linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *      (jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51                              struct ext4_inode_info *ei)
  52{
  53        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54        __u16 csum_lo;
  55        __u16 csum_hi = 0;
  56        __u32 csum;
  57
  58        csum_lo = le16_to_cpu(raw->i_checksum_lo);
  59        raw->i_checksum_lo = 0;
  60        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62                csum_hi = le16_to_cpu(raw->i_checksum_hi);
  63                raw->i_checksum_hi = 0;
  64        }
  65
  66        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67                           EXT4_INODE_SIZE(inode->i_sb));
  68
  69        raw->i_checksum_lo = cpu_to_le16(csum_lo);
  70        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72                raw->i_checksum_hi = cpu_to_le16(csum_hi);
  73
  74        return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78                                  struct ext4_inode_info *ei)
  79{
  80        __u32 provided, calculated;
  81
  82        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83            cpu_to_le32(EXT4_OS_LINUX) ||
  84            !ext4_has_metadata_csum(inode->i_sb))
  85                return 1;
  86
  87        provided = le16_to_cpu(raw->i_checksum_lo);
  88        calculated = ext4_inode_csum(inode, raw, ei);
  89        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  90            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  91                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  92        else
  93                calculated &= 0xFFFF;
  94
  95        return provided == calculated;
  96}
  97
  98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  99                                struct ext4_inode_info *ei)
 100{
 101        __u32 csum;
 102
 103        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 104            cpu_to_le32(EXT4_OS_LINUX) ||
 105            !ext4_has_metadata_csum(inode->i_sb))
 106                return;
 107
 108        csum = ext4_inode_csum(inode, raw, ei);
 109        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 110        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 111            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 112                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 113}
 114
 115static inline int ext4_begin_ordered_truncate(struct inode *inode,
 116                                              loff_t new_size)
 117{
 118        trace_ext4_begin_ordered_truncate(inode, new_size);
 119        /*
 120         * If jinode is zero, then we never opened the file for
 121         * writing, so there's no need to call
 122         * jbd2_journal_begin_ordered_truncate() since there's no
 123         * outstanding writes we need to flush.
 124         */
 125        if (!EXT4_I(inode)->jinode)
 126                return 0;
 127        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 128                                                   EXT4_I(inode)->jinode,
 129                                                   new_size);
 130}
 131
 132static void ext4_invalidatepage(struct page *page, unsigned int offset,
 133                                unsigned int length);
 134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 137                                  int pextents);
 138
 139/*
 140 * Test whether an inode is a fast symlink.
 141 */
 142int ext4_inode_is_fast_symlink(struct inode *inode)
 143{
 144        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 145                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 146
 147        if (ext4_has_inline_data(inode))
 148                return 0;
 149
 150        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 151}
 152
 153/*
 154 * Restart the transaction associated with *handle.  This does a commit,
 155 * so before we call here everything must be consistently dirtied against
 156 * this transaction.
 157 */
 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 159                                 int nblocks)
 160{
 161        int ret;
 162
 163        /*
 164         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 165         * moment, get_block can be called only for blocks inside i_size since
 166         * page cache has been already dropped and writes are blocked by
 167         * i_mutex. So we can safely drop the i_data_sem here.
 168         */
 169        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 170        jbd_debug(2, "restarting handle %p\n", handle);
 171        up_write(&EXT4_I(inode)->i_data_sem);
 172        ret = ext4_journal_restart(handle, nblocks);
 173        down_write(&EXT4_I(inode)->i_data_sem);
 174        ext4_discard_preallocations(inode);
 175
 176        return ret;
 177}
 178
 179/*
 180 * Called at the last iput() if i_nlink is zero.
 181 */
 182void ext4_evict_inode(struct inode *inode)
 183{
 184        handle_t *handle;
 185        int err;
 186
 187        trace_ext4_evict_inode(inode);
 188
 189        if (inode->i_nlink) {
 190                /*
 191                 * When journalling data dirty buffers are tracked only in the
 192                 * journal. So although mm thinks everything is clean and
 193                 * ready for reaping the inode might still have some pages to
 194                 * write in the running transaction or waiting to be
 195                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 196                 * (via truncate_inode_pages()) to discard these buffers can
 197                 * cause data loss. Also even if we did not discard these
 198                 * buffers, we would have no way to find them after the inode
 199                 * is reaped and thus user could see stale data if he tries to
 200                 * read them before the transaction is checkpointed. So be
 201                 * careful and force everything to disk here... We use
 202                 * ei->i_datasync_tid to store the newest transaction
 203                 * containing inode's data.
 204                 *
 205                 * Note that directories do not have this problem because they
 206                 * don't use page cache.
 207                 */
 208                if (ext4_should_journal_data(inode) &&
 209                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 210                    inode->i_ino != EXT4_JOURNAL_INO) {
 211                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 212                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 213
 214                        jbd2_complete_transaction(journal, commit_tid);
 215                        filemap_write_and_wait(&inode->i_data);
 216                }
 217                truncate_inode_pages_final(&inode->i_data);
 218
 219                goto no_delete;
 220        }
 221
 222        if (is_bad_inode(inode))
 223                goto no_delete;
 224        dquot_initialize(inode);
 225
 226        if (ext4_should_order_data(inode))
 227                ext4_begin_ordered_truncate(inode, 0);
 228        truncate_inode_pages_final(&inode->i_data);
 229
 230        /*
 231         * Protect us against freezing - iput() caller didn't have to have any
 232         * protection against it
 233         */
 234        sb_start_intwrite(inode->i_sb);
 235        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 236                                    ext4_blocks_for_truncate(inode)+3);
 237        if (IS_ERR(handle)) {
 238                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239                /*
 240                 * If we're going to skip the normal cleanup, we still need to
 241                 * make sure that the in-core orphan linked list is properly
 242                 * cleaned up.
 243                 */
 244                ext4_orphan_del(NULL, inode);
 245                sb_end_intwrite(inode->i_sb);
 246                goto no_delete;
 247        }
 248
 249        if (IS_SYNC(inode))
 250                ext4_handle_sync(handle);
 251        inode->i_size = 0;
 252        err = ext4_mark_inode_dirty(handle, inode);
 253        if (err) {
 254                ext4_warning(inode->i_sb,
 255                             "couldn't mark inode dirty (err %d)", err);
 256                goto stop_handle;
 257        }
 258        if (inode->i_blocks)
 259                ext4_truncate(inode);
 260
 261        /*
 262         * ext4_ext_truncate() doesn't reserve any slop when it
 263         * restarts journal transactions; therefore there may not be
 264         * enough credits left in the handle to remove the inode from
 265         * the orphan list and set the dtime field.
 266         */
 267        if (!ext4_handle_has_enough_credits(handle, 3)) {
 268                err = ext4_journal_extend(handle, 3);
 269                if (err > 0)
 270                        err = ext4_journal_restart(handle, 3);
 271                if (err != 0) {
 272                        ext4_warning(inode->i_sb,
 273                                     "couldn't extend journal (err %d)", err);
 274                stop_handle:
 275                        ext4_journal_stop(handle);
 276                        ext4_orphan_del(NULL, inode);
 277                        sb_end_intwrite(inode->i_sb);
 278                        goto no_delete;
 279                }
 280        }
 281
 282        /*
 283         * Kill off the orphan record which ext4_truncate created.
 284         * AKPM: I think this can be inside the above `if'.
 285         * Note that ext4_orphan_del() has to be able to cope with the
 286         * deletion of a non-existent orphan - this is because we don't
 287         * know if ext4_truncate() actually created an orphan record.
 288         * (Well, we could do this if we need to, but heck - it works)
 289         */
 290        ext4_orphan_del(handle, inode);
 291        EXT4_I(inode)->i_dtime  = get_seconds();
 292
 293        /*
 294         * One subtle ordering requirement: if anything has gone wrong
 295         * (transaction abort, IO errors, whatever), then we can still
 296         * do these next steps (the fs will already have been marked as
 297         * having errors), but we can't free the inode if the mark_dirty
 298         * fails.
 299         */
 300        if (ext4_mark_inode_dirty(handle, inode))
 301                /* If that failed, just do the required in-core inode clear. */
 302                ext4_clear_inode(inode);
 303        else
 304                ext4_free_inode(handle, inode);
 305        ext4_journal_stop(handle);
 306        sb_end_intwrite(inode->i_sb);
 307        return;
 308no_delete:
 309        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 310}
 311
 312#ifdef CONFIG_QUOTA
 313qsize_t *ext4_get_reserved_space(struct inode *inode)
 314{
 315        return &EXT4_I(inode)->i_reserved_quota;
 316}
 317#endif
 318
 319/*
 320 * Called with i_data_sem down, which is important since we can call
 321 * ext4_discard_preallocations() from here.
