linux/fs/dax.c
<<
>>
Prefs
   1/*
   2 * fs/dax.c - Direct Access filesystem code
   3 * Copyright (c) 2013-2014 Intel Corporation
   4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/blkdev.h>
  19#include <linux/buffer_head.h>
  20#include <linux/dax.h>
  21#include <linux/fs.h>
  22#include <linux/genhd.h>
  23#include <linux/highmem.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/pagevec.h>
  28#include <linux/pmem.h>
  29#include <linux/sched.h>
  30#include <linux/uio.h>
  31#include <linux/vmstat.h>
  32#include <linux/pfn_t.h>
  33#include <linux/sizes.h>
  34
  35static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
  36{
  37        struct request_queue *q = bdev->bd_queue;
  38        long rc = -EIO;
  39
  40        dax->addr = (void __pmem *) ERR_PTR(-EIO);
  41        if (blk_queue_enter(q, true) != 0)
  42                return rc;
  43
  44        rc = bdev_direct_access(bdev, dax);
  45        if (rc < 0) {
  46                dax->addr = (void __pmem *) ERR_PTR(rc);
  47                blk_queue_exit(q);
  48                return rc;
  49        }
  50        return rc;
  51}
  52
  53static void dax_unmap_atomic(struct block_device *bdev,
  54                const struct blk_dax_ctl *dax)
  55{
  56        if (IS_ERR(dax->addr))
  57                return;
  58        blk_queue_exit(bdev->bd_queue);
  59}
  60
  61struct page *read_dax_sector(struct block_device *bdev, sector_t n)
  62{
  63        struct page *page = alloc_pages(GFP_KERNEL, 0);
  64        struct blk_dax_ctl dax = {
  65                .size = PAGE_SIZE,
  66                .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
  67        };
  68        long rc;
  69
  70        if (!page)
  71                return ERR_PTR(-ENOMEM);
  72
  73        rc = dax_map_atomic(bdev, &dax);
  74        if (rc < 0)
  75                return ERR_PTR(rc);
  76        memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
  77        dax_unmap_atomic(bdev, &dax);
  78        return page;
  79}
  80
  81/*
  82 * dax_clear_sectors() is called from within transaction context from XFS,
  83 * and hence this means the stack from this point must follow GFP_NOFS
  84 * semantics for all operations.
  85 */
  86int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size)
  87{
  88        struct blk_dax_ctl dax = {
  89                .sector = _sector,
  90                .size = _size,
  91        };
  92
  93        might_sleep();
  94        do {
  95                long count, sz;
  96
  97                count = dax_map_atomic(bdev, &dax);
  98                if (count < 0)
  99                        return count;
 100                sz = min_t(long, count, SZ_128K);
 101                clear_pmem(dax.addr, sz);
 102                dax.size -= sz;
 103                dax.sector += sz / 512;
 104                dax_unmap_atomic(bdev, &dax);
 105                cond_resched();
 106        } while (dax.size);
 107
 108        wmb_pmem();
 109        return 0;
 110}
 111EXPORT_SYMBOL_GPL(dax_clear_sectors);
 112
 113/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
 114static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
 115                loff_t pos, loff_t end)
 116{
 117        loff_t final = end - pos + first; /* The final byte of the buffer */
 118
 119        if (first > 0)
 120                clear_pmem(addr, first);
 121        if (final < size)
 122                clear_pmem(addr + final, size - final);
 123}
 124
 125static bool buffer_written(struct buffer_head *bh)
 126{
 127        return buffer_mapped(bh) && !buffer_unwritten(bh);
 128}
 129
 130/*
 131 * When ext4 encounters a hole, it returns without modifying the buffer_head
 132 * which means that we can't trust b_size.  To cope with this, we set b_state
 133 * to 0 before calling get_block and, if any bit is set, we know we can trust
 134 * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 135 * and would save us time calling get_block repeatedly.
