linux/fs/dcache.c
<<
>>
Prefs
   1/*
   2 * fs/dcache.c
   3 *
   4 * Complete reimplementation
   5 * (C) 1997 Thomas Schoebel-Theuer,
   6 * with heavy changes by Linus Torvalds
   7 */
   8
   9/*
  10 * Notes on the allocation strategy:
  11 *
  12 * The dcache is a master of the icache - whenever a dcache entry
  13 * exists, the inode will always exist. "iput()" is done either when
  14 * the dcache entry is deleted or garbage collected.
  15 */
  16
  17#include <linux/syscalls.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/fs.h>
  21#include <linux/fsnotify.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/cache.h>
  26#include <linux/export.h>
  27#include <linux/mount.h>
  28#include <linux/file.h>
  29#include <asm/uaccess.h>
  30#include <linux/security.h>
  31#include <linux/seqlock.h>
  32#include <linux/swap.h>
  33#include <linux/bootmem.h>
  34#include <linux/fs_struct.h>
  35#include <linux/hardirq.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/rculist_bl.h>
  38#include <linux/prefetch.h>
  39#include <linux/ratelimit.h>
  40#include <linux/list_lru.h>
  41#include <linux/kasan.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/*
  47 * Usage:
  48 * dcache->d_inode->i_lock protects:
  49 *   - i_dentry, d_u.d_alias, d_inode of aliases
  50 * dcache_hash_bucket lock protects:
  51 *   - the dcache hash table
  52 * s_anon bl list spinlock protects:
  53 *   - the s_anon list (see __d_drop)
  54 * dentry->d_sb->s_dentry_lru_lock protects:
  55 *   - the dcache lru lists and counters
  56 * d_lock protects:
  57 *   - d_flags
  58 *   - d_name
  59 *   - d_lru
  60 *   - d_count
  61 *   - d_unhashed()
  62 *   - d_parent and d_subdirs
  63 *   - childrens' d_child and d_parent
  64 *   - d_u.d_alias, d_inode
  65 *
  66 * Ordering:
  67 * dentry->d_inode->i_lock
  68 *   dentry->d_lock
  69 *     dentry->d_sb->s_dentry_lru_lock
  70 *     dcache_hash_bucket lock
  71 *     s_anon lock
  72 *
  73 * If there is an ancestor relationship:
  74 * dentry->d_parent->...->d_parent->d_lock
  75 *   ...
  76 *     dentry->d_parent->d_lock
  77 *       dentry->d_lock
  78 *
  79 * If no ancestor relationship:
  80 * if (dentry1 < dentry2)
  81 *   dentry1->d_lock
  82 *     dentry2->d_lock
  83 */
  84int sysctl_vfs_cache_pressure __read_mostly = 100;
  85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  86
  87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  88
  89EXPORT_SYMBOL(rename_lock);
  90
  91static struct kmem_cache *dentry_cache __read_mostly;
  92
  93/*
  94 * This is the single most critical data structure when it comes
  95 * to the dcache: the hashtable for lookups. Somebody should try
  96 * to make this good - I've just made it work.
  97 *
  98 * This hash-function tries to avoid losing too many bits of hash
  99 * information, yet avoid using a prime hash-size or similar.
 100 */
 101
 102static unsigned int d_hash_mask __read_mostly;
 103static unsigned int d_hash_shift __read_mostly;
 104
 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
 106
 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
 108                                        unsigned int hash)
 109{
 110        hash += (unsigned long) parent / L1_CACHE_BYTES;
 111        return dentry_hashtable + hash_32(hash, d_hash_shift);
 112}
 113
 114/* Statistics gathering. */
 115struct dentry_stat_t dentry_stat = {
 116        .age_limit = 45,
 117};
 118
 119static DEFINE_PER_CPU(long, nr_dentry);
 120static DEFINE_PER_CPU(long, nr_dentry_unused);
 121
 122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 123
 124/*
 125 * Here we resort to our own counters instead of using generic per-cpu counters
 126 * for consistency with what the vfs inode code does. We are expected to harvest
 127 * better code and performance by having our own specialized counters.
 128 *
 129 * Please note that the loop is done over all possible CPUs, not over all online
 130 * CPUs. The reason for this is that we don't want to play games with CPUs going
 131 * on and off. If one of them goes off, we will just keep their counters.
 132 *
 133 * glommer: See cffbc8a for details, and if you ever intend to change this,
 134 * please update all vfs counters to match.
 135 */
 136static long get_nr_dentry(void)
 137{
 138        int i;
 139        long sum = 0;
 140        for_each_possible_cpu(i)
 141                sum += per_cpu(nr_dentry, i);
 142        return sum < 0 ? 0 : sum;
 143}
 144
 145static long get_nr_dentry_unused(void)
 146{
 147        int i;
 148        long sum = 0;
 149        for_each_possible_cpu(i)
 150                sum += per_cpu(nr_dentry_unused, i);
 151        return sum < 0 ? 0 : sum;
 152}
 153
 154int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
 155                   size_t *lenp, loff_t *ppos)
 156{
 157        dentry_stat.nr_dentry = get_nr_dentry();
 158        dentry_stat.nr_unused = get_nr_dentry_unused();
 159        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 160}
 161#endif
 162
 163/*
 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 165 * The strings are both count bytes long, and count is non-zero.
 166 */
 167#ifdef CONFIG_DCACHE_WORD_ACCESS
 168
 169#include <asm/word-at-a-time.h>
 170/*
 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 172 * aligned allocation for this particular component. We don't
 173 * strictly need the load_unaligned_zeropad() safety, but it
 174 * doesn't hurt either.
 175 *
 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 177 * need the careful unaligned handling.
 178 */
 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 180{
 181        unsigned long a,b,mask;
 182
 183        for (;;) {
 184                a = *(unsigned long *)cs;
 185                b = load_unaligned_zeropad(ct);
 186                if (tcount < sizeof(unsigned long))
 187                        break;
 188                if (unlikely(a != b))
 189                        return 1;
 190                cs += sizeof(unsigned long);
 191                ct += sizeof(unsigned long);
 192                tcount -= sizeof(unsigned long);
 193                if (!tcount)
 194                        return 0;
 195        }
 196        mask = bytemask_from_count(tcount);
 197        return unlikely(!!((a ^ b) & mask));
 198}
 199
 200#else
 201
 202static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 203{
 204        do {
 205                if (*cs != *ct)
 206                        return 1;
 207                cs++;
 208                ct++;
 209                tcount--;
 210        } while (tcount);
 211        return 0;
 212}
 213
 214#endif
 215
 216static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 217{
 218        const unsigned char *cs;
 219        /*
 220         * Be careful about RCU walk racing with rename:
 221         * use ACCESS_ONCE to fetch the name pointer.
 222         *
 223         * NOTE! Even if a rename will mean that the length
 224         * was not loaded atomically, we don't care. The
 225         * RCU walk will check the sequence count eventually,
 226         * and catch it. And we won't overrun the buffer,
 227         * because we're reading the name pointer atomically,
 228         * and a dentry name is guaranteed to be properly
 229         * terminated with a NUL byte.
 230         *
 231         * End result: even if 'len' is wrong, we'll exit
 232         * early because the data cannot match (there can
 233         * be no NUL in the ct/tcount data)
 234         */
 235        cs = ACCESS_ONCE(dentry->d_name.name);
 236        smp_read_barrier_depends();
 237        return dentry_string_cmp(cs, ct, tcount);
 238}
 239
 240struct external_name {
 241        union {
 242                atomic_t count;
 243                struct rcu_head head;
 244        } u;
 245        unsigned char name[];
 246};
 247
 248static inline struct external_name *external_name(struct dentry *dentry)
 249{
 250        return container_of(dentry->d_name.name, struct external_name, name[0]);
 251}
 252
 253static void __d_free(struct rcu_head *head)
 254{
 255        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 256
 257        kmem_cache_free(dentry_cache, dentry); 
 258}
 259
 260static void __d_free_external(struct rcu_head *head)
 261{
 262        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 263        kfree(external_name(dentry));
 264        kmem_cache_free(dentry_cache, dentry); 
 265}
 266
 267static inline int dname_external(const struct dentry *dentry)
 268{
 269        return dentry->d_name.name != dentry->d_iname;
 270}
 271
 272static inline void __d_set_inode_and_type(struct dentry *dentry,
 273                                          struct inode *inode,
 274                                          unsigned type_flags)
 275{
 276        unsigned flags;
 277
 278        dentry->d_inode = inode;
 279        flags = READ_ONCE(dentry->d_flags);
 280        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 281        flags |= type_flags;
 282        WRITE_ONCE(dentry->d_flags, flags);
 283}
 284
 285static inline void __d_clear_type_and_inode(struct dentry *dentry)
 286{
 287        unsigned flags = READ_ONCE(dentry->d_flags);
 288
 289        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 290        WRITE_ONCE(dentry->d_flags, flags);
 291        dentry->d_inode = NULL;
 292}
 293
 294static void dentry_free(struct dentry *dentry)
 295{
 296        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 297        if (unlikely(dname_external(dentry))) {
 298                struct external_name *p = external_name(dentry);
 299                if (likely(atomic_dec_and_test(&p->u.count))) {
 300                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 301                        return;
 302                }
 303        }
 304        /* if dentry was never visible to RCU, immediate free is OK */
 305        if (!(dentry->d_flags & DCACHE_RCUACCESS))
 306                __d_free(&dentry->d_u.d_rcu);
 307        else
 308                call_rcu(&dentry->d_u.d_rcu, __d_free);
 309}
 310
 311/**
 312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
 313 * @dentry: the target dentry
 314 * After this call, in-progress rcu-walk path lookup will fail. This
 315 * should be called after unhashing, and after changing d_inode (if
 316 * the dentry has not already been unhashed).
 317 */
 318static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
 319{
 320        lockdep_assert_held(&dentry->d_lock);
 321        /* Go through am invalidation barrier */
 322        write_seqcount_invalidate(&dentry->d_seq);
 323}
 324
 325/*
 326 * Release the dentry's inode, using the filesystem
 327 * d_iput() operation if defined. Dentry has no refcount
 328 * and is unhashed.
 329 */
 330static void dentry_iput(struct dentry * dentry)
 331        __releases(dentry->d_lock)
 332        __releases(dentry->d_inode->i_lock)
 333{
 334        struct inode *inode = dentry->d_inode;
 335        if (inode) {
 336                __d_clear_type_and_inode(dentry);
 337                hlist_del_init(&dentry->d_u.d_alias);
 338                spin_unlock(&dentry->d_lock);
 339                spin_unlock(&inode->i_lock);
 340                if (!inode->i_nlink)
 341                        fsnotify_inoderemove(inode);
 342                if (dentry->d_op && dentry->d_op->d_iput)
 343                        dentry->d_op->d_iput(dentry, inode);
 344                else
 345                        iput(inode);
 346        } else {
 347                spin_unlock(&dentry->d_lock);
 348        }
 349}
 350
 351/*
 352 * Release the dentry's inode, using the filesystem
 353 * d_iput() operation if defined. dentry remains in-use.
 354 */
 355static void dentry_unlink_inode(struct dentry * dentry)
 356        __releases(dentry->d_lock)
 357        __releases(dentry->d_inode->i_lock)
 358{
 359        struct inode *inode = dentry->d_inode;
 360
 361        raw_write_seqcount_begin(&dentry->d_seq);
 362        __d_clear_type_and_inode(dentry);
 363        hlist_del_init(&dentry->d_u.d_alias);
 364        raw_write_seqcount_end(&dentry->d_seq);
 365        spin_unlock(&dentry->d_lock);
 366        spin_unlock(&inode->i_lock);
 367        if (!inode->i_nlink)
 368                fsnotify_inoderemove(inode);
 369        if (dentry->d_op && dentry->d_op->d_iput)
 370                dentry->d_op->d_iput(dentry, inode);
 371        else
 372                iput(inode);
 373}
 374
 375/*
 376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 377 * is in use - which includes both the "real" per-superblock
 378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 379 *
 380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 381 * on the shrink list (ie not on the superblock LRU list).
 382 *
 383 * The per-cpu "nr_dentry_unused" counters are updated with
 384 * the DCACHE_LRU_LIST bit.
 385 *
 386 * These helper functions make sure we always follow the
 387 * rules. d_lock must be held by the caller.
 388 */
 389#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 390static void d_lru_add(struct dentry *dentry)
 391{
 392        D_FLAG_VERIFY(dentry, 0);
 393        dentry->d_flags |= DCACHE_LRU_LIST;
 394        this_cpu_inc(nr_dentry_unused);
 395        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 396}
 397
 398static void d_lru_del(struct dentry *dentry)
 399{
 400        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 401        dentry->d_flags &= ~DCACHE_LRU_LIST;
 402        this_cpu_dec(nr_dentry_unused);
 403        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 404}
 405
 406static void d_shrink_del(struct dentry *dentry)
 407{
 408        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 409        list_del_init(&dentry->d_lru);
 410        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 411        this_cpu_dec(nr_dentry_unused);
 412}
 413
 414static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 415{
 416        D_FLAG_VERIFY(dentry, 0);
 417        list_add(&dentry->d_lru, list);
 418        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 419        this_cpu_inc(nr_dentry_unused);
 420}
 421
 422/*
 423 * These can only be called under the global LRU lock, ie during the
 424 * callback for freeing the LRU list. "isolate" removes it from the
 425 * LRU lists entirely, while shrink_move moves it to the indicated
 426 * private list.
 427 */
 428static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 429{
 430        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 431        dentry->d_flags &= ~DCACHE_LRU_LIST;
 432        this_cpu_dec(nr_dentry_unused);
 433        list_lru_isolate(lru, &dentry->d_lru);
 434}
 435
 436static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 437                              struct list_head *list)
 438{
 439        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 440        dentry->d_flags |= DCACHE_SHRINK_LIST;
 441        list_lru_isolate_move(lru, &dentry->d_lru, list);
 442}
 443
 444/*
 445 * dentry_lru_(add|del)_list) must be called with d_lock held.
