutex_lock(&fs_info->delete_unused_bgs_mutex);
3465                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3466                if (ret < 0) {
3467                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3468                        goto error;
3469                }
3470
3471                /*
3472                 * this shouldn't happen, it means the last relocate
3473                 * failed
3474                 */
3475                if (ret == 0)
3476                        BUG(); /* FIXME break ? */
3477
3478                ret = btrfs_previous_item(chunk_root, path, 0,
3479                                          BTRFS_CHUNK_ITEM_KEY);
3480                if (ret) {
3481                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3482                        ret = 0;
3483                        break;
3484                }
3485
3486                leaf = path->nodes[0];
3487                slot = path->slots[0];
3488                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3489
3490                if (found_key.objectid != key.objectid) {
3491                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3492                        break;
3493                }
3494
3495                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3496                chunk_type = btrfs_chunk_type(leaf, chunk);
3497
3498                if (!counting) {
3499                        spin_lock(&fs_info->balance_lock);
3500                        bctl->stat.considered++;
3501                        spin_unlock(&fs_info->balance_lock);
3502                }
3503
3504                ret = should_balance_chunk(chunk_root, leaf, chunk,
3505                                           found_key.offset);
3506
3507                btrfs_release_path(path);
3508                if (!ret) {
3509                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3510                        goto loop;
3511                }
3512
3513                if (counting) {
3514                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3515                        spin_lock(&fs_info->balance_lock);
3516                        bctl->stat.expected++;
3517                        spin_unlock(&fs_info->balance_lock);
3518
3519                        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520                                count_data++;
3521                        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522                                count_sys++;
3523                        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524                                count_meta++;
3525
3526                        goto loop;
3527                }
3528
3529                /*
3530                 * Apply limit_min filter, no need to check if the LIMITS
3531                 * filter is used, limit_min is 0 by default
3532                 */
3533                if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534                                        count_data < bctl->data.limit_min)
3535                                || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536                                        count_meta < bctl->meta.limit_min)
3537                                || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538                                        count_sys < bctl->sys.limit_min)) {
3539                        mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540                        goto loop;
3541                }
3542
3543                if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544                        trans = btrfs_start_transaction(chunk_root, 0);
3545                        if (IS_ERR(trans)) {
3546                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547                                ret = PTR_ERR(trans);
3548                                goto error;
3549                        }
3550
3551                        ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552                                                      BTRFS_BLOCK_GROUP_DATA);
3553                        btrfs_end_transaction(trans, chunk_root);
3554                        if (ret < 0) {
3555                                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556                                goto error;
3557                        }
3558                        chunk_reserved = 1;
3559                }
3560
3561                ret = btrfs_relocate_chunk(chunk_root,
3562                                           found_key.offset);
3563                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564                if (ret && ret != -ENOSPC)
3565                        goto error;
3566                if (ret == -ENOSPC) {
3567                        enospc_errors++;
3568                } else {
3569                        spin_lock(&fs_info->balance_lock);
3570                        bctl->stat.completed++;
3571                        spin_unlock(&fs_info->balance_lock);
3572                }
3573loop:
3574                if (found_key.offset == 0)
3575                        break;
3576                key.offset = found_key.offset - 1;
3577        }
3578
3579        if (counting) {
3580                btrfs_release_path(path);
3581                counting = false;
3582                goto again;
3583        }
3584error:
3585        btrfs_free_path(path);
3586        if (enospc_errors) {
3587                btrfs_info(fs_info, "%d enospc errors during balance",
3588                       enospc_errors);
3589                if (!ret)
3590                        ret = -ENOSPC;
3591        }
3592
3593        return ret;
3594}
3595
3596/**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
3600 */
3601static int alloc_profile_is_valid(u64 flags, int extended)
3602{
3603        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608        /* 1) check that all other bits are zeroed */
3609        if (flags & ~mask)
3610                return 0;
3611
3612        /* 2) see if profile is reduced */
3613        if (flags == 0)
3614                return !extended; /* "0" is valid for usual profiles */
3615
3616        /* true if exactly one bit set */
3617        return (flags & (flags - 1)) == 0;
3618}
3619
3620static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621{
3622        /* cancel requested || normal exit path */
3623        return atomic_read(&fs_info->balance_cancel_req) ||
3624                (atomic_read(&fs_info->balance_pause_req) == 0 &&
3625                 atomic_read(&fs_info->balance_cancel_req) == 0);
3626}
3627
3628static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629{
3630        int ret;
3631
3632        unset_balance_control(fs_info);
3633        ret = del_balance_item(fs_info->tree_root);
3634        if (ret)
3635                btrfs_std_error(fs_info, ret, NULL);
3636
3637        atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3638}
3639
3640/* Non-zero return value signifies invalidity */
3641static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642                u64 allowed)
3643{
3644        return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645                (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646                 (bctl_arg->target & ~allowed)));
3647}
3648
3649/*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652int btrfs_balance(struct btrfs_balance_control *bctl,
3653                  struct btrfs_ioctl_balance_args *bargs)
3654{
3655        struct btrfs_fs_info *fs_info = bctl->fs_info;
3656        u64 allowed;
3657        int mixed = 0;
3658        int ret;
3659        u64 num_devices;
3660        unsigned seq;
3661
3662        if (btrfs_fs_closing(fs_info) ||
3663            atomic_read(&fs_info->balance_pause_req) ||
3664            atomic_read(&fs_info->balance_cancel_req)) {
3665                ret = -EINVAL;
3666                goto out;
3667        }
3668
3669        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671                mixed = 1;
3672
3673        /*
3674         * In case of mixed groups both data and meta should be picked,
3675         * and identical options should be given for both of them.
3676         */
3677        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678        if (mixed && (bctl->flags & allowed)) {
3679                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682                        btrfs_err(fs_info, "with mixed groups data and "
3683                                   "metadata balance options must be the same");
3684                        ret = -EINVAL;
3685                        goto out;
3686                }
3687        }
3688
3689        num_devices = fs_info->fs_devices->num_devices;
3690        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3691        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692                BUG_ON(num_devices < 1);
3693                num_devices--;
3694        }
3695        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3696        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697        if (num_devices == 1)
3698                allowed |= BTRFS_BLOCK_GROUP_DUP;
3699        else if (num_devices > 1)
3700                allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701        if (num_devices > 2)
3702                allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703        if (num_devices > 3)
3704                allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705                            BTRFS_BLOCK_GROUP_RAID6);
3706        if (validate_convert_profile(&bctl->data, allowed)) {
3707                btrfs_err(fs_info, "unable to start balance with target "
3708                           "data profile %llu",
3709                       bctl->data.target);
3710                ret = -EINVAL;
3711                goto out;
3712        }
3713        if (validate_convert_profile(&bctl->meta, allowed)) {
3714                btrfs_err(fs_info,
3715                           "unable to start balance with target metadata profile %llu",
3716                       bctl->meta.target);
3717                ret = -EINVAL;
3718                goto out;
3719        }
3720        if (validate_convert_profile(&bctl->sys, allowed)) {
3721                btrfs_err(fs_info,
3722                           "unable to start balance with target system profile %llu",
3723                       bctl->sys.target);
3724                ret = -EINVAL;
3725                goto out;
3726        }
3727
3728        /* allow to reduce meta or sys integrity only if force set */
3729        allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3730                        BTRFS_BLOCK_GROUP_RAID10 |
3731                        BTRFS_BLOCK_GROUP_RAID5 |
3732                        BTRFS_BLOCK_GROUP_RAID6;
3733        do {
3734                seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737                     (fs_info->avail_system_alloc_bits & allowed) &&
3738                     !(bctl->sys.target & allowed)) ||
3739                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740                     (fs_info->avail_metadata_alloc_bits & allowed) &&
3741                     !(bctl->meta.target & allowed))) {
3742                        if (bctl->flags & BTRFS_BALANCE_FORCE) {
3743                                btrfs_info(fs_info, "force reducing metadata integrity");
3744                        } else {
3745                                btrfs_err(fs_info, "balance will reduce metadata "
3746                                           "integrity, use force if you want this");
3747                                ret = -EINVAL;
3748                                goto out;
3749                        }
3750                }
3751        } while (read_seqretry(&fs_info->profiles_lock, seq));
3752
3753        if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754                btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755                btrfs_warn(fs_info,
3756        "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3757                        bctl->meta.target, bctl->data.target);
3758        }
3759
3760        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761                fs_info->num_tolerated_disk_barrier_failures = min(
3762                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763                        btrfs_get_num_tolerated_disk_barrier_failures(
3764                                bctl->sys.target));
3765        }
3766
3767        ret = insert_balance_item(fs_info->tree_root, bctl);
3768        if (ret && ret != -EEXIST)
3769                goto out;
3770
3771        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772                BUG_ON(ret == -EEXIST);
3773                set_balance_control(bctl);
3774        } else {
3775                BUG_ON(ret != -EEXIST);
3776                spin_lock(&fs_info->balance_lock);
3777                update_balance_args(bctl);
3778                spin_unlock(&fs_info->balance_lock);
3779        }
3780
3781        atomic_inc(&fs_info->balance_running);
3782        mutex_unlock(&fs_info->balance_mutex);
3783
3784        ret = __btrfs_balance(fs_info);
3785
3786        mutex_lock(&fs_info->balance_mutex);
3787        atomic_dec(&fs_info->balance_running);
3788
3789        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790                fs_info->num_tolerated_disk_barrier_failures =
3791                        btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792        }
3793
3794        if (bargs) {
3795                memset(bargs, 0, sizeof(*bargs));
3796                update_ioctl_balance_args(fs_info, 0, bargs);
3797        }
3798
3799        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800            balance_need_close(fs_info)) {
3801                __cancel_balance(fs_info);
3802        }
3803
3804        wake_up(&fs_info->balance_wait_q);
3805
3806        return ret;
3807out:
3808        if (bctl->flags & BTRFS_BALANCE_RESUME)
3809                __cancel_balance(fs_info);
3810        else {
3811                kfree(bctl);
3812                atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813        }
3814        return ret;
3815}
3816
3817static int balance_kthread(void *data)
3818{
3819        struct btrfs_fs_info *fs_info = data;
3820        int ret = 0;
3821
3822        mutex_lock(&fs_info->volume_mutex);
3823        mutex_lock(&fs_info->balance_mutex);
3824
3825        if (fs_info->balance_ctl) {
3826                btrfs_info(fs_info, "continuing balance");
3827                ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828        }
3829
3830        mutex_unlock(&fs_info->balance_mutex);
3831        mutex_unlock(&fs_info->volume_mutex);
3832
3833        return ret;
3834}
3835
3836int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837{
3838        struct task_struct *tsk;
3839
3840        spin_lock(&fs_info->balance_lock);
3841        if (!fs_info->balance_ctl) {
3842                spin_unlock(&fs_info->balance_lock);
3843                return 0;
3844        }
3845        spin_unlock(&fs_info->balance_lock);
3846
3847        if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848                btrfs_info(fs_info, "force skipping balance");
3849                return 0;
3850        }
3851
3852        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853        return PTR_ERR_OR_ZERO(tsk);
3854}
3855
3856int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857{
3858        struct btrfs_balance_control *bctl;
3859        struct btrfs_balance_item *item;
3860        struct btrfs_disk_balance_args disk_bargs;
3861        struct btrfs_path *path;
3862        struct extent_buffer *leaf;
3863        struct btrfs_key key;
3864        int ret;
3865
3866        path = btrfs_alloc_path();
3867        if (!path)
3868                return -ENOMEM;
3869
3870        key.objectid = BTRFS_BALANCE_OBJECTID;
3871        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3872        key.offset = 0;
3873
3874        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875        if (ret < 0)
3876                goto out;
3877        if (ret > 0) { /* ret = -ENOENT; */
3878                ret = 0;
3879                goto out;
3880        }
3881
3882        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883        if (!bctl) {
3884                ret = -ENOMEM;
3885                goto out;
3886        }
3887
3888        leaf = path->nodes[0];
3889        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891        bctl->fs_info = fs_info;
3892        bctl->flags = btrfs_balance_flags(leaf, item);
3893        bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895        btrfs_balance_data(leaf, item, &disk_bargs);
3896        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897        btrfs_balance_meta(leaf, item, &disk_bargs);
3898        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899        btrfs_balance_sys(leaf, item, &disk_bargs);
3900        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902        WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904        mutex_lock(&fs_info->volume_mutex);
