linux/fs/ext4/indirect.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/indirect.c
   3 *
   4 *  from
   5 *
   6 *  linux/fs/ext4/inode.c
   7 *
   8 * Copyright (C) 1992, 1993, 1994, 1995
   9 * Remy Card (card@masi.ibp.fr)
  10 * Laboratoire MASI - Institut Blaise Pascal
  11 * Universite Pierre et Marie Curie (Paris VI)
  12 *
  13 *  from
  14 *
  15 *  linux/fs/minix/inode.c
  16 *
  17 *  Copyright (C) 1991, 1992  Linus Torvalds
  18 *
  19 *  Goal-directed block allocation by Stephen Tweedie
  20 *      (sct@redhat.com), 1993, 1998
  21 */
  22
  23#include "ext4_jbd2.h"
  24#include "truncate.h"
  25#include <linux/dax.h>
  26#include <linux/uio.h>
  27
  28#include <trace/events/ext4.h>
  29
  30typedef struct {
  31        __le32  *p;
  32        __le32  key;
  33        struct buffer_head *bh;
  34} Indirect;
  35
  36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  37{
  38        p->key = *(p->p = v);
  39        p->bh = bh;
  40}
  41
  42/**
  43 *      ext4_block_to_path - parse the block number into array of offsets
  44 *      @inode: inode in question (we are only interested in its superblock)
  45 *      @i_block: block number to be parsed
  46 *      @offsets: array to store the offsets in
  47 *      @boundary: set this non-zero if the referred-to block is likely to be
  48 *             followed (on disk) by an indirect block.
  49 *
  50 *      To store the locations of file's data ext4 uses a data structure common
  51 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  52 *      data blocks at leaves and indirect blocks in intermediate nodes.
  53 *      This function translates the block number into path in that tree -
  54 *      return value is the path length and @offsets[n] is the offset of
  55 *      pointer to (n+1)th node in the nth one. If @block is out of range
  56 *      (negative or too large) warning is printed and zero returned.
  57 *
  58 *      Note: function doesn't find node addresses, so no IO is needed. All
  59 *      we need to know is the capacity of indirect blocks (taken from the
  60 *      inode->i_sb).
  61 */
  62
  63/*
  64 * Portability note: the last comparison (check that we fit into triple
  65 * indirect block) is spelled differently, because otherwise on an
  66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  67 * if our filesystem had 8Kb blocks. We might use long long, but that would
  68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  69 * i_block would have to be negative in the very beginning, so we would not
  70 * get there at all.
  71 */
  72
  73static int ext4_block_to_path(struct inode *inode,
  74                              ext4_lblk_t i_block,
  75                              ext4_lblk_t offsets[4], int *boundary)
  76{
  77        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  78        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  79        const long direct_blocks = EXT4_NDIR_BLOCKS,
  80                indirect_blocks = ptrs,
  81                double_blocks = (1 << (ptrs_bits * 2));
  82        int n = 0;
  83        int final = 0;
  84
  85        if (i_block < direct_blocks) {
  86                offsets[n++] = i_block;
  87                final = direct_blocks;
  88        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  89                offsets[n++] = EXT4_IND_BLOCK;
  90                offsets[n++] = i_block;
  91                final = ptrs;
  92        } else if ((i_block -= indirect_blocks) < double_blocks) {
  93                offsets[n++] = EXT4_DIND_BLOCK;
  94                offsets[n++] = i_block >> ptrs_bits;
  95                offsets[n++] = i_block & (ptrs - 1);
  96                final = ptrs;
  97        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  98                offsets[n++] = EXT4_TIND_BLOCK;
  99                offsets[n++] = i_block >> (ptrs_bits * 2);
 100                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 101                offsets[n++] = i_block & (ptrs - 1);
 102                final = ptrs;
 103        } else {
 104                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 105                             i_block + direct_blocks +
 106                             indirect_blocks + double_blocks, inode->i_ino);
 107        }
 108        if (boundary)
 109                *boundary = final - 1 - (i_block & (ptrs - 1));
 110        return n;
 111}
 112
 113/**
 114 *      ext4_get_branch - read the chain of indirect blocks leading to data
 115 *      @inode: inode in question
 116 *      @depth: depth of the chain (1 - direct pointer, etc.)
 117 *      @offsets: offsets of pointers in inode/indirect blocks
 118 *      @chain: place to store the result
 119 *      @err: here we store the error value
 120 *
 121 *      Function fills the array of triples <key, p, bh> and returns %NULL
 122 *      if everything went OK or the pointer to the last filled triple
 123 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 124 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 125 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 126 *      number (it points into struct inode for i==0 and into the bh->b_data
 127 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 128 *      block for i>0 and NULL for i==0. In other words, it holds the block
 129 *      numbers of the chain, addresses they were taken from (and where we can
 130 *      verify that chain did not change) and buffer_heads hosting these
 131 *      numbers.
 132 *
 133 *      Function stops when it stumbles upon zero pointer (absent block)
 134 *              (pointer to last triple returned, *@err == 0)
 135 *      or when it gets an IO error reading an indirect block
 136 *              (ditto, *@err == -EIO)
 137 *      or when it reads all @depth-1 indirect blocks successfully and finds
 138 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 139 *
 140 *      Need to be called with
 141 *      down_read(&EXT4_I(inode)->i_data_sem)
 142 */
 143static Indirect *ext4_get_branch(struct inode *inode, int depth,
 144                                 ext4_lblk_t  *offsets,
 145                                 Indirect chain[4], int *err)
 146{
 147        struct super_block *sb = inode->i_sb;
 148        Indirect *p = chain;
 149        struct buffer_head *bh;
 150        int ret = -EIO;
 151
 152        *err = 0;
 153        /* i_data is not going away, no lock needed */
 154        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 155        if (!p->key)
 156                goto no_block;
 157        while (--depth) {
 158                bh = sb_getblk(sb, le32_to_cpu(p->key));
 159                if (unlikely(!bh)) {
 160                        ret = -ENOMEM;
 161                        goto failure;
 162                }
 163
 164                if (!bh_uptodate_or_lock(bh)) {
 165                        if (bh_submit_read(bh) < 0) {
 166                                put_bh(bh);
 167                                goto failure;
 168                        }
 169                        /* validate block references */
 170                        if (ext4_check_indirect_blockref(inode, bh)) {
 171                                put_bh(bh);
 172                                goto failure;
 173                        }
 174                }
 175
 176                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 177                /* Reader: end */
 178                if (!p->key)
 179                        goto no_block;
 180        }
 181        return NULL;
 182
 183failure:
 184        *err = ret;
 185no_block:
 186        return p;
 187}
 188
 189/**
 190 *      ext4_find_near - find a place for allocation with sufficient locality
 191 *      @inode: owner
 192 *      @ind: descriptor of indirect block.