 136 */
 137static bool buffer_size_valid(struct buffer_head *bh)
 138{
 139        return bh->b_state != 0;
 140}
 141
 142
 143static sector_t to_sector(const struct buffer_head *bh,
 144                const struct inode *inode)
 145{
 146        sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
 147
 148        return sector;
 149}
 150
 151static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
 152                      loff_t start, loff_t end, get_block_t get_block,
 153                      struct buffer_head *bh)
 154{
 155        loff_t pos = start, max = start, bh_max = start;
 156        bool hole = false, need_wmb = false;
 157        struct block_device *bdev = NULL;
 158        int rw = iov_iter_rw(iter), rc;
 159        long map_len = 0;
 160        struct blk_dax_ctl dax = {
 161                .addr = (void __pmem *) ERR_PTR(-EIO),
 162        };
 163
 164        if (rw == READ)
 165                end = min(end, i_size_read(inode));
 166
 167        while (pos < end) {
 168                size_t len;
 169                if (pos == max) {
 170                        unsigned blkbits = inode->i_blkbits;
 171                        long page = pos >> PAGE_SHIFT;
 172                        sector_t block = page << (PAGE_SHIFT - blkbits);
 173                        unsigned first = pos - (block << blkbits);
 174                        long size;
 175
 176                        if (pos == bh_max) {
 177                                bh->b_size = PAGE_ALIGN(end - pos);
 178                                bh->b_state = 0;
 179                                rc = get_block(inode, block, bh, rw == WRITE);
 180                                if (rc)
 181                                        break;
 182                                if (!buffer_size_valid(bh))
 183                                        bh->b_size = 1 << blkbits;
 184                                bh_max = pos - first + bh->b_size;
 185                                bdev = bh->b_bdev;
 186                        } else {
 187                                unsigned done = bh->b_size -
 188                                                (bh_max - (pos - first));
 189                                bh->b_blocknr += done >> blkbits;
 190                                bh->b_size -= done;
 191                        }
 192
 193                        hole = rw == READ && !buffer_written(bh);
 194                        if (hole) {
 195                                size = bh->b_size - first;
 196                        } else {
 197                                dax_unmap_atomic(bdev, &dax);
 198                                dax.sector = to_sector(bh, inode);
 199                                dax.size = bh->b_size;
 200                                map_len = dax_map_atomic(bdev, &dax);
 201                                if (map_len < 0) {
 202                                        rc = map_len;
 203                                        break;
 204                                }
 205                                if (buffer_unwritten(bh) || buffer_new(bh)) {
 206                                        dax_new_buf(dax.addr, map_len, first,
 207                                                        pos, end);
 208                                        need_wmb = true;
 209                                }
 210                                dax.addr += first;
 211                                size = map_len - first;
 212                        }
 213                        max = min(pos + size, end);
 214                }
 215
 216                if (iov_iter_rw(iter) == WRITE) {
 217                        len = copy_from_iter_pmem(dax.addr, max - pos, iter);
 218                        need_wmb = true;
 219                } else if (!hole)
 220                        len = copy_to_iter((void __force *) dax.addr, max - pos,
 221                                        iter);
 222                else
 223                        len = iov_iter_zero(max - pos, iter);
 224
 225                if (!len) {
 226                        rc = -EFAULT;
 227                        break;
 228                }
 229
 230                pos += len;
 231                if (!IS_ERR(dax.addr))
 232                        dax.addr += len;
 233        }
 234
 235        if (need_wmb)
 236                wmb_pmem();
 237        dax_unmap_atomic(bdev, &dax);
 238
 239        return (pos == start) ? rc : pos - start;
 240}
 241
 242/**
 243 * dax_do_io - Perform I/O to a DAX file
 244 * @iocb: The control block for this I/O
 245 * @inode: The file which the I/O is directed at
 246 * @iter: The addresses to do I/O from or to
 247 * @pos: The file offset where the I/O starts
 248 * @get_block: The filesystem method used to translate file offsets to blocks
 249 * @end_io: A filesystem callback for I/O completion
 250 * @flags: See below
 251 *
 252 * This function uses the same locking scheme as do_blockdev_direct_IO:
 253 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 254 * caller for writes.  For reads, we take and release the i_mutex ourselves.
 255 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 256 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 257 * is in progress.
 258 */
 259ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
 260                  struct iov_iter *iter, loff_t pos, get_block_t get_block,
 261                  dio_iodone_t end_io, int flags)
 262{
 263        struct buffer_head bh;
 264        ssize_t retval = -EINVAL;
 265        loff_t end = pos + iov_iter_count(iter);
 266
 267        memset(&bh, 0, sizeof(bh));
 268        bh.b_bdev = inode->i_sb->s_bdev;
 269
 270        if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
 271                struct address_space *mapping = inode->i_mapping;
 272                inode_lock(inode);
 273                retval = filemap_write_and_wait_range(mapping, pos, end - 1);
 274                if (retval) {
 275                        inode_unlock(inode);
 276                        goto out;
 277                }
 278        }
 279
 280        /* Protects against truncate */
 281        if (!(flags & DIO_SKIP_DIO_COUNT))
 282                inode_dio_begin(inode);
 283
 284        retval = dax_io(inode, iter, pos, end, get_block, &bh);
 285
 286        if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
 287                inode_unlock(inode);
 288
 289        if (end_io) {
 290                int err;
 291
 292                err = end_io(iocb, pos, retval, bh.b_private);
 293                if (err)
 294                        retval = err;
 295        }
 296
 297        if (!(flags & DIO_SKIP_DIO_COUNT))
 298                inode_dio_end(inode);
 299 out:
 300        return retval;
 301}
 302EXPORT_SYMBOL_GPL(dax_do_io);
 303
 304/*
 305 * The user has performed a load from a hole in the file.  Allocating
 306 * a new page in the file would cause excessive storage usage for
 307 * workloads with sparse files.  We allocate a page cache page instead.
 308 * We'll kick it out of the page cache if it's ever written to,
 309 * otherwise it will simply fall out of the page cache under memory
 310 * pressure without ever having been dirtied.