 322 */
 323void ext4_da_update_reserve_space(struct inode *inode,
 324                                        int used, int quota_claim)
 325{
 326        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 327        struct ext4_inode_info *ei = EXT4_I(inode);
 328
 329        spin_lock(&ei->i_block_reservation_lock);
 330        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 331        if (unlikely(used > ei->i_reserved_data_blocks)) {
 332                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 333                         "with only %d reserved data blocks",
 334                         __func__, inode->i_ino, used,
 335                         ei->i_reserved_data_blocks);
 336                WARN_ON(1);
 337                used = ei->i_reserved_data_blocks;
 338        }
 339
 340        /* Update per-inode reservations */
 341        ei->i_reserved_data_blocks -= used;
 342        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 343
 344        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 345
 346        /* Update quota subsystem for data blocks */
 347        if (quota_claim)
 348                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 349        else {
 350                /*
 351                 * We did fallocate with an offset that is already delayed
 352                 * allocated. So on delayed allocated writeback we should
 353                 * not re-claim the quota for fallocated blocks.
 354                 */
 355                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 356        }
 357
 358        /*
 359         * If we have done all the pending block allocations and if
 360         * there aren't any writers on the inode, we can discard the
 361         * inode's preallocations.
 362         */
 363        if ((ei->i_reserved_data_blocks == 0) &&
 364            (atomic_read(&inode->i_writecount) == 0))
 365                ext4_discard_preallocations(inode);
 366}
 367
 368static int __check_block_validity(struct inode *inode, const char *func,
 369                                unsigned int line,
 370                                struct ext4_map_blocks *map)
 371{
 372        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 373                                   map->m_len)) {
 374                ext4_error_inode(inode, func, line, map->m_pblk,
 375                                 "lblock %lu mapped to illegal pblock "
 376                                 "(length %d)", (unsigned long) map->m_lblk,
 377                                 map->m_len);
 378                return -EFSCORRUPTED;
 379        }
 380        return 0;
 381}
 382
 383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 384                       ext4_lblk_t len)
 385{
 386        int ret;
 387
 388        if (ext4_encrypted_inode(inode))
 389                return ext4_encrypted_zeroout(inode, lblk, pblk, len);
 390
 391        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 392        if (ret > 0)
 393                ret = 0;
 394
 395        return ret;
 396}
 397
 398#define check_block_validity(inode, map)        \
 399        __check_block_validity((inode), __func__, __LINE__, (map))
 400
 401#ifdef ES_AGGRESSIVE_TEST
 402static void ext4_map_blocks_es_recheck(handle_t *handle,
 403                                       struct inode *inode,
 404                                       struct ext4_map_blocks *es_map,
 405                                       struct ext4_map_blocks *map,
 406                                       int flags)
 407{
 408        int retval;
 409
 410        map->m_flags = 0;
 411        /*
 412         * There is a race window that the result is not the same.
 413         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 414         * is that we lookup a block mapping in extent status tree with
 415         * out taking i_data_sem.  So at the time the unwritten extent
 416         * could be converted.
 417         */
 418        down_read(&EXT4_I(inode)->i_data_sem);
 419        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 420                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 421                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 422        } else {
 423                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 424                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 425        }
 426        up_read((&EXT4_I(inode)->i_data_sem));
 427
 428        /*
 429         * We don't check m_len because extent will be collpased in status
 430         * tree.  So the m_len might not equal.
 431         */
 432        if (es_map->m_lblk != map->m_lblk ||
 433            es_map->m_flags != map->m_flags ||
 434            es_map->m_pblk != map->m_pblk) {
 435                printk("ES cache assertion failed for inode: %lu "
 436                       "es_cached ex [%d/%d/%llu/%x] != "
 437                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 438                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 439                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 440                       map->m_len, map->m_pblk, map->m_flags,
 441                       retval, flags);
 442        }
 443}
 444#endif /* ES_AGGRESSIVE_TEST */
 445
 446/*
 447 * The ext4_map_blocks() function tries to look up the requested blocks,
 448 * and returns if the blocks are already mapped.
 449 *
 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 451 * and store the allocated blocks in the result buffer head and mark it
 452 * mapped.
 453 *
 454 * If file type is extents based, it will call ext4_ext_map_blocks(),
 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 456 * based files
 457 *
 458 * On success, it returns the number of blocks being mapped or allocated.  if
 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 461 *
 462 * It returns 0 if plain look up failed (blocks have not been allocated), in
 463 * that case, @map is returned as unmapped but we still do fill map->m_len to
 464 * indicate the length of a hole starting at map->m_lblk.
 465 *
 466 * It returns the error in case of allocation failure.
 467 */
 468int ext4_map_blocks(handle_t *handle, struct inode *inode,
 469                    struct ext4_map_blocks *map, int flags)
 470{
 471        struct extent_status es;
 472        int retval;
 473        int ret = 0;
 474#ifdef ES_AGGRESSIVE_TEST
 475        struct ext4_map_blocks orig_map;
 476
 477        memcpy(&orig_map, map, sizeof(*map));
 478#endif
 479
 480        map->m_flags = 0;
 481        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 482                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 483                  (unsigned long) map->m_lblk);
 484
 485        /*
 486         * ext4_map_blocks returns an int, and m_len is an unsigned int
 487         */
 488        if (unlikely(map->m_len > INT_MAX))
 489                map->m_len = INT_MAX;
 490
 491        /* We can handle the block number less than EXT_MAX_BLOCKS */
 492        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 493                return -EFSCORRUPTED;
 494
 495        /* Lookup extent status tree firstly */
 496        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 497                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 498                        map->m_pblk = ext4_es_pblock(&es) +
 499                                        map->m_lblk - es.es_lblk;
 500                        map->m_flags |= ext4_es_is_written(&es) ?
 501                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 502                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 503                        if (retval > map->m_len)
 504                                retval = map->m_len;
 505                        map->m_len = retval;
 506                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 507                        map->m_pblk = 0;
 508                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 509                        if (retval > map->m_len)
 510                                retval = map->m_len;
 511                        map->m_len = retval;
 512                        retval = 0;
 513                } else {
 514                        BUG_ON(1);
 515                }
 516#ifdef ES_AGGRESSIVE_TEST
 517                ext4_map_blocks_es_recheck(handle, inode, map,
 518                                           &orig_map, flags);
 519#endif
 520                goto found;
 521        }
 522
 523        /*
 524         * Try to see if we can get the block without requesting a new
 525         * file system block.
 526         */
 527        down_read(&EXT4_I(inode)->i_data_sem);
 528        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 529                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 530                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 531        } else {
 532                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 533                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 534        }
 535        if (retval > 0) {
 536                unsigned int status;
 537
 538                if (unlikely(retval != map->m_len)) {
 539                        ext4_warning(inode->i_sb,
 540                                     "ES len assertion failed for inode "
 541                                     "%lu: retval %d != map->m_len %d",
 542                                     inode->i_ino, retval, map->m_len);
 543                        WARN_ON(1);
 544                }
 545
 546                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 547                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 548                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 549                    !(status & EXTENT_STATUS_WRITTEN) &&
 550                    ext4_find_delalloc_range(inode, map->m_lblk,
 551                                             map->m_lblk + map->m_len - 1))
 552                        status |= EXTENT_STATUS_DELAYED;
 553                ret = ext4_es_insert_extent(inode, map->m_lblk,
 554                                            map->m_len, map->m_pblk, status);
 555                if (ret < 0)
 556                        retval = ret;
 557        }
 558        up_read((&EXT4_I(inode)->i_data_sem));
 559
 560found:
 561        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 562                ret = check_block_validity(inode, map);
 563                if (ret != 0)
 564                        return ret;
 565        }
 566
 567        /* If it is only a block(s) look up */
 568        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 569                return retval;
 570
 571        /*
 572         * Returns if the blocks have already allocated
 573         *
 574         * Note that if blocks have been preallocated
 575         * ext4_ext_get_block() returns the create = 0
 576         * with buffer head unmapped.
 577         */
 578        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 579                /*
 580                 * If we need to convert extent to unwritten
 581                 * we continue and do the actual work in
 582                 * ext4_ext_map_blocks()
 583                 */
 584                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 585                        return retval;
 586
 587        /*
 588         * Here we clear m_flags because after allocating an new extent,
 589         * it will be set again.
 590         */
 591        map->m_flags &= ~EXT4_MAP_FLAGS;
 592
 593        /*
 594         * New blocks allocate and/or writing to unwritten extent
 595         * will possibly result in updating i_data, so we take
 596         * the write lock of i_data_sem, and call get_block()
 597         * with create == 1 flag.