 193 *
 194 *      This function returns the preferred place for block allocation.
 195 *      It is used when heuristic for sequential allocation fails.
 196 *      Rules are:
 197 *        + if there is a block to the left of our position - allocate near it.
 198 *        + if pointer will live in indirect block - allocate near that block.
 199 *        + if pointer will live in inode - allocate in the same
 200 *          cylinder group.
 201 *
 202 * In the latter case we colour the starting block by the callers PID to
 203 * prevent it from clashing with concurrent allocations for a different inode
 204 * in the same block group.   The PID is used here so that functionally related
 205 * files will be close-by on-disk.
 206 *
 207 *      Caller must make sure that @ind is valid and will stay that way.
 208 */
 209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 210{
 211        struct ext4_inode_info *ei = EXT4_I(inode);
 212        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 213        __le32 *p;
 214
 215        /* Try to find previous block */
 216        for (p = ind->p - 1; p >= start; p--) {
 217                if (*p)
 218                        return le32_to_cpu(*p);
 219        }
 220
 221        /* No such thing, so let's try location of indirect block */
 222        if (ind->bh)
 223                return ind->bh->b_blocknr;
 224
 225        /*
 226         * It is going to be referred to from the inode itself? OK, just put it
 227         * into the same cylinder group then.
 228         */
 229        return ext4_inode_to_goal_block(inode);
 230}
 231
 232/**
 233 *      ext4_find_goal - find a preferred place for allocation.
 234 *      @inode: owner
 235 *      @block:  block we want
 236 *      @partial: pointer to the last triple within a chain
 237 *
 238 *      Normally this function find the preferred place for block allocation,
 239 *      returns it.
 240 *      Because this is only used for non-extent files, we limit the block nr
 241 *      to 32 bits.
 242 */
 243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 244                                   Indirect *partial)
 245{
 246        ext4_fsblk_t goal;
 247
 248        /*
 249         * XXX need to get goal block from mballoc's data structures
 250         */
 251
 252        goal = ext4_find_near(inode, partial);
 253        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 254        return goal;
 255}
 256
 257/**
 258 *      ext4_blks_to_allocate - Look up the block map and count the number
 259 *      of direct blocks need to be allocated for the given branch.
 260 *
 261 *      @branch: chain of indirect blocks
 262 *      @k: number of blocks need for indirect blocks
 263 *      @blks: number of data blocks to be mapped.
 264 *      @blocks_to_boundary:  the offset in the indirect block
 265 *
 266 *      return the total number of blocks to be allocate, including the
 267 *      direct and indirect blocks.
 268 */
 269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 270                                 int blocks_to_boundary)
 271{
 272        unsigned int count = 0;
 273
 274        /*
 275         * Simple case, [t,d]Indirect block(s) has not allocated yet
 276         * then it's clear blocks on that path have not allocated
 277         */
 278        if (k > 0) {
 279                /* right now we don't handle cross boundary allocation */
 280                if (blks < blocks_to_boundary + 1)
 281                        count += blks;
 282                else
 283                        count += blocks_to_boundary + 1;
 284                return count;
 285        }
 286
 287        count++;
 288        while (count < blks && count <= blocks_to_boundary &&
 289                le32_to_cpu(*(branch[0].p + count)) == 0) {
 290                count++;
 291        }
 292        return count;
 293}
 294
 295/**
 296 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 297 *      @handle: handle for this transaction
 298 *      @inode: owner
 299 *      @indirect_blks: number of allocated indirect blocks
 300 *      @blks: number of allocated direct blocks
 301 *      @goal: preferred place for allocation
 302 *      @offsets: offsets (in the blocks) to store the pointers to next.
 303 *      @branch: place to store the chain in.
 304 *
 305 *      This function allocates blocks, zeroes out all but the last one,
 306 *      links them into chain and (if we are synchronous) writes them to disk.
 307 *      In other words, it prepares a branch that can be spliced onto the
 308 *      inode. It stores the information about that chain in the branch[], in
 309 *      the same format as ext4_get_branch() would do. We are calling it after
 310 *      we had read the existing part of chain and partial points to the last
 311 *      triple of that (one with zero ->key). Upon the exit we have the same
 312 *      picture as after the successful ext4_get_block(), except that in one
 313 *      place chain is disconnected - *branch->p is still zero (we did not
 314 *      set the last link), but branch->key contains the number that should
 315 *      be placed into *branch->p to fill that gap.
 316 *
 317 *      If allocation fails we free all blocks we've allocated (and forget
 318 *      their buffer_heads) and return the error value the from failed
 319 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 320 *      as described above and return 0.
 321 */
 322static int ext4_alloc_branch(handle_t *handle,
 323                             struct ext4_allocation_request *ar,
 324                             int indirect_blks, ext4_lblk_t *offsets,
 325                             Indirect *branch)
 326{
 327        struct buffer_head *            bh;
 328        ext4_fsblk_t                    b, new_blocks[4];
 329        __le32                          *p;
 330        int                             i, j, err, len = 1;
 331
 332        for (i = 0; i <= indirect_blks; i++) {
 333                if (i == indirect_blks) {
 334                        new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 335                } else
 336                        ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 337                                        ar->inode, ar->goal,
 338                                        ar->flags & EXT4_MB_DELALLOC_RESERVED,
 339                                        NULL, &err);
 340                if (err) {
 341                        i--;
 342                        goto failed;
 343                }
 344                branch[i].key = cpu_to_le32(new_blocks[i]);
 345                if (i == 0)
 346                        continue;
 347
 348                bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 349                if (unlikely(!bh)) {
 350                        err = -ENOMEM;
 351                        goto failed;
 352                }
 353                lock_buffer(bh);
 354                BUFFER_TRACE(bh, "call get_create_access");
 355                err = ext4_journal_get_create_access(handle, bh);
 356                if (err) {
 357                        unlock_buffer(bh);
 358                        goto failed;
 359                }
 360
 361                memset(bh->b_data, 0, bh->b_size);
 362                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 363                b = new_blocks[i];
 364
 365                if (i == indirect_blks)
 366                        len = ar->len;
 367                for (j = 0; j < len; j++)
 368                        *p++ = cpu_to_le32(b++);
 369
 370                BUFFER_TRACE(bh, "marking uptodate");
 371                set_buffer_uptodate(bh);
 372                unlock_buffer(bh);
 373
 374                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 375                err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 376                if (err)
 377                        goto failed;
 378        }
 379        return 0;
 380failed:
 381        for (; i >= 0; i--) {
 382                /*
 383                 * We want to ext4_forget() only freshly allocated indirect
 384                 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
 385                 * buffer at branch[0].bh is indirect block / inode already
 386                 * existing before ext4_alloc_branch() was called.