 311 */
 312static int dax_load_hole(struct address_space *mapping, struct page *page,
 313                                                        struct vm_fault *vmf)
 314{
 315        unsigned long size;
 316        struct inode *inode = mapping->host;
 317        if (!page)
 318                page = find_or_create_page(mapping, vmf->pgoff,
 319                                                GFP_KERNEL | __GFP_ZERO);
 320        if (!page)
 321                return VM_FAULT_OOM;
 322        /* Recheck i_size under page lock to avoid truncate race */
 323        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 324        if (vmf->pgoff >= size) {
 325                unlock_page(page);
 326                put_page(page);
 327                return VM_FAULT_SIGBUS;
 328        }
 329
 330        vmf->page = page;
 331        return VM_FAULT_LOCKED;
 332}
 333
 334static int copy_user_bh(struct page *to, struct inode *inode,
 335                struct buffer_head *bh, unsigned long vaddr)
 336{
 337        struct blk_dax_ctl dax = {
 338                .sector = to_sector(bh, inode),
 339                .size = bh->b_size,
 340        };
 341        struct block_device *bdev = bh->b_bdev;
 342        void *vto;
 343
 344        if (dax_map_atomic(bdev, &dax) < 0)
 345                return PTR_ERR(dax.addr);
 346        vto = kmap_atomic(to);
 347        copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
 348        kunmap_atomic(vto);
 349        dax_unmap_atomic(bdev, &dax);
 350        return 0;
 351}
 352
 353#define NO_SECTOR -1
 354#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
 355
 356static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
 357                sector_t sector, bool pmd_entry, bool dirty)
 358{
 359        struct radix_tree_root *page_tree = &mapping->page_tree;
 360        pgoff_t pmd_index = DAX_PMD_INDEX(index);
 361        int type, error = 0;
 362        void *entry;
 363
 364        WARN_ON_ONCE(pmd_entry && !dirty);
 365        if (dirty)
 366                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 367
 368        spin_lock_irq(&mapping->tree_lock);
 369
 370        entry = radix_tree_lookup(page_tree, pmd_index);
 371        if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
 372                index = pmd_index;
 373                goto dirty;
 374        }
 375
 376        entry = radix_tree_lookup(page_tree, index);
 377        if (entry) {
 378                type = RADIX_DAX_TYPE(entry);
 379                if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
 380                                        type != RADIX_DAX_PMD)) {
 381                        error = -EIO;
 382                        goto unlock;
 383                }
 384
 385                if (!pmd_entry || type == RADIX_DAX_PMD)
 386                        goto dirty;
 387
 388                /*
 389                 * We only insert dirty PMD entries into the radix tree.  This
 390                 * means we don't need to worry about removing a dirty PTE
 391                 * entry and inserting a clean PMD entry, thus reducing the
 392                 * range we would flush with a follow-up fsync/msync call.
 393                 */
 394                radix_tree_delete(&mapping->page_tree, index);
 395                mapping->nrexceptional--;
 396        }
 397
 398        if (sector == NO_SECTOR) {
 399                /*
 400                 * This can happen during correct operation if our pfn_mkwrite
 401                 * fault raced against a hole punch operation.  If this
 402                 * happens the pte that was hole punched will have been
 403                 * unmapped and the radix tree entry will have been removed by
 404                 * the time we are called, but the call will still happen.  We
 405                 * will return all the way up to wp_pfn_shared(), where the
 406                 * pte_same() check will fail, eventually causing page fault
 407                 * to be retried by the CPU.
 408                 */
 409                goto unlock;
 410        }
 411
 412        error = radix_tree_insert(page_tree, index,
 413                        RADIX_DAX_ENTRY(sector, pmd_entry));
 414        if (error)
 415                goto unlock;
 416
 417        mapping->nrexceptional++;
 418 dirty:
 419        if (dirty)
 420                radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 421 unlock:
 422        spin_unlock_irq(&mapping->tree_lock);
 423        return error;
 424}
 425
 426static int dax_writeback_one(struct block_device *bdev,
 427                struct address_space *mapping, pgoff_t index, void *entry)
 428{
 429        struct radix_tree_root *page_tree = &mapping->page_tree;
 430        int type = RADIX_DAX_TYPE(entry);
 431        struct radix_tree_node *node;
 432        struct blk_dax_ctl dax;
 433        void **slot;
 434        int ret = 0;
 435
 436        spin_lock_irq(&mapping->tree_lock);
 437        /*
 438         * Regular page slots are stabilized by the page lock even
 439         * without the tree itself locked.  These unlocked entries
 440         * need verification under the tree lock.
 441         */
 442        if (!__radix_tree_lookup(page_tree, index, &node, &slot))
 443                goto unlock;
 444        if (*slot != entry)
 445                goto unlock;
 446
 447        /* another fsync thread may have already written back this entry */
 448        if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
 449                goto unlock;
 450
 451        if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
 452                ret = -EIO;
 453                goto unlock;
 454        }
 455
 456        dax.sector = RADIX_DAX_SECTOR(entry);
 457        dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
 458        spin_unlock_irq(&mapping->tree_lock);
 459
 460        /*
 461         * We cannot hold tree_lock while calling dax_map_atomic() because it
 462         * eventually calls cond_resched().