 446 */
 447static void dentry_lru_add(struct dentry *dentry)
 448{
 449        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 450                d_lru_add(dentry);
 451}
 452
 453/**
 454 * d_drop - drop a dentry
 455 * @dentry: dentry to drop
 456 *
 457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 458 * be found through a VFS lookup any more. Note that this is different from
 459 * deleting the dentry - d_delete will try to mark the dentry negative if
 460 * possible, giving a successful _negative_ lookup, while d_drop will
 461 * just make the cache lookup fail.
 462 *
 463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 464 * reason (NFS timeouts or autofs deletes).
 465 *
 466 * __d_drop requires dentry->d_lock.
 467 */
 468void __d_drop(struct dentry *dentry)
 469{
 470        if (!d_unhashed(dentry)) {
 471                struct hlist_bl_head *b;
 472                /*
 473                 * Hashed dentries are normally on the dentry hashtable,
 474                 * with the exception of those newly allocated by
 475                 * d_obtain_alias, which are always IS_ROOT:
 476                 */
 477                if (unlikely(IS_ROOT(dentry)))
 478                        b = &dentry->d_sb->s_anon;
 479                else
 480                        b = d_hash(dentry->d_parent, dentry->d_name.hash);
 481
 482                hlist_bl_lock(b);
 483                __hlist_bl_del(&dentry->d_hash);
 484                dentry->d_hash.pprev = NULL;
 485                hlist_bl_unlock(b);
 486                dentry_rcuwalk_invalidate(dentry);
 487        }
 488}
 489EXPORT_SYMBOL(__d_drop);
 490
 491void d_drop(struct dentry *dentry)
 492{
 493        spin_lock(&dentry->d_lock);
 494        __d_drop(dentry);
 495        spin_unlock(&dentry->d_lock);
 496}
 497EXPORT_SYMBOL(d_drop);
 498
 499static void __dentry_kill(struct dentry *dentry)
 500{
 501        struct dentry *parent = NULL;
 502        bool can_free = true;
 503        if (!IS_ROOT(dentry))
 504                parent = dentry->d_parent;
 505
 506        /*
 507         * The dentry is now unrecoverably dead to the world.
 508         */
 509        lockref_mark_dead(&dentry->d_lockref);
 510
 511        /*
 512         * inform the fs via d_prune that this dentry is about to be
 513         * unhashed and destroyed.
 514         */
 515        if (dentry->d_flags & DCACHE_OP_PRUNE)
 516                dentry->d_op->d_prune(dentry);
 517
 518        if (dentry->d_flags & DCACHE_LRU_LIST) {
 519                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 520                        d_lru_del(dentry);
 521        }
 522        /* if it was on the hash then remove it */
 523        __d_drop(dentry);
 524        __list_del_entry(&dentry->d_child);
 525        /*
 526         * Inform d_walk() that we are no longer attached to the
 527         * dentry tree
 528         */
 529        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 530        if (parent)
 531                spin_unlock(&parent->d_lock);
 532        dentry_iput(dentry);
 533        /*
 534         * dentry_iput drops the locks, at which point nobody (except
 535         * transient RCU lookups) can reach this dentry.
 536         */
 537        BUG_ON(dentry->d_lockref.count > 0);
 538        this_cpu_dec(nr_dentry);
 539        if (dentry->d_op && dentry->d_op->d_release)
 540                dentry->d_op->d_release(dentry);
 541
 542        spin_lock(&dentry->d_lock);
 543        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 544                dentry->d_flags |= DCACHE_MAY_FREE;
 545                can_free = false;
 546        }
 547        spin_unlock(&dentry->d_lock);
 548        if (likely(can_free))
 549                dentry_free(dentry);
 550}
 551
 552/*
 553 * Finish off a dentry we've decided to kill.
 554 * dentry->d_lock must be held, returns with it unlocked.
 555 * If ref is non-zero, then decrement the refcount too.
 556 * Returns dentry requiring refcount drop, or NULL if we're done.
 557 */
 558static struct dentry *dentry_kill(struct dentry *dentry)
 559        __releases(dentry->d_lock)
 560{
 561        struct inode *inode = dentry->d_inode;
 562        struct dentry *parent = NULL;
 563
 564        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 565                goto failed;
 566
 567        if (!IS_ROOT(dentry)) {
 568                parent = dentry->d_parent;
 569                if (unlikely(!spin_trylock(&parent->d_lock))) {
 570                        if (inode)
 571                                spin_unlock(&inode->i_lock);
 572                        goto failed;
 573                }
 574        }
 575
 576        __dentry_kill(dentry);
 577        return parent;
 578
 579failed:
 580        spin_unlock(&dentry->d_lock);
 581        cpu_relax();
 582        return dentry; /* try again with same dentry */
 583}
 584
 585static inline struct dentry *lock_parent(struct dentry *dentry)
 586{
 587        struct dentry *parent = dentry->d_parent;
 588        if (IS_ROOT(dentry))
 589                return NULL;
 590        if (unlikely(dentry->d_lockref.count < 0))
 591                return NULL;
 592        if (likely(spin_trylock(&parent->d_lock)))
 593                return parent;
 594        rcu_read_lock();
 595        spin_unlock(&dentry->d_lock);
 596again:
 597        parent = ACCESS_ONCE(dentry->d_parent);
 598        spin_lock(&parent->d_lock);
 599        /*
 600         * We can't blindly lock dentry until we are sure
 601         * that we won't violate the locking order.
 602         * Any changes of dentry->d_parent must have
 603         * been done with parent->d_lock held, so
 604         * spin_lock() above is enough of a barrier
 605         * for checking if it's still our child.
 606         */
 607        if (unlikely(parent != dentry->d_parent)) {
 608                spin_unlock(&parent->d_lock);
 609                goto again;
 610        }
 611        rcu_read_unlock();
 612        if (parent != dentry)
 613                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 614        else
 615                parent = NULL;
 616        return parent;
 617}
 618
 619/*
 620 * Try to do a lockless dput(), and return whether that was successful.
 621 *
 622 * If unsuccessful, we return false, having already taken the dentry lock.
 623 *
 624 * The caller needs to hold the RCU read lock, so that the dentry is
 625 * guaranteed to stay around even if the refcount goes down to zero!
 626 */
 627static inline bool fast_dput(struct dentry *dentry)
 628{
 629        int ret;
 630        unsigned int d_flags;
 631
 632        /*
 633         * If we have a d_op->d_delete() operation, we sould not
 634         * let the dentry count go to zero, so use "put_or_lock".
 635         */
 636        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 637                return lockref_put_or_lock(&dentry->d_lockref);
 638
 639        /*
 640         * .. otherwise, we can try to just decrement the
 641         * lockref optimistically.
 642         */
 643        ret = lockref_put_return(&dentry->d_lockref);
 644
 645        /*
 646         * If the lockref_put_return() failed due to the lock being held
 647         * by somebody else, the fast path has failed. We will need to
 648         * get the lock, and then check the count again.
 649         */
 650        if (unlikely(ret < 0)) {
 651                spin_lock(&dentry->d_lock);
 652                if (dentry->d_lockref.count > 1) {
 653                        dentry->d_lockref.count--;
 654                        spin_unlock(&dentry->d_lock);
 655                        return 1;
 656                }
 657                return 0;
 658        }
 659
 660        /*
 661         * If we weren't the last ref, we're done.
 662         */
 663        if (ret)
 664                return 1;
 665
 666        /*
 667         * Careful, careful. The reference count went down
 668         * to zero, but we don't hold the dentry lock, so
 669         * somebody else could get it again, and do another
 670         * dput(), and we need to not race with that.
 671         *
 672         * However, there is a very special and common case
 673         * where we don't care, because there is nothing to
 674         * do: the dentry is still hashed, it does not have
 675         * a 'delete' op, and it's referenced and already on
 676         * the LRU list.
 677         *
 678         * NOTE! Since we aren't locked, these values are
 679         * not "stable". However, it is sufficient that at
 680         * some point after we dropped the reference the
 681         * dentry was hashed and the flags had the proper
 682         * value. Other dentry users may have re-gotten
 683         * a reference to the dentry and change that, but
 684         * our work is done - we can leave the dentry
 685         * around with a zero refcount.
 686         */
 687        smp_rmb();
 688        d_flags = ACCESS_ONCE(dentry->d_flags);
 689        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
 690
 691        /* Nothing to do? Dropping the reference was all we needed? */
 692        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 693                return 1;
 694
 695        /*
 696         * Not the fast normal case? Get the lock. We've already decremented
 697         * the refcount, but we'll need to re-check the situation after
 698         * getting the lock.
 699         */
 700        spin_lock(&dentry->d_lock);
 701
 702        /*
 703         * Did somebody else grab a reference to it in the meantime, and
 704         * we're no longer the last user after all? Alternatively, somebody
 705         * else could have killed it and marked it dead. Either way, we
 706         * don't need to do anything else.
 707         */
 708        if (dentry->d_lockref.count) {
 709                spin_unlock(&dentry->d_lock);
 710                return 1;
 711        }
 712
 713        /*
 714         * Re-get the reference we optimistically dropped. We hold the
 715         * lock, and we just tested that it was zero, so we can just
 716         * set it to 1.
 717         */
 718        dentry->d_lockref.count = 1;
 719        return 0;
 720}
 721
 722
 723/* 
 724 * This is dput
 725 *
 726 * This is complicated by the fact that we do not want to put
 727 * dentries that are no longer on any hash chain on the unused
 728 * list: we'd much rather just get rid of them immediately.
 729 *
 730 * However, that implies that we have to traverse the dentry
 731 * tree upwards to the parents which might _also_ now be
 732 * scheduled for deletion (it may have been only waiting for
 733 * its last child to go away).
 734 *
 735 * This tail recursion is done by hand as we don't want to depend
 736 * on the compiler to always get this right (gcc generally doesn't).
 737 * Real recursion would eat up our stack space.
 738 */
 739
 740/*
 741 * dput - release a dentry
 742 * @dentry: dentry to release 
 743 *
 744 * Release a dentry. This will drop the usage count and if appropriate
 745 * call the dentry unlink method as well as removing it from the queues and
 746 * releasing its resources. If the parent dentries were scheduled for release
 747 * they too may now get deleted.
 748 */
 749void dput(struct dentry *dentry)
 750{
 751        if (unlikely(!dentry))
 752                return;
 753
 754repeat:
 755        rcu_read_lock();
 756        if (likely(fast_dput(dentry))) {
 757                rcu_read_unlock();
 758                return;
 759        }
 760
 761        /* Slow case: now with the dentry lock held */
 762        rcu_read_unlock();
 763
 764        /* Unreachable? Get rid of it */
 765        if (unlikely(d_unhashed(dentry)))
 766                goto kill_it;
 767
 768        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 769                goto kill_it;
 770
 771        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 772                if (dentry->d_op->d_delete(dentry))
 773                        goto kill_it;
 774        }
 775
 776        if (!(dentry->d_flags & DCACHE_REFERENCED))
 777                dentry->d_flags |= DCACHE_REFERENCED;
 778        dentry_lru_add(dentry);
 779
 780        dentry->d_lockref.count--;
 781        spin_unlock(&dentry->d_lock);
 782        return;
 783
 784kill_it:
 785        dentry = dentry_kill(dentry);
 786        if (dentry)
 787                goto repeat;
 788}
 789EXPORT_SYMBOL(dput);
 790
 791
 792/* This must be called with d_lock held */
 793static inline void __dget_dlock(struct dentry *dentry)
 794{
 795        dentry->d_lockref.count++;
 796}
 797
 798static inline void __dget(struct dentry *dentry)
 799{
 800        lockref_get(&dentry->d_lockref);
 801}
 802
 803struct dentry *dget_parent(struct dentry *dentry)
 804{
 805        int gotref;
 806        struct dentry *ret;
 807
 808        /*
 809         * Do optimistic parent lookup without any
 810         * locking.
 811         */
 812        rcu_read_lock();
 813        ret = ACCESS_ONCE(dentry->d_parent);
 814        gotref = lockref_get_not_zero(&ret->d_lockref);
 815        rcu_read_unlock();
 816        if (likely(gotref)) {
 817                if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
 818                        return ret;
 819                dput(ret);
 820        }
 821
 822repeat:
 823        /*
 824         * Don't need rcu_dereference because we re-check it was correct under
 825         * the lock.
 826         */
 827        rcu_read_lock();
 828        ret = dentry->d_parent;
 829        spin_lock(&ret->d_lock);
 830        if (unlikely(ret != dentry->d_parent)) {
 831                spin_unlock(&ret->d_lock);
 832                rcu_read_unlock();
 833                goto repeat;
 834        }
 835        rcu_read_unlock();
 836        BUG_ON(!ret->d_lockref.count);
 837        ret->d_lockref.count++;
 838        spin_unlock(&ret->d_lock);
 839        return ret;
 840}
 841EXPORT_SYMBOL(dget_parent);
 842
 843/**
 844 * d_find_alias - grab a hashed alias of inode
 845 * @inode: inode in question
 846 *
 847 * If inode has a hashed alias, or is a directory and has any alias,
 848 * acquire the reference to alias and return it. Otherwise return NULL.
 849 * Notice that if inode is a directory there can be only one alias and
 850 * it can be unhashed only if it has no children, or if it is the root
 851 * of a filesystem, or if the directory was renamed and d_revalidate
 852 * was the first vfs operation to notice.
 853 *
 854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 855 * any other hashed alias over that one.