 598         */
 599        down_write(&EXT4_I(inode)->i_data_sem);
 600
 601        /*
 602         * We need to check for EXT4 here because migrate
 603         * could have changed the inode type in between
 604         */
 605        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 606                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 607        } else {
 608                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 609
 610                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 611                        /*
 612                         * We allocated new blocks which will result in
 613                         * i_data's format changing.  Force the migrate
 614                         * to fail by clearing migrate flags
 615                         */
 616                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 617                }
 618
 619                /*
 620                 * Update reserved blocks/metadata blocks after successful
 621                 * block allocation which had been deferred till now. We don't
 622                 * support fallocate for non extent files. So we can update
 623                 * reserve space here.
 624                 */
 625                if ((retval > 0) &&
 626                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 627                        ext4_da_update_reserve_space(inode, retval, 1);
 628        }
 629
 630        if (retval > 0) {
 631                unsigned int status;
 632
 633                if (unlikely(retval != map->m_len)) {
 634                        ext4_warning(inode->i_sb,
 635                                     "ES len assertion failed for inode "
 636                                     "%lu: retval %d != map->m_len %d",
 637                                     inode->i_ino, retval, map->m_len);
 638                        WARN_ON(1);
 639                }
 640
 641                /*
 642                 * We have to zeroout blocks before inserting them into extent
 643                 * status tree. Otherwise someone could look them up there and
 644                 * use them before they are really zeroed.
 645                 */
 646                if (flags & EXT4_GET_BLOCKS_ZERO &&
 647                    map->m_flags & EXT4_MAP_MAPPED &&
 648                    map->m_flags & EXT4_MAP_NEW) {
 649                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 650                                                 map->m_pblk, map->m_len);
 651                        if (ret) {
 652                                retval = ret;
 653                                goto out_sem;
 654                        }
 655                }
 656
 657                /*
 658                 * If the extent has been zeroed out, we don't need to update
 659                 * extent status tree.
 660                 */
 661                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 662                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 663                        if (ext4_es_is_written(&es))
 664                                goto out_sem;
 665                }
 666                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 667                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 668                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 669                    !(status & EXTENT_STATUS_WRITTEN) &&
 670                    ext4_find_delalloc_range(inode, map->m_lblk,
 671                                             map->m_lblk + map->m_len - 1))
 672                        status |= EXTENT_STATUS_DELAYED;
 673                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 674                                            map->m_pblk, status);
 675                if (ret < 0) {
 676                        retval = ret;
 677                        goto out_sem;
 678                }
 679        }
 680
 681out_sem:
 682        up_write((&EXT4_I(inode)->i_data_sem));
 683        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 684                ret = check_block_validity(inode, map);
 685                if (ret != 0)
 686                        return ret;
 687        }
 688        return retval;
 689}
 690
 691/*
 692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 693 * we have to be careful as someone else may be manipulating b_state as well.
 694 */
 695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 696{
 697        unsigned long old_state;
 698        unsigned long new_state;
 699
 700        flags &= EXT4_MAP_FLAGS;
 701
 702        /* Dummy buffer_head? Set non-atomically. */
 703        if (!bh->b_page) {
 704                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 705                return;
 706        }
 707        /*
 708         * Someone else may be modifying b_state. Be careful! This is ugly but
 709         * once we get rid of using bh as a container for mapping information
 710         * to pass to / from get_block functions, this can go away.
 711         */
 712        do {
 713                old_state = READ_ONCE(bh->b_state);
 714                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 715        } while (unlikely(
 716                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 717}
 718
 719static int _ext4_get_block(struct inode *inode, sector_t iblock,
 720                           struct buffer_head *bh, int flags)
 721{
 722        struct ext4_map_blocks map;
 723        int ret = 0;
 724
 725        if (ext4_has_inline_data(inode))
 726                return -ERANGE;
 727
 728        map.m_lblk = iblock;
 729        map.m_len = bh->b_size >> inode->i_blkbits;
 730
 731        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 732                              flags);
 733        if (ret > 0) {
 734                map_bh(bh, inode->i_sb, map.m_pblk);
 735                ext4_update_bh_state(bh, map.m_flags);
 736                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 737                ret = 0;
 738        }
 739        return ret;
 740}
 741
 742int ext4_get_block(struct inode *inode, sector_t iblock,
 743                   struct buffer_head *bh, int create)
 744{
 745        return _ext4_get_block(inode, iblock, bh,
 746                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 747}
 748
 749/*
 750 * Get block function used when preparing for buffered write if we require
 751 * creating an unwritten extent if blocks haven't been allocated.  The extent
 752 * will be converted to written after the IO is complete.
 753 */
 754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 755                             struct buffer_head *bh_result, int create)
 756{
 757        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 758                   inode->i_ino, create);
 759        return _ext4_get_block(inode, iblock, bh_result,
 760                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 761}
 762
 763/* Maximum number of blocks we map for direct IO at once. */
 764#define DIO_MAX_BLOCKS 4096
 765
 766/*
 767 * Get blocks function for the cases that need to start a transaction -
 768 * generally difference cases of direct IO and DAX IO. It also handles retries
 769 * in case of ENOSPC.
 770 */
 771static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 772                                struct buffer_head *bh_result, int flags)
 773{
 774        int dio_credits;
 775        handle_t *handle;
 776        int retries = 0;
 777        int ret;
 778
 779        /* Trim mapping request to maximum we can map at once for DIO */
 780        if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 781                bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 782        dio_credits = ext4_chunk_trans_blocks(inode,
 783                                      bh_result->b_size >> inode->i_blkbits);
 784retry:
 785        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 786        if (IS_ERR(handle))
 787                return PTR_ERR(handle);
 788
 789        ret = _ext4_get_block(inode, iblock, bh_result, flags);
 790        ext4_journal_stop(handle);
 791
 792        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 793                goto retry;
 794        return ret;
 795}
 796
 797/* Get block function for DIO reads and writes to inodes without extents */
 798int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 799                       struct buffer_head *bh, int create)
 800{
 801        /* We don't expect handle for direct IO */
 802        WARN_ON_ONCE(ext4_journal_current_handle());
 803
 804        if (!create)
 805                return _ext4_get_block(inode, iblock, bh, 0);
 806        return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 807}
 808
 809/*
 810 * Get block function for AIO DIO writes when we create unwritten extent if
 811 * blocks are not allocated yet. The extent will be converted to written
 812 * after IO is complete.
 813 */
 814static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 815                sector_t iblock, struct buffer_head *bh_result, int create)
 816{
 817        int ret;
 818
 819        /* We don't expect handle for direct IO */
 820        WARN_ON_ONCE(ext4_journal_current_handle());
 821
 822        ret = ext4_get_block_trans(inode, iblock, bh_result,
 823                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 824
 825        /*
 826         * When doing DIO using unwritten extents, we need io_end to convert
 827         * unwritten extents to written on IO completion. We allocate io_end
 828         * once we spot unwritten extent and store it in b_private. Generic
 829         * DIO code keeps b_private set and furthermore passes the value to
 830         * our completion callback in 'private' argument.
 831         */
 832        if (!ret && buffer_unwritten(bh_result)) {
 833                if (!bh_result->b_private) {
 834                        ext4_io_end_t *io_end;
 835
 836                        io_end = ext4_init_io_end(inode, GFP_KERNEL);
 837                        if (!io_end)
 838                                return -ENOMEM;
 839                        bh_result->b_private = io_end;
 840                        ext4_set_io_unwritten_flag(inode, io_end);
 841                }
 842                set_buffer_defer_completion(bh_result);
 843        }
 844
 845        return ret;
 846}
 847
 848/*
 849 * Get block function for non-AIO DIO writes when we create unwritten extent if
 850 * blocks are not allocated yet. The extent will be converted to written
 851 * after IO is complete from ext4_ext_direct_IO() function.
 852 */
 853static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 854                sector_t iblock, struct buffer_head *bh_result, int create)
 855{
 856        int ret;
 857
 858        /* We don't expect handle for direct IO */
 859        WARN_ON_ONCE(ext4_journal_current_handle());
 860
 861        ret = ext4_get_block_trans(inode, iblock, bh_result,
 862                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 863
 864        /*
 865         * Mark inode as having pending DIO writes to unwritten extents.
 866         * ext4_ext_direct_IO() checks this flag and converts extents to
 867         * written.