3905        mutex_lock(&fs_info->balance_mutex);
3906
3907        set_balance_control(bctl);
3908
3909        mutex_unlock(&fs_info->balance_mutex);
3910        mutex_unlock(&fs_info->volume_mutex);
3911out:
3912        btrfs_free_path(path);
3913        return ret;
3914}
3915
3916int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917{
3918        int ret = 0;
3919
3920        mutex_lock(&fs_info->balance_mutex);
3921        if (!fs_info->balance_ctl) {
3922                mutex_unlock(&fs_info->balance_mutex);
3923                return -ENOTCONN;
3924        }
3925
3926        if (atomic_read(&fs_info->balance_running)) {
3927                atomic_inc(&fs_info->balance_pause_req);
3928                mutex_unlock(&fs_info->balance_mutex);
3929
3930                wait_event(fs_info->balance_wait_q,
3931                           atomic_read(&fs_info->balance_running) == 0);
3932
3933                mutex_lock(&fs_info->balance_mutex);
3934                /* we are good with balance_ctl ripped off from under us */
3935                BUG_ON(atomic_read(&fs_info->balance_running));
3936                atomic_dec(&fs_info->balance_pause_req);
3937        } else {
3938                ret = -ENOTCONN;
3939        }
3940
3941        mutex_unlock(&fs_info->balance_mutex);
3942        return ret;
3943}
3944
3945int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946{
3947        if (fs_info->sb->s_flags & MS_RDONLY)
3948                return -EROFS;
3949
3950        mutex_lock(&fs_info->balance_mutex);
3951        if (!fs_info->balance_ctl) {
3952                mutex_unlock(&fs_info->balance_mutex);
3953                return -ENOTCONN;
3954        }
3955
3956        atomic_inc(&fs_info->balance_cancel_req);
3957        /*
3958         * if we are running just wait and return, balance item is
3959         * deleted in btrfs_balance in this case
3960         */
3961        if (atomic_read(&fs_info->balance_running)) {
3962                mutex_unlock(&fs_info->balance_mutex);
3963                wait_event(fs_info->balance_wait_q,
3964                           atomic_read(&fs_info->balance_running) == 0);
3965                mutex_lock(&fs_info->balance_mutex);
3966        } else {
3967                /* __cancel_balance needs volume_mutex */
3968                mutex_unlock(&fs_info->balance_mutex);
3969                mutex_lock(&fs_info->volume_mutex);
3970                mutex_lock(&fs_info->balance_mutex);
3971
3972                if (fs_info->balance_ctl)
3973                        __cancel_balance(fs_info);
3974
3975                mutex_unlock(&fs_info->volume_mutex);
3976        }
3977
3978        BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979        atomic_dec(&fs_info->balance_cancel_req);
3980        mutex_unlock(&fs_info->balance_mutex);
3981        return 0;
3982}
3983
3984static int btrfs_uuid_scan_kthread(void *data)
3985{
3986        struct btrfs_fs_info *fs_info = data;
3987        struct btrfs_root *root = fs_info->tree_root;
3988        struct btrfs_key key;
3989        struct btrfs_key max_key;
3990        struct btrfs_path *path = NULL;
3991        int ret = 0;
3992        struct extent_buffer *eb;
3993        int slot;
3994        struct btrfs_root_item root_item;
3995        u32 item_size;
3996        struct btrfs_trans_handle *trans = NULL;
3997
3998        path = btrfs_alloc_path();
3999        if (!path) {
4000                ret = -ENOMEM;
4001                goto out;
4002        }
4003
4004        key.objectid = 0;
4005        key.type = BTRFS_ROOT_ITEM_KEY;
4006        key.offset = 0;
4007
4008        max_key.objectid = (u64)-1;
4009        max_key.type = BTRFS_ROOT_ITEM_KEY;
4010        max_key.offset = (u64)-1;
4011
4012        while (1) {
4013                ret = btrfs_search_forward(root, &key, path, 0);
4014                if (ret) {
4015                        if (ret > 0)
4016                                ret = 0;
4017                        break;
4018                }
4019
4020                if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024                        goto skip;
4025
4026                eb = path->nodes[0];
4027                slot = path->slots[0];
4028                item_size = btrfs_item_size_nr(eb, slot);
4029                if (item_size < sizeof(root_item))
4030                        goto skip;
4031
4032                read_extent_buffer(eb, &root_item,
4033                                   btrfs_item_ptr_offset(eb, slot),
4034                                   (int)sizeof(root_item));
4035                if (btrfs_root_refs(&root_item) == 0)
4036                        goto skip;
4037
4038                if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040                        if (trans)
4041                                goto update_tree;
4042
4043                        btrfs_release_path(path);
4044                        /*
4045                         * 1 - subvol uuid item
4046                         * 1 - received_subvol uuid item
4047                         */
4048                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049                        if (IS_ERR(trans)) {
4050                                ret = PTR_ERR(trans);
4051                                break;
4052                        }
4053                        continue;
4054                } else {
4055                        goto skip;
4056                }
4057update_tree:
4058                if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060                                                  root_item.uuid,
4061                                                  BTRFS_UUID_KEY_SUBVOL,
4062                                                  key.objectid);
4063                        if (ret < 0) {
4064                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065                                        ret);
4066                                break;
4067                        }
4068                }
4069
4070                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071                        ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072                                                  root_item.received_uuid,
4073                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074                                                  key.objectid);
4075                        if (ret < 0) {
4076                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077                                        ret);
4078                                break;
4079                        }
4080                }
4081
4082skip:
4083                if (trans) {
4084                        ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085                        trans = NULL;
4086                        if (ret)
4087                                break;
4088                }
4089
4090                btrfs_release_path(path);
4091                if (key.offset < (u64)-1) {
4092                        key.offset++;
4093                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094                        key.offset = 0;
4095                        key.type = BTRFS_ROOT_ITEM_KEY;
4096                } else if (key.objectid < (u64)-1) {
4097                        key.offset = 0;
4098                        key.type = BTRFS_ROOT_ITEM_KEY;
4099                        key.objectid++;
4100                } else {
4101                        break;
4102                }
4103                cond_resched();
4104        }
4105
4106out:
4107        btrfs_free_path(path);
4108        if (trans && !IS_ERR(trans))
4109                btrfs_end_transaction(trans, fs_info->uuid_root);
4110        if (ret)
4111                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112        else
4113                fs_info->update_uuid_tree_gen = 1;
4114        up(&fs_info->uuid_tree_rescan_sem);
4115        return 0;
4116}
4117
4118/*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0    check succeeded, the entry is not outdated.
4122 * < 0  if an error occurred.
4123 * > 0  if the check failed, which means the caller shall remove the entry.
4124 */
4125static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126                                       u8 *uuid, u8 type, u64 subid)
4127{
4128        struct btrfs_key key;
4129        int ret = 0;
4130        struct btrfs_root *subvol_root;
4131
4132        if (type != BTRFS_UUID_KEY_SUBVOL &&
4133            type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134                goto out;
4135
4136        key.objectid = subid;
4137        key.type = BTRFS_ROOT_ITEM_KEY;
4138        key.offset = (u64)-1;
4139        subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140        if (IS_ERR(subvol_root)) {
4141                ret = PTR_ERR(subvol_root);
4142                if (ret == -ENOENT)
4143                        ret = 1;
4144                goto out;
4145        }
4146
4147        switch (type) {
4148        case BTRFS_UUID_KEY_SUBVOL:
4149                if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150                        ret = 1;
4151                break;
4152        case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153                if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154                           BTRFS_UUID_SIZE))
4155                        ret = 1;
4156                break;
4157        }
4158
4159out:
4160        return ret;
4161}
4162
4163static int btrfs_uuid_rescan_kthread(void *data)
4164{
4165        struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166        int ret;
4167
4168        /*
4169         * 1st step is to iterate through the existing UUID tree and
4170         * to delete all entries that contain outdated data.
4171         * 2nd step is to add all missing entries to the UUID tree.
4172         */
4173        ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174        if (ret < 0) {
4175                btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176                up(&fs_info->uuid_tree_rescan_sem);
4177                return ret;
4178        }
4179        return btrfs_uuid_scan_kthread(data);
4180}
4181
4182int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183{
4184        struct btrfs_trans_handle *trans;
4185        struct btrfs_root *tree_root = fs_info->tree_root;
4186        struct btrfs_root *uuid_root;
4187        struct task_struct *task;
4188        int ret;
4189
4190        /*
4191         * 1 - root node
4192         * 1 - root item
4193         */
4194        trans = btrfs_start_transaction(tree_root, 2);
4195        if (IS_ERR(trans))
4196                return PTR_ERR(trans);
4197
4198        uuid_root = btrfs_create_tree(trans, fs_info,
4199                                      BTRFS_UUID_TREE_OBJECTID);
4200        if (IS_ERR(uuid_root)) {
4201                ret = PTR_ERR(uuid_root);
4202                btrfs_abort_transaction(trans, tree_root, ret);
4203                return ret;
4204        }
4205
4206        fs_info->uuid_root = uuid_root;
4207
4208        ret = btrfs_commit_transaction(trans, tree_root);
4209        if (ret)
4210                return ret;
4211
4212        down(&fs_info->uuid_tree_rescan_sem);
4213        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214        if (IS_ERR(task)) {
4215                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216                btrfs_warn(fs_info, "failed to start uuid_scan task");
4217                up(&fs_info->uuid_tree_rescan_sem);
4218                return PTR_ERR(task);
4219        }
4220
4221        return 0;
4222}
4223
4224int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225{
4226        struct task_struct *task;
4227
4228        down(&fs_info->uuid_tree_rescan_sem);
4229        task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230        if (IS_ERR(task)) {
4231                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232                btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233                up(&fs_info->uuid_tree_rescan_sem);
4234                return PTR_ERR(task);
4235        }
4236
4237        return 0;
4238}
4239
4240/*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246{
4247        struct btrfs_trans_handle *trans;
4248        struct btrfs_root *root = device->dev_root;
4249        struct btrfs_dev_extent *dev_extent = NULL;
4250        struct btrfs_path *path;
4251        u64 length;
4252        u64 chunk_offset;
4253        int ret;
4254        int slot;
4255        int failed = 0;
4256        bool retried = false;
4257        bool checked_pending_chunks = false;
4258        struct extent_buffer *l;
4259        struct btrfs_key key;
4260        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261        u64 old_total = btrfs_super_total_bytes(super_copy);
4262        u64 old_size = btrfs_device_get_total_bytes(device);
4263        u64 diff = old_size - new_size;
4264
4265        if (device->is_tgtdev_for_dev_replace)
4266                return -EINVAL;
4267
4268        path = btrfs_alloc_path();
4269        if (!path)
4270                return -ENOMEM;
4271
4272        path->reada = READA_FORWARD;
4273
4274        lock_chunks(root);
4275
4276        btrfs_device_set_total_bytes(device, new_size);
4277        if (device->writeable) {
4278                device->fs_devices->total_rw_bytes -= diff;
4279                spin_lock(&root->fs_info->free_chunk_lock);
4280                root->fs_info->free_chunk_space -= diff;
4281                spin_unlock(&root->fs_info->free_chunk_lock);
4282        }
4283        unlock_chunks(root);
4284
4285again:
4286        key.objectid = device->devid;
4287        key.offset = (u64)-1;
4288        key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290        do {
4291                mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293                if (ret < 0) {
4294                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295                        goto done;
4296                }
4297
4298                ret = btrfs_previous_item(root, path, 0, key.type);
4299                if (ret)
4300                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301                if (ret < 0)
4302                        goto done;
4303                if (ret) {
4304                        ret = 0;
4305                        btrfs_release_path(path);
4306                        break;
4307                }
4308
4309                l = path->nodes[0];
4310                slot = path->slots[0];
4311                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313                if (key.objectid != device->devid) {
4314                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315                        btrfs_release_path(path);
4316                        break;
4317                }
4318
4319                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320                length = btrfs_dev_extent_length(l, dev_extent);
4321
4322                if (key.offset + length <= new_size) {
4323                        mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324                        btrfs_release_path(path);
4325                        break;
4326                }
4327
4328                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329                btrfs_release_path(path);
4330
4331                ret = btrfs_relocate_chunk(root, chunk_offset);
4332                mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333                if (ret && ret != -ENOSPC)
4334                        goto done;
4335                if (ret == -ENOSPC)
4336                        failed++;
4337        } while (key.offset-- > 0);
4338
4339        if (failed && !retried) {
4340                failed = 0;
4341                retried = true;
4342                goto again;
4343        } else if (failed && retried) {
4344                ret = -ENOSPC;
4345                goto done;
4346        }
4347
4348        /* Shrinking succeeded, else we would be at "done". */
4349        trans = btrfs_start_transaction(root, 0);
4350        if (IS_ERR(trans)) {
4351                ret = PTR_ERR(trans);
4352                goto done;
4353        }
4354
4355        lock_chunks(root);
4356
4357        /*
4358         * We checked in the above loop all device extents that were already in
4359         * the device tree. However before we have updated the device's
4360         * total_bytes to the new size, we might have had chunk allocations that
4361         * have not complete yet (new block groups attached to transaction
4362         * handles), and therefore their device extents were not yet in the
4363         * device tree and we missed them in the loop above. So if we have any
4364         * pending chunk using a device extent that overlaps the device range
4365         * that we can not use anymore, commit the current transaction and
4366         * repeat the search on the device tree - this way we guarantee we will
4367         * not have chunks using device extents that end beyond 'new_size'.