 856 */
 857static struct dentry *__d_find_alias(struct inode *inode)
 858{
 859        struct dentry *alias, *discon_alias;
 860
 861again:
 862        discon_alias = NULL;
 863        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 864                spin_lock(&alias->d_lock);
 865                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 866                        if (IS_ROOT(alias) &&
 867                            (alias->d_flags & DCACHE_DISCONNECTED)) {
 868                                discon_alias = alias;
 869                        } else {
 870                                __dget_dlock(alias);
 871                                spin_unlock(&alias->d_lock);
 872                                return alias;
 873                        }
 874                }
 875                spin_unlock(&alias->d_lock);
 876        }
 877        if (discon_alias) {
 878                alias = discon_alias;
 879                spin_lock(&alias->d_lock);
 880                if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
 881                        __dget_dlock(alias);
 882                        spin_unlock(&alias->d_lock);
 883                        return alias;
 884                }
 885                spin_unlock(&alias->d_lock);
 886                goto again;
 887        }
 888        return NULL;
 889}
 890
 891struct dentry *d_find_alias(struct inode *inode)
 892{
 893        struct dentry *de = NULL;
 894
 895        if (!hlist_empty(&inode->i_dentry)) {
 896                spin_lock(&inode->i_lock);
 897                de = __d_find_alias(inode);
 898                spin_unlock(&inode->i_lock);
 899        }
 900        return de;
 901}
 902EXPORT_SYMBOL(d_find_alias);
 903
 904/*
 905 *      Try to kill dentries associated with this inode.
 906 * WARNING: you must own a reference to inode.
 907 */
 908void d_prune_aliases(struct inode *inode)
 909{
 910        struct dentry *dentry;
 911restart:
 912        spin_lock(&inode->i_lock);
 913        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
 914                spin_lock(&dentry->d_lock);
 915                if (!dentry->d_lockref.count) {
 916                        struct dentry *parent = lock_parent(dentry);
 917                        if (likely(!dentry->d_lockref.count)) {
 918                                __dentry_kill(dentry);
 919                                dput(parent);
 920                                goto restart;
 921                        }
 922                        if (parent)
 923                                spin_unlock(&parent->d_lock);
 924                }
 925                spin_unlock(&dentry->d_lock);
 926        }
 927        spin_unlock(&inode->i_lock);
 928}
 929EXPORT_SYMBOL(d_prune_aliases);
 930
 931static void shrink_dentry_list(struct list_head *list)
 932{
 933        struct dentry *dentry, *parent;
 934
 935        while (!list_empty(list)) {
 936                struct inode *inode;
 937                dentry = list_entry(list->prev, struct dentry, d_lru);
 938                spin_lock(&dentry->d_lock);
 939                parent = lock_parent(dentry);
 940
 941                /*
 942                 * The dispose list is isolated and dentries are not accounted
 943                 * to the LRU here, so we can simply remove it from the list
 944                 * here regardless of whether it is referenced or not.
 945                 */
 946                d_shrink_del(dentry);
 947
 948                /*
 949                 * We found an inuse dentry which was not removed from
 950                 * the LRU because of laziness during lookup. Do not free it.
 951                 */
 952                if (dentry->d_lockref.count > 0) {
 953                        spin_unlock(&dentry->d_lock);
 954                        if (parent)
 955                                spin_unlock(&parent->d_lock);
 956                        continue;
 957                }
 958
 959
 960                if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
 961                        bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
 962                        spin_unlock(&dentry->d_lock);
 963                        if (parent)
 964                                spin_unlock(&parent->d_lock);
 965                        if (can_free)
 966                                dentry_free(dentry);
 967                        continue;
 968                }
 969
 970                inode = dentry->d_inode;
 971                if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
 972                        d_shrink_add(dentry, list);
 973                        spin_unlock(&dentry->d_lock);
 974                        if (parent)
 975                                spin_unlock(&parent->d_lock);
 976                        continue;
 977                }
 978
 979                __dentry_kill(dentry);
 980
 981                /*
 982                 * We need to prune ancestors too. This is necessary to prevent
 983                 * quadratic behavior of shrink_dcache_parent(), but is also
 984                 * expected to be beneficial in reducing dentry cache
 985                 * fragmentation.
 986                 */
 987                dentry = parent;
 988                while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
 989                        parent = lock_parent(dentry);
 990                        if (dentry->d_lockref.count != 1) {
 991                                dentry->d_lockref.count--;
 992                                spin_unlock(&dentry->d_lock);
 993                                if (parent)
 994                                        spin_unlock(&parent->d_lock);
 995                                break;
 996                        }
 997                        inode = dentry->d_inode;        /* can't be NULL */
 998                        if (unlikely(!spin_trylock(&inode->i_lock))) {
 999                                spin_unlock(&dentry->d_lock);
1000                                if (parent)
1001                                        spin_unlock(&parent->d_lock);
1002                                cpu_relax();
1003                                continue;
1004                        }
1005                        __dentry_kill(dentry);
1006                        dentry = parent;
1007                }
1008        }
1009}
1010
1011static enum lru_status dentry_lru_isolate(struct list_head *item,
1012                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1013{
1014        struct list_head *freeable = arg;
1015        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1016
1017
1018        /*
1019         * we are inverting the lru lock/dentry->d_lock here,
1020         * so use a trylock. If we fail to get the lock, just skip
1021         * it
1022         */
1023        if (!spin_trylock(&dentry->d_lock))
1024                return LRU_SKIP;
1025
1026        /*
1027         * Referenced dentries are still in use. If they have active
1028         * counts, just remove them from the LRU. Otherwise give them
1029         * another pass through the LRU.
1030         */
1031        if (dentry->d_lockref.count) {
1032                d_lru_isolate(lru, dentry);
1033                spin_unlock(&dentry->d_lock);
1034                return LRU_REMOVED;
1035        }
1036
1037        if (dentry->d_flags & DCACHE_REFERENCED) {
1038                dentry->d_flags &= ~DCACHE_REFERENCED;
1039                spin_unlock(&dentry->d_lock);
1040
1041                /*
1042                 * The list move itself will be made by the common LRU code. At
1043                 * this point, we've dropped the dentry->d_lock but keep the
1044                 * lru lock. This is safe to do, since every list movement is
1045                 * protected by the lru lock even if both locks are held.
1046                 *
1047                 * This is guaranteed by the fact that all LRU management
1048                 * functions are intermediated by the LRU API calls like
1049                 * list_lru_add and list_lru_del. List movement in this file
1050                 * only ever occur through this functions or through callbacks
1051                 * like this one, that are called from the LRU API.
1052                 *
1053                 * The only exceptions to this are functions like
1054                 * shrink_dentry_list, and code that first checks for the
1055                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1056                 * operating only with stack provided lists after they are
1057                 * properly isolated from the main list.  It is thus, always a
1058                 * local access.
1059                 */
1060                return LRU_ROTATE;
1061        }
1062
1063        d_lru_shrink_move(lru, dentry, freeable);
1064        spin_unlock(&dentry->d_lock);
1065
1066        return LRU_REMOVED;
1067}
1068
1069/**
1070 * prune_dcache_sb - shrink the dcache
1071 * @sb: superblock
1072 * @sc: shrink control, passed to list_lru_shrink_walk()
1073 *
1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1075 * is done when we need more memory and called from the superblock shrinker
1076 * function.
1077 *
1078 * This function may fail to free any resources if all the dentries are in
1079 * use.
1080 */
1081long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1082{
1083        LIST_HEAD(dispose);
1084        long freed;
1085
1086        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1087                                     dentry_lru_isolate, &dispose);
1088        shrink_dentry_list(&dispose);
1089        return freed;
1090}
1091
1092static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1093                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1094{
1095        struct list_head *freeable = arg;
1096        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1097
1098        /*
1099         * we are inverting the lru lock/dentry->d_lock here,
1100         * so use a trylock. If we fail to get the lock, just skip
1101         * it
1102         */
1103        if (!spin_trylock(&dentry->d_lock))
1104                return LRU_SKIP;
1105
1106        d_lru_shrink_move(lru, dentry, freeable);
1107        spin_unlock(&dentry->d_lock);
1108
1109        return LRU_REMOVED;
1110}
1111
1112
1113/**
1114 * shrink_dcache_sb - shrink dcache for a superblock
1115 * @sb: superblock
1116 *
1117 * Shrink the dcache for the specified super block. This is used to free
1118 * the dcache before unmounting a file system.
1119 */
1120void shrink_dcache_sb(struct super_block *sb)
1121{
1122        long freed;
1123
1124        do {
1125                LIST_HEAD(dispose);
1126
1127                freed = list_lru_walk(&sb->s_dentry_lru,
1128                        dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1129
1130                this_cpu_sub(nr_dentry_unused, freed);
1131                shrink_dentry_list(&dispose);
1132        } while (freed > 0);
1133}
1134EXPORT_SYMBOL(shrink_dcache_sb);
1135
1136/**
1137 * enum d_walk_ret - action to talke during tree walk
1138 * @D_WALK_CONTINUE:    contrinue walk
1139 * @D_WALK_QUIT:        quit walk
1140 * @D_WALK_NORETRY:     quit when retry is needed
1141 * @D_WALK_SKIP:        skip this dentry and its children
1142 */
1143enum d_walk_ret {
1144        D_WALK_CONTINUE,
1145        D_WALK_QUIT,
1146        D_WALK_NORETRY,
1147        D_WALK_SKIP,
1148};
1149
1150/**
1151 * d_walk - walk the dentry tree
1152 * @parent:     start of walk
1153 * @data:       data passed to @enter() and @finish()
1154 * @enter:      callback when first entering the dentry
1155 * @finish:     callback when successfully finished the walk
1156 *
1157 * The @enter() and @finish() callbacks are called with d_lock held.
1158 */
1159static void d_walk(struct dentry *parent, void *data,
1160                   enum d_walk_ret (*enter)(void *, struct dentry *),
1161                   void (*finish)(void *))
1162{
1163        struct dentry *this_parent;
1164        struct list_head *next;
1165        unsigned seq = 0;
1166        enum d_walk_ret ret;
1167        bool retry = true;
1168
1169again:
1170        read_seqbegin_or_lock(&rename_lock, &seq);
1171        this_parent = parent;
1172        spin_lock(&this_parent->d_lock);
1173
1174        ret = enter(data, this_parent);
1175        switch (ret) {
1176        case D_WALK_CONTINUE:
1177                break;
1178        case D_WALK_QUIT:
1179        case D_WALK_SKIP:
1180                goto out_unlock;
1181        case D_WALK_NORETRY:
1182                retry = false;
1183                break;
1184        }
1185repeat:
1186        next = this_parent->d_subdirs.next;
1187resume:
1188        while (next != &this_parent->d_subdirs) {
1189                struct list_head *tmp = next;
1190                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1191                next = tmp->next;
1192
1193                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1194
1195                ret = enter(data, dentry);
1196                switch (ret) {
1197                case D_WALK_CONTINUE:
1198                        break;
1199                case D_WALK_QUIT:
1200                        spin_unlock(&dentry->d_lock);
1201                        goto out_unlock;
1202                case D_WALK_NORETRY:
1203                        retry = false;
1204                        break;
1205                case D_WALK_SKIP:
1206                        spin_unlock(&dentry->d_lock);
1207                        continue;
1208                }
1209
1210                if (!list_empty(&dentry->d_subdirs)) {
1211                        spin_unlock(&this_parent->d_lock);
1212                        spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1213                        this_parent = dentry;
1214                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1215                        goto repeat;
1216                }
1217                spin_unlock(&dentry->d_lock);
1218        }
1219        /*
1220         * All done at this level ... ascend and resume the search.
1221         */
1222        rcu_read_lock();
1223ascend:
1224        if (this_parent != parent) {
1225                struct dentry *child = this_parent;
1226                this_parent = child->d_parent;
1227
1228                spin_unlock(&child->d_lock);
1229                spin_lock(&this_parent->d_lock);
1230
1231                /* might go back up the wrong parent if we have had a rename. */
1232                if (need_seqretry(&rename_lock, seq))
1233                        goto rename_retry;
1234                /* go into the first sibling still alive */
1235                do {
1236                        next = child->d_child.next;
1237                        if (next == &this_parent->d_subdirs)
1238                                goto ascend;
1239                        child = list_entry(next, struct dentry, d_child);
1240                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1241                rcu_read_unlock();
1242                goto resume;
1243        }
1244        if (need_seqretry(&rename_lock, seq))
1245                goto rename_retry;
1246        rcu_read_unlock();
1247        if (finish)
1248                finish(data);
1249
1250out_unlock:
1251        spin_unlock(&this_parent->d_lock);
1252        done_seqretry(&rename_lock, seq);
1253        return;
1254
1255rename_retry:
1256        spin_unlock(&this_parent->d_lock);
1257        rcu_read_unlock();
1258        BUG_ON(seq & 1);
1259        if (!retry)
1260                return;
1261        seq = 1;
1262        goto again;
1263}
1264
1265/*
1266 * Search for at least 1 mount point in the dentry's subdirs.
1267 * We descend to the next level whenever the d_subdirs
1268 * list is non-empty and continue searching.
1269 */
1270
1271static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1272{
1273        int *ret = data;
1274        if (d_mountpoint(dentry)) {
1275                *ret = 1;
1276                return D_WALK_QUIT;
1277        }
1278        return D_WALK_CONTINUE;
1279}
1280
1281/**
1282 * have_submounts - check for mounts over a dentry
1283 * @parent: dentry to check.
1284 *
1285 * Return true if the parent or its subdirectories contain
1286 * a mount point
1287 */
1288int have_submounts(struct dentry *parent)
1289{
1290        int ret = 0;
1291
1292        d_walk(parent, &ret, check_mount, NULL);
1293
1294        return ret;
1295}
1296EXPORT_SYMBOL(have_submounts);
1297
1298/*
1299 * Called by mount code to set a mountpoint and check if the mountpoint is
1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1301 * subtree can become unreachable).