 387                 */
 388                if (i > 0 && i != indirect_blks && branch[i].bh)
 389                        ext4_forget(handle, 1, ar->inode, branch[i].bh,
 390                                    branch[i].bh->b_blocknr);
 391                ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 392                                 (i == indirect_blks) ? ar->len : 1, 0);
 393        }
 394        return err;
 395}
 396
 397/**
 398 * ext4_splice_branch - splice the allocated branch onto inode.
 399 * @handle: handle for this transaction
 400 * @inode: owner
 401 * @block: (logical) number of block we are adding
 402 * @chain: chain of indirect blocks (with a missing link - see
 403 *      ext4_alloc_branch)
 404 * @where: location of missing link
 405 * @num:   number of indirect blocks we are adding
 406 * @blks:  number of direct blocks we are adding
 407 *
 408 * This function fills the missing link and does all housekeeping needed in
 409 * inode (->i_blocks, etc.). In case of success we end up with the full
 410 * chain to new block and return 0.
 411 */
 412static int ext4_splice_branch(handle_t *handle,
 413                              struct ext4_allocation_request *ar,
 414                              Indirect *where, int num)
 415{
 416        int i;
 417        int err = 0;
 418        ext4_fsblk_t current_block;
 419
 420        /*
 421         * If we're splicing into a [td]indirect block (as opposed to the
 422         * inode) then we need to get write access to the [td]indirect block
 423         * before the splice.
 424         */
 425        if (where->bh) {
 426                BUFFER_TRACE(where->bh, "get_write_access");
 427                err = ext4_journal_get_write_access(handle, where->bh);
 428                if (err)
 429                        goto err_out;
 430        }
 431        /* That's it */
 432
 433        *where->p = where->key;
 434
 435        /*
 436         * Update the host buffer_head or inode to point to more just allocated
 437         * direct blocks blocks
 438         */
 439        if (num == 0 && ar->len > 1) {
 440                current_block = le32_to_cpu(where->key) + 1;
 441                for (i = 1; i < ar->len; i++)
 442                        *(where->p + i) = cpu_to_le32(current_block++);
 443        }
 444
 445        /* We are done with atomic stuff, now do the rest of housekeeping */
 446        /* had we spliced it onto indirect block? */
 447        if (where->bh) {
 448                /*
 449                 * If we spliced it onto an indirect block, we haven't
 450                 * altered the inode.  Note however that if it is being spliced
 451                 * onto an indirect block at the very end of the file (the
 452                 * file is growing) then we *will* alter the inode to reflect
 453                 * the new i_size.  But that is not done here - it is done in
 454                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 455                 */
 456                jbd_debug(5, "splicing indirect only\n");
 457                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 458                err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 459                if (err)
 460                        goto err_out;
 461        } else {
 462                /*
 463                 * OK, we spliced it into the inode itself on a direct block.
 464                 */
 465                ext4_mark_inode_dirty(handle, ar->inode);
 466                jbd_debug(5, "splicing direct\n");
 467        }
 468        return err;
 469
 470err_out:
 471        for (i = 1; i <= num; i++) {
 472                /*
 473                 * branch[i].bh is newly allocated, so there is no
 474                 * need to revoke the block, which is why we don't
 475                 * need to set EXT4_FREE_BLOCKS_METADATA.
 476                 */
 477                ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 478                                 EXT4_FREE_BLOCKS_FORGET);
 479        }
 480        ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 481                         ar->len, 0);
 482
 483        return err;
 484}
 485
 486/*
 487 * The ext4_ind_map_blocks() function handles non-extents inodes
 488 * (i.e., using the traditional indirect/double-indirect i_blocks
 489 * scheme) for ext4_map_blocks().
 490 *
 491 * Allocation strategy is simple: if we have to allocate something, we will
 492 * have to go the whole way to leaf. So let's do it before attaching anything
 493 * to tree, set linkage between the newborn blocks, write them if sync is
 494 * required, recheck the path, free and repeat if check fails, otherwise
 495 * set the last missing link (that will protect us from any truncate-generated
 496 * removals - all blocks on the path are immune now) and possibly force the
 497 * write on the parent block.
 498 * That has a nice additional property: no special recovery from the failed
 499 * allocations is needed - we simply release blocks and do not touch anything
 500 * reachable from inode.
 501 *
 502 * `handle' can be NULL if create == 0.
 503 *
 504 * return > 0, # of blocks mapped or allocated.
 505 * return = 0, if plain lookup failed.
 506 * return < 0, error case.
 507 *
 508 * The ext4_ind_get_blocks() function should be called with
 509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 512 * blocks.
 513 */
 514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 515                        struct ext4_map_blocks *map,
 516                        int flags)
 517{
 518        struct ext4_allocation_request ar;
 519        int err = -EIO;
 520        ext4_lblk_t offsets[4];
 521        Indirect chain[4];
 522        Indirect *partial;
 523        int indirect_blks;
 524        int blocks_to_boundary = 0;
 525        int depth;
 526        int count = 0;
 527        ext4_fsblk_t first_block = 0;
 528
 529        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 530        J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 531        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 532        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 533                                   &blocks_to_boundary);
 534
 535        if (depth == 0)
 536                goto out;
 537
 538        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 539
 540        /* Simplest case - block found, no allocation needed */
 541        if (!partial) {
 542                first_block = le32_to_cpu(chain[depth - 1].key);
 543                count++;
 544                /*map more blocks*/
 545                while (count < map->m_len && count <= blocks_to_boundary) {
 546                        ext4_fsblk_t blk;
 547
 548                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 549
 550                        if (blk == first_block + count)
 551                                count++;
 552                        else
 553                                break;
 554                }
 555                goto got_it;
 556        }
 557
 558        /* Next simple case - plain lookup failed */
 559        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 560                unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
 561                int i;
 562
 563                /* Count number blocks in a subtree under 'partial' */
 564                count = 1;
 565                for (i = 0; partial + i != chain + depth - 1; i++)
 566                        count *= epb;
 567                /* Fill in size of a hole we found */
 568                map->m_pblk = 0;
 569                map->m_len = min_t(unsigned int, map->m_len, count);
 570                goto cleanup;
 571        }
 572
 573        /* Failed read of indirect block */
 574        if (err == -EIO)
 575                goto cleanup;
 576
 577        /*
 578         * Okay, we need to do block allocation.