4368         */
4369        if (!checked_pending_chunks) {
4370                u64 start = new_size;
4371                u64 len = old_size - new_size;
4372
4373                if (contains_pending_extent(trans->transaction, device,
4374                                            &start, len)) {
4375                        unlock_chunks(root);
4376                        checked_pending_chunks = true;
4377                        failed = 0;
4378                        retried = false;
4379                        ret = btrfs_commit_transaction(trans, root);
4380                        if (ret)
4381                                goto done;
4382                        goto again;
4383                }
4384        }
4385
4386        btrfs_device_set_disk_total_bytes(device, new_size);
4387        if (list_empty(&device->resized_list))
4388                list_add_tail(&device->resized_list,
4389                              &root->fs_info->fs_devices->resized_devices);
4390
4391        WARN_ON(diff > old_total);
4392        btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393        unlock_chunks(root);
4394
4395        /* Now btrfs_update_device() will change the on-disk size. */
4396        ret = btrfs_update_device(trans, device);
4397        btrfs_end_transaction(trans, root);
4398done:
4399        btrfs_free_path(path);
4400        if (ret) {
4401                lock_chunks(root);
4402                btrfs_device_set_total_bytes(device, old_size);
4403                if (device->writeable)
4404                        device->fs_devices->total_rw_bytes += diff;
4405                spin_lock(&root->fs_info->free_chunk_lock);
4406                root->fs_info->free_chunk_space += diff;
4407                spin_unlock(&root->fs_info->free_chunk_lock);
4408                unlock_chunks(root);
4409        }
4410        return ret;
4411}
4412
4413static int btrfs_add_system_chunk(struct btrfs_root *root,
4414                           struct btrfs_key *key,
4415                           struct btrfs_chunk *chunk, int item_size)
4416{
4417        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418        struct btrfs_disk_key disk_key;
4419        u32 array_size;
4420        u8 *ptr;
4421
4422        lock_chunks(root);
4423        array_size = btrfs_super_sys_array_size(super_copy);
4424        if (array_size + item_size + sizeof(disk_key)
4425                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426                unlock_chunks(root);
4427                return -EFBIG;
4428        }
4429
4430        ptr = super_copy->sys_chunk_array + array_size;
4431        btrfs_cpu_key_to_disk(&disk_key, key);
4432        memcpy(ptr, &disk_key, sizeof(disk_key));
4433        ptr += sizeof(disk_key);
4434        memcpy(ptr, chunk, item_size);
4435        item_size += sizeof(disk_key);
4436        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437        unlock_chunks(root);
4438
4439        return 0;
4440}
4441
4442/*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445static int btrfs_cmp_device_info(const void *a, const void *b)
4446{
4447        const struct btrfs_device_info *di_a = a;
4448        const struct btrfs_device_info *di_b = b;
4449
4450        if (di_a->max_avail > di_b->max_avail)
4451                return -1;
4452        if (di_a->max_avail < di_b->max_avail)
4453                return 1;
4454        if (di_a->total_avail > di_b->total_avail)
4455                return -1;
4456        if (di_a->total_avail < di_b->total_avail)
4457                return 1;
4458        return 0;
4459}
4460
4461static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462{
4463        /* TODO allow them to set a preferred stripe size */
4464        return SZ_64K;
4465}
4466
4467static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468{
4469        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470                return;
4471
4472        btrfs_set_fs_incompat(info, RAID56);
4473}
4474
4475#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4476                        - sizeof(struct btrfs_item)             \
4477                        - sizeof(struct btrfs_chunk))           \
4478                        / sizeof(struct btrfs_stripe) + 1)
4479
4480#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4481                                - 2 * sizeof(struct btrfs_disk_key)     \
4482                                - 2 * sizeof(struct btrfs_chunk))       \
4483                                / sizeof(struct btrfs_stripe) + 1)
4484
4485static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486                               struct btrfs_root *extent_root, u64 start,
4487                               u64 type)
4488{
4489        struct btrfs_fs_info *info = extent_root->fs_info;
4490        struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491        struct list_head *cur;
4492        struct map_lookup *map = NULL;
4493        struct extent_map_tree *em_tree;
4494        struct extent_map *em;
4495        struct btrfs_device_info *devices_info = NULL;
4496        u64 total_avail;
4497        int num_stripes;        /* total number of stripes to allocate */
4498        int data_stripes;       /* number of stripes that count for
4499                                   block group size */
4500        int sub_stripes;        /* sub_stripes info for map */
4501        int dev_stripes;        /* stripes per dev */
4502        int devs_max;           /* max devs to use */
4503        int devs_min;           /* min devs needed */
4504        int devs_increment;     /* ndevs has to be a multiple of this */
4505        int ncopies;            /* how many copies to data has */
4506        int ret;
4507        u64 max_stripe_size;
4508        u64 max_chunk_size;
4509        u64 stripe_size;
4510        u64 num_bytes;
4511        u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512        int ndevs;
4513        int i;
4514        int j;
4515        int index;
4516
4517        BUG_ON(!alloc_profile_is_valid(type, 0));
4518
4519        if (list_empty(&fs_devices->alloc_list))
4520                return -ENOSPC;
4521
4522        index = __get_raid_index(type);
4523
4524        sub_stripes = btrfs_raid_array[index].sub_stripes;
4525        dev_stripes = btrfs_raid_array[index].dev_stripes;
4526        devs_max = btrfs_raid_array[index].devs_max;
4527        devs_min = btrfs_raid_array[index].devs_min;
4528        devs_increment = btrfs_raid_array[index].devs_increment;
4529        ncopies = btrfs_raid_array[index].ncopies;
4530
4531        if (type & BTRFS_BLOCK_GROUP_DATA) {
4532                max_stripe_size = SZ_1G;
4533                max_chunk_size = 10 * max_stripe_size;
4534                if (!devs_max)
4535                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537                /* for larger filesystems, use larger metadata chunks */
4538                if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539                        max_stripe_size = SZ_1G;
4540                else
4541                        max_stripe_size = SZ_256M;
4542                max_chunk_size = max_stripe_size;
4543                if (!devs_max)
4544                        devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546                max_stripe_size = SZ_32M;
4547                max_chunk_size = 2 * max_stripe_size;
4548                if (!devs_max)
4549                        devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550        } else {
4551                btrfs_err(info, "invalid chunk type 0x%llx requested",
4552                       type);
4553                BUG_ON(1);
4554        }
4555
4556        /* we don't want a chunk larger than 10% of writeable space */
4557        max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558                             max_chunk_size);
4559
4560        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561                               GFP_NOFS);
4562        if (!devices_info)
4563                return -ENOMEM;
4564
4565        cur = fs_devices->alloc_list.next;
4566
4567        /*
4568         * in the first pass through the devices list, we gather information
4569         * about the available holes on each device.
4570         */
4571        ndevs = 0;
4572        while (cur != &fs_devices->alloc_list) {
4573                struct btrfs_device *device;
4574                u64 max_avail;
4575                u64 dev_offset;
4576
4577                device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579                cur = cur->next;
4580
4581                if (!device->writeable) {
4582                        WARN(1, KERN_ERR
4583                               "BTRFS: read-only device in alloc_list\n");
4584                        continue;
4585                }
4586
4587                if (!device->in_fs_metadata ||
4588                    device->is_tgtdev_for_dev_replace)
4589                        continue;
4590
4591                if (device->total_bytes > device->bytes_used)
4592                        total_avail = device->total_bytes - device->bytes_used;
4593                else
4594                        total_avail = 0;
4595
4596                /* If there is no space on this device, skip it. */
4597                if (total_avail == 0)
4598                        continue;
4599
4600                ret = find_free_dev_extent(trans, device,
4601                                           max_stripe_size * dev_stripes,
4602                                           &dev_offset, &max_avail);
4603                if (ret && ret != -ENOSPC)
4604                        goto error;
4605
4606                if (ret == 0)
4607                        max_avail = max_stripe_size * dev_stripes;
4608
4609                if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610                        continue;
4611
4612                if (ndevs == fs_devices->rw_devices) {
4613                        WARN(1, "%s: found more than %llu devices\n",
4614                             __func__, fs_devices->rw_devices);
4615                        break;
4616                }
4617                devices_info[ndevs].dev_offset = dev_offset;
4618                devices_info[ndevs].max_avail = max_avail;
4619                devices_info[ndevs].total_avail = total_avail;
4620                devices_info[ndevs].dev = device;
4621                ++ndevs;
4622        }
4623
4624        /*
4625         * now sort the devices by hole size / available space
4626         */
4627        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628             btrfs_cmp_device_info, NULL);
4629
4630        /* round down to number of usable stripes */
4631        ndevs -= ndevs % devs_increment;
4632
4633        if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634                ret = -ENOSPC;
4635                goto error;
4636        }
4637
4638        if (devs_max && ndevs > devs_max)
4639                ndevs = devs_max;
4640        /*
4641         * the primary goal is to maximize the number of stripes, so use as many
4642         * devices as possible, even if the stripes are not maximum sized.
4643         */
4644        stripe_size = devices_info[ndevs-1].max_avail;
4645        num_stripes = ndevs * dev_stripes;
4646
4647        /*
4648         * this will have to be fixed for RAID1 and RAID10 over
4649         * more drives
4650         */
4651        data_stripes = num_stripes / ncopies;
4652
4653        if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654                raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655                                 btrfs_super_stripesize(info->super_copy));
4656                data_stripes = num_stripes - 1;
4657        }
4658        if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659                raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660                                 btrfs_super_stripesize(info->super_copy));
4661                data_stripes = num_stripes - 2;
4662        }
4663
4664        /*
4665         * Use the number of data stripes to figure out how big this chunk
4666         * is really going to be in terms of logical address space,
4667         * and compare that answer with the max chunk size
4668         */
4669        if (stripe_size * data_stripes > max_chunk_size) {
4670                u64 mask = (1ULL << 24) - 1;
4671
4672                stripe_size = div_u64(max_chunk_size, data_stripes);
4673
4674                /* bump the answer up to a 16MB boundary */
4675                stripe_size = (stripe_size + mask) & ~mask;
4676
4677                /* but don't go higher than the limits we found
4678                 * while searching for free extents
4679                 */
4680                if (stripe_size > devices_info[ndevs-1].max_avail)
4681                        stripe_size = devices_info[ndevs-1].max_avail;
4682        }
4683
4684        stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686        /* align to BTRFS_STRIPE_LEN */
4687        stripe_size = div_u64(stripe_size, raid_stripe_len);
4688        stripe_size *= raid_stripe_len;
4689
4690        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691        if (!map) {
4692                ret = -ENOMEM;
4693                goto error;
4694        }
4695        map->num_stripes = num_stripes;
4696
4697        for (i = 0; i < ndevs; ++i) {
4698                for (j = 0; j < dev_stripes; ++j) {
4699                        int s = i * dev_stripes + j;
4700                        map->stripes[s].dev = devices_info[i].dev;
4701                        map->stripes[s].physical = devices_info[i].dev_offset +
4702                                                   j * stripe_size;
4703                }
4704        }
4705        map->sector_size = extent_root->sectorsize;
4706        map->stripe_len = raid_stripe_len;
4707        map->io_align = raid_stripe_len;
4708        map->io_width = raid_stripe_len;
4709        map->type = type;
4710        map->sub_stripes = sub_stripes;
4711
4712        num_bytes = stripe_size * data_stripes;
4713
4714        trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4715
4716        em = alloc_extent_map();
4717        if (!em) {
4718                kfree(map);
4719                ret = -ENOMEM;
4720                goto error;
4721        }
4722        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723        em->map_lookup = map;
4724        em->start = start;
4725        em->len = num_bytes;
4726        em->block_start = 0;
4727        em->block_len = em->len;
4728        em->orig_block_len = stripe_size;
4729
4730        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731        write_lock(&em_tree->lock);
4732        ret = add_extent_mapping(em_tree, em, 0);
4733        if (!ret) {
4734                list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735                atomic_inc(&em->refs);
4736        }
4737        write_unlock(&em_tree->lock);
4738        if (ret) {
4739                free_extent_map(em);
4740                goto error;
4741        }
4742
4743        ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744                                     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745                                     start, num_bytes);
4746        if (ret)
4747                goto error_del_extent;
4748
4749        for (i = 0; i < map->num_stripes; i++) {
4750                num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751                btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752        }
4753
4754        spin_lock(&extent_root->fs_info->free_chunk_lock);
4755        extent_root->fs_info->free_chunk_space -= (stripe_size *
4756                                                   map->num_stripes);
4757        spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
4759        free_extent_map(em);
4760        check_raid56_incompat_flag(extent_root->fs_info, type);
4761
4762        kfree(devices_info);
4763        return 0;
4764
4765error_del_extent:
4766        write_lock(&em_tree->lock);
4767        remove_extent_mapping(em_tree, em);
4768        write_unlock(&em_tree->lock);
4769
4770        /* One for our allocation */
4771        free_extent_map(em);
4772        /* One for the tree reference */
4773        free_extent_map(em);
4774        /* One for the pending_chunks list reference */
4775        free_extent_map(em);
4776error:
4777        kfree(devices_info);
4778        return ret;
4779}
4780
4781int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782                                struct btrfs_root *extent_root,
4783                                u64 chunk_offset, u64 chunk_size)
4784{
4785        struct btrfs_key key;
4786        struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787        struct btrfs_device *device;
4788        struct btrfs_chunk *chunk;
4789        struct btrfs_stripe *stripe;
4790        struct extent_map_tree *em_tree;
4791        struct extent_map *em;
4792        struct map_lookup *map;
4793        size_t item_size;
4794        u64 dev_offset;
4795        u64 stripe_size;
4796        int i = 0;
4797        int ret = 0;
4798
4799        em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800        read_lock(&em_tree->lock);
4801        em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802        read_unlock(&em_tree->lock);
4803
4804        if (!em) {
4805                btrfs_crit(extent_root->fs_info, "unable to find logical "
4806                           "%Lu len %Lu", chunk_offset, chunk_size);
4807                return -EINVAL;
4808        }
4809
4810        if (em->start != chunk_offset || em->len != chunk_size) {
4811                btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812                          " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813                          chunk_size, em->start, em->len);
4814                free_extent_map(em);
4815                return -EINVAL;
4816        }
4817
4818        map = em->map_lookup;
4819        item_size = btrfs_chunk_item_size(map->num_stripes);
4820        stripe_size = em->orig_block_len;
4821
4822        chunk = kzalloc(item_size, GFP_NOFS);
4823        if (!chunk) {
4824                ret = -ENOMEM;
4825                goto out;
4826        }
4827
4828        /*
4829         * Take the device list mutex to prevent races with the final phase of
4830         * a device replace operation that replaces the device object associated
4831         * with the map's stripes, because the device object's id can change
4832         * at any time during that final phase of the device replace operation
4833         * (dev-replace.c:btrfs_dev_replace_finishing()).