1302 *
1303 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1304 * this reason take rename_lock and d_lock on dentry and ancestors.
1305 */
1306int d_set_mounted(struct dentry *dentry)
1307{
1308        struct dentry *p;
1309        int ret = -ENOENT;
1310        write_seqlock(&rename_lock);
1311        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1312                /* Need exclusion wrt. d_invalidate() */
1313                spin_lock(&p->d_lock);
1314                if (unlikely(d_unhashed(p))) {
1315                        spin_unlock(&p->d_lock);
1316                        goto out;
1317                }
1318                spin_unlock(&p->d_lock);
1319        }
1320        spin_lock(&dentry->d_lock);
1321        if (!d_unlinked(dentry)) {
1322                dentry->d_flags |= DCACHE_MOUNTED;
1323                ret = 0;
1324        }
1325        spin_unlock(&dentry->d_lock);
1326out:
1327        write_sequnlock(&rename_lock);
1328        return ret;
1329}
1330
1331/*
1332 * Search the dentry child list of the specified parent,
1333 * and move any unused dentries to the end of the unused
1334 * list for prune_dcache(). We descend to the next level
1335 * whenever the d_subdirs list is non-empty and continue
1336 * searching.
1337 *
1338 * It returns zero iff there are no unused children,
1339 * otherwise  it returns the number of children moved to
1340 * the end of the unused list. This may not be the total
1341 * number of unused children, because select_parent can
1342 * drop the lock and return early due to latency
1343 * constraints.
1344 */
1345
1346struct select_data {
1347        struct dentry *start;
1348        struct list_head dispose;
1349        int found;
1350};
1351
1352static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1353{
1354        struct select_data *data = _data;
1355        enum d_walk_ret ret = D_WALK_CONTINUE;
1356
1357        if (data->start == dentry)
1358                goto out;
1359
1360        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1361                data->found++;
1362        } else {
1363                if (dentry->d_flags & DCACHE_LRU_LIST)
1364                        d_lru_del(dentry);
1365                if (!dentry->d_lockref.count) {
1366                        d_shrink_add(dentry, &data->dispose);
1367                        data->found++;
1368                }
1369        }
1370        /*
1371         * We can return to the caller if we have found some (this
1372         * ensures forward progress). We'll be coming back to find
1373         * the rest.
1374         */
1375        if (!list_empty(&data->dispose))
1376                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1377out:
1378        return ret;
1379}
1380
1381/**
1382 * shrink_dcache_parent - prune dcache
1383 * @parent: parent of entries to prune
1384 *
1385 * Prune the dcache to remove unused children of the parent dentry.
1386 */
1387void shrink_dcache_parent(struct dentry *parent)
1388{
1389        for (;;) {
1390                struct select_data data;
1391
1392                INIT_LIST_HEAD(&data.dispose);
1393                data.start = parent;
1394                data.found = 0;
1395
1396                d_walk(parent, &data, select_collect, NULL);
1397                if (!data.found)
1398                        break;
1399
1400                shrink_dentry_list(&data.dispose);
1401                cond_resched();
1402        }
1403}
1404EXPORT_SYMBOL(shrink_dcache_parent);
1405
1406static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1407{
1408        /* it has busy descendents; complain about those instead */
1409        if (!list_empty(&dentry->d_subdirs))
1410                return D_WALK_CONTINUE;
1411
1412        /* root with refcount 1 is fine */
1413        if (dentry == _data && dentry->d_lockref.count == 1)
1414                return D_WALK_CONTINUE;
1415
1416        printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1417                        " still in use (%d) [unmount of %s %s]\n",
1418                       dentry,
1419                       dentry->d_inode ?
1420                       dentry->d_inode->i_ino : 0UL,
1421                       dentry,
1422                       dentry->d_lockref.count,
1423                       dentry->d_sb->s_type->name,
1424                       dentry->d_sb->s_id);
1425        WARN_ON(1);
1426        return D_WALK_CONTINUE;
1427}
1428
1429static void do_one_tree(struct dentry *dentry)
1430{
1431        shrink_dcache_parent(dentry);
1432        d_walk(dentry, dentry, umount_check, NULL);
1433        d_drop(dentry);
1434        dput(dentry);
1435}
1436
1437/*
1438 * destroy the dentries attached to a superblock on unmounting
1439 */
1440void shrink_dcache_for_umount(struct super_block *sb)
1441{
1442        struct dentry *dentry;
1443
1444        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1445
1446        dentry = sb->s_root;
1447        sb->s_root = NULL;
1448        do_one_tree(dentry);
1449
1450        while (!hlist_bl_empty(&sb->s_anon)) {
1451                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1452                do_one_tree(dentry);
1453        }
1454}
1455
1456struct detach_data {
1457        struct select_data select;
1458        struct dentry *mountpoint;
1459};
1460static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1461{
1462        struct detach_data *data = _data;
1463
1464        if (d_mountpoint(dentry)) {
1465                __dget_dlock(dentry);
1466                data->mountpoint = dentry;
1467                return D_WALK_QUIT;
1468        }
1469
1470        return select_collect(&data->select, dentry);
1471}
1472
1473static void check_and_drop(void *_data)
1474{
1475        struct detach_data *data = _data;
1476
1477        if (!data->mountpoint && !data->select.found)
1478                __d_drop(data->select.start);
1479}
1480
1481/**
1482 * d_invalidate - detach submounts, prune dcache, and drop
1483 * @dentry: dentry to invalidate (aka detach, prune and drop)
1484 *
1485 * no dcache lock.
1486 *
1487 * The final d_drop is done as an atomic operation relative to
1488 * rename_lock ensuring there are no races with d_set_mounted.  This
1489 * ensures there are no unhashed dentries on the path to a mountpoint.
1490 */
1491void d_invalidate(struct dentry *dentry)
1492{
1493        /*
1494         * If it's already been dropped, return OK.
1495         */
1496        spin_lock(&dentry->d_lock);
1497        if (d_unhashed(dentry)) {
1498                spin_unlock(&dentry->d_lock);
1499                return;
1500        }
1501        spin_unlock(&dentry->d_lock);
1502
1503        /* Negative dentries can be dropped without further checks */
1504        if (!dentry->d_inode) {
1505                d_drop(dentry);
1506                return;
1507        }
1508
1509        for (;;) {
1510                struct detach_data data;
1511
1512                data.mountpoint = NULL;
1513                INIT_LIST_HEAD(&data.select.dispose);
1514                data.select.start = dentry;
1515                data.select.found = 0;
1516
1517                d_walk(dentry, &data, detach_and_collect, check_and_drop);
1518
1519                if (data.select.found)
1520                        shrink_dentry_list(&data.select.dispose);
1521
1522                if (data.mountpoint) {
1523                        detach_mounts(data.mountpoint);
1524                        dput(data.mountpoint);
1525                }
1526
1527                if (!data.mountpoint && !data.select.found)
1528                        break;
1529
1530                cond_resched();
1531        }
1532}
1533EXPORT_SYMBOL(d_invalidate);
1534
1535/**
1536 * __d_alloc    -       allocate a dcache entry
1537 * @sb: filesystem it will belong to
1538 * @name: qstr of the name
1539 *
1540 * Allocates a dentry. It returns %NULL if there is insufficient memory
1541 * available. On a success the dentry is returned. The name passed in is
1542 * copied and the copy passed in may be reused after this call.
1543 */
1544 
1545struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1546{
1547        struct dentry *dentry;
1548        char *dname;
1549
1550        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1551        if (!dentry)
1552                return NULL;
1553
1554        /*
1555         * We guarantee that the inline name is always NUL-terminated.
1556         * This way the memcpy() done by the name switching in rename
1557         * will still always have a NUL at the end, even if we might
1558         * be overwriting an internal NUL character
1559         */
1560        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1561        if (name->len > DNAME_INLINE_LEN-1) {
1562                size_t size = offsetof(struct external_name, name[1]);
1563                struct external_name *p = kmalloc(size + name->len,
1564                                                  GFP_KERNEL_ACCOUNT);
1565                if (!p) {
1566                        kmem_cache_free(dentry_cache, dentry); 
1567                        return NULL;
1568                }
1569                atomic_set(&p->u.count, 1);
1570                dname = p->name;
1571                if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1572                        kasan_unpoison_shadow(dname,
1573                                round_up(name->len + 1, sizeof(unsigned long)));
1574        } else  {
1575                dname = dentry->d_iname;
1576        }       
1577
1578        dentry->d_name.len = name->len;
1579        dentry->d_name.hash = name->hash;
1580        memcpy(dname, name->name, name->len);
1581        dname[name->len] = 0;
1582
1583        /* Make sure we always see the terminating NUL character */
1584        smp_wmb();
1585        dentry->d_name.name = dname;
1586
1587        dentry->d_lockref.count = 1;
1588        dentry->d_flags = 0;
1589        spin_lock_init(&dentry->d_lock);
1590        seqcount_init(&dentry->d_seq);
1591        dentry->d_inode = NULL;
1592        dentry->d_parent = dentry;
1593        dentry->d_sb = sb;
1594        dentry->d_op = NULL;
1595        dentry->d_fsdata = NULL;
1596        INIT_HLIST_BL_NODE(&dentry->d_hash);
1597        INIT_LIST_HEAD(&dentry->d_lru);
1598        INIT_LIST_HEAD(&dentry->d_subdirs);
1599        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1600        INIT_LIST_HEAD(&dentry->d_child);
1601        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1602
1603        this_cpu_inc(nr_dentry);
1604
1605        return dentry;
1606}
1607
1608/**
1609 * d_alloc      -       allocate a dcache entry
1610 * @parent: parent of entry to allocate
1611 * @name: qstr of the name
1612 *
1613 * Allocates a dentry. It returns %NULL if there is insufficient memory
1614 * available. On a success the dentry is returned. The name passed in is
1615 * copied and the copy passed in may be reused after this call.
1616 */
1617struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1618{
1619        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1620        if (!dentry)
1621                return NULL;
1622
1623        spin_lock(&parent->d_lock);
1624        /*
1625         * don't need child lock because it is not subject
1626         * to concurrency here
1627         */
1628        __dget_dlock(parent);
1629        dentry->d_parent = parent;
1630        list_add(&dentry->d_child, &parent->d_subdirs);
1631        spin_unlock(&parent->d_lock);
1632
1633        return dentry;
1634}
1635EXPORT_SYMBOL(d_alloc);
1636
1637/**
1638 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1639 * @sb: the superblock
1640 * @name: qstr of the name
1641 *
1642 * For a filesystem that just pins its dentries in memory and never
1643 * performs lookups at all, return an unhashed IS_ROOT dentry.
1644 */
1645struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1646{
1647        return __d_alloc(sb, name);
1648}
1649EXPORT_SYMBOL(d_alloc_pseudo);
1650
1651struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1652{
1653        struct qstr q;
1654
1655        q.name = name;
1656        q.len = strlen(name);
1657        q.hash = full_name_hash(q.name, q.len);
1658        return d_alloc(parent, &q);
1659}
1660EXPORT_SYMBOL(d_alloc_name);
1661
1662void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1663{
1664        WARN_ON_ONCE(dentry->d_op);
1665        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1666                                DCACHE_OP_COMPARE       |
1667                                DCACHE_OP_REVALIDATE    |
1668                                DCACHE_OP_WEAK_REVALIDATE       |
1669                                DCACHE_OP_DELETE        |
1670                                DCACHE_OP_SELECT_INODE  |
1671                                DCACHE_OP_REAL));
1672        dentry->d_op = op;
1673        if (!op)
1674                return;
1675        if (op->d_hash)
1676                dentry->d_flags |= DCACHE_OP_HASH;
1677        if (op->d_compare)
1678                dentry->d_flags |= DCACHE_OP_COMPARE;
1679        if (op->d_revalidate)
1680                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1681        if (op->d_weak_revalidate)
1682                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1683        if (op->d_delete)
1684                dentry->d_flags |= DCACHE_OP_DELETE;
1685        if (op->d_prune)
1686                dentry->d_flags |= DCACHE_OP_PRUNE;
1687        if (op->d_select_inode)
1688                dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1689        if (op->d_real)
1690                dentry->d_flags |= DCACHE_OP_REAL;
1691
1692}
1693EXPORT_SYMBOL(d_set_d_op);
1694
1695
1696/*
1697 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1698 * @dentry - The dentry to mark
1699 *
1700 * Mark a dentry as falling through to the lower layer (as set with
1701 * d_pin_lower()).  This flag may be recorded on the medium.