 868         */
 869        if (!ret && buffer_unwritten(bh_result))
 870                ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 871
 872        return ret;
 873}
 874
 875static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 876                   struct buffer_head *bh_result, int create)
 877{
 878        int ret;
 879
 880        ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 881                   inode->i_ino, create);
 882        /* We don't expect handle for direct IO */
 883        WARN_ON_ONCE(ext4_journal_current_handle());
 884
 885        ret = _ext4_get_block(inode, iblock, bh_result, 0);
 886        /*
 887         * Blocks should have been preallocated! ext4_file_write_iter() checks
 888         * that.
 889         */
 890        WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 891
 892        return ret;
 893}
 894
 895
 896/*
 897 * `handle' can be NULL if create is zero
 898 */
 899struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 900                                ext4_lblk_t block, int map_flags)
 901{
 902        struct ext4_map_blocks map;
 903        struct buffer_head *bh;
 904        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 905        int err;
 906
 907        J_ASSERT(handle != NULL || create == 0);
 908
 909        map.m_lblk = block;
 910        map.m_len = 1;
 911        err = ext4_map_blocks(handle, inode, &map, map_flags);
 912
 913        if (err == 0)
 914                return create ? ERR_PTR(-ENOSPC) : NULL;
 915        if (err < 0)
 916                return ERR_PTR(err);
 917
 918        bh = sb_getblk(inode->i_sb, map.m_pblk);
 919        if (unlikely(!bh))
 920                return ERR_PTR(-ENOMEM);
 921        if (map.m_flags & EXT4_MAP_NEW) {
 922                J_ASSERT(create != 0);
 923                J_ASSERT(handle != NULL);
 924
 925                /*
 926                 * Now that we do not always journal data, we should
 927                 * keep in mind whether this should always journal the
 928                 * new buffer as metadata.  For now, regular file
 929                 * writes use ext4_get_block instead, so it's not a
 930                 * problem.
 931                 */
 932                lock_buffer(bh);
 933                BUFFER_TRACE(bh, "call get_create_access");
 934                err = ext4_journal_get_create_access(handle, bh);
 935                if (unlikely(err)) {
 936                        unlock_buffer(bh);
 937                        goto errout;
 938                }
 939                if (!buffer_uptodate(bh)) {
 940                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 941                        set_buffer_uptodate(bh);
 942                }
 943                unlock_buffer(bh);
 944                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 945                err = ext4_handle_dirty_metadata(handle, inode, bh);
 946                if (unlikely(err))
 947                        goto errout;
 948        } else
 949                BUFFER_TRACE(bh, "not a new buffer");
 950        return bh;
 951errout:
 952        brelse(bh);
 953        return ERR_PTR(err);
 954}
 955
 956struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 957                               ext4_lblk_t block, int map_flags)
 958{
 959        struct buffer_head *bh;
 960
 961        bh = ext4_getblk(handle, inode, block, map_flags);
 962        if (IS_ERR(bh))
 963                return bh;
 964        if (!bh || buffer_uptodate(bh))
 965                return bh;
 966        ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 967        wait_on_buffer(bh);
 968        if (buffer_uptodate(bh))
 969                return bh;
 970        put_bh(bh);
 971        return ERR_PTR(-EIO);
 972}
 973
 974int ext4_walk_page_buffers(handle_t *handle,
 975                           struct buffer_head *head,
 976                           unsigned from,
 977                           unsigned to,
 978                           int *partial,
 979                           int (*fn)(handle_t *handle,
 980                                     struct buffer_head *bh))
 981{
 982        struct buffer_head *bh;
 983        unsigned block_start, block_end;
 984        unsigned blocksize = head->b_size;
 985        int err, ret = 0;
 986        struct buffer_head *next;
 987
 988        for (bh = head, block_start = 0;
 989             ret == 0 && (bh != head || !block_start);
 990             block_start = block_end, bh = next) {
 991                next = bh->b_this_page;
 992                block_end = block_start + blocksize;
 993                if (block_end <= from || block_start >= to) {
 994                        if (partial && !buffer_uptodate(bh))
 995                                *partial = 1;
 996                        continue;
 997                }
 998                err = (*fn)(handle, bh);
 999                if (!ret)
1000                        ret = err;
1001        }
1002        return ret;
1003}
1004
1005/*
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction.  We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write().  So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1011 *
1012 * Also, this function can nest inside ext4_writepage().  In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page.  So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
1016 *
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes.  If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1023 *
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated.  We'll still have enough credits for the tiny quotafile
1027 * write.
1028 */
1029int do_journal_get_write_access(handle_t *handle,
1030                                struct buffer_head *bh)
1031{
1032        int dirty = buffer_dirty(bh);
1033        int ret;
1034
1035        if (!buffer_mapped(bh) || buffer_freed(bh))
1036                return 0;
1037        /*
1038         * __block_write_begin() could have dirtied some buffers. Clean
1039         * the dirty bit as jbd2_journal_get_write_access() could complain
1040         * otherwise about fs integrity issues. Setting of the dirty bit
1041         * by __block_write_begin() isn't a real problem here as we clear
1042         * the bit before releasing a page lock and thus writeback cannot
1043         * ever write the buffer.
1044         */
1045        if (dirty)
1046                clear_buffer_dirty(bh);
1047        BUFFER_TRACE(bh, "get write access");
1048        ret = ext4_journal_get_write_access(handle, bh);
1049        if (!ret && dirty)
1050                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051        return ret;
1052}
1053
1054#ifdef CONFIG_EXT4_FS_ENCRYPTION
1055static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056                                  get_block_t *get_block)
1057{
1058        unsigned from = pos & (PAGE_SIZE - 1);
1059        unsigned to = from + len;
1060        struct inode *inode = page->mapping->host;
1061        unsigned block_start, block_end;
1062        sector_t block;
1063        int err = 0;
1064        unsigned blocksize = inode->i_sb->s_blocksize;
1065        unsigned bbits;
1066        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067        bool decrypt = false;
1068
1069        BUG_ON(!PageLocked(page));
1070        BUG_ON(from > PAGE_SIZE);
1071        BUG_ON(to > PAGE_SIZE);
1072        BUG_ON(from > to);
1073
1074        if (!page_has_buffers(page))
1075                create_empty_buffers(page, blocksize, 0);
1076        head = page_buffers(page);
1077        bbits = ilog2(blocksize);
1078        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079
1080        for (bh = head, block_start = 0; bh != head || !block_start;
1081            block++, block_start = block_end, bh = bh->b_this_page) {
1082                block_end = block_start + blocksize;
1083                if (block_end <= from || block_start >= to) {
1084                        if (PageUptodate(page)) {
1085                                if (!buffer_uptodate(bh))
1086                                        set_buffer_uptodate(bh);
1087                        }
1088                        continue;
1089                }
1090                if (buffer_new(bh))
1091                        clear_buffer_new(bh);
1092                if (!buffer_mapped(bh)) {
1093                        WARN_ON(bh->b_size != blocksize);
1094                        err = get_block(inode, block, bh, 1);
1095                        if (err)
1096                                break;
1097                        if (buffer_new(bh)) {
1098                                unmap_underlying_metadata(bh->b_bdev,
1099                                                          bh->b_blocknr);
1100                                if (PageUptodate(page)) {
1101                                        clear_buffer_new(bh);
1102                                        set_buffer_uptodate(bh);
1103                                        mark_buffer_dirty(bh);
1104                                        continue;
1105                                }
1106                                if (block_end > to || block_start < from)
1107                                        zero_user_segments(page, to, block_end,
1108                                                           block_start, from);
1109                                continue;
1110                        }
1111                }
1112                if (PageUptodate(page)) {
1113                        if (!buffer_uptodate(bh))
1114                                set_buffer_uptodate(bh);
1115                        continue;
1116                }
1117                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118                    !buffer_unwritten(bh) &&
1119                    (block_start < from || block_end > to)) {
1120                        ll_rw_block(READ, 1, &bh);
1121                        *wait_bh++ = bh;
1122                        decrypt = ext4_encrypted_inode(inode) &&
1123                                S_ISREG(inode->i_mode);
1124                }
1125        }
1126        /*
1127         * If we issued read requests, let them complete.