4834         */
4835        mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836        for (i = 0; i < map->num_stripes; i++) {
4837                device = map->stripes[i].dev;
4838                dev_offset = map->stripes[i].physical;
4839
4840                ret = btrfs_update_device(trans, device);
4841                if (ret)
4842                        break;
4843                ret = btrfs_alloc_dev_extent(trans, device,
4844                                             chunk_root->root_key.objectid,
4845                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846                                             chunk_offset, dev_offset,
4847                                             stripe_size);
4848                if (ret)
4849                        break;
4850        }
4851        if (ret) {
4852                mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853                goto out;
4854        }
4855
4856        stripe = &chunk->stripe;
4857        for (i = 0; i < map->num_stripes; i++) {
4858                device = map->stripes[i].dev;
4859                dev_offset = map->stripes[i].physical;
4860
4861                btrfs_set_stack_stripe_devid(stripe, device->devid);
4862                btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864                stripe++;
4865        }
4866        mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868        btrfs_set_stack_chunk_length(chunk, chunk_size);
4869        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871        btrfs_set_stack_chunk_type(chunk, map->type);
4872        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875        btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879        key.type = BTRFS_CHUNK_ITEM_KEY;
4880        key.offset = chunk_offset;
4881
4882        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883        if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884                /*
4885                 * TODO: Cleanup of inserted chunk root in case of
4886                 * failure.
4887                 */
4888                ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889                                             item_size);
4890        }
4891
4892out:
4893        kfree(chunk);
4894        free_extent_map(em);
4895        return ret;
4896}
4897
4898/*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906                      struct btrfs_root *extent_root, u64 type)
4907{
4908        u64 chunk_offset;
4909
4910        ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911        chunk_offset = find_next_chunk(extent_root->fs_info);
4912        return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913}
4914
4915static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916                                         struct btrfs_root *root,
4917                                         struct btrfs_device *device)
4918{
4919        u64 chunk_offset;
4920        u64 sys_chunk_offset;
4921        u64 alloc_profile;
4922        struct btrfs_fs_info *fs_info = root->fs_info;
4923        struct btrfs_root *extent_root = fs_info->extent_root;
4924        int ret;
4925
4926        chunk_offset = find_next_chunk(fs_info);
4927        alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928        ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929                                  alloc_profile);
4930        if (ret)
4931                return ret;
4932
4933        sys_chunk_offset = find_next_chunk(root->fs_info);
4934        alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935        ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936                                  alloc_profile);
4937        return ret;
4938}
4939
4940static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941{
4942        int max_errors;
4943
4944        if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945                         BTRFS_BLOCK_GROUP_RAID10 |
4946                         BTRFS_BLOCK_GROUP_RAID5 |
4947                         BTRFS_BLOCK_GROUP_DUP)) {
4948                max_errors = 1;
4949        } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950                max_errors = 2;
4951        } else {
4952                max_errors = 0;
4953        }
4954
4955        return max_errors;
4956}
4957
4958int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959{
4960        struct extent_map *em;
4961        struct map_lookup *map;
4962        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963        int readonly = 0;
4964        int miss_ndevs = 0;
4965        int i;
4966
4967        read_lock(&map_tree->map_tree.lock);
4968        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969        read_unlock(&map_tree->map_tree.lock);
4970        if (!em)
4971                return 1;
4972
4973        map = em->map_lookup;
4974        for (i = 0; i < map->num_stripes; i++) {
4975                if (map->stripes[i].dev->missing) {
4976                        miss_ndevs++;
4977                        continue;
4978                }
4979
4980                if (!map->stripes[i].dev->writeable) {
4981                        readonly = 1;
4982                        goto end;
4983                }
4984        }
4985
4986        /*
4987         * If the number of missing devices is larger than max errors,
4988         * we can not write the data into that chunk successfully, so
4989         * set it readonly.
4990         */
4991        if (miss_ndevs > btrfs_chunk_max_errors(map))
4992                readonly = 1;
4993end:
4994        free_extent_map(em);
4995        return readonly;
4996}
4997
4998void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999{
5000        extent_map_tree_init(&tree->map_tree);
5001}
5002
5003void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004{
5005        struct extent_map *em;
5006
5007        while (1) {
5008                write_lock(&tree->map_tree.lock);
5009                em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010                if (em)
5011                        remove_extent_mapping(&tree->map_tree, em);
5012                write_unlock(&tree->map_tree.lock);
5013                if (!em)
5014                        break;
5015                /* once for us */
5016                free_extent_map(em);
5017                /* once for the tree */
5018                free_extent_map(em);
5019        }
5020}
5021
5022int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023{
5024        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025        struct extent_map *em;
5026        struct map_lookup *map;
5027        struct extent_map_tree *em_tree = &map_tree->map_tree;
5028        int ret;
5029
5030        read_lock(&em_tree->lock);
5031        em = lookup_extent_mapping(em_tree, logical, len);
5032        read_unlock(&em_tree->lock);
5033
5034        /*
5035         * We could return errors for these cases, but that could get ugly and
5036         * we'd probably do the same thing which is just not do anything else
5037         * and exit, so return 1 so the callers don't try to use other copies.
5038         */
5039        if (!em) {
5040                btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041                            logical+len);
5042                return 1;
5043        }
5044
5045        if (em->start > logical || em->start + em->len < logical) {
5046                btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047                            "%Lu-%Lu", logical, logical+len, em->start,
5048                            em->start + em->len);
5049                free_extent_map(em);
5050                return 1;
5051        }
5052
5053        map = em->map_lookup;
5054        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055                ret = map->num_stripes;
5056        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057                ret = map->sub_stripes;
5058        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059                ret = 2;
5060        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061                ret = 3;
5062        else
5063                ret = 1;
5064        free_extent_map(em);
5065
5066        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5067        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068                ret++;
5069        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5070
5071        return ret;
5072}
5073
5074unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075                                    struct btrfs_mapping_tree *map_tree,
5076                                    u64 logical)
5077{
5078        struct extent_map *em;
5079        struct map_lookup *map;
5080        struct extent_map_tree *em_tree = &map_tree->map_tree;
5081        unsigned long len = root->sectorsize;
5082
5083        read_lock(&em_tree->lock);
5084        em = lookup_extent_mapping(em_tree, logical, len);
5085        read_unlock(&em_tree->lock);
5086        BUG_ON(!em);
5087
5088        BUG_ON(em->start > logical || em->start + em->len < logical);
5089        map = em->map_lookup;
5090        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091                len = map->stripe_len * nr_data_stripes(map);
5092        free_extent_map(em);
5093        return len;
5094}
5095
5096int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097                           u64 logical, u64 len, int mirror_num)
5098{
5099        struct extent_map *em;
5100        struct map_lookup *map;
5101        struct extent_map_tree *em_tree = &map_tree->map_tree;
5102        int ret = 0;
5103
5104        read_lock(&em_tree->lock);
5105        em = lookup_extent_mapping(em_tree, logical, len);
5106        read_unlock(&em_tree->lock);
5107        BUG_ON(!em);
5108
5109        BUG_ON(em->start > logical || em->start + em->len < logical);
5110        map = em->map_lookup;
5111        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112                ret = 1;
5113        free_extent_map(em);
5114        return ret;
5115}
5116
5117static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118                            struct map_lookup *map, int first, int num,
5119                            int optimal, int dev_replace_is_ongoing)
5120{
5121        int i;
5122        int tolerance;
5123        struct btrfs_device *srcdev;
5124
5125        if (dev_replace_is_ongoing &&
5126            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128                srcdev = fs_info->dev_replace.srcdev;
5129        else
5130                srcdev = NULL;
5131
5132        /*
5133         * try to avoid the drive that is the source drive for a
5134         * dev-replace procedure, only choose it if no other non-missing
5135         * mirror is available
5136         */
5137        for (tolerance = 0; tolerance < 2; tolerance++) {
5138                if (map->stripes[optimal].dev->bdev &&
5139                    (tolerance || map->stripes[optimal].dev != srcdev))
5140                        return optimal;
5141                for (i = first; i < first + num; i++) {
5142                        if (map->stripes[i].dev->bdev &&
5143                            (tolerance || map->stripes[i].dev != srcdev))
5144                                return i;
5145                }
5146        }
5147
5148        /* we couldn't find one that doesn't fail.  Just return something
5149         * and the io error handling code will clean up eventually
5150         */
5151        return optimal;
5152}
5153
5154static inline int parity_smaller(u64 a, u64 b)
5155{
5156        return a > b;
5157}
5158
5159/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161{
5162        struct btrfs_bio_stripe s;
5163        int i;
5164        u64 l;
5165        int again = 1;
5166
5167        while (again) {
5168                again = 0;
5169                for (i = 0; i < num_stripes - 1; i++) {
5170                        if (parity_smaller(bbio->raid_map[i],
5171                                           bbio->raid_map[i+1])) {
5172                                s = bbio->stripes[i];
5173                                l = bbio->raid_map[i];
5174                                bbio->stripes[i] = bbio->stripes[i+1];
5175                                bbio->raid_map[i] = bbio->raid_map[i+1];
5176                                bbio->stripes[i+1] = s;
5177                                bbio->raid_map[i+1] = l;
5178
5179                                again = 1;
5180                        }
5181                }
5182        }
5183}
5184
5185static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186{
5187        struct btrfs_bio *bbio = kzalloc(
5188                 /* the size of the btrfs_bio */
5189                sizeof(struct btrfs_bio) +
5190                /* plus the variable array for the stripes */
5191                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192                /* plus the variable array for the tgt dev */
5193                sizeof(int) * (real_stripes) +
5194                /*
5195                 * plus the raid_map, which includes both the tgt dev
5196                 * and the stripes
5197                 */
5198                sizeof(u64) * (total_stripes),
5199                GFP_NOFS|__GFP_NOFAIL);
5200
5201        atomic_set(&bbio->error, 0);
5202        atomic_set(&bbio->refs, 1);
5203
5204        return bbio;
5205}
5206
5207void btrfs_get_bbio(struct btrfs_bio *bbio)
5208{
5209        WARN_ON(!atomic_read(&bbio->refs));
5210        atomic_inc(&bbio->refs);
5211}
5212
5213void btrfs_put_bbio(struct btrfs_bio *bbio)
5214{
5215        if (!bbio)
5216                return;
5217        if (atomic_dec_and_test(&bbio->refs))
5218                kfree(bbio);
5219}
5220
5221static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222                             u64 logical, u64 *length,
5223                             struct btrfs_bio **bbio_ret,
5224                             int mirror_num, int need_raid_map)
5225{
5226        struct extent_map *em;
5227        struct map_lookup *map;
5228        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229        struct extent_map_tree *em_tree = &map_tree->map_tree;
5230        u64 offset;
5231        u64 stripe_offset;
5232        u64 stripe_end_offset;
5233        u64 stripe_nr;
5234        u64 stripe_nr_orig;
5235        u64 stripe_nr_end;
5236        u64 stripe_len;
5237        u32 stripe_index;
5238        int i;
5239        int ret = 0;
5240        int num_stripes;
5241        int max_errors = 0;
5242        int tgtdev_indexes = 0;
5243        struct btrfs_bio *bbio = NULL;
5244        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245        int dev_replace_is_ongoing = 0;
5246        int num_alloc_stripes;
5247        int patch_the_first_stripe_for_dev_replace = 0;
5248        u64 physical_to_patch_in_first_stripe = 0;
5249        u64 raid56_full_stripe_start = (u64)-1;
5250
5251        read_lock(&em_tree->lock);
5252        em = lookup_extent_mapping(em_tree, logical, *length);
5253        read_unlock(&em_tree->lock);
5254
5255        if (!em) {
5256                btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257                        logical, *length);
5258                return -EINVAL;
5259        }
5260
5261        if (em->start > logical || em->start + em->len < logical) {
5262                btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263                           "found %Lu-%Lu", logical, em->start,
5264                           em->start + em->len);
5265                free_extent_map(em);
5266                return -EINVAL;
5267        }
5268
5269        map = em->map_lookup;
5270        offset = logical - em->start;
5271
5272        stripe_len = map->stripe_len;
5273        stripe_nr = offset;
5274        /*
5275         * stripe_nr counts the total number of stripes we have to stride
5276         * to get to this block
5277         */
5278        stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280        stripe_offset = stripe_nr * stripe_len;
5281        BUG_ON(offset < stripe_offset);
5282
5283        /* stripe_offset is the offset of this block in its stripe*/
5284        stripe_offset = offset - stripe_offset;
5285
5286        /* if we're here for raid56, we need to know the stripe aligned start */
5287        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288                unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289                raid56_full_stripe_start = offset;
5290
5291                /* allow a write of a full stripe, but make sure we don't
5292                 * allow straddling of stripes
5293                 */
5294                raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295                                full_stripe_len);
5296                raid56_full_stripe_start *= full_stripe_len;
5297        }
5298
5299        if (rw & REQ_DISCARD) {
5300                /* we don't discard raid56 yet */
5301                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302                        ret = -EOPNOTSUPP;
5303                        goto out;
5304                }
5305                *length = min_t(u64, em->len - offset, *length);
5306        } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307                u64 max_len;
5308                /* For writes to RAID[56], allow a full stripeset across all disks.