 579        */
 580        if (ext4_has_feature_bigalloc(inode->i_sb)) {
 581                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 582                                 "non-extent mapped inodes with bigalloc");
 583                return -EFSCORRUPTED;
 584        }
 585
 586        /* Set up for the direct block allocation */
 587        memset(&ar, 0, sizeof(ar));
 588        ar.inode = inode;
 589        ar.logical = map->m_lblk;
 590        if (S_ISREG(inode->i_mode))
 591                ar.flags = EXT4_MB_HINT_DATA;
 592        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 593                ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 594        if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 595                ar.flags |= EXT4_MB_USE_RESERVED;
 596
 597        ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 598
 599        /* the number of blocks need to allocate for [d,t]indirect blocks */
 600        indirect_blks = (chain + depth) - partial - 1;
 601
 602        /*
 603         * Next look up the indirect map to count the totoal number of
 604         * direct blocks to allocate for this branch.
 605         */
 606        ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 607                                       map->m_len, blocks_to_boundary);
 608
 609        /*
 610         * Block out ext4_truncate while we alter the tree
 611         */
 612        err = ext4_alloc_branch(handle, &ar, indirect_blks,
 613                                offsets + (partial - chain), partial);
 614
 615        /*
 616         * The ext4_splice_branch call will free and forget any buffers
 617         * on the new chain if there is a failure, but that risks using
 618         * up transaction credits, especially for bitmaps where the
 619         * credits cannot be returned.  Can we handle this somehow?  We
 620         * may need to return -EAGAIN upwards in the worst case.  --sct
 621         */
 622        if (!err)
 623                err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 624        if (err)
 625                goto cleanup;
 626
 627        map->m_flags |= EXT4_MAP_NEW;
 628
 629        ext4_update_inode_fsync_trans(handle, inode, 1);
 630        count = ar.len;
 631got_it:
 632        map->m_flags |= EXT4_MAP_MAPPED;
 633        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 634        map->m_len = count;
 635        if (count > blocks_to_boundary)
 636                map->m_flags |= EXT4_MAP_BOUNDARY;
 637        err = count;
 638        /* Clean up and exit */
 639        partial = chain + depth - 1;    /* the whole chain */
 640cleanup:
 641        while (partial > chain) {
 642                BUFFER_TRACE(partial->bh, "call brelse");
 643                brelse(partial->bh);
 644                partial--;
 645        }
 646out:
 647        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 648        return err;
 649}
 650
 651/*
 652 * O_DIRECT for ext3 (or indirect map) based files
 653 *
 654 * If the O_DIRECT write will extend the file then add this inode to the
 655 * orphan list.  So recovery will truncate it back to the original size
 656 * if the machine crashes during the write.
 657 *
 658 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 659 * crashes then stale disk data _may_ be exposed inside the file. But current
 660 * VFS code falls back into buffered path in that case so we are safe.
 661 */
 662ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
 663                           loff_t offset)
 664{
 665        struct file *file = iocb->ki_filp;
 666        struct inode *inode = file->f_mapping->host;
 667        struct ext4_inode_info *ei = EXT4_I(inode);
 668        handle_t *handle;
 669        ssize_t ret;
 670        int orphan = 0;
 671        size_t count = iov_iter_count(iter);
 672        int retries = 0;
 673
 674        if (iov_iter_rw(iter) == WRITE) {
 675                loff_t final_size = offset + count;
 676
 677                if (final_size > inode->i_size) {
 678                        /* Credits for sb + inode write */
 679                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 680                        if (IS_ERR(handle)) {
 681                                ret = PTR_ERR(handle);
 682                                goto out;
 683                        }
 684                        ret = ext4_orphan_add(handle, inode);
 685                        if (ret) {
 686                                ext4_journal_stop(handle);
 687                                goto out;
 688                        }
 689                        orphan = 1;
 690                        ei->i_disksize = inode->i_size;
 691                        ext4_journal_stop(handle);
 692                }
 693        }
 694
 695retry:
 696        if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) {
 697                /*
 698                 * Nolock dioread optimization may be dynamically disabled
 699                 * via ext4_inode_block_unlocked_dio(). Check inode's state
 700                 * while holding extra i_dio_count ref.
 701                 */
 702                inode_dio_begin(inode);
 703                smp_mb();
 704                if (unlikely(ext4_test_inode_state(inode,
 705                                                    EXT4_STATE_DIOREAD_LOCK))) {
 706                        inode_dio_end(inode);
 707                        goto locked;
 708                }
 709                if (IS_DAX(inode))
 710                        ret = dax_do_io(iocb, inode, iter, offset,
 711                                        ext4_dio_get_block, NULL, 0);
 712                else
 713                        ret = __blockdev_direct_IO(iocb, inode,
 714                                                   inode->i_sb->s_bdev, iter,
 715                                                   offset, ext4_dio_get_block,
 716                                                   NULL, NULL, 0);
 717                inode_dio_end(inode);
 718        } else {
 719locked:
 720                if (IS_DAX(inode))
 721                        ret = dax_do_io(iocb, inode, iter, offset,
 722                                        ext4_dio_get_block, NULL, DIO_LOCKING);
 723                else
 724                        ret = blockdev_direct_IO(iocb, inode, iter, offset,
 725                                                 ext4_dio_get_block);
 726
 727                if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
 728                        loff_t isize = i_size_read(inode);
 729                        loff_t end = offset + count;
 730
 731                        if (end > isize)
 732                                ext4_truncate_failed_write(inode);
 733                }
 734        }
 735        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 736                goto retry;
 737
 738        if (orphan) {
 739                int err;
 740
 741                /* Credits for sb + inode write */
 742                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 743                if (IS_ERR(handle)) {
 744                        /* This is really bad luck. We've written the data
 745                         * but cannot extend i_size. Bail out and pretend
 746                         * the write failed... */
 747                        ret = PTR_ERR(handle);
 748                        if (inode->i_nlink)
 749                                ext4_orphan_del(NULL, inode);
 750
 751                        goto out;
 752                }
 753                if (inode->i_nlink)
 754                        ext4_orphan_del(handle, inode);
 755                if (ret > 0) {
 756                        loff_t end = offset + ret;
 757                        if (end > inode->i_size) {
 758                                ei->i_disksize = end;
 759                                i_size_write(inode, end);
 760                                /*
 761                                 * We're going to return a positive `ret'
 762                                 * here due to non-zero-length I/O, so there's
 763                                 * no way of reporting error returns from
 764                                 * ext4_mark_inode_dirty() to userspace.  So
 765                                 * ignore it.