 463         */
 464        ret = dax_map_atomic(bdev, &dax);
 465        if (ret < 0)
 466                return ret;
 467
 468        if (WARN_ON_ONCE(ret < dax.size)) {
 469                ret = -EIO;
 470                goto unmap;
 471        }
 472
 473        wb_cache_pmem(dax.addr, dax.size);
 474
 475        spin_lock_irq(&mapping->tree_lock);
 476        radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
 477        spin_unlock_irq(&mapping->tree_lock);
 478 unmap:
 479        dax_unmap_atomic(bdev, &dax);
 480        return ret;
 481
 482 unlock:
 483        spin_unlock_irq(&mapping->tree_lock);
 484        return ret;
 485}
 486
 487/*
 488 * Flush the mapping to the persistent domain within the byte range of [start,
 489 * end]. This is required by data integrity operations to ensure file data is
 490 * on persistent storage prior to completion of the operation.
 491 */
 492int dax_writeback_mapping_range(struct address_space *mapping,
 493                struct block_device *bdev, struct writeback_control *wbc)
 494{
 495        struct inode *inode = mapping->host;
 496        pgoff_t start_index, end_index, pmd_index;
 497        pgoff_t indices[PAGEVEC_SIZE];
 498        struct pagevec pvec;
 499        bool done = false;
 500        int i, ret = 0;
 501        void *entry;
 502
 503        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 504                return -EIO;
 505
 506        if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
 507                return 0;
 508
 509        start_index = wbc->range_start >> PAGE_SHIFT;
 510        end_index = wbc->range_end >> PAGE_SHIFT;
 511        pmd_index = DAX_PMD_INDEX(start_index);
 512
 513        rcu_read_lock();
 514        entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
 515        rcu_read_unlock();
 516
 517        /* see if the start of our range is covered by a PMD entry */
 518        if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
 519                start_index = pmd_index;
 520
 521        tag_pages_for_writeback(mapping, start_index, end_index);
 522
 523        pagevec_init(&pvec, 0);
 524        while (!done) {
 525                pvec.nr = find_get_entries_tag(mapping, start_index,
 526                                PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
 527                                pvec.pages, indices);
 528
 529                if (pvec.nr == 0)
 530                        break;
 531
 532                for (i = 0; i < pvec.nr; i++) {
 533                        if (indices[i] > end_index) {
 534                                done = true;
 535                                break;
 536                        }
 537
 538                        ret = dax_writeback_one(bdev, mapping, indices[i],
 539                                        pvec.pages[i]);
 540                        if (ret < 0)
 541                                return ret;
 542                }
 543        }
 544        wmb_pmem();
 545        return 0;
 546}
 547EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
 548
 549static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
 550                        struct vm_area_struct *vma, struct vm_fault *vmf)
 551{
 552        unsigned long vaddr = (unsigned long)vmf->virtual_address;
 553        struct address_space *mapping = inode->i_mapping;
 554        struct block_device *bdev = bh->b_bdev;
 555        struct blk_dax_ctl dax = {
 556                .sector = to_sector(bh, inode),
 557                .size = bh->b_size,
 558        };
 559        pgoff_t size;
 560        int error;
 561
 562        i_mmap_lock_read(mapping);
 563
 564        /*
 565         * Check truncate didn't happen while we were allocating a block.
 566         * If it did, this block may or may not be still allocated to the
 567         * file.  We can't tell the filesystem to free it because we can't
 568         * take i_mutex here.  In the worst case, the file still has blocks
 569         * allocated past the end of the file.
 570         */
 571        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 572        if (unlikely(vmf->pgoff >= size)) {
 573                error = -EIO;
 574                goto out;
 575        }
 576
 577        if (dax_map_atomic(bdev, &dax) < 0) {
 578                error = PTR_ERR(dax.addr);
 579                goto out;
 580        }
 581
 582        if (buffer_unwritten(bh) || buffer_new(bh)) {
 583                clear_pmem(dax.addr, PAGE_SIZE);
 584                wmb_pmem();
 585        }
 586        dax_unmap_atomic(bdev, &dax);
 587
 588        error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
 589                        vmf->flags & FAULT_FLAG_WRITE);
 590        if (error)
 591                goto out;
 592
 593        error = vm_insert_mixed(vma, vaddr, dax.pfn);
 594
 595 out:
 596        i_mmap_unlock_read(mapping);
 597
 598        return error;
 599}
 600
 601/**
 602 * __dax_fault - handle a page fault on a DAX file
 603 * @vma: The virtual memory area where the fault occurred
 604 * @vmf: The description of the fault
 605 * @get_block: The filesystem method used to translate file offsets to blocks
 606 * @complete_unwritten: The filesystem method used to convert unwritten blocks
 607 *      to written so the data written to them is exposed. This is required for
 608 *      required by write faults for filesystems that will return unwritten
 609 *      extent mappings from @get_block, but it is optional for reads as
 610 *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
 611 *      not support unwritten extents, the it should pass NULL.