1128         */
1129        while (wait_bh > wait) {
1130                wait_on_buffer(*--wait_bh);
1131                if (!buffer_uptodate(*wait_bh))
1132                        err = -EIO;
1133        }
1134        if (unlikely(err))
1135                page_zero_new_buffers(page, from, to);
1136        else if (decrypt)
1137                err = ext4_decrypt(page);
1138        return err;
1139}
1140#endif
1141
1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143                            loff_t pos, unsigned len, unsigned flags,
1144                            struct page **pagep, void **fsdata)
1145{
1146        struct inode *inode = mapping->host;
1147        int ret, needed_blocks;
1148        handle_t *handle;
1149        int retries = 0;
1150        struct page *page;
1151        pgoff_t index;
1152        unsigned from, to;
1153
1154        trace_ext4_write_begin(inode, pos, len, flags);
1155        /*
1156         * Reserve one block more for addition to orphan list in case
1157         * we allocate blocks but write fails for some reason
1158         */
1159        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160        index = pos >> PAGE_SHIFT;
1161        from = pos & (PAGE_SIZE - 1);
1162        to = from + len;
1163
1164        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166                                                    flags, pagep);
1167                if (ret < 0)
1168                        return ret;
1169                if (ret == 1)
1170                        return 0;
1171        }
1172
1173        /*
1174         * grab_cache_page_write_begin() can take a long time if the
1175         * system is thrashing due to memory pressure, or if the page
1176         * is being written back.  So grab it first before we start
1177         * the transaction handle.  This also allows us to allocate
1178         * the page (if needed) without using GFP_NOFS.
1179         */
1180retry_grab:
1181        page = grab_cache_page_write_begin(mapping, index, flags);
1182        if (!page)
1183                return -ENOMEM;
1184        unlock_page(page);
1185
1186retry_journal:
1187        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188        if (IS_ERR(handle)) {
1189                put_page(page);
1190                return PTR_ERR(handle);
1191        }
1192
1193        lock_page(page);
1194        if (page->mapping != mapping) {
1195                /* The page got truncated from under us */
1196                unlock_page(page);
1197                put_page(page);
1198                ext4_journal_stop(handle);
1199                goto retry_grab;
1200        }
1201        /* In case writeback began while the page was unlocked */
1202        wait_for_stable_page(page);
1203
1204#ifdef CONFIG_EXT4_FS_ENCRYPTION
1205        if (ext4_should_dioread_nolock(inode))
1206                ret = ext4_block_write_begin(page, pos, len,
1207                                             ext4_get_block_unwritten);
1208        else
1209                ret = ext4_block_write_begin(page, pos, len,
1210                                             ext4_get_block);
1211#else
1212        if (ext4_should_dioread_nolock(inode))
1213                ret = __block_write_begin(page, pos, len,
1214                                          ext4_get_block_unwritten);
1215        else
1216                ret = __block_write_begin(page, pos, len, ext4_get_block);
1217#endif
1218        if (!ret && ext4_should_journal_data(inode)) {
1219                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220                                             from, to, NULL,
1221                                             do_journal_get_write_access);
1222        }
1223
1224        if (ret) {
1225                unlock_page(page);
1226                /*
1227                 * __block_write_begin may have instantiated a few blocks
1228                 * outside i_size.  Trim these off again. Don't need
1229                 * i_size_read because we hold i_mutex.
1230                 *
1231                 * Add inode to orphan list in case we crash before
1232                 * truncate finishes
1233                 */
1234                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235                        ext4_orphan_add(handle, inode);
1236
1237                ext4_journal_stop(handle);
1238                if (pos + len > inode->i_size) {
1239                        ext4_truncate_failed_write(inode);
1240                        /*
1241                         * If truncate failed early the inode might
1242                         * still be on the orphan list; we need to
1243                         * make sure the inode is removed from the
1244                         * orphan list in that case.
1245                         */
1246                        if (inode->i_nlink)
1247                                ext4_orphan_del(NULL, inode);
1248                }
1249
1250                if (ret == -ENOSPC &&
1251                    ext4_should_retry_alloc(inode->i_sb, &retries))
1252                        goto retry_journal;
1253                put_page(page);
1254                return ret;
1255        }
1256        *pagep = page;
1257        return ret;
1258}
1259
1260/* For write_end() in data=journal mode */
1261static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262{
1263        int ret;
1264        if (!buffer_mapped(bh) || buffer_freed(bh))
1265                return 0;
1266        set_buffer_uptodate(bh);
1267        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268        clear_buffer_meta(bh);
1269        clear_buffer_prio(bh);
1270        return ret;
1271}
1272
1273/*
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1276 *
1277 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1278 * buffers are managed internally.
1279 */
1280static int ext4_write_end(struct file *file,
1281                          struct address_space *mapping,
1282                          loff_t pos, unsigned len, unsigned copied,
1283                          struct page *page, void *fsdata)
1284{
1285        handle_t *handle = ext4_journal_current_handle();
1286        struct inode *inode = mapping->host;
1287        loff_t old_size = inode->i_size;
1288        int ret = 0, ret2;
1289        int i_size_changed = 0;
1290
1291        trace_ext4_write_end(inode, pos, len, copied);
1292        if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293                ret = ext4_jbd2_file_inode(handle, inode);
1294                if (ret) {
1295                        unlock_page(page);
1296                        put_page(page);
1297                        goto errout;
1298                }
1299        }
1300
1301        if (ext4_has_inline_data(inode)) {
1302                ret = ext4_write_inline_data_end(inode, pos, len,
1303                                                 copied, page);
1304                if (ret < 0)
1305                        goto errout;
1306                copied = ret;
1307        } else
1308                copied = block_write_end(file, mapping, pos,
1309                                         len, copied, page, fsdata);
1310        /*
1311         * it's important to update i_size while still holding page lock:
1312         * page writeout could otherwise come in and zero beyond i_size.
1313         */
1314        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315        unlock_page(page);
1316        put_page(page);
1317
1318        if (old_size < pos)
1319                pagecache_isize_extended(inode, old_size, pos);
1320        /*
1321         * Don't mark the inode dirty under page lock. First, it unnecessarily
1322         * makes the holding time of page lock longer. Second, it forces lock
1323         * ordering of page lock and transaction start for journaling
1324         * filesystems.
1325         */
1326        if (i_size_changed)
1327                ext4_mark_inode_dirty(handle, inode);
1328
1329        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330                /* if we have allocated more blocks and copied
1331                 * less. We will have blocks allocated outside
1332                 * inode->i_size. So truncate them
1333                 */
1334                ext4_orphan_add(handle, inode);
1335errout:
1336        ret2 = ext4_journal_stop(handle);
1337        if (!ret)
1338                ret = ret2;
1339
1340        if (pos + len > inode->i_size) {
1341                ext4_truncate_failed_write(inode);
1342                /*
1343                 * If truncate failed early the inode might still be
1344                 * on the orphan list; we need to make sure the inode
1345                 * is removed from the orphan list in that case.
1346                 */
1347                if (inode->i_nlink)
1348                        ext4_orphan_del(NULL, inode);
1349        }
1350
1351        return ret ? ret : copied;
1352}
1353
1354/*
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1358 */
1359static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360{
1361        unsigned int block_start = 0, block_end;
1362        struct buffer_head *head, *bh;
1363
1364        bh = head = page_buffers(page);
1365        do {
1366                block_end = block_start + bh->b_size;
1367                if (buffer_new(bh)) {
1368                        if (block_end > from && block_start < to) {
1369                                if (!PageUptodate(page)) {
1370                                        unsigned start, size;
1371
1372                                        start = max(from, block_start);
1373                                        size = min(to, block_end) - start;
1374
1375                                        zero_user(page, start, size);
1376                                        set_buffer_uptodate(bh);
1377                                }
1378                                clear_buffer_new(bh);
1379                        }
1380                }
1381                block_start = block_end;
1382                bh = bh->b_this_page;
1383        } while (bh != head);
1384}
1385
1386static int ext4_journalled_write_end(struct file *file,
1387                                     struct address_space *mapping,
1388                                     loff_t pos, unsigned len, unsigned copied,
1389                                     struct page *page, void *fsdata)
1390{
1391        handle_t *handle = ext4_journal_current_handle();
1392        struct inode *inode = mapping->host;
1393        loff_t old_size = inode->i_size;
1394        int ret = 0, ret2;
1395        int partial = 0;
1396        unsigned from, to;
1397        int size_changed = 0;
1398
1399        trace_ext4_journalled_write_end(inode, pos, len, copied);
1400        from = pos & (PAGE_SIZE - 1);
1401        to = from + len;
1402
1403        BUG_ON(!ext4_handle_valid(handle));
1404
1405        if (ext4_has_inline_data(inode))
1406                copied = ext4_write_inline_data_end(inode, pos, len,
1407                                                    copied, page);
1408        else {
1409                if (copied < len) {
1410                        if (!PageUptodate(page))
1411                                copied = 0;
1412                        zero_new_buffers(page, from+copied, to);
1413                }
1414
1415                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416                                             to, &partial, write_end_fn);
1417                if (!partial)
1418                        SetPageUptodate(page);
1419        }
1420        size_changed = ext4_update_inode_size(inode, pos + copied);
1421        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423        unlock_page(page);
1424        put_page(page);
1425
1426        if (old_size < pos)
1427                pagecache_isize_extended(inode, old_size, pos);
1428
1429        if (size_changed) {
1430                ret2 = ext4_mark_inode_dirty(handle, inode);
1431                if (!ret)
1432                        ret = ret2;
1433        }
1434
1435        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436                /* if we have allocated more blocks and copied
1437                 * less. We will have blocks allocated outside
1438                 * inode->i_size. So truncate them
1439                 */
1440                ext4_orphan_add(handle, inode);
1441
1442        ret2 = ext4_journal_stop(handle);
1443        if (!ret)
1444                ret = ret2;
1445        if (pos + len > inode->i_size) {
1446                ext4_truncate_failed_write(inode);
1447                /*
1448                 * If truncate failed early the inode might still be
1449                 * on the orphan list; we need to make sure the inode
1450                 * is removed from the orphan list in that case.