 766                                 */
 767                                ext4_mark_inode_dirty(handle, inode);
 768                        }
 769                }
 770                err = ext4_journal_stop(handle);
 771                if (ret == 0)
 772                        ret = err;
 773        }
 774out:
 775        return ret;
 776}
 777
 778/*
 779 * Calculate the number of metadata blocks need to reserve
 780 * to allocate a new block at @lblocks for non extent file based file
 781 */
 782int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 783{
 784        struct ext4_inode_info *ei = EXT4_I(inode);
 785        sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 786        int blk_bits;
 787
 788        if (lblock < EXT4_NDIR_BLOCKS)
 789                return 0;
 790
 791        lblock -= EXT4_NDIR_BLOCKS;
 792
 793        if (ei->i_da_metadata_calc_len &&
 794            (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 795                ei->i_da_metadata_calc_len++;
 796                return 0;
 797        }
 798        ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 799        ei->i_da_metadata_calc_len = 1;
 800        blk_bits = order_base_2(lblock);
 801        return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 802}
 803
 804/*
 805 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 806 * contiguous blocks
 807 */
 808int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 809{
 810        /*
 811         * With N contiguous data blocks, we need at most
 812         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 813         * 2 dindirect blocks, and 1 tindirect block
 814         */
 815        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 816}
 817
 818/*
 819 * Truncate transactions can be complex and absolutely huge.  So we need to
 820 * be able to restart the transaction at a conventient checkpoint to make
 821 * sure we don't overflow the journal.
 822 *
 823 * Try to extend this transaction for the purposes of truncation.  If
 824 * extend fails, we need to propagate the failure up and restart the
 825 * transaction in the top-level truncate loop. --sct
 826 *
 827 * Returns 0 if we managed to create more room.  If we can't create more
 828 * room, and the transaction must be restarted we return 1.
 829 */
 830static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 831{
 832        if (!ext4_handle_valid(handle))
 833                return 0;
 834        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 835                return 0;
 836        if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 837                return 0;
 838        return 1;
 839}
 840
 841/*
 842 * Probably it should be a library function... search for first non-zero word
 843 * or memcmp with zero_page, whatever is better for particular architecture.
 844 * Linus?
 845 */
 846static inline int all_zeroes(__le32 *p, __le32 *q)
 847{
 848        while (p < q)
 849                if (*p++)
 850                        return 0;
 851        return 1;
 852}
 853
 854/**
 855 *      ext4_find_shared - find the indirect blocks for partial truncation.
 856 *      @inode:   inode in question
 857 *      @depth:   depth of the affected branch
 858 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 859 *      @chain:   place to store the pointers to partial indirect blocks
 860 *      @top:     place to the (detached) top of branch
 861 *
 862 *      This is a helper function used by ext4_truncate().
 863 *
 864 *      When we do truncate() we may have to clean the ends of several
 865 *      indirect blocks but leave the blocks themselves alive. Block is
 866 *      partially truncated if some data below the new i_size is referred
 867 *      from it (and it is on the path to the first completely truncated
 868 *      data block, indeed).  We have to free the top of that path along
 869 *      with everything to the right of the path. Since no allocation
 870 *      past the truncation point is possible until ext4_truncate()
 871 *      finishes, we may safely do the latter, but top of branch may
 872 *      require special attention - pageout below the truncation point
 873 *      might try to populate it.
 874 *
 875 *      We atomically detach the top of branch from the tree, store the
 876 *      block number of its root in *@top, pointers to buffer_heads of
 877 *      partially truncated blocks - in @chain[].bh and pointers to
 878 *      their last elements that should not be removed - in
 879 *      @chain[].p. Return value is the pointer to last filled element
 880 *      of @chain.
 881 *
 882 *      The work left to caller to do the actual freeing of subtrees:
 883 *              a) free the subtree starting from *@top
 884 *              b) free the subtrees whose roots are stored in
 885 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 886 *              c) free the subtrees growing from the inode past the @chain[0].
 887 *                      (no partially truncated stuff there).  */
 888
 889static Indirect *ext4_find_shared(struct inode *inode, int depth,
 890                                  ext4_lblk_t offsets[4], Indirect chain[4],
 891                                  __le32 *top)
 892{
 893        Indirect *partial, *p;
 894        int k, err;
 895
 896        *top = 0;
 897        /* Make k index the deepest non-null offset + 1 */
 898        for (k = depth; k > 1 && !offsets[k-1]; k--)
 899                ;
 900        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 901        /* Writer: pointers */
 902        if (!partial)
 903                partial = chain + k-1;
 904        /*
 905         * If the branch acquired continuation since we've looked at it -
 906         * fine, it should all survive and (new) top doesn't belong to us.
 907         */
 908        if (!partial->key && *partial->p)
 909                /* Writer: end */
 910                goto no_top;
 911        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 912                ;
 913        /*
 914         * OK, we've found the last block that must survive. The rest of our
 915         * branch should be detached before unlocking. However, if that rest
 916         * of branch is all ours and does not grow immediately from the inode
 917         * it's easier to cheat and just decrement partial->p.
 918         */
 919        if (p == chain + k - 1 && p > chain) {
 920                p->p--;
 921        } else {
 922                *top = *p->p;
 923                /* Nope, don't do this in ext4.  Must leave the tree intact */
 924#if 0
 925                *p->p = 0;
 926#endif
 927        }
 928        /* Writer: end */
 929
 930        while (partial > p) {
 931                brelse(partial->bh);
 932                partial--;
 933        }
 934no_top:
 935        return partial;
 936}
 937
 938/*
 939 * Zero a number of block pointers in either an inode or an indirect block.
 940 * If we restart the transaction we must again get write access to the
 941 * indirect block for further modification.
 942 *
 943 * We release `count' blocks on disk, but (last - first) may be greater
 944 * than `count' because there can be holes in there.
 945 *
 946 * Return 0 on success, 1 on invalid block range
 947 * and < 0 on fatal error.
 948 */
 949static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 950                             struct buffer_head *bh,
 951                             ext4_fsblk_t block_to_free,
 952                             unsigned long count, __le32 *first,
 953                             __le32 *last)
 954{
 955        __le32 *p;
 956        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 957        int     err;
 958
 959        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 960                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 961        else if (ext4_should_journal_data(inode))
 962                flags |= EXT4_FREE_BLOCKS_FORGET;
 963
 964        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 965                                   count)) {
 966                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 967                                 "blocks %llu len %lu",
 968                                 (unsigned long long) block_to_free, count);
 969                return 1;
 970        }
 971
 972        if (try_to_extend_transaction(handle, inode)) {
 973                if (bh) {
 974                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 975                        err = ext4_handle_dirty_metadata(handle, inode, bh);
 976                        if (unlikely(err))
 977                                goto out_err;
 978                }
 979                err = ext4_mark_inode_dirty(handle, inode);
 980                if (unlikely(err))
 981                        goto out_err;
 982                err = ext4_truncate_restart_trans(handle, inode,
 983                                        ext4_blocks_for_truncate(inode));
 984                if (unlikely(err))
 985                        goto out_err;
 986                if (bh) {
 987                        BUFFER_TRACE(bh, "retaking write access");
 988                        err = ext4_journal_get_write_access(handle, bh);
 989                        if (unlikely(err))
 990                                goto out_err;
 991                }
 992        }
 993
 994        for (p = first; p < last; p++)
 995                *p = 0;
 996
 997        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 998        return 0;
 999out_err:
1000        ext4_std_error(inode->i_sb, err);
1001        return err;
1002}
1003
1004/**
1005 * ext4_free_data - free a list of data blocks
1006 * @handle:     handle for this transaction
1007 * @inode:      inode we are dealing with
1008 * @this_bh:    indirect buffer_head which contains *@first and *@last
1009 * @first:      array of block numbers
1010 * @last:       points immediately past the end of array
1011 *
1012 * We are freeing all blocks referred from that array (numbers are stored as
1013 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1014 *
1015 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1016 * blocks are contiguous then releasing them at one time will only affect one
1017 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1018 * actually use a lot of journal space.