1702 */
1703void d_set_fallthru(struct dentry *dentry)
1704{
1705        spin_lock(&dentry->d_lock);
1706        dentry->d_flags |= DCACHE_FALLTHRU;
1707        spin_unlock(&dentry->d_lock);
1708}
1709EXPORT_SYMBOL(d_set_fallthru);
1710
1711static unsigned d_flags_for_inode(struct inode *inode)
1712{
1713        unsigned add_flags = DCACHE_REGULAR_TYPE;
1714
1715        if (!inode)
1716                return DCACHE_MISS_TYPE;
1717
1718        if (S_ISDIR(inode->i_mode)) {
1719                add_flags = DCACHE_DIRECTORY_TYPE;
1720                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1721                        if (unlikely(!inode->i_op->lookup))
1722                                add_flags = DCACHE_AUTODIR_TYPE;
1723                        else
1724                                inode->i_opflags |= IOP_LOOKUP;
1725                }
1726                goto type_determined;
1727        }
1728
1729        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1730                if (unlikely(inode->i_op->get_link)) {
1731                        add_flags = DCACHE_SYMLINK_TYPE;
1732                        goto type_determined;
1733                }
1734                inode->i_opflags |= IOP_NOFOLLOW;
1735        }
1736
1737        if (unlikely(!S_ISREG(inode->i_mode)))
1738                add_flags = DCACHE_SPECIAL_TYPE;
1739
1740type_determined:
1741        if (unlikely(IS_AUTOMOUNT(inode)))
1742                add_flags |= DCACHE_NEED_AUTOMOUNT;
1743        return add_flags;
1744}
1745
1746static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1747{
1748        unsigned add_flags = d_flags_for_inode(inode);
1749
1750        spin_lock(&dentry->d_lock);
1751        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1752        raw_write_seqcount_begin(&dentry->d_seq);
1753        __d_set_inode_and_type(dentry, inode, add_flags);
1754        raw_write_seqcount_end(&dentry->d_seq);
1755        __fsnotify_d_instantiate(dentry);
1756        spin_unlock(&dentry->d_lock);
1757}
1758
1759/**
1760 * d_instantiate - fill in inode information for a dentry
1761 * @entry: dentry to complete
1762 * @inode: inode to attach to this dentry
1763 *
1764 * Fill in inode information in the entry.
1765 *
1766 * This turns negative dentries into productive full members
1767 * of society.
1768 *
1769 * NOTE! This assumes that the inode count has been incremented
1770 * (or otherwise set) by the caller to indicate that it is now
1771 * in use by the dcache.
1772 */
1773 
1774void d_instantiate(struct dentry *entry, struct inode * inode)
1775{
1776        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1777        if (inode) {
1778                spin_lock(&inode->i_lock);
1779                __d_instantiate(entry, inode);
1780                spin_unlock(&inode->i_lock);
1781        }
1782        security_d_instantiate(entry, inode);
1783}
1784EXPORT_SYMBOL(d_instantiate);
1785
1786/**
1787 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1788 * @entry: dentry to complete
1789 * @inode: inode to attach to this dentry
1790 *
1791 * Fill in inode information in the entry.  If a directory alias is found, then
1792 * return an error (and drop inode).  Together with d_materialise_unique() this
1793 * guarantees that a directory inode may never have more than one alias.
1794 */
1795int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1796{
1797        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1798
1799        spin_lock(&inode->i_lock);
1800        if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1801                spin_unlock(&inode->i_lock);
1802                iput(inode);
1803                return -EBUSY;
1804        }
1805        __d_instantiate(entry, inode);
1806        spin_unlock(&inode->i_lock);
1807        security_d_instantiate(entry, inode);
1808
1809        return 0;
1810}
1811EXPORT_SYMBOL(d_instantiate_no_diralias);
1812
1813struct dentry *d_make_root(struct inode *root_inode)
1814{
1815        struct dentry *res = NULL;
1816
1817        if (root_inode) {
1818                static const struct qstr name = QSTR_INIT("/", 1);
1819
1820                res = __d_alloc(root_inode->i_sb, &name);
1821                if (res)
1822                        d_instantiate(res, root_inode);
1823                else
1824                        iput(root_inode);
1825        }
1826        return res;
1827}
1828EXPORT_SYMBOL(d_make_root);
1829
1830static struct dentry * __d_find_any_alias(struct inode *inode)
1831{
1832        struct dentry *alias;
1833
1834        if (hlist_empty(&inode->i_dentry))
1835                return NULL;
1836        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1837        __dget(alias);
1838        return alias;
1839}
1840
1841/**
1842 * d_find_any_alias - find any alias for a given inode
1843 * @inode: inode to find an alias for
1844 *
1845 * If any aliases exist for the given inode, take and return a
1846 * reference for one of them.  If no aliases exist, return %NULL.
1847 */
1848struct dentry *d_find_any_alias(struct inode *inode)
1849{
1850        struct dentry *de;
1851
1852        spin_lock(&inode->i_lock);
1853        de = __d_find_any_alias(inode);
1854        spin_unlock(&inode->i_lock);
1855        return de;
1856}
1857EXPORT_SYMBOL(d_find_any_alias);
1858
1859static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1860{
1861        static const struct qstr anonstring = QSTR_INIT("/", 1);
1862        struct dentry *tmp;
1863        struct dentry *res;
1864        unsigned add_flags;
1865
1866        if (!inode)
1867                return ERR_PTR(-ESTALE);
1868        if (IS_ERR(inode))
1869                return ERR_CAST(inode);
1870
1871        res = d_find_any_alias(inode);
1872        if (res)
1873                goto out_iput;
1874
1875        tmp = __d_alloc(inode->i_sb, &anonstring);
1876        if (!tmp) {
1877                res = ERR_PTR(-ENOMEM);
1878                goto out_iput;
1879        }
1880
1881        spin_lock(&inode->i_lock);
1882        res = __d_find_any_alias(inode);
1883        if (res) {
1884                spin_unlock(&inode->i_lock);
1885                dput(tmp);
1886                goto out_iput;
1887        }
1888
1889        /* attach a disconnected dentry */
1890        add_flags = d_flags_for_inode(inode);
1891
1892        if (disconnected)
1893                add_flags |= DCACHE_DISCONNECTED;
1894
1895        spin_lock(&tmp->d_lock);
1896        __d_set_inode_and_type(tmp, inode, add_flags);
1897        hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1898        hlist_bl_lock(&tmp->d_sb->s_anon);
1899        hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1900        hlist_bl_unlock(&tmp->d_sb->s_anon);
1901        spin_unlock(&tmp->d_lock);
1902        spin_unlock(&inode->i_lock);
1903        security_d_instantiate(tmp, inode);
1904
1905        return tmp;
1906
1907 out_iput:
1908        if (res && !IS_ERR(res))
1909                security_d_instantiate(res, inode);
1910        iput(inode);
1911        return res;
1912}
1913
1914/**
1915 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1916 * @inode: inode to allocate the dentry for
1917 *
1918 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1919 * similar open by handle operations.  The returned dentry may be anonymous,
1920 * or may have a full name (if the inode was already in the cache).
1921 *
1922 * When called on a directory inode, we must ensure that the inode only ever
1923 * has one dentry.  If a dentry is found, that is returned instead of
1924 * allocating a new one.
1925 *
1926 * On successful return, the reference to the inode has been transferred
1927 * to the dentry.  In case of an error the reference on the inode is released.
1928 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1929 * be passed in and the error will be propagated to the return value,
1930 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1931 */
1932struct dentry *d_obtain_alias(struct inode *inode)
1933{
1934        return __d_obtain_alias(inode, 1);
1935}
1936EXPORT_SYMBOL(d_obtain_alias);
1937
1938/**
1939 * d_obtain_root - find or allocate a dentry for a given inode
1940 * @inode: inode to allocate the dentry for
1941 *
1942 * Obtain an IS_ROOT dentry for the root of a filesystem.
1943 *
1944 * We must ensure that directory inodes only ever have one dentry.  If a
1945 * dentry is found, that is returned instead of allocating a new one.
1946 *
1947 * On successful return, the reference to the inode has been transferred
1948 * to the dentry.  In case of an error the reference on the inode is
1949 * released.  A %NULL or IS_ERR inode may be passed in and will be the
1950 * error will be propagate to the return value, with a %NULL @inode
1951 * replaced by ERR_PTR(-ESTALE).
1952 */
1953struct dentry *d_obtain_root(struct inode *inode)
1954{
1955        return __d_obtain_alias(inode, 0);
1956}
1957EXPORT_SYMBOL(d_obtain_root);
1958
1959/**
1960 * d_add_ci - lookup or allocate new dentry with case-exact name
1961 * @inode:  the inode case-insensitive lookup has found
1962 * @dentry: the negative dentry that was passed to the parent's lookup func
1963 * @name:   the case-exact name to be associated with the returned dentry
1964 *
1965 * This is to avoid filling the dcache with case-insensitive names to the
1966 * same inode, only the actual correct case is stored in the dcache for
1967 * case-insensitive filesystems.
1968 *
1969 * For a case-insensitive lookup match and if the the case-exact dentry
1970 * already exists in in the dcache, use it and return it.
1971 *
1972 * If no entry exists with the exact case name, allocate new dentry with
1973 * the exact case, and return the spliced entry.
1974 */
1975struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1976                        struct qstr *name)
1977{
1978        struct dentry *found;
1979        struct dentry *new;
1980
1981        /*
1982         * First check if a dentry matching the name already exists,
1983         * if not go ahead and create it now.
1984         */
1985        found = d_hash_and_lookup(dentry->d_parent, name);
1986        if (!found) {
1987                new = d_alloc(dentry->d_parent, name);
1988                if (!new) {
1989                        found = ERR_PTR(-ENOMEM);
1990                } else {
1991                        found = d_splice_alias(inode, new);
1992                        if (found) {
1993                                dput(new);
1994                                return found;
1995                        }
1996                        return new;
1997                }
1998        }
1999        iput(inode);
2000        return found;
2001}
2002EXPORT_SYMBOL(d_add_ci);
2003
2004/*
2005 * Do the slow-case of the dentry name compare.
2006 *
2007 * Unlike the dentry_cmp() function, we need to atomically
2008 * load the name and length information, so that the
2009 * filesystem can rely on them, and can use the 'name' and
2010 * 'len' information without worrying about walking off the
2011 * end of memory etc.
2012 *
2013 * Thus the read_seqcount_retry() and the "duplicate" info
2014 * in arguments (the low-level filesystem should not look
2015 * at the dentry inode or name contents directly, since
2016 * rename can change them while we're in RCU mode).
2017 */
2018enum slow_d_compare {
2019        D_COMP_OK,
2020        D_COMP_NOMATCH,
2021        D_COMP_SEQRETRY,
2022};
2023
2024static noinline enum slow_d_compare slow_dentry_cmp(
2025                const struct dentry *parent,
2026                struct dentry *dentry,
2027                unsigned int seq,
2028                const struct qstr *name)
2029{
2030        int tlen = dentry->d_name.len;
2031        const char *tname = dentry->d_name.name;
2032
2033        if (read_seqcount_retry(&dentry->d_seq, seq)) {
2034                cpu_relax();
2035                return D_COMP_SEQRETRY;
2036        }
2037        if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2038                return D_COMP_NOMATCH;
2039        return D_COMP_OK;
2040}
2041
2042/**
2043 * __d_lookup_rcu - search for a dentry (racy, store-free)
2044 * @parent: parent dentry
2045 * @name: qstr of name we wish to find
2046 * @seqp: returns d_seq value at the point where the dentry was found
2047 * Returns: dentry, or NULL
2048 *
2049 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2050 * resolution (store-free path walking) design described in
2051 * Documentation/filesystems/path-lookup.txt.
2052 *
2053 * This is not to be used outside core vfs.
2054 *
2055 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2056 * held, and rcu_read_lock held. The returned dentry must not be stored into
2057 * without taking d_lock and checking d_seq sequence count against @seq
2058 * returned here.
2059 *
2060 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2061 * function.
2062 *
2063 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2064 * the returned dentry, so long as its parent's seqlock is checked after the
2065 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2066 * is formed, giving integrity down the path walk.
2067 *
2068 * NOTE! The caller *has* to check the resulting dentry against the sequence
2069 * number we've returned before using any of the resulting dentry state!
2070 */
2071struct dentry *__d_lookup_rcu(const struct dentry *parent,
2072                                const struct qstr *name,
2073                                unsigned *seqp)
2074{
2075        u64 hashlen = name->hash_len;
2076        const unsigned char *str = name->name;
2077        struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2078        struct hlist_bl_node *node;
2079        struct dentry *dentry;
2080
2081        /*
2082         * Note: There is significant duplication with __d_lookup_rcu which is
2083         * required to prevent single threaded performance regressions
2084         * especially on architectures where smp_rmb (in seqcounts) are costly.
2085         * Keep the two functions in sync.
2086         */
2087
2088        /*
2089         * The hash list is protected using RCU.
2090         *
2091         * Carefully use d_seq when comparing a candidate dentry, to avoid
2092         * races with d_move().
2093         *
2094         * It is possible that concurrent renames can mess up our list
2095         * walk here and result in missing our dentry, resulting in the
2096         * false-negative result. d_lookup() protects against concurrent
2097         * renames using rename_lock seqlock.
2098         *
2099         * See Documentation/filesystems/path-lookup.txt for more details.
2100         */
2101        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2102                unsigned seq;
2103
2104seqretry:
2105                /*
2106                 * The dentry sequence count protects us from concurrent
2107                 * renames, and thus protects parent and name fields.
2108                 *
2109                 * The caller must perform a seqcount check in order
2110                 * to do anything useful with the returned dentry.
2111                 *
2112                 * NOTE! We do a "raw" seqcount_begin here. That means that
2113                 * we don't wait for the sequence count to stabilize if it
2114                 * is in the middle of a sequence change. If we do the slow
2115                 * dentry compare, we will do seqretries until it is stable,
2116                 * and if we end up with a successful lookup, we actually
2117                 * want to exit RCU lookup anyway.
2118                 */
2119                seq = raw_seqcount_begin(&dentry->d_seq);
2120                if (dentry->d_parent != parent)
2121                        continue;
2122                if (d_unhashed(dentry))
2123                        continue;
2124
2125                if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2126                        if (dentry->d_name.hash != hashlen_hash(hashlen))
2127                                continue;
2128                        *seqp = seq;
2129                        switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2130                        case D_COMP_OK:
2131                                return dentry;
2132                        case D_COMP_NOMATCH:
2133                                continue;
2134                        default:
2135                                goto seqretry;
2136                        }
2137                }
2138
2139                if (dentry->d_name.hash_len != hashlen)
2140                        continue;
2141                *seqp = seq;
2142                if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2143                        return dentry;
2144        }
2145        return NULL;
2146}
2147
2148/**
2149 * d_lookup - search for a dentry
2150 * @parent: parent dentry
2151 * @name: qstr of name we wish to find
2152 * Returns: dentry, or NULL
2153 *
2154 * d_lookup searches the children of the parent dentry for the name in
2155 * question. If the dentry is found its reference count is incremented and the
2156 * dentry is returned. The caller must use dput to free the entry when it has
2157 * finished using it. %NULL is returned if the dentry does not exist.