5309                   For other RAID types and for RAID[56] reads, just allow a single
5310                   stripe (on a single disk). */
5311                if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312                    (rw & REQ_WRITE)) {
5313                        max_len = stripe_len * nr_data_stripes(map) -
5314                                (offset - raid56_full_stripe_start);
5315                } else {
5316                        /* we limit the length of each bio to what fits in a stripe */
5317                        max_len = stripe_len - stripe_offset;
5318                }
5319                *length = min_t(u64, em->len - offset, max_len);
5320        } else {
5321                *length = em->len - offset;
5322        }
5323
5324        /* This is for when we're called from btrfs_merge_bio_hook() and all
5325           it cares about is the length */
5326        if (!bbio_ret)
5327                goto out;
5328
5329        btrfs_dev_replace_lock(dev_replace, 0);
5330        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331        if (!dev_replace_is_ongoing)
5332                btrfs_dev_replace_unlock(dev_replace, 0);
5333        else
5334                btrfs_dev_replace_set_lock_blocking(dev_replace);
5335
5336        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5337            !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5338            dev_replace->tgtdev != NULL) {
5339                /*
5340                 * in dev-replace case, for repair case (that's the only
5341                 * case where the mirror is selected explicitly when
5342                 * calling btrfs_map_block), blocks left of the left cursor
5343                 * can also be read from the target drive.
5344                 * For REQ_GET_READ_MIRRORS, the target drive is added as
5345                 * the last one to the array of stripes. For READ, it also
5346                 * needs to be supported using the same mirror number.
5347                 * If the requested block is not left of the left cursor,
5348                 * EIO is returned. This can happen because btrfs_num_copies()
5349                 * returns one more in the dev-replace case.
5350                 */
5351                u64 tmp_length = *length;
5352                struct btrfs_bio *tmp_bbio = NULL;
5353                int tmp_num_stripes;
5354                u64 srcdev_devid = dev_replace->srcdev->devid;
5355                int index_srcdev = 0;
5356                int found = 0;
5357                u64 physical_of_found = 0;
5358
5359                ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5360                             logical, &tmp_length, &tmp_bbio, 0, 0);
5361                if (ret) {
5362                        WARN_ON(tmp_bbio != NULL);
5363                        goto out;
5364                }
5365
5366                tmp_num_stripes = tmp_bbio->num_stripes;
5367                if (mirror_num > tmp_num_stripes) {
5368                        /*
5369                         * REQ_GET_READ_MIRRORS does not contain this
5370                         * mirror, that means that the requested area
5371                         * is not left of the left cursor
5372                         */
5373                        ret = -EIO;
5374                        btrfs_put_bbio(tmp_bbio);
5375                        goto out;
5376                }
5377
5378                /*
5379                 * process the rest of the function using the mirror_num
5380                 * of the source drive. Therefore look it up first.
5381                 * At the end, patch the device pointer to the one of the
5382                 * target drive.
5383                 */
5384                for (i = 0; i < tmp_num_stripes; i++) {
5385                        if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5386                                continue;
5387
5388                        /*
5389                         * In case of DUP, in order to keep it simple, only add
5390                         * the mirror with the lowest physical address
5391                         */
5392                        if (found &&
5393                            physical_of_found <= tmp_bbio->stripes[i].physical)
5394                                continue;
5395
5396                        index_srcdev = i;
5397                        found = 1;
5398                        physical_of_found = tmp_bbio->stripes[i].physical;
5399                }
5400
5401                btrfs_put_bbio(tmp_bbio);
5402
5403                if (!found) {
5404                        WARN_ON(1);
5405                        ret = -EIO;
5406                        goto out;
5407                }
5408
5409                mirror_num = index_srcdev + 1;
5410                patch_the_first_stripe_for_dev_replace = 1;
5411                physical_to_patch_in_first_stripe = physical_of_found;
5412        } else if (mirror_num > map->num_stripes) {
5413                mirror_num = 0;
5414        }
5415
5416        num_stripes = 1;
5417        stripe_index = 0;
5418        stripe_nr_orig = stripe_nr;
5419        stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5420        stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5421        stripe_end_offset = stripe_nr_end * map->stripe_len -
5422                            (offset + *length);
5423
5424        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425                if (rw & REQ_DISCARD)
5426                        num_stripes = min_t(u64, map->num_stripes,
5427                                            stripe_nr_end - stripe_nr_orig);
5428                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429                                &stripe_index);
5430                if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431                        mirror_num = 1;
5432        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5433                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5434                        num_stripes = map->num_stripes;
5435                else if (mirror_num)
5436                        stripe_index = mirror_num - 1;
5437                else {
5438                        stripe_index = find_live_mirror(fs_info, map, 0,
5439                                            map->num_stripes,
5440                                            current->pid % map->num_stripes,
5441                                            dev_replace_is_ongoing);
5442                        mirror_num = stripe_index + 1;
5443                }
5444
5445        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5446                if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5447                        num_stripes = map->num_stripes;
5448                } else if (mirror_num) {
5449                        stripe_index = mirror_num - 1;
5450                } else {
5451                        mirror_num = 1;
5452                }
5453
5454        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5455                u32 factor = map->num_stripes / map->sub_stripes;
5456
5457                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5458                stripe_index *= map->sub_stripes;
5459
5460                if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5461                        num_stripes = map->sub_stripes;
5462                else if (rw & REQ_DISCARD)
5463                        num_stripes = min_t(u64, map->sub_stripes *
5464                                            (stripe_nr_end - stripe_nr_orig),
5465                                            map->num_stripes);
5466                else if (mirror_num)
5467                        stripe_index += mirror_num - 1;
5468                else {
5469                        int old_stripe_index = stripe_index;
5470                        stripe_index = find_live_mirror(fs_info, map,
5471                                              stripe_index,
5472                                              map->sub_stripes, stripe_index +
5473                                              current->pid % map->sub_stripes,
5474                                              dev_replace_is_ongoing);
5475                        mirror_num = stripe_index - old_stripe_index + 1;
5476                }
5477
5478        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5479                if (need_raid_map &&
5480                    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481                     mirror_num > 1)) {
5482                        /* push stripe_nr back to the start of the full stripe */
5483                        stripe_nr = div_u64(raid56_full_stripe_start,
5484                                        stripe_len * nr_data_stripes(map));
5485
5486                        /* RAID[56] write or recovery. Return all stripes */
5487                        num_stripes = map->num_stripes;
5488                        max_errors = nr_parity_stripes(map);
5489
5490                        *length = map->stripe_len;
5491                        stripe_index = 0;
5492                        stripe_offset = 0;
5493                } else {
5494                        /*
5495                         * Mirror #0 or #1 means the original data block.
5496                         * Mirror #2 is RAID5 parity block.
5497                         * Mirror #3 is RAID6 Q block.
5498                         */
5499                        stripe_nr = div_u64_rem(stripe_nr,
5500                                        nr_data_stripes(map), &stripe_index);
5501                        if (mirror_num > 1)
5502                                stripe_index = nr_data_stripes(map) +
5503                                                mirror_num - 2;
5504
5505                        /* We distribute the parity blocks across stripes */
5506                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507                                        &stripe_index);
5508                        if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509                                    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510                                mirror_num = 1;
5511                }
5512        } else {
5513                /*
5514                 * after this, stripe_nr is the number of stripes on this
5515                 * device we have to walk to find the data, and stripe_index is
5516                 * the number of our device in the stripe array
5517                 */
5518                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519                                &stripe_index);
5520                mirror_num = stripe_index + 1;
5521        }
5522        BUG_ON(stripe_index >= map->num_stripes);
5523
5524        num_alloc_stripes = num_stripes;
5525        if (dev_replace_is_ongoing) {
5526                if (rw & (REQ_WRITE | REQ_DISCARD))
5527                        num_alloc_stripes <<= 1;
5528                if (rw & REQ_GET_READ_MIRRORS)
5529                        num_alloc_stripes++;
5530                tgtdev_indexes = num_stripes;
5531        }
5532
5533        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5534        if (!bbio) {
5535                ret = -ENOMEM;
5536                goto out;
5537        }
5538        if (dev_replace_is_ongoing)
5539                bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5540
5541        /* build raid_map */
5542        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5543            need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544            mirror_num > 1)) {
5545                u64 tmp;
5546                unsigned rot;
5547
5548                bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549                                 sizeof(struct btrfs_bio_stripe) *
5550                                 num_alloc_stripes +
5551                                 sizeof(int) * tgtdev_indexes);
5552
5553                /* Work out the disk rotation on this stripe-set */
5554                div_u64_rem(stripe_nr, num_stripes, &rot);
5555
5556                /* Fill in the logical address of each stripe */
5557                tmp = stripe_nr * nr_data_stripes(map);
5558                for (i = 0; i < nr_data_stripes(map); i++)
5559                        bbio->raid_map[(i+rot) % num_stripes] =
5560                                em->start + (tmp + i) * map->stripe_len;
5561
5562                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564                        bbio->raid_map[(i+rot+1) % num_stripes] =
5565                                RAID6_Q_STRIPE;
5566        }
5567
5568        if (rw & REQ_DISCARD) {
5569                u32 factor = 0;
5570                u32 sub_stripes = 0;
5571                u64 stripes_per_dev = 0;
5572                u32 remaining_stripes = 0;
5573                u32 last_stripe = 0;
5574
5575                if (map->type &
5576                    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577                        if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578                                sub_stripes = 1;
5579                        else
5580                                sub_stripes = map->sub_stripes;
5581
5582                        factor = map->num_stripes / sub_stripes;
5583                        stripes_per_dev = div_u64_rem(stripe_nr_end -
5584                                                      stripe_nr_orig,
5585                                                      factor,
5586                                                      &remaining_stripes);
5587                        div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588                        last_stripe *= sub_stripes;
5589                }
5590
5591                for (i = 0; i < num_stripes; i++) {
5592                        bbio->stripes[i].physical =
5593                                map->stripes[stripe_index].physical +
5594                                stripe_offset + stripe_nr * map->stripe_len;
5595                        bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5596
5597                        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598                                         BTRFS_BLOCK_GROUP_RAID10)) {
5599                                bbio->stripes[i].length = stripes_per_dev *
5600                                                          map->stripe_len;
5601
5602                                if (i / sub_stripes < remaining_stripes)
5603                                        bbio->stripes[i].length +=
5604                                                map->stripe_len;
5605
5606                                /*
5607                                 * Special for the first stripe and
5608                                 * the last stripe:
5609                                 *
5610                                 * |-------|...|-------|
5611                                 *     |----------|
5612                                 *    off     end_off
5613                                 */
5614                                if (i < sub_stripes)
5615                                        bbio->stripes[i].length -=
5616                                                stripe_offset;
5617
5618                                if (stripe_index >= last_stripe &&
5619                                    stripe_index <= (last_stripe +
5620                                                     sub_stripes - 1))
5621                                        bbio->stripes[i].length -=
5622                                                stripe_end_offset;
5623
5624                                if (i == sub_stripes - 1)
5625                                        stripe_offset = 0;
5626                        } else
5627                                bbio->stripes[i].length = *length;
5628
5629                        stripe_index++;
5630                        if (stripe_index == map->num_stripes) {
5631                                /* This could only happen for RAID0/10 */
5632                                stripe_index = 0;
5633                                stripe_nr++;
5634                        }
5635                }
5636        } else {
5637                for (i = 0; i < num_stripes; i++) {
5638                        bbio->stripes[i].physical =
5639                                map->stripes[stripe_index].physical +
5640                                stripe_offset +
5641                                stripe_nr * map->stripe_len;
5642                        bbio->stripes[i].dev =
5643                                map->stripes[stripe_index].dev;
5644                        stripe_index++;
5645                }
5646        }
5647
5648        if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649                max_errors = btrfs_chunk_max_errors(map);
5650
5651        if (bbio->raid_map)
5652                sort_parity_stripes(bbio, num_stripes);
5653
5654        tgtdev_indexes = 0;
5655        if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656            dev_replace->tgtdev != NULL) {
5657                int index_where_to_add;
5658                u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660                /*
5661                 * duplicate the write operations while the dev replace
5662                 * procedure is running. Since the copying of the old disk
5663                 * to the new disk takes place at run time while the
5664                 * filesystem is mounted writable, the regular write
5665                 * operations to the old disk have to be duplicated to go
5666                 * to the new disk as well.
5667                 * Note that device->missing is handled by the caller, and
5668                 * that the write to the old disk is already set up in the
5669                 * stripes array.
5670                 */
5671                index_where_to_add = num_stripes;
5672                for (i = 0; i < num_stripes; i++) {
5673                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674                                /* write to new disk, too */
5675                                struct btrfs_bio_stripe *new =
5676                                        bbio->stripes + index_where_to_add;
5677                                struct btrfs_bio_stripe *old =
5678                                        bbio->stripes + i;
5679
5680                                new->physical = old->physical;
5681                                new->length = old->length;
5682                                new->dev = dev_replace->tgtdev;
5683                                bbio->tgtdev_map[i] = index_where_to_add;
5684                                index_where_to_add++;
5685                                max_errors++;
5686                                tgtdev_indexes++;
5687                        }
5688                }
5689                num_stripes = index_where_to_add;
5690        } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691                   dev_replace->tgtdev != NULL) {
5692                u64 srcdev_devid = dev_replace->srcdev->devid;
5693                int index_srcdev = 0;
5694                int found = 0;
5695                u64 physical_of_found = 0;
5696
5697                /*
5698                 * During the dev-replace procedure, the target drive can
5699                 * also be used to read data in case it is needed to repair
5700                 * a corrupt block elsewhere. This is possible if the
5701                 * requested area is left of the left cursor. In this area,
5702                 * the target drive is a full copy of the source drive.