 612 *
 613 * When a page fault occurs, filesystems may call this helper in their
 614 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 615 * the necessary locking for the page fault to proceed successfully.
 616 */
 617int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 618                        get_block_t get_block, dax_iodone_t complete_unwritten)
 619{
 620        struct file *file = vma->vm_file;
 621        struct address_space *mapping = file->f_mapping;
 622        struct inode *inode = mapping->host;
 623        struct page *page;
 624        struct buffer_head bh;
 625        unsigned long vaddr = (unsigned long)vmf->virtual_address;
 626        unsigned blkbits = inode->i_blkbits;
 627        sector_t block;
 628        pgoff_t size;
 629        int error;
 630        int major = 0;
 631
 632        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 633        if (vmf->pgoff >= size)
 634                return VM_FAULT_SIGBUS;
 635
 636        memset(&bh, 0, sizeof(bh));
 637        block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
 638        bh.b_bdev = inode->i_sb->s_bdev;
 639        bh.b_size = PAGE_SIZE;
 640
 641 repeat:
 642        page = find_get_page(mapping, vmf->pgoff);
 643        if (page) {
 644                if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
 645                        put_page(page);
 646                        return VM_FAULT_RETRY;
 647                }
 648                if (unlikely(page->mapping != mapping)) {
 649                        unlock_page(page);
 650                        put_page(page);
 651                        goto repeat;
 652                }
 653                size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 654                if (unlikely(vmf->pgoff >= size)) {
 655                        /*
 656                         * We have a struct page covering a hole in the file
 657                         * from a read fault and we've raced with a truncate
 658                         */
 659                        error = -EIO;
 660                        goto unlock_page;
 661                }
 662        }
 663
 664        error = get_block(inode, block, &bh, 0);
 665        if (!error && (bh.b_size < PAGE_SIZE))
 666                error = -EIO;           /* fs corruption? */
 667        if (error)
 668                goto unlock_page;
 669
 670        if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
 671                if (vmf->flags & FAULT_FLAG_WRITE) {
 672                        error = get_block(inode, block, &bh, 1);
 673                        count_vm_event(PGMAJFAULT);
 674                        mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 675                        major = VM_FAULT_MAJOR;
 676                        if (!error && (bh.b_size < PAGE_SIZE))
 677                                error = -EIO;
 678                        if (error)
 679                                goto unlock_page;
 680                } else {
 681                        return dax_load_hole(mapping, page, vmf);
 682                }
 683        }
 684
 685        if (vmf->cow_page) {
 686                struct page *new_page = vmf->cow_page;
 687                if (buffer_written(&bh))
 688                        error = copy_user_bh(new_page, inode, &bh, vaddr);
 689                else
 690                        clear_user_highpage(new_page, vaddr);
 691                if (error)
 692                        goto unlock_page;
 693                vmf->page = page;
 694                if (!page) {
 695                        i_mmap_lock_read(mapping);
 696                        /* Check we didn't race with truncate */
 697                        size = (i_size_read(inode) + PAGE_SIZE - 1) >>
 698                                                                PAGE_SHIFT;
 699                        if (vmf->pgoff >= size) {
 700                                i_mmap_unlock_read(mapping);
 701                                error = -EIO;
 702                                goto out;
 703                        }
 704                }
 705                return VM_FAULT_LOCKED;
 706        }
 707
 708        /* Check we didn't race with a read fault installing a new page */
 709        if (!page && major)
 710                page = find_lock_page(mapping, vmf->pgoff);
 711
 712        if (page) {
 713                unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
 714                                                        PAGE_SIZE, 0);
 715                delete_from_page_cache(page);
 716                unlock_page(page);
 717                put_page(page);
 718                page = NULL;
 719        }
 720
 721        /*
 722         * If we successfully insert the new mapping over an unwritten extent,
 723         * we need to ensure we convert the unwritten extent. If there is an
 724         * error inserting the mapping, the filesystem needs to leave it as
 725         * unwritten to prevent exposure of the stale underlying data to
 726         * userspace, but we still need to call the completion function so
 727         * the private resources on the mapping buffer can be released. We
 728         * indicate what the callback should do via the uptodate variable, same
 729         * as for normal BH based IO completions.
 730         */
 731        error = dax_insert_mapping(inode, &bh, vma, vmf);
 732        if (buffer_unwritten(&bh)) {
 733                if (complete_unwritten)
 734                        complete_unwritten(&bh, !error);
 735                else
 736                        WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
 737        }
 738
 739 out:
 740        if (error == -ENOMEM)
 741                return VM_FAULT_OOM | major;
 742        /* -EBUSY is fine, somebody else faulted on the same PTE */
 743        if ((error < 0) && (error != -EBUSY))
 744                return VM_FAULT_SIGBUS | major;
 745        return VM_FAULT_NOPAGE | major;
 746
 747 unlock_page:
 748        if (page) {
 749                unlock_page(page);
 750                put_page(page);
 751        }
 752        goto out;
 753}
 754EXPORT_SYMBOL(__dax_fault);
 755
 756/**
 757 * dax_fault - handle a page fault on a DAX file
 758 * @vma: The virtual memory area where the fault occurred
 759 * @vmf: The description of the fault
 760 * @get_block: The filesystem method used to translate file offsets to blocks
 761 *
 762 * When a page fault occurs, filesystems may call this helper in their
 763 * fault handler for DAX files.