1451                 */
1452                if (inode->i_nlink)
1453                        ext4_orphan_del(NULL, inode);
1454        }
1455
1456        return ret ? ret : copied;
1457}
1458
1459/*
1460 * Reserve space for a single cluster
1461 */
1462static int ext4_da_reserve_space(struct inode *inode)
1463{
1464        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465        struct ext4_inode_info *ei = EXT4_I(inode);
1466        int ret;
1467
1468        /*
1469         * We will charge metadata quota at writeout time; this saves
1470         * us from metadata over-estimation, though we may go over by
1471         * a small amount in the end.  Here we just reserve for data.
1472         */
1473        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474        if (ret)
1475                return ret;
1476
1477        spin_lock(&ei->i_block_reservation_lock);
1478        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479                spin_unlock(&ei->i_block_reservation_lock);
1480                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481                return -ENOSPC;
1482        }
1483        ei->i_reserved_data_blocks++;
1484        trace_ext4_da_reserve_space(inode);
1485        spin_unlock(&ei->i_block_reservation_lock);
1486
1487        return 0;       /* success */
1488}
1489
1490static void ext4_da_release_space(struct inode *inode, int to_free)
1491{
1492        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493        struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495        if (!to_free)
1496                return;         /* Nothing to release, exit */
1497
1498        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500        trace_ext4_da_release_space(inode, to_free);
1501        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502                /*
1503                 * if there aren't enough reserved blocks, then the
1504                 * counter is messed up somewhere.  Since this
1505                 * function is called from invalidate page, it's
1506                 * harmless to return without any action.
1507                 */
1508                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509                         "ino %lu, to_free %d with only %d reserved "
1510                         "data blocks", inode->i_ino, to_free,
1511                         ei->i_reserved_data_blocks);
1512                WARN_ON(1);
1513                to_free = ei->i_reserved_data_blocks;
1514        }
1515        ei->i_reserved_data_blocks -= to_free;
1516
1517        /* update fs dirty data blocks counter */
1518        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523}
1524
1525static void ext4_da_page_release_reservation(struct page *page,
1526                                             unsigned int offset,
1527                                             unsigned int length)
1528{
1529        int to_release = 0, contiguous_blks = 0;
1530        struct buffer_head *head, *bh;
1531        unsigned int curr_off = 0;
1532        struct inode *inode = page->mapping->host;
1533        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534        unsigned int stop = offset + length;
1535        int num_clusters;
1536        ext4_fsblk_t lblk;
1537
1538        BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540        head = page_buffers(page);
1541        bh = head;
1542        do {
1543                unsigned int next_off = curr_off + bh->b_size;
1544
1545                if (next_off > stop)
1546                        break;
1547
1548                if ((offset <= curr_off) && (buffer_delay(bh))) {
1549                        to_release++;
1550                        contiguous_blks++;
1551                        clear_buffer_delay(bh);
1552                } else if (contiguous_blks) {
1553                        lblk = page->index <<
1554                               (PAGE_SHIFT - inode->i_blkbits);
1555                        lblk += (curr_off >> inode->i_blkbits) -
1556                                contiguous_blks;
1557                        ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558                        contiguous_blks = 0;
1559                }
1560                curr_off = next_off;
1561        } while ((bh = bh->b_this_page) != head);
1562
1563        if (contiguous_blks) {
1564                lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565                lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566                ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567        }
1568
1569        /* If we have released all the blocks belonging to a cluster, then we
1570         * need to release the reserved space for that cluster. */
1571        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572        while (num_clusters > 0) {
1573                lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574                        ((num_clusters - 1) << sbi->s_cluster_bits);
1575                if (sbi->s_cluster_ratio == 1 ||
1576                    !ext4_find_delalloc_cluster(inode, lblk))
1577                        ext4_da_release_space(inode, 1);
1578
1579                num_clusters--;
1580        }
1581}
1582
1583/*
1584 * Delayed allocation stuff
1585 */
1586
1587struct mpage_da_data {
1588        struct inode *inode;
1589        struct writeback_control *wbc;
1590
1591        pgoff_t first_page;     /* The first page to write */
1592        pgoff_t next_page;      /* Current page to examine */
1593        pgoff_t last_page;      /* Last page to examine */
1594        /*
1595         * Extent to map - this can be after first_page because that can be
1596         * fully mapped. We somewhat abuse m_flags to store whether the extent
1597         * is delalloc or unwritten.
1598         */
1599        struct ext4_map_blocks map;
1600        struct ext4_io_submit io_submit;        /* IO submission data */
1601};
1602
1603static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604                                       bool invalidate)
1605{
1606        int nr_pages, i;
1607        pgoff_t index, end;
1608        struct pagevec pvec;
1609        struct inode *inode = mpd->inode;
1610        struct address_space *mapping = inode->i_mapping;
1611
1612        /* This is necessary when next_page == 0. */
1613        if (mpd->first_page >= mpd->next_page)
1614                return;
1615
1616        index = mpd->first_page;
1617        end   = mpd->next_page - 1;
1618        if (invalidate) {
1619                ext4_lblk_t start, last;
1620                start = index << (PAGE_SHIFT - inode->i_blkbits);
1621                last = end << (PAGE_SHIFT - inode->i_blkbits);
1622                ext4_es_remove_extent(inode, start, last - start + 1);
1623        }
1624
1625        pagevec_init(&pvec, 0);
1626        while (index <= end) {
1627                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628                if (nr_pages == 0)
1629                        break;
1630                for (i = 0; i < nr_pages; i++) {
1631                        struct page *page = pvec.pages[i];
1632                        if (page->index > end)
1633                                break;
1634                        BUG_ON(!PageLocked(page));
1635                        BUG_ON(PageWriteback(page));
1636                        if (invalidate) {
1637                                block_invalidatepage(page, 0, PAGE_SIZE);
1638                                ClearPageUptodate(page);
1639                        }
1640                        unlock_page(page);
1641                }
1642                index = pvec.pages[nr_pages - 1]->index + 1;
1643                pagevec_release(&pvec);
1644        }
1645}
1646
1647static void ext4_print_free_blocks(struct inode *inode)
1648{
1649        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650        struct super_block *sb = inode->i_sb;
1651        struct ext4_inode_info *ei = EXT4_I(inode);
1652
1653        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654               EXT4_C2B(EXT4_SB(inode->i_sb),
1655                        ext4_count_free_clusters(sb)));
1656        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658               (long long) EXT4_C2B(EXT4_SB(sb),
1659                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661               (long long) EXT4_C2B(EXT4_SB(sb),
1662                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665                 ei->i_reserved_data_blocks);
1666        return;
1667}
1668
1669static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670{
1671        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672}
1673
1674/*
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1679 */
1680static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681                              struct ext4_map_blocks *map,
1682                              struct buffer_head *bh)
1683{
1684        struct extent_status es;
1685        int retval;
1686        sector_t invalid_block = ~((sector_t) 0xffff);
1687#ifdef ES_AGGRESSIVE_TEST
1688        struct ext4_map_blocks orig_map;
1689
1690        memcpy(&orig_map, map, sizeof(*map));
1691#endif
1692
1693        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694                invalid_block = ~0;
1695
1696        map->m_flags = 0;
1697        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698                  "logical block %lu\n", inode->i_ino, map->m_len,
1699                  (unsigned long) map->m_lblk);
1700
1701        /* Lookup extent status tree firstly */
1702        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703                if (ext4_es_is_hole(&es)) {
1704                        retval = 0;
1705                        down_read(&EXT4_I(inode)->i_data_sem);
1706                        goto add_delayed;
1707                }
1708
1709                /*
1710                 * Delayed extent could be allocated by fallocate.