5703                 */
5704                for (i = 0; i < num_stripes; i++) {
5705                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706                                /*
5707                                 * In case of DUP, in order to keep it
5708                                 * simple, only add the mirror with the
5709                                 * lowest physical address
5710                                 */
5711                                if (found &&
5712                                    physical_of_found <=
5713                                     bbio->stripes[i].physical)
5714                                        continue;
5715                                index_srcdev = i;
5716                                found = 1;
5717                                physical_of_found = bbio->stripes[i].physical;
5718                        }
5719                }
5720                if (found) {
5721                        if (physical_of_found + map->stripe_len <=
5722                            dev_replace->cursor_left) {
5723                                struct btrfs_bio_stripe *tgtdev_stripe =
5724                                        bbio->stripes + num_stripes;
5725
5726                                tgtdev_stripe->physical = physical_of_found;
5727                                tgtdev_stripe->length =
5728                                        bbio->stripes[index_srcdev].length;
5729                                tgtdev_stripe->dev = dev_replace->tgtdev;
5730                                bbio->tgtdev_map[index_srcdev] = num_stripes;
5731
5732                                tgtdev_indexes++;
5733                                num_stripes++;
5734                        }
5735                }
5736        }
5737
5738        *bbio_ret = bbio;
5739        bbio->map_type = map->type;
5740        bbio->num_stripes = num_stripes;
5741        bbio->max_errors = max_errors;
5742        bbio->mirror_num = mirror_num;
5743        bbio->num_tgtdevs = tgtdev_indexes;
5744
5745        /*
5746         * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747         * mirror_num == num_stripes + 1 && dev_replace target drive is
5748         * available as a mirror
5749         */
5750        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751                WARN_ON(num_stripes > 1);
5752                bbio->stripes[0].dev = dev_replace->tgtdev;
5753                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754                bbio->mirror_num = map->num_stripes + 1;
5755        }
5756out:
5757        if (dev_replace_is_ongoing) {
5758                btrfs_dev_replace_clear_lock_blocking(dev_replace);
5759                btrfs_dev_replace_unlock(dev_replace, 0);
5760        }
5761        free_extent_map(em);
5762        return ret;
5763}
5764
5765int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5766                      u64 logical, u64 *length,
5767                      struct btrfs_bio **bbio_ret, int mirror_num)
5768{
5769        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5770                                 mirror_num, 0);
5771}
5772
5773/* For Scrub/replace */
5774int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5775                     u64 logical, u64 *length,
5776                     struct btrfs_bio **bbio_ret, int mirror_num,
5777                     int need_raid_map)
5778{
5779        return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5780                                 mirror_num, need_raid_map);
5781}
5782
5783int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5784                     u64 chunk_start, u64 physical, u64 devid,
5785                     u64 **logical, int *naddrs, int *stripe_len)
5786{
5787        struct extent_map_tree *em_tree = &map_tree->map_tree;
5788        struct extent_map *em;
5789        struct map_lookup *map;
5790        u64 *buf;
5791        u64 bytenr;
5792        u64 length;
5793        u64 stripe_nr;
5794        u64 rmap_len;
5795        int i, j, nr = 0;
5796
5797        read_lock(&em_tree->lock);
5798        em = lookup_extent_mapping(em_tree, chunk_start, 1);
5799        read_unlock(&em_tree->lock);
5800
5801        if (!em) {
5802                printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5803                       chunk_start);
5804                return -EIO;
5805        }
5806
5807        if (em->start != chunk_start) {
5808                printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5809                       em->start, chunk_start);
5810                free_extent_map(em);
5811                return -EIO;
5812        }
5813        map = em->map_lookup;
5814
5815        length = em->len;
5816        rmap_len = map->stripe_len;
5817
5818        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5819                length = div_u64(length, map->num_stripes / map->sub_stripes);
5820        else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5821                length = div_u64(length, map->num_stripes);
5822        else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5823                length = div_u64(length, nr_data_stripes(map));
5824                rmap_len = map->stripe_len * nr_data_stripes(map);
5825        }
5826
5827        buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5828        BUG_ON(!buf); /* -ENOMEM */
5829
5830        for (i = 0; i < map->num_stripes; i++) {
5831                if (devid && map->stripes[i].dev->devid != devid)
5832                        continue;
5833                if (map->stripes[i].physical > physical ||
5834                    map->stripes[i].physical + length <= physical)
5835                        continue;
5836
5837                stripe_nr = physical - map->stripes[i].physical;
5838                stripe_nr = div_u64(stripe_nr, map->stripe_len);
5839
5840                if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5841                        stripe_nr = stripe_nr * map->num_stripes + i;
5842                        stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5843                } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5844                        stripe_nr = stripe_nr * map->num_stripes + i;
5845                } /* else if RAID[56], multiply by nr_data_stripes().
5846                   * Alternatively, just use rmap_len below instead of
5847                   * map->stripe_len */
5848
5849                bytenr = chunk_start + stripe_nr * rmap_len;
5850                WARN_ON(nr >= map->num_stripes);
5851                for (j = 0; j < nr; j++) {
5852                        if (buf[j] == bytenr)
5853                                break;
5854                }
5855                if (j == nr) {
5856                        WARN_ON(nr >= map->num_stripes);
5857                        buf[nr++] = bytenr;
5858                }
5859        }
5860
5861        *logical = buf;
5862        *naddrs = nr;
5863        *stripe_len = rmap_len;
5864
5865        free_extent_map(em);
5866        return 0;
5867}
5868
5869static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5870{
5871        bio->bi_private = bbio->private;
5872        bio->bi_end_io = bbio->end_io;
5873        bio_endio(bio);
5874
5875        btrfs_put_bbio(bbio);
5876}
5877
5878static void btrfs_end_bio(struct bio *bio)
5879{
5880        struct btrfs_bio *bbio = bio->bi_private;
5881        int is_orig_bio = 0;
5882
5883        if (bio->bi_error) {
5884                atomic_inc(&bbio->error);
5885                if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5886                        unsigned int stripe_index =
5887                                btrfs_io_bio(bio)->stripe_index;
5888                        struct btrfs_device *dev;
5889
5890                        BUG_ON(stripe_index >= bbio->num_stripes);
5891                        dev = bbio->stripes[stripe_index].dev;
5892                        if (dev->bdev) {
5893                                if (bio->bi_rw & WRITE)
5894                                        btrfs_dev_stat_inc(dev,
5895                                                BTRFS_DEV_STAT_WRITE_ERRS);
5896                                else
5897                                        btrfs_dev_stat_inc(dev,
5898                                                BTRFS_DEV_STAT_READ_ERRS);
5899                                if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5900                                        btrfs_dev_stat_inc(dev,
5901                                                BTRFS_DEV_STAT_FLUSH_ERRS);
5902                                btrfs_dev_stat_print_on_error(dev);
5903                        }
5904                }
5905        }
5906
5907        if (bio == bbio->orig_bio)
5908                is_orig_bio = 1;
5909
5910        btrfs_bio_counter_dec(bbio->fs_info);
5911
5912        if (atomic_dec_and_test(&bbio->stripes_pending)) {
5913                if (!is_orig_bio) {
5914                        bio_put(bio);
5915                        bio = bbio->orig_bio;
5916                }
5917
5918                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5919                /* only send an error to the higher layers if it is
5920                 * beyond the tolerance of the btrfs bio
5921                 */
5922                if (atomic_read(&bbio->error) > bbio->max_errors) {
5923                        bio->bi_error = -EIO;
5924                } else {
5925                        /*
5926                         * this bio is actually up to date, we didn't
5927                         * go over the max number of errors
5928                         */
5929                        bio->bi_error = 0;
5930                }
5931
5932                btrfs_end_bbio(bbio, bio);
5933        } else if (!is_orig_bio) {
5934                bio_put(bio);
5935        }
5936}
5937
5938/*
5939 * see run_scheduled_bios for a description of why bios are collected for
5940 * async submit.
5941 *
5942 * This will add one bio to the pending list for a device and make sure
5943 * the work struct is scheduled.
5944 */
5945static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5946                                        struct btrfs_device *device,
5947                                        int rw, struct bio *bio)
5948{
5949        int should_queue = 1;
5950        struct btrfs_pending_bios *pending_bios;
5951
5952        if (device->missing || !device->bdev) {
5953                bio_io_error(bio);
5954                return;
5955        }
5956
5957        /* don't bother with additional async steps for reads, right now */
5958        if (!(rw & REQ_WRITE)) {
5959                bio_get(bio);
5960                btrfsic_submit_bio(rw, bio);
5961                bio_put(bio);
5962                return;
5963        }
5964
5965        /*
5966         * nr_async_bios allows us to reliably return congestion to the
5967         * higher layers.  Otherwise, the async bio makes it appear we have
5968         * made progress against dirty pages when we've really just put it
5969         * on a queue for later
5970         */
5971        atomic_inc(&root->fs_info->nr_async_bios);
5972        WARN_ON(bio->bi_next);
5973        bio->bi_next = NULL;
5974        bio->bi_rw |= rw;
5975
5976        spin_lock(&device->io_lock);
5977        if (bio->bi_rw & REQ_SYNC)
5978                pending_bios = &device->pending_sync_bios;
5979        else
5980                pending_bios = &device->pending_bios;
5981
5982        if (pending_bios->tail)
5983                pending_bios->tail->bi_next = bio;
5984
5985        pending_bios->tail = bio;
5986        if (!pending_bios->head)
5987                pending_bios->head = bio;
5988        if (device->running_pending)
5989                should_queue = 0;
5990
5991        spin_unlock(&device->io_lock);
5992
5993        if (should_queue)
5994                btrfs_queue_work(root->fs_info->submit_workers,
5995                                 &device->work);
5996}
5997
5998static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5999                              struct bio *bio, u64 physical, int dev_nr,
6000                              int rw, int async)
6001{
6002        struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6003
6004        bio->bi_private = bbio;
6005        btrfs_io_bio(bio)->stripe_index = dev_nr;
6006        bio->bi_end_io = btrfs_end_bio;
6007        bio->bi_iter.bi_sector = physical >> 9;
6008#ifdef DEBUG
6009        {
6010                struct rcu_string *name;
6011
6012                rcu_read_lock();
6013                name = rcu_dereference(dev->name);
6014                pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6015                         "(%s id %llu), size=%u\n", rw,
6016                         (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6017                         name->str, dev->devid, bio->bi_iter.bi_size);
6018                rcu_read_unlock();
6019        }
6020#endif
6021        bio->bi_bdev = dev->bdev;
6022
6023        btrfs_bio_counter_inc_noblocked(root->fs_info);
6024
6025        if (async)
6026                btrfs_schedule_bio(root, dev, rw, bio);
6027        else
6028                btrfsic_submit_bio(rw, bio);
6029}
6030
6031static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6032{
6033        atomic_inc(&bbio->error);
6034        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6035                /* Shoud be the original bio. */
6036                WARN_ON(bio != bbio->orig_bio);
6037
6038                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6039                bio->bi_iter.bi_sector = logical >> 9;
6040                bio->bi_error = -EIO;
6041                btrfs_end_bbio(bbio, bio);
6042        }
6043}
6044
6045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6046                  int mirror_num, int async_submit)
6047{
6048        struct btrfs_device *dev;
6049        struct bio *first_bio = bio;
6050        u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6051        u64 length = 0;
6052        u64 map_length;
6053        int ret;
6054        int dev_nr;
6055        int total_devs;
6056        struct btrfs_bio *bbio = NULL;
6057
6058        length = bio->bi_iter.bi_size;
6059        map_length = length;
6060
6061        btrfs_bio_counter_inc_blocked(root->fs_info);
6062        ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6063                              mirror_num, 1);
6064        if (ret) {
6065                btrfs_bio_counter_dec(root->fs_info);
6066                return ret;
6067        }
6068
6069        total_devs = bbio->num_stripes;
6070        bbio->orig_bio = first_bio;
6071        bbio->private = first_bio->bi_private;
6072        bbio->end_io = first_bio->bi_end_io;
6073        bbio->fs_info = root->fs_info;
6074        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6075
6076        if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6077            ((rw & WRITE) || (mirror_num > 1))) {
6078                /* In this case, map_length has been set to the length of
6079                   a single stripe; not the whole write */
6080                if (rw & WRITE) {
6081                        ret = raid56_parity_write(root, bio, bbio, map_length);
6082                } else {
6083                        ret = raid56_parity_recover(root, bio, bbio, map_length,
6084                                                    mirror_num, 1);
6085                }
6086
6087                btrfs_bio_counter_dec(root->fs_info);
6088                return ret;
6089        }
6090
6091        if (map_length < length) {
6092                btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6093                        logical, length, map_length);
6094                BUG();
6095        }
6096
6097        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6098                dev = bbio->stripes[dev_nr].dev;
6099                if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6100                        bbio_error(bbio, first_bio, logical);
6101                        continue;
6102                }
6103
6104                if (dev_nr < total_devs - 1) {
6105                        bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6106                        BUG_ON(!bio); /* -ENOMEM */
6107                } else
6108                        bio = first_bio;
6109
6110                submit_stripe_bio(root, bbio, bio,
6111                                  bbio->stripes[dev_nr].physical, dev_nr, rw,
6112                                  async_submit);
6113        }
6114        btrfs_bio_counter_dec(root->fs_info);
6115        return 0;
6116}
6117
6118struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6119                                       u8 *uuid, u8 *fsid)
6120{
6121        struct btrfs_device *device;
6122        struct btrfs_fs_devices *cur_devices;
6123
6124        cur_devices = fs_info->fs_devices;
6125        while (cur_devices) {
6126                if (!fsid ||
6127                    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6128                        device = __find_device(&cur_devices->devices,
6129                                               devid, uuid);
6130                        if (device)
6131                                return device;
6132                }
6133                cur_devices = cur_devices->seed;
6134        }
6135        return NULL;
6136}
6137
6138static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6139                                            struct btrfs_fs_devices *fs_devices,
6140                                            u64 devid, u8 *dev_uuid)
6141{
6142        struct btrfs_device *device;
6143
6144        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6145        if (IS_ERR(device))
6146                return NULL;
6147
6148        list_add(&device->dev_list, &fs_devices->devices);
6149        device->fs_devices = fs_devices;
6150        fs_devices->num_devices++;
6151
6152        device->missing = 1;
6153        fs_devices->missing_devices++;
6154
6155        return device;
6156}
6157
6158/**
6159 * btrfs_alloc_device - allocate struct btrfs_device
6160 * @fs_info:    used only for generating a new devid, can be NULL if
6161 *              devid is provided (i.e. @devid != NULL).