 764 */
 765int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
 766              get_block_t get_block, dax_iodone_t complete_unwritten)
 767{
 768        int result;
 769        struct super_block *sb = file_inode(vma->vm_file)->i_sb;
 770
 771        if (vmf->flags & FAULT_FLAG_WRITE) {
 772                sb_start_pagefault(sb);
 773                file_update_time(vma->vm_file);
 774        }
 775        result = __dax_fault(vma, vmf, get_block, complete_unwritten);
 776        if (vmf->flags & FAULT_FLAG_WRITE)
 777                sb_end_pagefault(sb);
 778
 779        return result;
 780}
 781EXPORT_SYMBOL_GPL(dax_fault);
 782
 783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 784/*
 785 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
 786 * more often than one might expect in the below function.
 787 */
 788#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
 789
 790static void __dax_dbg(struct buffer_head *bh, unsigned long address,
 791                const char *reason, const char *fn)
 792{
 793        if (bh) {
 794                char bname[BDEVNAME_SIZE];
 795                bdevname(bh->b_bdev, bname);
 796                pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
 797                        "length %zd fallback: %s\n", fn, current->comm,
 798                        address, bname, bh->b_state, (u64)bh->b_blocknr,
 799                        bh->b_size, reason);
 800        } else {
 801                pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
 802                        current->comm, address, reason);
 803        }
 804}
 805
 806#define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
 807
 808int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
 809                pmd_t *pmd, unsigned int flags, get_block_t get_block,
 810                dax_iodone_t complete_unwritten)
 811{
 812        struct file *file = vma->vm_file;
 813        struct address_space *mapping = file->f_mapping;
 814        struct inode *inode = mapping->host;
 815        struct buffer_head bh;
 816        unsigned blkbits = inode->i_blkbits;
 817        unsigned long pmd_addr = address & PMD_MASK;
 818        bool write = flags & FAULT_FLAG_WRITE;
 819        struct block_device *bdev;
 820        pgoff_t size, pgoff;
 821        sector_t block;
 822        int error, result = 0;
 823        bool alloc = false;
 824
 825        /* dax pmd mappings require pfn_t_devmap() */
 826        if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
 827                return VM_FAULT_FALLBACK;
 828
 829        /* Fall back to PTEs if we're going to COW */
 830        if (write && !(vma->vm_flags & VM_SHARED)) {
 831                split_huge_pmd(vma, pmd, address);
 832                dax_pmd_dbg(NULL, address, "cow write");
 833                return VM_FAULT_FALLBACK;
 834        }
 835        /* If the PMD would extend outside the VMA */
 836        if (pmd_addr < vma->vm_start) {
 837                dax_pmd_dbg(NULL, address, "vma start unaligned");
 838                return VM_FAULT_FALLBACK;
 839        }
 840        if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
 841                dax_pmd_dbg(NULL, address, "vma end unaligned");
 842                return VM_FAULT_FALLBACK;
 843        }
 844
 845        pgoff = linear_page_index(vma, pmd_addr);
 846        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 847        if (pgoff >= size)
 848                return VM_FAULT_SIGBUS;
 849        /* If the PMD would cover blocks out of the file */
 850        if ((pgoff | PG_PMD_COLOUR) >= size) {
 851                dax_pmd_dbg(NULL, address,
 852                                "offset + huge page size > file size");
 853                return VM_FAULT_FALLBACK;
 854        }
 855
 856        memset(&bh, 0, sizeof(bh));
 857        bh.b_bdev = inode->i_sb->s_bdev;
 858        block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
 859
 860        bh.b_size = PMD_SIZE;
 861
 862        if (get_block(inode, block, &bh, 0) != 0)
 863                return VM_FAULT_SIGBUS;
 864
 865        if (!buffer_mapped(&bh) && write) {
 866                if (get_block(inode, block, &bh, 1) != 0)
 867                        return VM_FAULT_SIGBUS;
 868                alloc = true;
 869        }
 870
 871        bdev = bh.b_bdev;
 872
 873        /*
 874         * If the filesystem isn't willing to tell us the length of a hole,
 875         * just fall back to PTEs.  Calling get_block 512 times in a loop
 876         * would be silly.