2158 */
2159struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2160{
2161        struct dentry *dentry;
2162        unsigned seq;
2163
2164        do {
2165                seq = read_seqbegin(&rename_lock);
2166                dentry = __d_lookup(parent, name);
2167                if (dentry)
2168                        break;
2169        } while (read_seqretry(&rename_lock, seq));
2170        return dentry;
2171}
2172EXPORT_SYMBOL(d_lookup);
2173
2174/**
2175 * __d_lookup - search for a dentry (racy)
2176 * @parent: parent dentry
2177 * @name: qstr of name we wish to find
2178 * Returns: dentry, or NULL
2179 *
2180 * __d_lookup is like d_lookup, however it may (rarely) return a
2181 * false-negative result due to unrelated rename activity.
2182 *
2183 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2184 * however it must be used carefully, eg. with a following d_lookup in
2185 * the case of failure.
2186 *
2187 * __d_lookup callers must be commented.
2188 */
2189struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2190{
2191        unsigned int len = name->len;
2192        unsigned int hash = name->hash;
2193        const unsigned char *str = name->name;
2194        struct hlist_bl_head *b = d_hash(parent, hash);
2195        struct hlist_bl_node *node;
2196        struct dentry *found = NULL;
2197        struct dentry *dentry;
2198
2199        /*
2200         * Note: There is significant duplication with __d_lookup_rcu which is
2201         * required to prevent single threaded performance regressions
2202         * especially on architectures where smp_rmb (in seqcounts) are costly.
2203         * Keep the two functions in sync.
2204         */
2205
2206        /*
2207         * The hash list is protected using RCU.
2208         *
2209         * Take d_lock when comparing a candidate dentry, to avoid races
2210         * with d_move().
2211         *
2212         * It is possible that concurrent renames can mess up our list
2213         * walk here and result in missing our dentry, resulting in the
2214         * false-negative result. d_lookup() protects against concurrent
2215         * renames using rename_lock seqlock.
2216         *
2217         * See Documentation/filesystems/path-lookup.txt for more details.
2218         */
2219        rcu_read_lock();
2220        
2221        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2222
2223                if (dentry->d_name.hash != hash)
2224                        continue;
2225
2226                spin_lock(&dentry->d_lock);
2227                if (dentry->d_parent != parent)
2228                        goto next;
2229                if (d_unhashed(dentry))
2230                        goto next;
2231
2232                /*
2233                 * It is safe to compare names since d_move() cannot
2234                 * change the qstr (protected by d_lock).
2235                 */
2236                if (parent->d_flags & DCACHE_OP_COMPARE) {
2237                        int tlen = dentry->d_name.len;
2238                        const char *tname = dentry->d_name.name;
2239                        if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2240                                goto next;
2241                } else {
2242                        if (dentry->d_name.len != len)
2243                                goto next;
2244                        if (dentry_cmp(dentry, str, len))
2245                                goto next;
2246                }
2247
2248                dentry->d_lockref.count++;
2249                found = dentry;
2250                spin_unlock(&dentry->d_lock);
2251                break;
2252next:
2253                spin_unlock(&dentry->d_lock);
2254        }
2255        rcu_read_unlock();
2256
2257        return found;
2258}
2259
2260/**
2261 * d_hash_and_lookup - hash the qstr then search for a dentry
2262 * @dir: Directory to search in
2263 * @name: qstr of name we wish to find
2264 *
2265 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2266 */
2267struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2268{
2269        /*
2270         * Check for a fs-specific hash function. Note that we must
2271         * calculate the standard hash first, as the d_op->d_hash()
2272         * routine may choose to leave the hash value unchanged.
2273         */
2274        name->hash = full_name_hash(name->name, name->len);
2275        if (dir->d_flags & DCACHE_OP_HASH) {
2276                int err = dir->d_op->d_hash(dir, name);
2277                if (unlikely(err < 0))
2278                        return ERR_PTR(err);
2279        }
2280        return d_lookup(dir, name);
2281}
2282EXPORT_SYMBOL(d_hash_and_lookup);
2283
2284/*
2285 * When a file is deleted, we have two options:
2286 * - turn this dentry into a negative dentry
2287 * - unhash this dentry and free it.
2288 *
2289 * Usually, we want to just turn this into
2290 * a negative dentry, but if anybody else is
2291 * currently using the dentry or the inode
2292 * we can't do that and we fall back on removing
2293 * it from the hash queues and waiting for
2294 * it to be deleted later when it has no users
2295 */
2296 
2297/**
2298 * d_delete - delete a dentry
2299 * @dentry: The dentry to delete
2300 *
2301 * Turn the dentry into a negative dentry if possible, otherwise
2302 * remove it from the hash queues so it can be deleted later
2303 */
2304 
2305void d_delete(struct dentry * dentry)
2306{
2307        struct inode *inode;
2308        int isdir = 0;
2309        /*
2310         * Are we the only user?
2311         */
2312again:
2313        spin_lock(&dentry->d_lock);
2314        inode = dentry->d_inode;
2315        isdir = S_ISDIR(inode->i_mode);
2316        if (dentry->d_lockref.count == 1) {
2317                if (!spin_trylock(&inode->i_lock)) {
2318                        spin_unlock(&dentry->d_lock);
2319                        cpu_relax();
2320                        goto again;
2321                }
2322                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2323                dentry_unlink_inode(dentry);
2324                fsnotify_nameremove(dentry, isdir);
2325                return;
2326        }
2327
2328        if (!d_unhashed(dentry))
2329                __d_drop(dentry);
2330
2331        spin_unlock(&dentry->d_lock);
2332
2333        fsnotify_nameremove(dentry, isdir);
2334}
2335EXPORT_SYMBOL(d_delete);
2336
2337static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2338{
2339        BUG_ON(!d_unhashed(entry));
2340        hlist_bl_lock(b);
2341        entry->d_flags |= DCACHE_RCUACCESS;
2342        hlist_bl_add_head_rcu(&entry->d_hash, b);
2343        hlist_bl_unlock(b);
2344}
2345
2346static void _d_rehash(struct dentry * entry)
2347{
2348        __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2349}
2350
2351/**
2352 * d_rehash     - add an entry back to the hash
2353 * @entry: dentry to add to the hash
2354 *
2355 * Adds a dentry to the hash according to its name.
2356 */
2357 
2358void d_rehash(struct dentry * entry)
2359{
2360        spin_lock(&entry->d_lock);
2361        _d_rehash(entry);
2362        spin_unlock(&entry->d_lock);
2363}
2364EXPORT_SYMBOL(d_rehash);
2365
2366
2367/* inode->i_lock held if inode is non-NULL */
2368
2369static inline void __d_add(struct dentry *dentry, struct inode *inode)
2370{
2371        if (inode) {
2372                __d_instantiate(dentry, inode);
2373                spin_unlock(&inode->i_lock);
2374        }
2375        security_d_instantiate(dentry, inode);
2376        d_rehash(dentry);
2377}
2378
2379/**
2380 * d_add - add dentry to hash queues
2381 * @entry: dentry to add
2382 * @inode: The inode to attach to this dentry
2383 *
2384 * This adds the entry to the hash queues and initializes @inode.
2385 * The entry was actually filled in earlier during d_alloc().
2386 */
2387
2388void d_add(struct dentry *entry, struct inode *inode)
2389{
2390        if (inode)
2391                spin_lock(&inode->i_lock);
2392        __d_add(entry, inode);
2393}
2394EXPORT_SYMBOL(d_add);
2395
2396/**
2397 * d_exact_alias - find and hash an exact unhashed alias
2398 * @entry: dentry to add
2399 * @inode: The inode to go with this dentry
2400 *
2401 * If an unhashed dentry with the same name/parent and desired
2402 * inode already exists, hash and return it.  Otherwise, return
2403 * NULL.
2404 *
2405 * Parent directory should be locked.
2406 */
2407struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2408{
2409        struct dentry *alias;
2410        int len = entry->d_name.len;
2411        const char *name = entry->d_name.name;
2412        unsigned int hash = entry->d_name.hash;
2413
2414        spin_lock(&inode->i_lock);
2415        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2416                /*
2417                 * Don't need alias->d_lock here, because aliases with
2418                 * d_parent == entry->d_parent are not subject to name or
2419                 * parent changes, because the parent inode i_mutex is held.
2420                 */
2421                if (alias->d_name.hash != hash)
2422                        continue;
2423                if (alias->d_parent != entry->d_parent)
2424                        continue;
2425                if (alias->d_name.len != len)
2426                        continue;
2427                if (dentry_cmp(alias, name, len))
2428                        continue;
2429                spin_lock(&alias->d_lock);
2430                if (!d_unhashed(alias)) {
2431                        spin_unlock(&alias->d_lock);
2432                        alias = NULL;
2433                } else {
2434                        __dget_dlock(alias);
2435                        _d_rehash(alias);
2436                        spin_unlock(&alias->d_lock);
2437                }
2438                spin_unlock(&inode->i_lock);
2439                return alias;
2440        }
2441        spin_unlock(&inode->i_lock);
2442        return NULL;
2443}
2444EXPORT_SYMBOL(d_exact_alias);
2445
2446/**
2447 * dentry_update_name_case - update case insensitive dentry with a new name
2448 * @dentry: dentry to be updated
2449 * @name: new name
2450 *
2451 * Update a case insensitive dentry with new case of name.
2452 *
2453 * dentry must have been returned by d_lookup with name @name. Old and new
2454 * name lengths must match (ie. no d_compare which allows mismatched name
2455 * lengths).
2456 *
2457 * Parent inode i_mutex must be held over d_lookup and into this call (to
2458 * keep renames and concurrent inserts, and readdir(2) away).
2459 */
2460void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2461{
2462        BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2463        BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2464
2465        spin_lock(&dentry->d_lock);
2466        write_seqcount_begin(&dentry->d_seq);
2467        memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2468        write_seqcount_end(&dentry->d_seq);
2469        spin_unlock(&dentry->d_lock);
2470}
2471EXPORT_SYMBOL(dentry_update_name_case);
2472
2473static void swap_names(struct dentry *dentry, struct dentry *target)
2474{
2475        if (unlikely(dname_external(target))) {
2476                if (unlikely(dname_external(dentry))) {
2477                        /*
2478                         * Both external: swap the pointers
2479                         */
2480                        swap(target->d_name.name, dentry->d_name.name);
2481                } else {
2482                        /*
2483                         * dentry:internal, target:external.  Steal target's
2484                         * storage and make target internal.
2485                         */
2486                        memcpy(target->d_iname, dentry->d_name.name,
2487                                        dentry->d_name.len + 1);
2488                        dentry->d_name.name = target->d_name.name;
2489                        target->d_name.name = target->d_iname;
2490                }
2491        } else {
2492                if (unlikely(dname_external(dentry))) {
2493                        /*
2494                         * dentry:external, target:internal.  Give dentry's
2495                         * storage to target and make dentry internal
2496                         */
2497                        memcpy(dentry->d_iname, target->d_name.name,
2498                                        target->d_name.len + 1);
2499                        target->d_name.name = dentry->d_name.name;
2500                        dentry->d_name.name = dentry->d_iname;
2501                } else {
2502                        /*
2503                         * Both are internal.
2504                         */
2505                        unsigned int i;
2506                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2507                        kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2508                        kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2509                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2510                                swap(((long *) &dentry->d_iname)[i],
2511                                     ((long *) &target->d_iname)[i]);
2512                        }
2513                }
2514        }
2515        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2516}
2517
2518static void copy_name(struct dentry *dentry, struct dentry *target)
2519{
2520        struct external_name *old_name = NULL;
2521        if (unlikely(dname_external(dentry)))
2522                old_name = external_name(dentry);
2523        if (unlikely(dname_external(target))) {
2524                atomic_inc(&external_name(target)->u.count);
2525                dentry->d_name = target->d_name;
2526        } else {
2527                memcpy(dentry->d_iname, target->d_name.name,
2528                                target->d_name.len + 1);
2529                dentry->d_name.name = dentry->d_iname;
2530                dentry->d_name.hash_len = target->d_name.hash_len;
2531        }
2532        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2533                kfree_rcu(old_name, u.head);
2534}
2535
2536static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2537{
2538        /*
2539         * XXXX: do we really need to take target->d_lock?
2540         */
2541        if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2542                spin_lock(&target->d_parent->d_lock);
2543        else {
2544                if (d_ancestor(dentry->d_parent, target->d_parent)) {
2545                        spin_lock(&dentry->d_parent->d_lock);
2546                        spin_lock_nested(&target->d_parent->d_lock,
2547                                                DENTRY_D_LOCK_NESTED);
2548                } else {
2549                        spin_lock(&target->d_parent->d_lock);
2550                        spin_lock_nested(&dentry->d_parent->d_lock,
2551                                                DENTRY_D_LOCK_NESTED);
2552                }
2553        }
2554        if (target < dentry) {
2555                spin_lock_nested(&target->d_lock, 2);
2556                spin_lock_nested(&dentry->d_lock, 3);
2557        } else {
2558                spin_lock_nested(&dentry->d_lock, 2);
2559                spin_lock_nested(&target->d_lock, 3);
2560        }
2561}
2562
2563static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2564{
2565        if (target->d_parent != dentry->d_parent)
2566                spin_unlock(&dentry->d_parent->d_lock);
2567        if (target->d_parent != target)
2568                spin_unlock(&target->d_parent->d_lock);
2569        spin_unlock(&target->d_lock);
2570        spin_unlock(&dentry->d_lock);
2571}
2572
2573/*
2574 * When switching names, the actual string doesn't strictly have to
2575 * be preserved in the target - because we're dropping the target
2576 * anyway. As such, we can just do a simple memcpy() to copy over
2577 * the new name before we switch, unless we are going to rehash
2578 * it.  Note that if we *do* unhash the target, we are not allowed
2579 * to rehash it without giving it a new name/hash key - whether
2580 * we swap or overwrite the names here, resulting name won't match
2581 * the reality in filesystem; it's only there for d_path() purposes.