1019 *
1020 * @this_bh will be %NULL if @first and @last point into the inode's direct
1021 * block pointers.
1022 */
1023static void ext4_free_data(handle_t *handle, struct inode *inode,
1024                           struct buffer_head *this_bh,
1025                           __le32 *first, __le32 *last)
1026{
1027        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1028        unsigned long count = 0;            /* Number of blocks in the run */
1029        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1030                                               corresponding to
1031                                               block_to_free */
1032        ext4_fsblk_t nr;                    /* Current block # */
1033        __le32 *p;                          /* Pointer into inode/ind
1034                                               for current block */
1035        int err = 0;
1036
1037        if (this_bh) {                          /* For indirect block */
1038                BUFFER_TRACE(this_bh, "get_write_access");
1039                err = ext4_journal_get_write_access(handle, this_bh);
1040                /* Important: if we can't update the indirect pointers
1041                 * to the blocks, we can't free them. */
1042                if (err)
1043                        return;
1044        }
1045
1046        for (p = first; p < last; p++) {
1047                nr = le32_to_cpu(*p);
1048                if (nr) {
1049                        /* accumulate blocks to free if they're contiguous */
1050                        if (count == 0) {
1051                                block_to_free = nr;
1052                                block_to_free_p = p;
1053                                count = 1;
1054                        } else if (nr == block_to_free + count) {
1055                                count++;
1056                        } else {
1057                                err = ext4_clear_blocks(handle, inode, this_bh,
1058                                                        block_to_free, count,
1059                                                        block_to_free_p, p);
1060                                if (err)
1061                                        break;
1062                                block_to_free = nr;
1063                                block_to_free_p = p;
1064                                count = 1;
1065                        }
1066                }
1067        }
1068
1069        if (!err && count > 0)
1070                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1071                                        count, block_to_free_p, p);
1072        if (err < 0)
1073                /* fatal error */
1074                return;
1075
1076        if (this_bh) {
1077                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1078
1079                /*
1080                 * The buffer head should have an attached journal head at this
1081                 * point. However, if the data is corrupted and an indirect
1082                 * block pointed to itself, it would have been detached when
1083                 * the block was cleared. Check for this instead of OOPSing.
1084                 */
1085                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1086                        ext4_handle_dirty_metadata(handle, inode, this_bh);
1087                else
1088                        EXT4_ERROR_INODE(inode,
1089                                         "circular indirect block detected at "
1090                                         "block %llu",
1091                                (unsigned long long) this_bh->b_blocknr);
1092        }
1093}
1094
1095/**
1096 *      ext4_free_branches - free an array of branches
1097 *      @handle: JBD handle for this transaction
1098 *      @inode: inode we are dealing with
1099 *      @parent_bh: the buffer_head which contains *@first and *@last
1100 *      @first: array of block numbers
1101 *      @last:  pointer immediately past the end of array
1102 *      @depth: depth of the branches to free
1103 *
1104 *      We are freeing all blocks referred from these branches (numbers are
1105 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1106 *      appropriately.
1107 */
1108static void ext4_free_branches(handle_t *handle, struct inode *inode,
1109                               struct buffer_head *parent_bh,
1110                               __le32 *first, __le32 *last, int depth)
1111{
1112        ext4_fsblk_t nr;
1113        __le32 *p;
1114
1115        if (ext4_handle_is_aborted(handle))
1116                return;
1117
1118        if (depth--) {
1119                struct buffer_head *bh;
1120                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1121                p = last;
1122                while (--p >= first) {
1123                        nr = le32_to_cpu(*p);
1124                        if (!nr)
1125                                continue;               /* A hole */
1126
1127                        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1128                                                   nr, 1)) {
1129                                EXT4_ERROR_INODE(inode,
1130                                                 "invalid indirect mapped "
1131                                                 "block %lu (level %d)",
1132                                                 (unsigned long) nr, depth);
1133                                break;
1134                        }
1135
1136                        /* Go read the buffer for the next level down */
1137                        bh = sb_bread(inode->i_sb, nr);
1138
1139                        /*
1140                         * A read failure? Report error and clear slot
1141                         * (should be rare).
1142                         */
1143                        if (!bh) {
1144                                EXT4_ERROR_INODE_BLOCK(inode, nr,
1145                                                       "Read failure");
1146                                continue;
1147                        }
1148
1149                        /* This zaps the entire block.  Bottom up. */
1150                        BUFFER_TRACE(bh, "free child branches");
1151                        ext4_free_branches(handle, inode, bh,
1152                                        (__le32 *) bh->b_data,
1153                                        (__le32 *) bh->b_data + addr_per_block,
1154                                        depth);
1155                        brelse(bh);
1156
1157                        /*
1158                         * Everything below this this pointer has been
1159                         * released.  Now let this top-of-subtree go.
1160                         *
1161                         * We want the freeing of this indirect block to be
1162                         * atomic in the journal with the updating of the
1163                         * bitmap block which owns it.  So make some room in
1164                         * the journal.
1165                         *
1166                         * We zero the parent pointer *after* freeing its
1167                         * pointee in the bitmaps, so if extend_transaction()
1168                         * for some reason fails to put the bitmap changes and
1169                         * the release into the same transaction, recovery
1170                         * will merely complain about releasing a free block,
1171                         * rather than leaking blocks.
1172                         */
1173                        if (ext4_handle_is_aborted(handle))
1174                                return;
1175                        if (try_to_extend_transaction(handle, inode)) {
1176                                ext4_mark_inode_dirty(handle, inode);
1177                                ext4_truncate_restart_trans(handle, inode,
1178                                            ext4_blocks_for_truncate(inode));
1179                        }
1180
1181                        /*
1182                         * The forget flag here is critical because if
1183                         * we are journaling (and not doing data
1184                         * journaling), we have to make sure a revoke
1185                         * record is written to prevent the journal
1186                         * replay from overwriting the (former)
1187                         * indirect block if it gets reallocated as a
1188                         * data block.  This must happen in the same
1189                         * transaction where the data blocks are
1190                         * actually freed.