 877         */
 878        if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
 879                dax_pmd_dbg(&bh, address, "allocated block too small");
 880                return VM_FAULT_FALLBACK;
 881        }
 882
 883        /*
 884         * If we allocated new storage, make sure no process has any
 885         * zero pages covering this hole
 886         */
 887        if (alloc) {
 888                loff_t lstart = pgoff << PAGE_SHIFT;
 889                loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
 890
 891                truncate_pagecache_range(inode, lstart, lend);
 892        }
 893
 894        i_mmap_lock_read(mapping);
 895
 896        /*
 897         * If a truncate happened while we were allocating blocks, we may
 898         * leave blocks allocated to the file that are beyond EOF.  We can't
 899         * take i_mutex here, so just leave them hanging; they'll be freed
 900         * when the file is deleted.
 901         */
 902        size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 903        if (pgoff >= size) {
 904                result = VM_FAULT_SIGBUS;
 905                goto out;
 906        }
 907        if ((pgoff | PG_PMD_COLOUR) >= size) {
 908                dax_pmd_dbg(&bh, address,
 909                                "offset + huge page size > file size");
 910                goto fallback;
 911        }
 912
 913        if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
 914                spinlock_t *ptl;
 915                pmd_t entry;
 916                struct page *zero_page = get_huge_zero_page();
 917
 918                if (unlikely(!zero_page)) {
 919                        dax_pmd_dbg(&bh, address, "no zero page");
 920                        goto fallback;
 921                }
 922
 923                ptl = pmd_lock(vma->vm_mm, pmd);
 924                if (!pmd_none(*pmd)) {
 925                        spin_unlock(ptl);
 926                        dax_pmd_dbg(&bh, address, "pmd already present");
 927                        goto fallback;
 928                }
 929
 930                dev_dbg(part_to_dev(bdev->bd_part),
 931                                "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
 932                                __func__, current->comm, address,
 933                                (unsigned long long) to_sector(&bh, inode));
 934
 935                entry = mk_pmd(zero_page, vma->vm_page_prot);
 936                entry = pmd_mkhuge(entry);
 937                set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
 938                result = VM_FAULT_NOPAGE;
 939                spin_unlock(ptl);
 940        } else {
 941                struct blk_dax_ctl dax = {
 942                        .sector = to_sector(&bh, inode),
 943                        .size = PMD_SIZE,
 944                };
 945                long length = dax_map_atomic(bdev, &dax);
 946
 947                if (length < 0) {
 948                        result = VM_FAULT_SIGBUS;
 949                        goto out;
 950                }
 951                if (length < PMD_SIZE) {
 952                        dax_pmd_dbg(&bh, address, "dax-length too small");
 953                        dax_unmap_atomic(bdev, &dax);
 954                        goto fallback;
 955                }
 956                if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
 957                        dax_pmd_dbg(&bh, address, "pfn unaligned");
 958                        dax_unmap_atomic(bdev, &dax);
 959                        goto fallback;
 960                }
 961
 962                if (!pfn_t_devmap(dax.pfn)) {
 963                        dax_unmap_atomic(bdev, &dax);
 964                        dax_pmd_dbg(&bh, address, "pfn not in memmap");
 965                        goto fallback;
 966                }
 967
 968                if (buffer_unwritten(&bh) || buffer_new(&bh)) {
 969                        clear_pmem(dax.addr, PMD_SIZE);
 970                        wmb_pmem();
 971                        count_vm_event(PGMAJFAULT);
 972                        mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
 973                        result |= VM_FAULT_MAJOR;
 974                }
 975                dax_unmap_atomic(bdev, &dax);
 976
 977                /*
 978                 * For PTE faults we insert a radix tree entry for reads, and
 979                 * leave it clean.  Then on the first write we dirty the radix
 980                 * tree entry via the dax_pfn_mkwrite() path.  This sequence
 981                 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
 982                 * call into get_block() to translate the pgoff to a sector in
 983                 * order to be able to create a new radix tree entry.
 984                 *
 985                 * The PMD path doesn't have an equivalent to
 986                 * dax_pfn_mkwrite(), though, so for a read followed by a
 987                 * write we traverse all the way through __dax_pmd_fault()
 988                 * twice.  This means we can just skip inserting a radix tree
 989                 * entry completely on the initial read and just wait until
 990                 * the write to insert a dirty entry.
 991                 */
 992                if (write) {
 993                        error = dax_radix_entry(mapping, pgoff, dax.sector,
 994                                        true, true);
 995                        if (error) {
 996                                dax_pmd_dbg(&bh, address,
 997                                                "PMD radix insertion failed");
 998                                goto fallback;
 999                        }
1000                }
1001
1002                dev_dbg(part_to_dev(bdev->bd_part),
1003                                "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1004                                __func__, current->comm, address,
1005                                pfn_t_to_pfn(dax.pfn),
1006                                (unsigned long long) dax.sector);
1007                result |= vmf_insert_pfn_pmd(vma, address, pmd,
1008                                dax.pfn, write);
1009        }
1010
1011 out:
1012        i_mmap_unlock_read(mapping);
1013
1014        if (buffer_unwritten(&bh))
1015                complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1016
1017        return result;
1018
1019 fallback:
1020        count_vm_event(THP_FAULT_FALLBACK);
1021        result = VM_FAULT_FALLBACK;
1022        goto out;
1023}
1024EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1025
1026/**
1027 * dax_pmd_fault - handle a PMD fault on a DAX file
1028 * @vma: The virtual memory area where the fault occurred
1029 * @vmf: The description of the fault
1030 * @get_block: The filesystem method used to translate file offsets to blocks
1031 *
1032 * When a page fault occurs, filesystems may call this helper in their
1033 * pmd_fault handler for DAX files.