6162 * @devid:      a pointer to devid for this device.  If NULL a new devid
6163 *              is generated.
6164 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6165 *              is generated.
6166 *
6167 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6168 * on error.  Returned struct is not linked onto any lists and can be
6169 * destroyed with kfree() right away.
6170 */
6171struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6172                                        const u64 *devid,
6173                                        const u8 *uuid)
6174{
6175        struct btrfs_device *dev;
6176        u64 tmp;
6177
6178        if (WARN_ON(!devid && !fs_info))
6179                return ERR_PTR(-EINVAL);
6180
6181        dev = __alloc_device();
6182        if (IS_ERR(dev))
6183                return dev;
6184
6185        if (devid)
6186                tmp = *devid;
6187        else {
6188                int ret;
6189
6190                ret = find_next_devid(fs_info, &tmp);
6191                if (ret) {
6192                        kfree(dev);
6193                        return ERR_PTR(ret);
6194                }
6195        }
6196        dev->devid = tmp;
6197
6198        if (uuid)
6199                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6200        else
6201                generate_random_uuid(dev->uuid);
6202
6203        btrfs_init_work(&dev->work, btrfs_submit_helper,
6204                        pending_bios_fn, NULL, NULL);
6205
6206        return dev;
6207}
6208
6209static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6210                          struct extent_buffer *leaf,
6211                          struct btrfs_chunk *chunk)
6212{
6213        struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6214        struct map_lookup *map;
6215        struct extent_map *em;
6216        u64 logical;
6217        u64 length;
6218        u64 stripe_len;
6219        u64 devid;
6220        u8 uuid[BTRFS_UUID_SIZE];
6221        int num_stripes;
6222        int ret;
6223        int i;
6224
6225        logical = key->offset;
6226        length = btrfs_chunk_length(leaf, chunk);
6227        stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229        /* Validation check */
6230        if (!num_stripes) {
6231                btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6232                          num_stripes);
6233                return -EIO;
6234        }
6235        if (!IS_ALIGNED(logical, root->sectorsize)) {
6236                btrfs_err(root->fs_info,
6237                          "invalid chunk logical %llu", logical);
6238                return -EIO;
6239        }
6240        if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6241                btrfs_err(root->fs_info,
6242                        "invalid chunk length %llu", length);
6243                return -EIO;
6244        }
6245        if (!is_power_of_2(stripe_len)) {
6246                btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6247                          stripe_len);
6248                return -EIO;
6249        }
6250        if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251            btrfs_chunk_type(leaf, chunk)) {
6252                btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6253                          ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6254                            BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6255                          btrfs_chunk_type(leaf, chunk));
6256                return -EIO;
6257        }
6258
6259        read_lock(&map_tree->map_tree.lock);
6260        em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6261        read_unlock(&map_tree->map_tree.lock);
6262
6263        /* already mapped? */
6264        if (em && em->start <= logical && em->start + em->len > logical) {
6265                free_extent_map(em);
6266                return 0;
6267        } else if (em) {
6268                free_extent_map(em);
6269        }
6270
6271        em = alloc_extent_map();
6272        if (!em)
6273                return -ENOMEM;
6274        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6275        if (!map) {
6276                free_extent_map(em);
6277                return -ENOMEM;
6278        }
6279
6280        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6281        em->map_lookup = map;
6282        em->start = logical;
6283        em->len = length;
6284        em->orig_start = 0;
6285        em->block_start = 0;
6286        em->block_len = em->len;
6287
6288        map->num_stripes = num_stripes;
6289        map->io_width = btrfs_chunk_io_width(leaf, chunk);
6290        map->io_align = btrfs_chunk_io_align(leaf, chunk);
6291        map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6292        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6293        map->type = btrfs_chunk_type(leaf, chunk);
6294        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6295        for (i = 0; i < num_stripes; i++) {
6296                map->stripes[i].physical =
6297                        btrfs_stripe_offset_nr(leaf, chunk, i);
6298                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6299                read_extent_buffer(leaf, uuid, (unsigned long)
6300                                   btrfs_stripe_dev_uuid_nr(chunk, i),
6301                                   BTRFS_UUID_SIZE);
6302                map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6303                                                        uuid, NULL);
6304                if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6305                        free_extent_map(em);
6306                        return -EIO;
6307                }
6308                if (!map->stripes[i].dev) {
6309                        map->stripes[i].dev =
6310                                add_missing_dev(root, root->fs_info->fs_devices,
6311                                                devid, uuid);
6312                        if (!map->stripes[i].dev) {
6313                                free_extent_map(em);
6314                                return -EIO;
6315                        }
6316                        btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6317                                                devid, uuid);
6318                }
6319                map->stripes[i].dev->in_fs_metadata = 1;
6320        }
6321
6322        write_lock(&map_tree->map_tree.lock);
6323        ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6324        write_unlock(&map_tree->map_tree.lock);
6325        BUG_ON(ret); /* Tree corruption */
6326        free_extent_map(em);
6327
6328        return 0;
6329}
6330
6331static void fill_device_from_item(struct extent_buffer *leaf,
6332                                 struct btrfs_dev_item *dev_item,
6333                                 struct btrfs_device *device)
6334{
6335        unsigned long ptr;
6336
6337        device->devid = btrfs_device_id(leaf, dev_item);
6338        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6339        device->total_bytes = device->disk_total_bytes;
6340        device->commit_total_bytes = device->disk_total_bytes;
6341        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6342        device->commit_bytes_used = device->bytes_used;
6343        device->type = btrfs_device_type(leaf, dev_item);
6344        device->io_align = btrfs_device_io_align(leaf, dev_item);
6345        device->io_width = btrfs_device_io_width(leaf, dev_item);
6346        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6347        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6348        device->is_tgtdev_for_dev_replace = 0;
6349
6350        ptr = btrfs_device_uuid(dev_item);
6351        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6352}
6353
6354static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6355                                                  u8 *fsid)
6356{
6357        struct btrfs_fs_devices *fs_devices;
6358        int ret;
6359
6360        BUG_ON(!mutex_is_locked(&uuid_mutex));
6361
6362        fs_devices = root->fs_info->fs_devices->seed;
6363        while (fs_devices) {
6364                if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6365                        return fs_devices;
6366
6367                fs_devices = fs_devices->seed;
6368        }
6369
6370        fs_devices = find_fsid(fsid);
6371        if (!fs_devices) {
6372                if (!btrfs_test_opt(root, DEGRADED))
6373                        return ERR_PTR(-ENOENT);
6374
6375                fs_devices = alloc_fs_devices(fsid);
6376                if (IS_ERR(fs_devices))
6377                        return fs_devices;
6378
6379                fs_devices->seeding = 1;
6380                fs_devices->opened = 1;
6381                return fs_devices;
6382        }
6383
6384        fs_devices = clone_fs_devices(fs_devices);
6385        if (IS_ERR(fs_devices))
6386                return fs_devices;
6387
6388        ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6389                                   root->fs_info->bdev_holder);
6390        if (ret) {
6391                free_fs_devices(fs_devices);
6392                fs_devices = ERR_PTR(ret);
6393                goto out;
6394        }
6395
6396        if (!fs_devices->seeding) {
6397                __btrfs_close_devices(fs_devices);
6398                free_fs_devices(fs_devices);
6399                fs_devices = ERR_PTR(-EINVAL);
6400                goto out;
6401        }
6402
6403        fs_devices->seed = root->fs_info->fs_devices->seed;
6404        root->fs_info->fs_devices->seed = fs_devices;
6405out:
6406        return fs_devices;
6407}
6408
6409static int read_one_dev(struct btrfs_root *root,
6410                        struct extent_buffer *leaf,
6411                        struct btrfs_dev_item *dev_item)
6412{
6413        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6414        struct btrfs_device *device;
6415        u64 devid;
6416        int ret;
6417        u8 fs_uuid[BTRFS_UUID_SIZE];
6418        u8 dev_uuid[BTRFS_UUID_SIZE];
6419
6420        devid = btrfs_device_id(leaf, dev_item);
6421        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6422                           BTRFS_UUID_SIZE);
6423        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6424                           BTRFS_UUID_SIZE);
6425
6426        if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6427                fs_devices = open_seed_devices(root, fs_uuid);
6428                if (IS_ERR(fs_devices))
6429                        return PTR_ERR(fs_devices);
6430        }
6431
6432        device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6433        if (!device) {
6434                if (!btrfs_test_opt(root, DEGRADED))
6435                        return -EIO;
6436
6437                device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6438                if (!device)
6439                        return -ENOMEM;
6440                btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6441                                devid, dev_uuid);
6442        } else {
6443                if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6444                        return -EIO;
6445
6446                if(!device->bdev && !device->missing) {
6447                        /*
6448                         * this happens when a device that was properly setup
6449                         * in the device info lists suddenly goes bad.
6450                         * device->bdev is NULL, and so we have to set
6451                         * device->missing to one here
6452                         */
6453                        device->fs_devices->missing_devices++;
6454                        device->missing = 1;
6455                }
6456
6457                /* Move the device to its own fs_devices */
6458                if (device->fs_devices != fs_devices) {
6459                        ASSERT(device->missing);
6460
6461                        list_move(&device->dev_list, &fs_devices->devices);
6462                        device->fs_devices->num_devices--;
6463                        fs_devices->num_devices++;
6464
6465                        device->fs_devices->missing_devices--;
6466                        fs_devices->missing_devices++;
6467
6468                        device->fs_devices = fs_devices;
6469                }
6470        }
6471
6472        if (device->fs_devices != root->fs_info->fs_devices) {
6473                BUG_ON(device->writeable);
6474                if (device->generation !=
6475                    btrfs_device_generation(leaf, dev_item))
6476                        return -EINVAL;
6477        }
6478
6479        fill_device_from_item(leaf, dev_item, device);
6480        device->in_fs_metadata = 1;
6481        if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6482                device->fs_devices->total_rw_bytes += device->total_bytes;
6483                spin_lock(&root->fs_info->free_chunk_lock);
6484                root->fs_info->free_chunk_space += device->total_bytes -
6485                        device->bytes_used;
6486                spin_unlock(&root->fs_info->free_chunk_lock);
6487        }
6488        ret = 0;
6489        return ret;
6490}
6491
6492int btrfs_read_sys_array(struct btrfs_root *root)
6493{
6494        struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6495        struct extent_buffer *sb;
6496        struct btrfs_disk_key *disk_key;
6497        struct btrfs_chunk *chunk;
6498        u8 *array_ptr;
6499        unsigned long sb_array_offset;
6500        int ret = 0;
6501        u32 num_stripes;
6502        u32 array_size;
6503        u32 len = 0;
6504        u32 cur_offset;
6505        struct btrfs_key key;
6506
6507        ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6508        /*
6509         * This will create extent buffer of nodesize, superblock size is
6510         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6511         * overallocate but we can keep it as-is, only the first page is used.
6512         */
6513        sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6514        if (!sb)
6515                return -ENOMEM;
6516        set_extent_buffer_uptodate(sb);
6517        btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6518        /*
6519         * The sb extent buffer is artifical and just used to read the system array.
6520         * set_extent_buffer_uptodate() call does not properly mark all it's
6521         * pages up-to-date when the page is larger: extent does not cover the
6522         * whole page and consequently check_page_uptodate does not find all
6523         * the page's extents up-to-date (the hole beyond sb),
6524         * write_extent_buffer then triggers a WARN_ON.
6525         *
6526         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6527         * but sb spans only this function. Add an explicit SetPageUptodate call
6528         * to silence the warning eg. on PowerPC 64.