2582 * Note that all of this is happening under rename_lock, so the
2583 * any hash lookup seeing it in the middle of manipulations will
2584 * be discarded anyway.  So we do not care what happens to the hash
2585 * key in that case.
2586 */
2587/*
2588 * __d_move - move a dentry
2589 * @dentry: entry to move
2590 * @target: new dentry
2591 * @exchange: exchange the two dentries
2592 *
2593 * Update the dcache to reflect the move of a file name. Negative
2594 * dcache entries should not be moved in this way. Caller must hold
2595 * rename_lock, the i_mutex of the source and target directories,
2596 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2597 */
2598static void __d_move(struct dentry *dentry, struct dentry *target,
2599                     bool exchange)
2600{
2601        if (!dentry->d_inode)
2602                printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2603
2604        BUG_ON(d_ancestor(dentry, target));
2605        BUG_ON(d_ancestor(target, dentry));
2606
2607        dentry_lock_for_move(dentry, target);
2608
2609        write_seqcount_begin(&dentry->d_seq);
2610        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2611
2612        /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2613
2614        /*
2615         * Move the dentry to the target hash queue. Don't bother checking
2616         * for the same hash queue because of how unlikely it is.
2617         */
2618        __d_drop(dentry);
2619        __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2620
2621        /*
2622         * Unhash the target (d_delete() is not usable here).  If exchanging
2623         * the two dentries, then rehash onto the other's hash queue.
2624         */
2625        __d_drop(target);
2626        if (exchange) {
2627                __d_rehash(target,
2628                           d_hash(dentry->d_parent, dentry->d_name.hash));
2629        }
2630
2631        /* Switch the names.. */
2632        if (exchange)
2633                swap_names(dentry, target);
2634        else
2635                copy_name(dentry, target);
2636
2637        /* ... and switch them in the tree */
2638        if (IS_ROOT(dentry)) {
2639                /* splicing a tree */
2640                dentry->d_parent = target->d_parent;
2641                target->d_parent = target;
2642                list_del_init(&target->d_child);
2643                list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2644        } else {
2645                /* swapping two dentries */
2646                swap(dentry->d_parent, target->d_parent);
2647                list_move(&target->d_child, &target->d_parent->d_subdirs);
2648                list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2649                if (exchange)
2650                        fsnotify_d_move(target);
2651                fsnotify_d_move(dentry);
2652        }
2653
2654        write_seqcount_end(&target->d_seq);
2655        write_seqcount_end(&dentry->d_seq);
2656
2657        dentry_unlock_for_move(dentry, target);
2658}
2659
2660/*
2661 * d_move - move a dentry
2662 * @dentry: entry to move
2663 * @target: new dentry
2664 *
2665 * Update the dcache to reflect the move of a file name. Negative
2666 * dcache entries should not be moved in this way. See the locking
2667 * requirements for __d_move.
2668 */
2669void d_move(struct dentry *dentry, struct dentry *target)
2670{
2671        write_seqlock(&rename_lock);
2672        __d_move(dentry, target, false);
2673        write_sequnlock(&rename_lock);
2674}
2675EXPORT_SYMBOL(d_move);
2676
2677/*
2678 * d_exchange - exchange two dentries
2679 * @dentry1: first dentry
2680 * @dentry2: second dentry
2681 */
2682void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2683{
2684        write_seqlock(&rename_lock);
2685
2686        WARN_ON(!dentry1->d_inode);
2687        WARN_ON(!dentry2->d_inode);
2688        WARN_ON(IS_ROOT(dentry1));
2689        WARN_ON(IS_ROOT(dentry2));
2690
2691        __d_move(dentry1, dentry2, true);
2692
2693        write_sequnlock(&rename_lock);
2694}
2695
2696/**
2697 * d_ancestor - search for an ancestor
2698 * @p1: ancestor dentry
2699 * @p2: child dentry
2700 *
2701 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2702 * an ancestor of p2, else NULL.
2703 */
2704struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2705{
2706        struct dentry *p;
2707
2708        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2709                if (p->d_parent == p1)
2710                        return p;
2711        }
2712        return NULL;
2713}
2714
2715/*
2716 * This helper attempts to cope with remotely renamed directories
2717 *
2718 * It assumes that the caller is already holding
2719 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2720 *
2721 * Note: If ever the locking in lock_rename() changes, then please
2722 * remember to update this too...
2723 */
2724static int __d_unalias(struct inode *inode,
2725                struct dentry *dentry, struct dentry *alias)
2726{
2727        struct mutex *m1 = NULL, *m2 = NULL;
2728        int ret = -ESTALE;
2729
2730        /* If alias and dentry share a parent, then no extra locks required */
2731        if (alias->d_parent == dentry->d_parent)
2732                goto out_unalias;
2733
2734        /* See lock_rename() */
2735        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2736                goto out_err;
2737        m1 = &dentry->d_sb->s_vfs_rename_mutex;
2738        if (!inode_trylock(alias->d_parent->d_inode))
2739                goto out_err;
2740        m2 = &alias->d_parent->d_inode->i_mutex;
2741out_unalias:
2742        __d_move(alias, dentry, false);
2743        ret = 0;
2744out_err:
2745        if (m2)
2746                mutex_unlock(m2);
2747        if (m1)
2748                mutex_unlock(m1);
2749        return ret;
2750}
2751
2752/**
2753 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2754 * @inode:  the inode which may have a disconnected dentry
2755 * @dentry: a negative dentry which we want to point to the inode.
2756 *
2757 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2758 * place of the given dentry and return it, else simply d_add the inode
2759 * to the dentry and return NULL.
2760 *
2761 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2762 * we should error out: directories can't have multiple aliases.
2763 *
2764 * This is needed in the lookup routine of any filesystem that is exportable
2765 * (via knfsd) so that we can build dcache paths to directories effectively.
2766 *
2767 * If a dentry was found and moved, then it is returned.  Otherwise NULL
2768 * is returned.  This matches the expected return value of ->lookup.
2769 *
2770 * Cluster filesystems may call this function with a negative, hashed dentry.
2771 * In that case, we know that the inode will be a regular file, and also this
2772 * will only occur during atomic_open. So we need to check for the dentry
2773 * being already hashed only in the final case.
2774 */
2775struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2776{
2777        if (IS_ERR(inode))
2778                return ERR_CAST(inode);
2779
2780        BUG_ON(!d_unhashed(dentry));
2781
2782        if (!inode)
2783                goto out;
2784
2785        spin_lock(&inode->i_lock);
2786        if (S_ISDIR(inode->i_mode)) {
2787                struct dentry *new = __d_find_any_alias(inode);
2788                if (unlikely(new)) {
2789                        /* The reference to new ensures it remains an alias */
2790                        spin_unlock(&inode->i_lock);
2791                        write_seqlock(&rename_lock);
2792                        if (unlikely(d_ancestor(new, dentry))) {
2793                                write_sequnlock(&rename_lock);
2794                                dput(new);
2795                                new = ERR_PTR(-ELOOP);
2796                                pr_warn_ratelimited(
2797                                        "VFS: Lookup of '%s' in %s %s"
2798                                        " would have caused loop\n",
2799                                        dentry->d_name.name,
2800                                        inode->i_sb->s_type->name,
2801                                        inode->i_sb->s_id);
2802                        } else if (!IS_ROOT(new)) {
2803                                int err = __d_unalias(inode, dentry, new);
2804                                write_sequnlock(&rename_lock);
2805                                if (err) {
2806                                        dput(new);
2807                                        new = ERR_PTR(err);
2808                                }
2809                        } else {
2810                                __d_move(new, dentry, false);
2811                                write_sequnlock(&rename_lock);
2812                                security_d_instantiate(new, inode);
2813                        }
2814                        iput(inode);
2815                        return new;
2816                }
2817        }
2818out:
2819        __d_add(dentry, inode);
2820        return NULL;
2821}
2822EXPORT_SYMBOL(d_splice_alias);
2823
2824static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2825{
2826        *buflen -= namelen;
2827        if (*buflen < 0)
2828                return -ENAMETOOLONG;
2829        *buffer -= namelen;
2830        memcpy(*buffer, str, namelen);
2831        return 0;
2832}
2833
2834/**
2835 * prepend_name - prepend a pathname in front of current buffer pointer
2836 * @buffer: buffer pointer
2837 * @buflen: allocated length of the buffer
2838 * @name:   name string and length qstr structure
2839 *
2840 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2841 * make sure that either the old or the new name pointer and length are
2842 * fetched. However, there may be mismatch between length and pointer.
2843 * The length cannot be trusted, we need to copy it byte-by-byte until
2844 * the length is reached or a null byte is found. It also prepends "/" at
2845 * the beginning of the name. The sequence number check at the caller will
2846 * retry it again when a d_move() does happen. So any garbage in the buffer
2847 * due to mismatched pointer and length will be discarded.
2848 *
2849 * Data dependency barrier is needed to make sure that we see that terminating
2850 * NUL.  Alpha strikes again, film at 11...
2851 */
2852static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2853{
2854        const char *dname = ACCESS_ONCE(name->name);
2855        u32 dlen = ACCESS_ONCE(name->len);
2856        char *p;
2857
2858        smp_read_barrier_depends();
2859
2860        *buflen -= dlen + 1;
2861        if (*buflen < 0)
2862                return -ENAMETOOLONG;
2863        p = *buffer -= dlen + 1;
2864        *p++ = '/';
2865        while (dlen--) {
2866                char c = *dname++;
2867                if (!c)
2868                        break;
2869                *p++ = c;
2870        }
2871        return 0;
2872}
2873
2874/**
2875 * prepend_path - Prepend path string to a buffer
2876 * @path: the dentry/vfsmount to report
2877 * @root: root vfsmnt/dentry
2878 * @buffer: pointer to the end of the buffer
2879 * @buflen: pointer to buffer length
2880 *
2881 * The function will first try to write out the pathname without taking any
2882 * lock other than the RCU read lock to make sure that dentries won't go away.
2883 * It only checks the sequence number of the global rename_lock as any change
2884 * in the dentry's d_seq will be preceded by changes in the rename_lock
2885 * sequence number. If the sequence number had been changed, it will restart
2886 * the whole pathname back-tracing sequence again by taking the rename_lock.
2887 * In this case, there is no need to take the RCU read lock as the recursive
2888 * parent pointer references will keep the dentry chain alive as long as no
2889 * rename operation is performed.
2890 */
2891static int prepend_path(const struct path *path,
2892                        const struct path *root,
2893                        char **buffer, int *buflen)
2894{
2895        struct dentry *dentry;
2896        struct vfsmount *vfsmnt;
2897        struct mount *mnt;
2898        int error = 0;
2899        unsigned seq, m_seq = 0;
2900        char *bptr;
2901        int blen;
2902
2903        rcu_read_lock();
2904restart_mnt:
2905        read_seqbegin_or_lock(&mount_lock, &m_seq);
2906        seq = 0;
2907        rcu_read_lock();
2908restart:
2909        bptr = *buffer;
2910        blen = *buflen;
2911        error = 0;
2912        dentry = path->dentry;
2913        vfsmnt = path->mnt;
2914        mnt = real_mount(vfsmnt);
2915        read_seqbegin_or_lock(&rename_lock, &seq);
2916        while (dentry != root->dentry || vfsmnt != root->mnt) {
2917                struct dentry * parent;
2918
2919                if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2920                        struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2921                        /* Escaped? */
2922                        if (dentry != vfsmnt->mnt_root) {
2923                                bptr = *buffer;
2924                                blen = *buflen;
2925                                error = 3;
2926                                break;
2927                        }
2928                        /* Global root? */
2929                        if (mnt != parent) {
2930                                dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2931                                mnt = parent;
2932                                vfsmnt = &mnt->mnt;
2933                                continue;
2934                        }
2935                        if (!error)
2936                                error = is_mounted(vfsmnt) ? 1 : 2;
2937                        break;
2938                }
2939                parent = dentry->d_parent;
2940                prefetch(parent);
2941                error = prepend_name(&bptr, &blen, &dentry->d_name);
2942                if (error)
2943                        break;
2944
2945                dentry = parent;
2946        }
2947        if (!(seq & 1))
2948                rcu_read_unlock();
2949        if (need_seqretry(&rename_lock, seq)) {
2950                seq = 1;
2951                goto restart;
2952        }
2953        done_seqretry(&rename_lock, seq);
2954
2955        if (!(m_seq & 1))
2956                rcu_read_unlock();
2957        if (need_seqretry(&mount_lock, m_seq)) {
2958                m_seq = 1;
2959                goto restart_mnt;
2960        }
2961        done_seqretry(&mount_lock, m_seq);
2962
2963        if (error >= 0 && bptr == *buffer) {
2964                if (--blen < 0)
2965                        error = -ENAMETOOLONG;
2966                else
2967                        *--bptr = '/';
2968        }
2969        *buffer = bptr;
2970        *buflen = blen;
2971        return error;
2972}
2973
2974/**
2975 * __d_path - return the path of a dentry
2976 * @path: the dentry/vfsmount to report
2977 * @root: root vfsmnt/dentry
2978 * @buf: buffer to return value in
2979 * @buflen: buffer length
2980 *
2981 * Convert a dentry into an ASCII path name.