1034 */
1035int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1036                        pmd_t *pmd, unsigned int flags, get_block_t get_block,
1037                        dax_iodone_t complete_unwritten)
1038{
1039        int result;
1040        struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1041
1042        if (flags & FAULT_FLAG_WRITE) {
1043                sb_start_pagefault(sb);
1044                file_update_time(vma->vm_file);
1045        }
1046        result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1047                                complete_unwritten);
1048        if (flags & FAULT_FLAG_WRITE)
1049                sb_end_pagefault(sb);
1050
1051        return result;
1052}
1053EXPORT_SYMBOL_GPL(dax_pmd_fault);
1054#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1055
1056/**
1057 * dax_pfn_mkwrite - handle first write to DAX page
1058 * @vma: The virtual memory area where the fault occurred
1059 * @vmf: The description of the fault
1060 */
1061int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1062{
1063        struct file *file = vma->vm_file;
1064        int error;
1065
1066        /*
1067         * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1068         * RADIX_DAX_PTE entry already exists in the radix tree from a
1069         * previous call to __dax_fault().  We just want to look up that PTE
1070         * entry using vmf->pgoff and make sure the dirty tag is set.  This
1071         * saves us from having to make a call to get_block() here to look
1072         * up the sector.
1073         */
1074        error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false,
1075                        true);
1076
1077        if (error == -ENOMEM)
1078                return VM_FAULT_OOM;
1079        if (error)
1080                return VM_FAULT_SIGBUS;
1081        return VM_FAULT_NOPAGE;
1082}
1083EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1084
1085/**
1086 * dax_zero_page_range - zero a range within a page of a DAX file
1087 * @inode: The file being truncated
1088 * @from: The file offset that is being truncated to
1089 * @length: The number of bytes to zero
1090 * @get_block: The filesystem method used to translate file offsets to blocks
1091 *
1092 * This function can be called by a filesystem when it is zeroing part of a
1093 * page in a DAX file.  This is intended for hole-punch operations.  If
1094 * you are truncating a file, the helper function dax_truncate_page() may be
1095 * more convenient.
1096 *
1097 * We work in terms of PAGE_SIZE here for commonality with
1098 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1099 * took care of disposing of the unnecessary blocks.  Even if the filesystem
1100 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1101 * since the file might be mmapped.
1102 */
1103int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1104                                                        get_block_t get_block)
1105{
1106        struct buffer_head bh;
1107        pgoff_t index = from >> PAGE_SHIFT;
1108        unsigned offset = from & (PAGE_SIZE-1);
1109        int err;
1110
1111        /* Block boundary? Nothing to do */
1112        if (!length)
1113                return 0;
1114        BUG_ON((offset + length) > PAGE_SIZE);
1115
1116        memset(&bh, 0, sizeof(bh));
1117        bh.b_bdev = inode->i_sb->s_bdev;
1118        bh.b_size = PAGE_SIZE;
1119        err = get_block(inode, index, &bh, 0);
1120        if (err < 0)
1121                return err;
1122        if (buffer_written(&bh)) {
1123                struct block_device *bdev = bh.b_bdev;
1124                struct blk_dax_ctl dax = {
1125                        .sector = to_sector(&bh, inode),
1126                        .size = PAGE_SIZE,
1127                };
1128
1129                if (dax_map_atomic(bdev, &dax) < 0)
1130                        return PTR_ERR(dax.addr);
1131                clear_pmem(dax.addr + offset, length);
1132                wmb_pmem();
1133                dax_unmap_atomic(bdev, &dax);
1134        }
1135
1136        return 0;
1137}
1138EXPORT_SYMBOL_GPL(dax_zero_page_range);
1139
1140/**
1141 * dax_truncate_page - handle a partial page being truncated in a DAX file
1142 * @inode: The file being truncated
1143 * @from: The file offset that is being truncated to
1144 * @get_block: The filesystem method used to translate file offsets to blocks
1145 *
1146 * Similar to block_truncate_page(), this function can be called by a
1147 * filesystem when it is truncating a DAX file to handle the partial page.
1148 *
1149 * We work in terms of PAGE_SIZE here for commonality with
1150 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1151 * took care of disposing of the unnecessary blocks.  Even if the filesystem
1152 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1153 * since the file might be mmapped.
1154 */
1155int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1156{
1157        unsigned length = PAGE_ALIGN(from) - from;
1158        return dax_zero_page_range(inode, from, length, get_block);
1159}
1160EXPORT_SYMBOL_GPL(dax_truncate_page);
1161