1711                 * So we need to check it.
1712                 */
1713                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714                        map_bh(bh, inode->i_sb, invalid_block);
1715                        set_buffer_new(bh);
1716                        set_buffer_delay(bh);
1717                        return 0;
1718                }
1719
1720                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721                retval = es.es_len - (iblock - es.es_lblk);
1722                if (retval > map->m_len)
1723                        retval = map->m_len;
1724                map->m_len = retval;
1725                if (ext4_es_is_written(&es))
1726                        map->m_flags |= EXT4_MAP_MAPPED;
1727                else if (ext4_es_is_unwritten(&es))
1728                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1729                else
1730                        BUG_ON(1);
1731
1732#ifdef ES_AGGRESSIVE_TEST
1733                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734#endif
1735                return retval;
1736        }
1737
1738        /*
1739         * Try to see if we can get the block without requesting a new
1740         * file system block.
1741         */
1742        down_read(&EXT4_I(inode)->i_data_sem);
1743        if (ext4_has_inline_data(inode))
1744                retval = 0;
1745        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747        else
1748                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749
1750add_delayed:
1751        if (retval == 0) {
1752                int ret;
1753                /*
1754                 * XXX: __block_prepare_write() unmaps passed block,
1755                 * is it OK?
1756                 */
1757                /*
1758                 * If the block was allocated from previously allocated cluster,
1759                 * then we don't need to reserve it again. However we still need
1760                 * to reserve metadata for every block we're going to write.
1761                 */
1762                if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764                        ret = ext4_da_reserve_space(inode);
1765                        if (ret) {
1766                                /* not enough space to reserve */
1767                                retval = ret;
1768                                goto out_unlock;
1769                        }
1770                }
1771
1772                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773                                            ~0, EXTENT_STATUS_DELAYED);
1774                if (ret) {
1775                        retval = ret;
1776                        goto out_unlock;
1777                }
1778
1779                map_bh(bh, inode->i_sb, invalid_block);
1780                set_buffer_new(bh);
1781                set_buffer_delay(bh);
1782        } else if (retval > 0) {
1783                int ret;
1784                unsigned int status;
1785
1786                if (unlikely(retval != map->m_len)) {
1787                        ext4_warning(inode->i_sb,
1788                                     "ES len assertion failed for inode "
1789                                     "%lu: retval %d != map->m_len %d",
1790                                     inode->i_ino, retval, map->m_len);
1791                        WARN_ON(1);
1792                }
1793
1794                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797                                            map->m_pblk, status);
1798                if (ret != 0)
1799                        retval = ret;
1800        }
1801
1802out_unlock:
1803        up_read((&EXT4_I(inode)->i_data_sem));
1804
1805        return retval;
1806}
1807
1808/*
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin().  It will either return mapped block or
1811 * reserve space for a single block.
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1819 */
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821                           struct buffer_head *bh, int create)
1822{
1823        struct ext4_map_blocks map;
1824        int ret = 0;
1825
1826        BUG_ON(create == 0);
1827        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829        map.m_lblk = iblock;
1830        map.m_len = 1;
1831
1832        /*
1833         * first, we need to know whether the block is allocated already
1834         * preallocated blocks are unmapped but should treated
1835         * the same as allocated blocks.
1836         */
1837        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838        if (ret <= 0)
1839                return ret;
1840
1841        map_bh(bh, inode->i_sb, map.m_pblk);
1842        ext4_update_bh_state(bh, map.m_flags);
1843
1844        if (buffer_unwritten(bh)) {
1845                /* A delayed write to unwritten bh should be marked
1846                 * new and mapped.  Mapped ensures that we don't do
1847                 * get_block multiple times when we write to the same
1848                 * offset and new ensures that we do proper zero out
1849                 * for partial write.
1850                 */
1851                set_buffer_new(bh);
1852                set_buffer_mapped(bh);
1853        }
1854        return 0;
1855}
1856
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859        get_bh(bh);
1860        return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865        put_bh(bh);
1866        return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
1870                                       unsigned int len)
1871{
1872        struct address_space *mapping = page->mapping;
1873        struct inode *inode = mapping->host;
1874        struct buffer_head *page_bufs = NULL;
1875        handle_t *handle = NULL;
1876        int ret = 0, err = 0;
1877        int inline_data = ext4_has_inline_data(inode);
1878        struct buffer_head *inode_bh = NULL;
1879
1880        ClearPageChecked(page);
1881
1882        if (inline_data) {
1883                BUG_ON(page->index != 0);
1884                BUG_ON(len > ext4_get_max_inline_size(inode));
1885                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886                if (inode_bh == NULL)
1887                        goto out;
1888        } else {
1889                page_bufs = page_buffers(page);
1890                if (!page_bufs) {
1891                        BUG();
1892                        goto out;
1893                }
1894                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895                                       NULL, bget_one);
1896        }
1897        /*
1898         * We need to release the page lock before we start the
1899         * journal, so grab a reference so the page won't disappear
1900         * out from under us.
1901         */
1902        get_page(page);
1903        unlock_page(page);
1904
1905        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906                                    ext4_writepage_trans_blocks(inode));
1907        if (IS_ERR(handle)) {
1908                ret = PTR_ERR(handle);
1909                put_page(page);
1910                goto out_no_pagelock;
1911        }
1912        BUG_ON(!ext4_handle_valid(handle));
1913
1914        lock_page(page);
1915        put_page(page);
1916        if (page->mapping != mapping) {
1917                /* The page got truncated from under us */
1918                ext4_journal_stop(handle);
1919                ret = 0;
1920                goto out;
1921        }
1922
1923        if (inline_data) {
1924                BUFFER_TRACE(inode_bh, "get write access");
1925                ret = ext4_journal_get_write_access(handle, inode_bh);
1926
1927                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928
1929        } else {
1930                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931                                             do_journal_get_write_access);
1932
1933                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934                                             write_end_fn);
1935        }
1936        if (ret == 0)
1937                ret = err;
1938        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939        err = ext4_journal_stop(handle);
1940        if (!ret)
1941                ret = err;
1942
1943        if (!ext4_has_inline_data(inode))
1944                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945                                       NULL, bput_one);
1946        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947out:
1948        unlock_page(page);
1949out_no_pagelock:
1950        brelse(inode_bh);
1951        return ret;
1952}
1953
1954/*
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1963 *
1964 * This function can get called via...
1965 *   - ext4_writepages after taking page lock (have journal handle)
1966 *   - journal_submit_inode_data_buffers (no journal handle)
1967 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 *   - grab_page_cache when doing write_begin (have journal handle)
1969 *
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1983 *
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1986 *
1987 * We can get recursively called as show below.
1988 *
1989 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 *              ext4_writepage()
1991 *
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994 */
1995static int ext4_writepage(struct page *page,
1996                          struct writeback_control *wbc)
1997{
1998        int ret = 0;
1999        loff_t size;
2000        unsigned int len;
2001        struct buffer_head *page_bufs = NULL;
2002        struct inode *inode = page->mapping->host;
2003        struct ext4_io_submit io_submit;
2004        bool keep_towrite = false;
2005
2006        trace_ext4_writepage(page);
2007        size = i_size_read(inode);
2008        if (page->index == size >> PAGE_SHIFT)
2009                len = size & ~PAGE_MASK;
2010        else
2011                len = PAGE_SIZE;
2012
2013        page_bufs = page_buffers(page);
2014        /*
2015         * We cannot do block allocation or other extent handling in this
2016         * function. If there are buffers needing that, we have to redirty
2017         * the page. But we may reach here when we do a journal commit via
2018         * journal_submit_inode_data_buffers() and in that case we must write
2019         * allocated buffers to achieve data=ordered mode guarantees.
2020         *
2021         * Also, if there is only one buffer per page (the fs block
2022         * size == the page size), if one buffer needs block
2023         * allocation or needs to modify the extent tree to clear the
2024         * unwritten flag, we know that the page can't be written at
2025         * all, so we might as well refuse the write immediately.
2026         * Unfortunately if the block size != page size, we can't as
2027         * easily detect this case using ext4_walk_page_buffers(), but
2028         * for the extremely common case, this is an optimization that
2029         * skips a useless round trip through ext4_bio_write_page().
2030         */
2031        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032                                   ext4_bh_delay_or_unwritten)) {
2033                redirty_page_for_writepage(wbc, page);
2034                if ((current->flags & PF_MEMALLOC) ||
2035                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036                        /*
2037                         * For memory cleaning there's no point in writing only
2038                         * some buffers. So just bail out. Warn if we came here
2039                         * from direct reclaim.