2982 *
2983 * Returns a pointer into the buffer or an error code if the
2984 * path was too long.
2985 *
2986 * "buflen" should be positive.
2987 *
2988 * If the path is not reachable from the supplied root, return %NULL.
2989 */
2990char *__d_path(const struct path *path,
2991               const struct path *root,
2992               char *buf, int buflen)
2993{
2994        char *res = buf + buflen;
2995        int error;
2996
2997        prepend(&res, &buflen, "\0", 1);
2998        error = prepend_path(path, root, &res, &buflen);
2999
3000        if (error < 0)
3001                return ERR_PTR(error);
3002        if (error > 0)
3003                return NULL;
3004        return res;
3005}
3006
3007char *d_absolute_path(const struct path *path,
3008               char *buf, int buflen)
3009{
3010        struct path root = {};
3011        char *res = buf + buflen;
3012        int error;
3013
3014        prepend(&res, &buflen, "\0", 1);
3015        error = prepend_path(path, &root, &res, &buflen);
3016
3017        if (error > 1)
3018                error = -EINVAL;
3019        if (error < 0)
3020                return ERR_PTR(error);
3021        return res;
3022}
3023
3024/*
3025 * same as __d_path but appends "(deleted)" for unlinked files.
3026 */
3027static int path_with_deleted(const struct path *path,
3028                             const struct path *root,
3029                             char **buf, int *buflen)
3030{
3031        prepend(buf, buflen, "\0", 1);
3032        if (d_unlinked(path->dentry)) {
3033                int error = prepend(buf, buflen, " (deleted)", 10);
3034                if (error)
3035                        return error;
3036        }
3037
3038        return prepend_path(path, root, buf, buflen);
3039}
3040
3041static int prepend_unreachable(char **buffer, int *buflen)
3042{
3043        return prepend(buffer, buflen, "(unreachable)", 13);
3044}
3045
3046static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3047{
3048        unsigned seq;
3049
3050        do {
3051                seq = read_seqcount_begin(&fs->seq);
3052                *root = fs->root;
3053        } while (read_seqcount_retry(&fs->seq, seq));
3054}
3055
3056/**
3057 * d_path - return the path of a dentry
3058 * @path: path to report
3059 * @buf: buffer to return value in
3060 * @buflen: buffer length
3061 *
3062 * Convert a dentry into an ASCII path name. If the entry has been deleted
3063 * the string " (deleted)" is appended. Note that this is ambiguous.
3064 *
3065 * Returns a pointer into the buffer or an error code if the path was
3066 * too long. Note: Callers should use the returned pointer, not the passed
3067 * in buffer, to use the name! The implementation often starts at an offset
3068 * into the buffer, and may leave 0 bytes at the start.
3069 *
3070 * "buflen" should be positive.
3071 */
3072char *d_path(const struct path *path, char *buf, int buflen)
3073{
3074        char *res = buf + buflen;
3075        struct path root;
3076        int error;
3077
3078        /*
3079         * We have various synthetic filesystems that never get mounted.  On
3080         * these filesystems dentries are never used for lookup purposes, and
3081         * thus don't need to be hashed.  They also don't need a name until a
3082         * user wants to identify the object in /proc/pid/fd/.  The little hack
3083         * below allows us to generate a name for these objects on demand:
3084         *
3085         * Some pseudo inodes are mountable.  When they are mounted
3086         * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3087         * and instead have d_path return the mounted path.
3088         */
3089        if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3090            (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3091                return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3092
3093        rcu_read_lock();
3094        get_fs_root_rcu(current->fs, &root);
3095        error = path_with_deleted(path, &root, &res, &buflen);
3096        rcu_read_unlock();
3097
3098        if (error < 0)
3099                res = ERR_PTR(error);
3100        return res;
3101}
3102EXPORT_SYMBOL(d_path);
3103
3104/*
3105 * Helper function for dentry_operations.d_dname() members
3106 */
3107char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3108                        const char *fmt, ...)
3109{
3110        va_list args;
3111        char temp[64];
3112        int sz;
3113
3114        va_start(args, fmt);
3115        sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3116        va_end(args);
3117
3118        if (sz > sizeof(temp) || sz > buflen)
3119                return ERR_PTR(-ENAMETOOLONG);
3120
3121        buffer += buflen - sz;
3122        return memcpy(buffer, temp, sz);
3123}
3124
3125char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3126{
3127        char *end = buffer + buflen;
3128        /* these dentries are never renamed, so d_lock is not needed */
3129        if (prepend(&end, &buflen, " (deleted)", 11) ||
3130            prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3131            prepend(&end, &buflen, "/", 1))  
3132                end = ERR_PTR(-ENAMETOOLONG);
3133        return end;
3134}
3135EXPORT_SYMBOL(simple_dname);
3136
3137/*
3138 * Write full pathname from the root of the filesystem into the buffer.
3139 */
3140static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3141{
3142        struct dentry *dentry;
3143        char *end, *retval;
3144        int len, seq = 0;
3145        int error = 0;
3146
3147        if (buflen < 2)
3148                goto Elong;
3149
3150        rcu_read_lock();
3151restart:
3152        dentry = d;
3153        end = buf + buflen;
3154        len = buflen;
3155        prepend(&end, &len, "\0", 1);
3156        /* Get '/' right */
3157        retval = end-1;
3158        *retval = '/';
3159        read_seqbegin_or_lock(&rename_lock, &seq);
3160        while (!IS_ROOT(dentry)) {
3161                struct dentry *parent = dentry->d_parent;
3162
3163                prefetch(parent);
3164                error = prepend_name(&end, &len, &dentry->d_name);
3165                if (error)
3166                        break;
3167
3168                retval = end;
3169                dentry = parent;
3170        }
3171        if (!(seq & 1))
3172                rcu_read_unlock();
3173        if (need_seqretry(&rename_lock, seq)) {
3174                seq = 1;
3175                goto restart;
3176        }
3177        done_seqretry(&rename_lock, seq);
3178        if (error)
3179                goto Elong;
3180        return retval;
3181Elong:
3182        return ERR_PTR(-ENAMETOOLONG);
3183}
3184
3185char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3186{
3187        return __dentry_path(dentry, buf, buflen);
3188}
3189EXPORT_SYMBOL(dentry_path_raw);
3190
3191char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3192{
3193        char *p = NULL;
3194        char *retval;
3195
3196        if (d_unlinked(dentry)) {
3197                p = buf + buflen;
3198                if (prepend(&p, &buflen, "//deleted", 10) != 0)
3199                        goto Elong;
3200                buflen++;
3201        }
3202        retval = __dentry_path(dentry, buf, buflen);
3203        if (!IS_ERR(retval) && p)
3204                *p = '/';       /* restore '/' overriden with '\0' */
3205        return retval;
3206Elong:
3207        return ERR_PTR(-ENAMETOOLONG);
3208}
3209
3210static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3211                                    struct path *pwd)
3212{
3213        unsigned seq;
3214
3215        do {
3216                seq = read_seqcount_begin(&fs->seq);
3217                *root = fs->root;
3218                *pwd = fs->pwd;
3219        } while (read_seqcount_retry(&fs->seq, seq));
3220}
3221
3222/*
3223 * NOTE! The user-level library version returns a
3224 * character pointer. The kernel system call just
3225 * returns the length of the buffer filled (which
3226 * includes the ending '\0' character), or a negative
3227 * error value. So libc would do something like
3228 *
3229 *      char *getcwd(char * buf, size_t size)
3230 *      {
3231 *              int retval;
3232 *
3233 *              retval = sys_getcwd(buf, size);
3234 *              if (retval >= 0)
3235 *                      return buf;
3236 *              errno = -retval;
3237 *              return NULL;
3238 *      }
3239 */
3240SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3241{
3242        int error;
3243        struct path pwd, root;
3244        char *page = __getname();
3245
3246        if (!page)
3247                return -ENOMEM;
3248
3249        rcu_read_lock();
3250        get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3251
3252        error = -ENOENT;
3253        if (!d_unlinked(pwd.dentry)) {
3254                unsigned long len;
3255                char *cwd = page + PATH_MAX;
3256                int buflen = PATH_MAX;
3257
3258                prepend(&cwd, &buflen, "\0", 1);
3259                error = prepend_path(&pwd, &root, &cwd, &buflen);
3260                rcu_read_unlock();
3261
3262                if (error < 0)
3263                        goto out;
3264
3265                /* Unreachable from current root */
3266                if (error > 0) {
3267                        error = prepend_unreachable(&cwd, &buflen);
3268                        if (error)
3269                                goto out;
3270                }
3271
3272                error = -ERANGE;
3273                len = PATH_MAX + page - cwd;
3274                if (len <= size) {
3275                        error = len;
3276                        if (copy_to_user(buf, cwd, len))
3277                                error = -EFAULT;
3278                }
3279        } else {
3280                rcu_read_unlock();
3281        }
3282
3283out:
3284        __putname(page);
3285        return error;
3286}
3287
3288/*
3289 * Test whether new_dentry is a subdirectory of old_dentry.
3290 *
3291 * Trivially implemented using the dcache structure
3292 */
3293
3294/**
3295 * is_subdir - is new dentry a subdirectory of old_dentry
3296 * @new_dentry: new dentry
3297 * @old_dentry: old dentry
3298 *
3299 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3300 * Returns false otherwise.
3301 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3302 */
3303  
3304bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3305{
3306        bool result;
3307        unsigned seq;
3308
3309        if (new_dentry == old_dentry)
3310                return true;
3311
3312        do {
3313                /* for restarting inner loop in case of seq retry */
3314                seq = read_seqbegin(&rename_lock);
3315                /*
3316                 * Need rcu_readlock to protect against the d_parent trashing
3317                 * due to d_move
3318                 */
3319                rcu_read_lock();
3320                if (d_ancestor(old_dentry, new_dentry))
3321                        result = true;
3322                else
3323                        result = false;
3324                rcu_read_unlock();
3325        } while (read_seqretry(&rename_lock, seq));
3326
3327        return result;
3328}
3329
3330static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3331{
3332        struct dentry *root = data;
3333        if (dentry != root) {
3334                if (d_unhashed(dentry) || !dentry->d_inode)
3335                        return D_WALK_SKIP;
3336
3337                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3338                        dentry->d_flags |= DCACHE_GENOCIDE;
3339                        dentry->d_lockref.count--;
3340                }
3341        }
3342        return D_WALK_CONTINUE;
3343}
3344
3345void d_genocide(struct dentry *parent)
3346{
3347        d_walk(parent, parent, d_genocide_kill, NULL);
3348}
3349
3350void d_tmpfile(struct dentry *dentry, struct inode *inode)
3351{
3352        inode_dec_link_count(inode);
3353        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3354                !hlist_unhashed(&dentry->d_u.d_alias) ||
3355                !d_unlinked(dentry));
3356        spin_lock(&dentry->d_parent->d_lock);
3357        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3358        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3359                                (unsigned long long)inode->i_ino);
3360        spin_unlock(&dentry->d_lock);
3361        spin_unlock(&dentry->d_parent->d_lock);
3362        d_instantiate(dentry, inode);
3363}
3364EXPORT_SYMBOL(d_tmpfile);
3365
3366static __initdata unsigned long dhash_entries;
3367static int __init set_dhash_entries(char *str)
3368{
3369        if (!str)
3370                return 0;
3371        dhash_entries = simple_strtoul(str, &str, 0);
3372        return 1;
3373}
3374__setup("dhash_entries=", set_dhash_entries);
3375
3376static void __init dcache_init_early(void)
3377{
3378        unsigned int loop;
3379
3380        /* If hashes are distributed across NUMA nodes, defer
3381         * hash allocation until vmalloc space is available.
3382         */
3383        if (hashdist)
3384                return;
3385
3386        dentry_hashtable =
3387                alloc_large_system_hash("Dentry cache",
3388                                        sizeof(struct hlist_bl_head),
3389                                        dhash_entries,
3390                                        13,
3391                                        HASH_EARLY,
3392                                        &d_hash_shift,
3393                                        &d_hash_mask,
3394                                        0,
3395                                        0);
3396
3397        for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398                INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3399}
3400
3401static void __init dcache_init(void)
3402{
3403        unsigned int loop;
3404
3405        /* 
3406         * A constructor could be added for stable state like the lists,
3407         * but it is probably not worth it because of the cache nature
3408         * of the dcache. 
3409         */
3410        dentry_cache = KMEM_CACHE(dentry,
3411                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3412
3413        /* Hash may have been set up in dcache_init_early */
3414        if (!hashdist)
3415                return;
3416
3417        dentry_hashtable =
3418                alloc_large_system_hash("Dentry cache",
3419                                        sizeof(struct hlist_bl_head),
3420                                        dhash_entries,
3421                                        13,
3422                                        0,
3423                                        &d_hash_shift,
3424                                        &d_hash_mask,
3425                                        0,
3426                                        0);
3427
3428        for (loop = 0; loop < (1U << d_hash_shift); loop++)
3429                INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3430}
3431
3432/* SLAB cache for __getname() consumers */
3433struct kmem_cache *names_cachep __read_mostly;
3434EXPORT_SYMBOL(names_cachep);
3435
3436EXPORT_SYMBOL(d_genocide);
3437
3438void __init vfs_caches_init_early(void)
3439{
3440        dcache_init_early();
3441        inode_init_early();
3442}
3443
3444void __init vfs_caches_init(void)
3445{
3446        names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3447                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3448
3449        dcache_init();
3450        inode_init();
3451        files_init();
3452        files_maxfiles_init();
3453        mnt_init();
3454        bdev_cache_init();
3455        chrdev_init();
3456}
3457