1191                         */
1192                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1193                                         EXT4_FREE_BLOCKS_METADATA|
1194                                         EXT4_FREE_BLOCKS_FORGET);
1195
1196                        if (parent_bh) {
1197                                /*
1198                                 * The block which we have just freed is
1199                                 * pointed to by an indirect block: journal it
1200                                 */
1201                                BUFFER_TRACE(parent_bh, "get_write_access");
1202                                if (!ext4_journal_get_write_access(handle,
1203                                                                   parent_bh)){
1204                                        *p = 0;
1205                                        BUFFER_TRACE(parent_bh,
1206                                        "call ext4_handle_dirty_metadata");
1207                                        ext4_handle_dirty_metadata(handle,
1208                                                                   inode,
1209                                                                   parent_bh);
1210                                }
1211                        }
1212                }
1213        } else {
1214                /* We have reached the bottom of the tree. */
1215                BUFFER_TRACE(parent_bh, "free data blocks");
1216                ext4_free_data(handle, inode, parent_bh, first, last);
1217        }
1218}
1219
1220void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1221{
1222        struct ext4_inode_info *ei = EXT4_I(inode);
1223        __le32 *i_data = ei->i_data;
1224        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1225        ext4_lblk_t offsets[4];
1226        Indirect chain[4];
1227        Indirect *partial;
1228        __le32 nr = 0;
1229        int n = 0;
1230        ext4_lblk_t last_block, max_block;
1231        unsigned blocksize = inode->i_sb->s_blocksize;
1232
1233        last_block = (inode->i_size + blocksize-1)
1234                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1235        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1236                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1237
1238        if (last_block != max_block) {
1239                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1240                if (n == 0)
1241                        return;
1242        }
1243
1244        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1245
1246        /*
1247         * The orphan list entry will now protect us from any crash which
1248         * occurs before the truncate completes, so it is now safe to propagate
1249         * the new, shorter inode size (held for now in i_size) into the
1250         * on-disk inode. We do this via i_disksize, which is the value which
1251         * ext4 *really* writes onto the disk inode.
1252         */
1253        ei->i_disksize = inode->i_size;
1254
1255        if (last_block == max_block) {
1256                /*
1257                 * It is unnecessary to free any data blocks if last_block is
1258                 * equal to the indirect block limit.
1259                 */
1260                return;
1261        } else if (n == 1) {            /* direct blocks */
1262                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1263                               i_data + EXT4_NDIR_BLOCKS);
1264                goto do_indirects;
1265        }
1266
1267        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1268        /* Kill the top of shared branch (not detached) */
1269        if (nr) {
1270                if (partial == chain) {
1271                        /* Shared branch grows from the inode */
1272                        ext4_free_branches(handle, inode, NULL,
1273                                           &nr, &nr+1, (chain+n-1) - partial);
1274                        *partial->p = 0;
1275                        /*
1276                         * We mark the inode dirty prior to restart,
1277                         * and prior to stop.  No need for it here.
1278                         */
1279                } else {
1280                        /* Shared branch grows from an indirect block */
1281                        BUFFER_TRACE(partial->bh, "get_write_access");
1282                        ext4_free_branches(handle, inode, partial->bh,
1283                                        partial->p,
1284                                        partial->p+1, (chain+n-1) - partial);
1285                }
1286        }
1287        /* Clear the ends of indirect blocks on the shared branch */
1288        while (partial > chain) {
1289                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1290                                   (__le32*)partial->bh->b_data+addr_per_block,
1291                                   (chain+n-1) - partial);
1292                BUFFER_TRACE(partial->bh, "call brelse");
1293                brelse(partial->bh);
1294                partial--;
1295        }
1296do_indirects:
1297        /* Kill the remaining (whole) subtrees */
1298        switch (offsets[0]) {
1299        default:
1300                nr = i_data[EXT4_IND_BLOCK];
1301                if (nr) {
1302                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1303                        i_data[EXT4_IND_BLOCK] = 0;
1304                }
1305        case EXT4_IND_BLOCK:
1306                nr = i_data[EXT4_DIND_BLOCK];
1307                if (nr) {
1308                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1309                        i_data[EXT4_DIND_BLOCK] = 0;
1310                }
1311        case EXT4_DIND_BLOCK:
1312                nr = i_data[EXT4_TIND_BLOCK];
1313                if (nr) {
1314                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1315                        i_data[EXT4_TIND_BLOCK] = 0;
1316                }
1317        case EXT4_TIND_BLOCK:
1318                ;
1319        }
1320}
1321
1322/**
1323 *      ext4_ind_remove_space - remove space from the range
1324 *      @handle: JBD handle for this transaction
1325 *      @inode: inode we are dealing with
1326 *      @start: First block to remove
1327 *      @end:   One block after the last block to remove (exclusive)
1328 *
1329 *      Free the blocks in the defined range (end is exclusive endpoint of
1330 *      range). This is used by ext4_punch_hole().
1331 */
1332int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1333                          ext4_lblk_t start, ext4_lblk_t end)
1334{
1335        struct ext4_inode_info *ei = EXT4_I(inode);
1336        __le32 *i_data = ei->i_data;
1337        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1338        ext4_lblk_t offsets[4], offsets2[4];
1339        Indirect chain[4], chain2[4];
1340        Indirect *partial, *partial2;
1341        ext4_lblk_t max_block;
1342        __le32 nr = 0, nr2 = 0;
1343        int n = 0, n2 = 0;
1344        unsigned blocksize = inode->i_sb->s_blocksize;
1345
1346        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1347                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1348        if (end >= max_block)
1349                end = max_block;
1350        if ((start >= end) || (start > max_block))
1351                return 0;
1352
1353        n = ext4_block_to_path(inode, start, offsets, NULL);
1354        n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1355
1356        BUG_ON(n > n2);
1357
1358        if ((n == 1) && (n == n2)) {
1359                /* We're punching only within direct block range */
1360                ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1361                               i_data + offsets2[0]);
1362                return 0;
1363        } else if (n2 > n) {
1364                /*
1365                 * Start and end are on a different levels so we're going to
1366                 * free partial block at start, and partial block at end of
1367                 * the range. If there are some levels in between then
1368                 * do_indirects label will take care of that.
1369                 */
1370
1371                if (n == 1) {
1372                        /*
1373                         * Start is at the direct block level, free
1374                         * everything to the end of the level.