6529         */
6530        if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6531                SetPageUptodate(sb->pages[0]);
6532
6533        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6534        array_size = btrfs_super_sys_array_size(super_copy);
6535
6536        array_ptr = super_copy->sys_chunk_array;
6537        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6538        cur_offset = 0;
6539
6540        while (cur_offset < array_size) {
6541                disk_key = (struct btrfs_disk_key *)array_ptr;
6542                len = sizeof(*disk_key);
6543                if (cur_offset + len > array_size)
6544                        goto out_short_read;
6545
6546                btrfs_disk_key_to_cpu(&key, disk_key);
6547
6548                array_ptr += len;
6549                sb_array_offset += len;
6550                cur_offset += len;
6551
6552                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6553                        chunk = (struct btrfs_chunk *)sb_array_offset;
6554                        /*
6555                         * At least one btrfs_chunk with one stripe must be
6556                         * present, exact stripe count check comes afterwards
6557                         */
6558                        len = btrfs_chunk_item_size(1);
6559                        if (cur_offset + len > array_size)
6560                                goto out_short_read;
6561
6562                        num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6563                        if (!num_stripes) {
6564                                printk(KERN_ERR
6565            "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6566                                        num_stripes, cur_offset);
6567                                ret = -EIO;
6568                                break;
6569                        }
6570
6571                        len = btrfs_chunk_item_size(num_stripes);
6572                        if (cur_offset + len > array_size)
6573                                goto out_short_read;
6574
6575                        ret = read_one_chunk(root, &key, sb, chunk);
6576                        if (ret)
6577                                break;
6578                } else {
6579                        printk(KERN_ERR
6580                "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6581                                (u32)key.type, cur_offset);
6582                        ret = -EIO;
6583                        break;
6584                }
6585                array_ptr += len;
6586                sb_array_offset += len;
6587                cur_offset += len;
6588        }
6589        free_extent_buffer(sb);
6590        return ret;
6591
6592out_short_read:
6593        printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6594                        len, cur_offset);
6595        free_extent_buffer(sb);
6596        return -EIO;
6597}
6598
6599int btrfs_read_chunk_tree(struct btrfs_root *root)
6600{
6601        struct btrfs_path *path;
6602        struct extent_buffer *leaf;
6603        struct btrfs_key key;
6604        struct btrfs_key found_key;
6605        int ret;
6606        int slot;
6607
6608        root = root->fs_info->chunk_root;
6609
6610        path = btrfs_alloc_path();
6611        if (!path)
6612                return -ENOMEM;
6613
6614        mutex_lock(&uuid_mutex);
6615        lock_chunks(root);
6616
6617        /*
6618         * Read all device items, and then all the chunk items. All
6619         * device items are found before any chunk item (their object id
6620         * is smaller than the lowest possible object id for a chunk
6621         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6622         */
6623        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6624        key.offset = 0;
6625        key.type = 0;
6626        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6627        if (ret < 0)
6628                goto error;
6629        while (1) {
6630                leaf = path->nodes[0];
6631                slot = path->slots[0];
6632                if (slot >= btrfs_header_nritems(leaf)) {
6633                        ret = btrfs_next_leaf(root, path);
6634                        if (ret == 0)
6635                                continue;
6636                        if (ret < 0)
6637                                goto error;
6638                        break;
6639                }
6640                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6641                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6642                        struct btrfs_dev_item *dev_item;
6643                        dev_item = btrfs_item_ptr(leaf, slot,
6644                                                  struct btrfs_dev_item);
6645                        ret = read_one_dev(root, leaf, dev_item);
6646                        if (ret)
6647                                goto error;
6648                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6649                        struct btrfs_chunk *chunk;
6650                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6651                        ret = read_one_chunk(root, &found_key, leaf, chunk);
6652                        if (ret)
6653                                goto error;
6654                }
6655                path->slots[0]++;
6656        }
6657        ret = 0;
6658error:
6659        unlock_chunks(root);
6660        mutex_unlock(&uuid_mutex);
6661
6662        btrfs_free_path(path);
6663        return ret;
6664}
6665
6666void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6667{
6668        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669        struct btrfs_device *device;
6670
6671        while (fs_devices) {
6672                mutex_lock(&fs_devices->device_list_mutex);
6673                list_for_each_entry(device, &fs_devices->devices, dev_list)
6674                        device->dev_root = fs_info->dev_root;
6675                mutex_unlock(&fs_devices->device_list_mutex);
6676
6677                fs_devices = fs_devices->seed;
6678        }
6679}
6680
6681static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6682{
6683        int i;
6684
6685        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6686                btrfs_dev_stat_reset(dev, i);
6687}
6688
6689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6690{
6691        struct btrfs_key key;
6692        struct btrfs_key found_key;
6693        struct btrfs_root *dev_root = fs_info->dev_root;
6694        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6695        struct extent_buffer *eb;
6696        int slot;
6697        int ret = 0;
6698        struct btrfs_device *device;
6699        struct btrfs_path *path = NULL;
6700        int i;
6701
6702        path = btrfs_alloc_path();
6703        if (!path) {
6704                ret = -ENOMEM;
6705                goto out;
6706        }
6707
6708        mutex_lock(&fs_devices->device_list_mutex);
6709        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6710                int item_size;
6711                struct btrfs_dev_stats_item *ptr;
6712
6713                key.objectid = BTRFS_DEV_STATS_OBJECTID;
6714                key.type = BTRFS_PERSISTENT_ITEM_KEY;
6715                key.offset = device->devid;
6716                ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6717                if (ret) {
6718                        __btrfs_reset_dev_stats(device);
6719                        device->dev_stats_valid = 1;
6720                        btrfs_release_path(path);
6721                        continue;
6722                }
6723                slot = path->slots[0];
6724                eb = path->nodes[0];
6725                btrfs_item_key_to_cpu(eb, &found_key, slot);
6726                item_size = btrfs_item_size_nr(eb, slot);
6727
6728                ptr = btrfs_item_ptr(eb, slot,
6729                                     struct btrfs_dev_stats_item);
6730
6731                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6732                        if (item_size >= (1 + i) * sizeof(__le64))
6733                                btrfs_dev_stat_set(device, i,
6734                                        btrfs_dev_stats_value(eb, ptr, i));
6735                        else
6736                                btrfs_dev_stat_reset(device, i);
6737                }
6738
6739                device->dev_stats_valid = 1;
6740                btrfs_dev_stat_print_on_load(device);
6741                btrfs_release_path(path);
6742        }
6743        mutex_unlock(&fs_devices->device_list_mutex);
6744
6745out:
6746        btrfs_free_path(path);
6747        return ret < 0 ? ret : 0;
6748}
6749
6750static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6751                                struct btrfs_root *dev_root,
6752                                struct btrfs_device *device)
6753{
6754        struct btrfs_path *path;
6755        struct btrfs_key key;
6756        struct extent_buffer *eb;
6757        struct btrfs_dev_stats_item *ptr;
6758        int ret;
6759        int i;
6760
6761        key.objectid = BTRFS_DEV_STATS_OBJECTID;
6762        key.type = BTRFS_PERSISTENT_ITEM_KEY;
6763        key.offset = device->devid;
6764
6765        path = btrfs_alloc_path();
6766        BUG_ON(!path);
6767        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6768        if (ret < 0) {
6769                btrfs_warn_in_rcu(dev_root->fs_info,
6770                        "error %d while searching for dev_stats item for device %s",
6771                              ret, rcu_str_deref(device->name));
6772                goto out;
6773        }
6774
6775        if (ret == 0 &&
6776            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6777                /* need to delete old one and insert a new one */
6778                ret = btrfs_del_item(trans, dev_root, path);
6779                if (ret != 0) {
6780                        btrfs_warn_in_rcu(dev_root->fs_info,
6781                                "delete too small dev_stats item for device %s failed %d",
6782                                      rcu_str_deref(device->name), ret);
6783                        goto out;
6784                }
6785                ret = 1;
6786        }
6787
6788        if (ret == 1) {
6789                /* need to insert a new item */
6790                btrfs_release_path(path);
6791                ret = btrfs_insert_empty_item(trans, dev_root, path,
6792                                              &key, sizeof(*ptr));
6793                if (ret < 0) {
6794                        btrfs_warn_in_rcu(dev_root->fs_info,
6795                                "insert dev_stats item for device %s failed %d",
6796                                rcu_str_deref(device->name), ret);
6797                        goto out;
6798                }
6799        }
6800
6801        eb = path->nodes[0];
6802        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6803        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6804                btrfs_set_dev_stats_value(eb, ptr, i,
6805                                          btrfs_dev_stat_read(device, i));
6806        btrfs_mark_buffer_dirty(eb);
6807
6808out:
6809        btrfs_free_path(path);
6810        return ret;
6811}
6812
6813/*
6814 * called from commit_transaction. Writes all changed device stats to disk.
6815 */
6816int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6817                        struct btrfs_fs_info *fs_info)
6818{
6819        struct btrfs_root *dev_root = fs_info->dev_root;
6820        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821        struct btrfs_device *device;
6822        int stats_cnt;
6823        int ret = 0;
6824
6825        mutex_lock(&fs_devices->device_list_mutex);
6826        list_for_each_entry(device, &fs_devices->devices, dev_list) {
6827                if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6828                        continue;
6829
6830                stats_cnt = atomic_read(&device->dev_stats_ccnt);
6831                ret = update_dev_stat_item(trans, dev_root, device);
6832                if (!ret)
6833                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6834        }
6835        mutex_unlock(&fs_devices->device_list_mutex);
6836
6837        return ret;
6838}
6839
6840void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6841{
6842        btrfs_dev_stat_inc(dev, index);
6843        btrfs_dev_stat_print_on_error(dev);
6844}
6845
6846static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6847{
6848        if (!dev->dev_stats_valid)
6849                return;
6850        btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6851                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6852                           rcu_str_deref(dev->name),
6853                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6854                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6855                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6856                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6857                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6858}
6859
6860static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6861{
6862        int i;
6863
6864        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6865                if (btrfs_dev_stat_read(dev, i) != 0)
6866                        break;
6867        if (i == BTRFS_DEV_STAT_VALUES_MAX)
6868                return; /* all values == 0, suppress message */
6869
6870        btrfs_info_in_rcu(dev->dev_root->fs_info,
6871                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6872               rcu_str_deref(dev->name),
6873               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6874               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6875               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6876               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6877               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6878}
6879
6880int btrfs_get_dev_stats(struct btrfs_root *root,
6881                        struct btrfs_ioctl_get_dev_stats *stats)
6882{
6883        struct btrfs_device *dev;
6884        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6885        int i;
6886
6887        mutex_lock(&fs_devices->device_list_mutex);
6888        dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6889        mutex_unlock(&fs_devices->device_list_mutex);
6890
6891        if (!dev) {
6892                btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6893                return -ENODEV;
6894        } else if (!dev->dev_stats_valid) {
6895                btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6896                return -ENODEV;
6897        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6898                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6899                        if (stats->nr_items > i)
6900                                stats->values[i] =
6901                                        btrfs_dev_stat_read_and_reset(dev, i);
6902                        else
6903                                btrfs_dev_stat_reset(dev, i);
6904                }
6905        } else {
6906                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6907                        if (stats->nr_items > i)
6908                                stats->values[i] = btrfs_dev_stat_read(dev, i);
6909        }
6910        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6911                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6912        return 0;
6913}
6914
6915void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6916{
6917        struct buffer_head *bh;
6918        struct btrfs_super_block *disk_super;
6919        int copy_num;
6920
6921        if (!bdev)
6922                return;
6923
6924        for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6925                copy_num++) {
6926
6927                if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6928                        continue;
6929
6930                disk_super = (struct btrfs_super_block *)bh->b_data;
6931
6932                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6933                set_buffer_dirty(bh);
6934                sync_dirty_buffer(bh);
6935                brelse(bh);
6936        }
6937
6938        /* Notify udev that device has changed */
6939        btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6940
6941        /* Update ctime/mtime for device path for libblkid */
6942        update_dev_time(device_path);
6943}
6944
6945/*
6946 * Update the size of all devices, which is used for writing out the
6947 * super blocks.
6948 */
6949void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6950{
6951        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6952        struct btrfs_device *curr, *next;
6953
6954        if (list_empty(&fs_devices->resized_devices))
6955                return;
6956
6957        mutex_lock(&fs_devices->device_list_mutex);
6958        lock_chunks(fs_info->dev_root);
6959        list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6960                                 resized_list) {
6961                list_del_init(&curr->resized_list);
6962                curr->commit_total_bytes = curr->disk_total_bytes;
6963        }
6964        unlock_chunks(fs_info->dev_root);
6965        mutex_unlock(&fs_devices->device_list_mutex);
6966}
6967
6968/* Must be invoked during the transaction commit */
6969void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6970                                        struct btrfs_transaction *transaction)
6971{
6972        struct extent_map *em;
6973        struct map_lookup *map;
6974        struct btrfs_device *dev;
6975        int i;
6976
6977        if (list_empty(&transaction->pending_chunks))
6978                return;
6979
6980        /* In order to kick the device replace finish process */
6981        lock_chunks(root);
6982        list_for_each_entry(em, &transaction->pending_chunks, list) {
6983                map = em->map_lookup;
6984
6985                for (i = 0; i < map->num_stripes; i++) {
6986                        dev = map->stripes[i].dev;
6987                        dev->commit_bytes_used = dev->bytes_used;
6988                }
6989        }
6990        unlock_chunks(root);
6991}
6992
6993void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6994{
6995        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996        while (fs_devices) {
6997                fs_devices->fs_info = fs_info;
6998                fs_devices = fs_devices->seed;
6999        }
7000}
7001
7002void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7003{
7004        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005        while (fs_devices) {
7006                fs_devices->fs_info = NULL;
7007                fs_devices = fs_devices->seed;
7008        }
7009}
7010
7011static void btrfs_close_one_device(struct btrfs_device *device)
7012{
7013        struct btrfs_fs_devices *fs_devices = device->fs_devices;
7014        struct btrfs_device *new_device;
7015        struct rcu_string *name;
7016
7017        if (device->bdev)
7018                fs_devices->open_devices--;
7019
7020        if (device->writeable &&
7021            device->devid != BTRFS_DEV_REPLACE_DEVID) {
7022                list_del_init(&device->dev_alloc_list);
7023                fs_devices->rw_devices--;
7024        }
7025
7026        if (device->missing)
7027                fs_devices->missing_devices--;
7028
7029        new_device = btrfs_alloc_device(NULL, &device->devid,
7030                                        device->uuid);
7031        BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7032
7033        /* Safe because we are under uuid_mutex */
7034        if (device->name) {
7035                name = rcu_string_strdup(device->name->str, GFP_NOFS);
7036                BUG_ON(!name); /* -ENOMEM */
7037                rcu_assign_pointer(new_device->name, name);
7038        }
7039
7040        list_replace_rcu(&device->dev_list, &new_device->dev_list);
7041        new_device->fs_devices = device->fs_devices;
7042
7043        call_rcu(&device->rcu, free_device);
7044}
7045