1375                         */
1376                        ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1377                                       i_data + EXT4_NDIR_BLOCKS);
1378                        goto end_range;
1379                }
1380
1381
1382                partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1383                if (nr) {
1384                        if (partial == chain) {
1385                                /* Shared branch grows from the inode */
1386                                ext4_free_branches(handle, inode, NULL,
1387                                           &nr, &nr+1, (chain+n-1) - partial);
1388                                *partial->p = 0;
1389                        } else {
1390                                /* Shared branch grows from an indirect block */
1391                                BUFFER_TRACE(partial->bh, "get_write_access");
1392                                ext4_free_branches(handle, inode, partial->bh,
1393                                        partial->p,
1394                                        partial->p+1, (chain+n-1) - partial);
1395                        }
1396                }
1397
1398                /*
1399                 * Clear the ends of indirect blocks on the shared branch
1400                 * at the start of the range
1401                 */
1402                while (partial > chain) {
1403                        ext4_free_branches(handle, inode, partial->bh,
1404                                partial->p + 1,
1405                                (__le32 *)partial->bh->b_data+addr_per_block,
1406                                (chain+n-1) - partial);
1407                        BUFFER_TRACE(partial->bh, "call brelse");
1408                        brelse(partial->bh);
1409                        partial--;
1410                }
1411
1412end_range:
1413                partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1414                if (nr2) {
1415                        if (partial2 == chain2) {
1416                                /*
1417                                 * Remember, end is exclusive so here we're at
1418                                 * the start of the next level we're not going
1419                                 * to free. Everything was covered by the start
1420                                 * of the range.
1421                                 */
1422                                goto do_indirects;
1423                        }
1424                } else {
1425                        /*
1426                         * ext4_find_shared returns Indirect structure which
1427                         * points to the last element which should not be
1428                         * removed by truncate. But this is end of the range
1429                         * in punch_hole so we need to point to the next element
1430                         */
1431                        partial2->p++;
1432                }
1433
1434                /*
1435                 * Clear the ends of indirect blocks on the shared branch
1436                 * at the end of the range
1437                 */
1438                while (partial2 > chain2) {
1439                        ext4_free_branches(handle, inode, partial2->bh,
1440                                           (__le32 *)partial2->bh->b_data,
1441                                           partial2->p,
1442                                           (chain2+n2-1) - partial2);
1443                        BUFFER_TRACE(partial2->bh, "call brelse");
1444                        brelse(partial2->bh);
1445                        partial2--;
1446                }
1447                goto do_indirects;
1448        }
1449
1450        /* Punch happened within the same level (n == n2) */
1451        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1452        partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1453
1454        /* Free top, but only if partial2 isn't its subtree. */
1455        if (nr) {
1456                int level = min(partial - chain, partial2 - chain2);
1457                int i;
1458                int subtree = 1;
1459
1460                for (i = 0; i <= level; i++) {
1461                        if (offsets[i] != offsets2[i]) {
1462                                subtree = 0;
1463                                break;
1464                        }
1465                }
1466
1467                if (!subtree) {
1468                        if (partial == chain) {
1469                                /* Shared branch grows from the inode */
1470                                ext4_free_branches(handle, inode, NULL,
1471                                                   &nr, &nr+1,
1472                                                   (chain+n-1) - partial);
1473                                *partial->p = 0;
1474                        } else {
1475                                /* Shared branch grows from an indirect block */
1476                                BUFFER_TRACE(partial->bh, "get_write_access");
1477                                ext4_free_branches(handle, inode, partial->bh,
1478                                                   partial->p,
1479                                                   partial->p+1,
1480                                                   (chain+n-1) - partial);
1481                        }
1482                }
1483        }
1484
1485        if (!nr2) {
1486                /*
1487                 * ext4_find_shared returns Indirect structure which
1488                 * points to the last element which should not be
1489                 * removed by truncate. But this is end of the range
1490                 * in punch_hole so we need to point to the next element
1491                 */
1492                partial2->p++;
1493        }
1494
1495        while (partial > chain || partial2 > chain2) {
1496                int depth = (chain+n-1) - partial;
1497                int depth2 = (chain2+n2-1) - partial2;
1498
1499                if (partial > chain && partial2 > chain2 &&
1500                    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1501                        /*
1502                         * We've converged on the same block. Clear the range,
1503                         * then we're done.
1504                         */
1505                        ext4_free_branches(handle, inode, partial->bh,
1506                                           partial->p + 1,
1507                                           partial2->p,
1508                                           (chain+n-1) - partial);
1509                        BUFFER_TRACE(partial->bh, "call brelse");
1510                        brelse(partial->bh);
1511                        BUFFER_TRACE(partial2->bh, "call brelse");
1512                        brelse(partial2->bh);
1513                        return 0;
1514                }
1515
1516                /*
1517                 * The start and end partial branches may not be at the same
1518                 * level even though the punch happened within one level. So, we
1519                 * give them a chance to arrive at the same level, then walk
1520                 * them in step with each other until we converge on the same
1521                 * block.
1522                 */
1523                if (partial > chain && depth <= depth2) {
1524                        ext4_free_branches(handle, inode, partial->bh,
1525                                           partial->p + 1,
1526                                           (__le32 *)partial->bh->b_data+addr_per_block,
1527                                           (chain+n-1) - partial);
1528                        BUFFER_TRACE(partial->bh, "call brelse");
1529                        brelse(partial->bh);
1530                        partial--;
1531                }
1532                if (partial2 > chain2 && depth2 <= depth) {
1533                        ext4_free_branches(handle, inode, partial2->bh,
1534                                           (__le32 *)partial2->bh->b_data,
1535                                           partial2->p,
1536                                           (chain2+n2-1) - partial2);
1537                        BUFFER_TRACE(partial2->bh, "call brelse");
1538                        brelse(partial2->bh);
1539                        partial2--;
1540                }
1541        }
1542        return 0;
1543
1544do_indirects:
1545        /* Kill the remaining (whole) subtrees */
1546        switch (offsets[0]) {
1547        default:
1548                if (++n >= n2)
1549                        return 0;
1550                nr = i_data[EXT4_IND_BLOCK];
1551                if (nr) {
1552                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1553                        i_data[EXT4_IND_BLOCK] = 0;
1554                }
1555        case EXT4_IND_BLOCK:
1556                if (++n >= n2)
1557                        return 0;
1558                nr = i_data[EXT4_DIND_BLOCK];
1559                if (nr) {
1560                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1561                        i_data[EXT4_DIND_BLOCK] = 0;
1562                }
1563        case EXT4_DIND_BLOCK:
1564                if (++n >= n2)
1565                        return 0;
1566                nr = i_data[EXT4_TIND_BLOCK];
1567                if (nr) {
1568                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1569                        i_data[EXT4_TIND_BLOCK] = 0;
1570                }
1571        case EXT4_TIND_BLOCK:
1572                ;
1573        }
1574        return 0;
1575}
1576