2040                         */
2041                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042                                                        == PF_MEMALLOC);
2043                        unlock_page(page);
2044                        return 0;
2045                }
2046                keep_towrite = true;
2047        }
2048
2049        if (PageChecked(page) && ext4_should_journal_data(inode))
2050                /*
2051                 * It's mmapped pagecache.  Add buffers and journal it.  There
2052                 * doesn't seem much point in redirtying the page here.
2053                 */
2054                return __ext4_journalled_writepage(page, len);
2055
2056        ext4_io_submit_init(&io_submit, wbc);
2057        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058        if (!io_submit.io_end) {
2059                redirty_page_for_writepage(wbc, page);
2060                unlock_page(page);
2061                return -ENOMEM;
2062        }
2063        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064        ext4_io_submit(&io_submit);
2065        /* Drop io_end reference we got from init */
2066        ext4_put_io_end_defer(io_submit.io_end);
2067        return ret;
2068}
2069
2070static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071{
2072        int len;
2073        loff_t size = i_size_read(mpd->inode);
2074        int err;
2075
2076        BUG_ON(page->index != mpd->first_page);
2077        if (page->index == size >> PAGE_SHIFT)
2078                len = size & ~PAGE_MASK;
2079        else
2080                len = PAGE_SIZE;
2081        clear_page_dirty_for_io(page);
2082        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083        if (!err)
2084                mpd->wbc->nr_to_write--;
2085        mpd->first_page++;
2086
2087        return err;
2088}
2089
2090#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
2092/*
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2096 */
2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2105 *
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2112 */
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114                                   struct buffer_head *bh)
2115{
2116        struct ext4_map_blocks *map = &mpd->map;
2117
2118        /* Buffer that doesn't need mapping for writeback? */
2119        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121                /* So far no extent to map => we write the buffer right away */
2122                if (map->m_len == 0)
2123                        return true;
2124                return false;
2125        }
2126
2127        /* First block in the extent? */
2128        if (map->m_len == 0) {
2129                map->m_lblk = lblk;
2130                map->m_len = 1;
2131                map->m_flags = bh->b_state & BH_FLAGS;
2132                return true;
2133        }
2134
2135        /* Don't go larger than mballoc is willing to allocate */
2136        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137                return false;
2138
2139        /* Can we merge the block to our big extent? */
2140        if (lblk == map->m_lblk + map->m_len &&
2141            (bh->b_state & BH_FLAGS) == map->m_flags) {
2142                map->m_len++;
2143                return true;
2144        }
2145        return false;
2146}
2147
2148/*
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150 *
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2155 *
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2163 */
2164static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165                                   struct buffer_head *head,
2166                                   struct buffer_head *bh,
2167                                   ext4_lblk_t lblk)
2168{
2169        struct inode *inode = mpd->inode;
2170        int err;
2171        ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172                                                        >> inode->i_blkbits;
2173
2174        do {
2175                BUG_ON(buffer_locked(bh));
2176
2177                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178                        /* Found extent to map? */
2179                        if (mpd->map.m_len)
2180                                return 0;
2181                        /* Everything mapped so far and we hit EOF */
2182                        break;
2183                }
2184        } while (lblk++, (bh = bh->b_this_page) != head);
2185        /* So far everything mapped? Submit the page for IO. */
2186        if (mpd->map.m_len == 0) {
2187                err = mpage_submit_page(mpd, head->b_page);
2188                if (err < 0)
2189                        return err;
2190        }
2191        return lblk < blocks;
2192}
2193
2194/*
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 *                     submit fully mapped pages for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 *
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2207 */
2208static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209{
2210        struct pagevec pvec;
2211        int nr_pages, i;
2212        struct inode *inode = mpd->inode;
2213        struct buffer_head *head, *bh;
2214        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215        pgoff_t start, end;
2216        ext4_lblk_t lblk;
2217        sector_t pblock;
2218        int err;
2219
2220        start = mpd->map.m_lblk >> bpp_bits;
2221        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222        lblk = start << bpp_bits;
2223        pblock = mpd->map.m_pblk;
2224
2225        pagevec_init(&pvec, 0);
2226        while (start <= end) {
2227                nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228                                          PAGEVEC_SIZE);
2229                if (nr_pages == 0)
2230                        break;
2231                for (i = 0; i < nr_pages; i++) {
2232                        struct page *page = pvec.pages[i];
2233
2234                        if (page->index > end)
2235                                break;
2236                        /* Up to 'end' pages must be contiguous */
2237                        BUG_ON(page->index != start);
2238                        bh = head = page_buffers(page);
2239                        do {
2240                                if (lblk < mpd->map.m_lblk)
2241                                        continue;
2242                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243                                        /*
2244                                         * Buffer after end of mapped extent.
2245                                         * Find next buffer in the page to map.
2246                                         */
2247                                        mpd->map.m_len = 0;
2248                                        mpd->map.m_flags = 0;
2249                                        /*
2250                                         * FIXME: If dioread_nolock supports
2251                                         * blocksize < pagesize, we need to make
2252                                         * sure we add size mapped so far to
2253                                         * io_end->size as the following call
2254                                         * can submit the page for IO.
2255                                         */
2256                                        err = mpage_process_page_bufs(mpd, head,
2257                                                                      bh, lblk);
2258                                        pagevec_release(&pvec);
2259                                        if (err > 0)
2260                                                err = 0;
2261                                        return err;
2262                                }
2263                                if (buffer_delay(bh)) {
2264                                        clear_buffer_delay(bh);
2265                                        bh->b_blocknr = pblock++;
2266                                }
2267                                clear_buffer_unwritten(bh);
2268                        } while (lblk++, (bh = bh->b_this_page) != head);
2269
2270                        /*
2271                         * FIXME: This is going to break if dioread_nolock
2272                         * supports blocksize < pagesize as we will try to
2273                         * convert potentially unmapped parts of inode.
2274                         */
2275                        mpd->io_submit.io_end->size += PAGE_SIZE;
2276                        /* Page fully mapped - let IO run! */
2277                        err = mpage_submit_page(mpd, page);
2278                        if (err < 0) {
2279                                pagevec_release(&pvec);
2280                                return err;
2281                        }
2282                        start++;
2283                }
2284                pagevec_release(&pvec);
2285        }
2286        /* Extent fully mapped and matches with page boundary. We are done. */
2287        mpd->map.m_len = 0;
2288        mpd->map.m_flags = 0;
2289        return 0;
2290}
2291
2292static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293{
2294        struct inode *inode = mpd->inode;
2295        struct ext4_map_blocks *map = &mpd->map;
2296        int get_blocks_flags;
2297        int err, dioread_nolock;
2298
2299        trace_ext4_da_write_pages_extent(inode, map);
2300        /*
2301         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302         * to convert an unwritten extent to be initialized (in the case
2303         * where we have written into one or more preallocated blocks).  It is
2304         * possible that we're going to need more metadata blocks than
2305         * previously reserved. However we must not fail because we're in
2306         * writeback and there is nothing we can do about it so it might result
2307         * in data loss.  So use reserved blocks to allocate metadata if
2308         * possible.
2309         *
2310         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311         * the blocks in question are delalloc blocks.  This indicates
2312         * that the blocks and quotas has already been checked when
2313         * the data was copied into the page cache.
2314         */
2315        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316                           EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317        dioread_nolock = ext4_should_dioread_nolock(inode);
2318        if (dioread_nolock)
2319                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320        if (map->m_flags & (1 << BH_Delay))
2321                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324        if (err < 0)
2325                return err;
2326        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327                if (!mpd->io_submit.io_end->handle &&
2328                    ext4_handle_valid(handle)) {
2329                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330                        handle->h_rsv_handle = NULL;
2331                }
2332                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333        }
2334
2335        BUG_ON(map->m_len == 0);
2336        if (map->m_flags & EXT4_MAP_NEW) {
2337                struct block_device *bdev = inode->i_sb->s_bdev;
2338                int i;
2339
2340                for (i = 0; i < map->m_len; i++)
2341                        unmap_underlying_metadata(bdev, map->m_pblk + i);
2342        }
2343        return 0;
2344}
2345
2346/*
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 *                               mpd->len and submit pages underlying it for IO
2349 *
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 *                     is no hope of writing the data. The caller should discard
2354 *                     dirty pages to avoid infinite loops.
2355 *
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2365 */
2366static int mpage_map_and_submit_extent(handle_t *handle,
2367                                       struct mpage_da_data *mpd,
2368                                       bool *give_up_on_write)
2369{
2370        struct inode *inode = mpd->inode;
2371        struct ext4_map_blocks *map = &mpd->map;
2372        int err;
2373        loff_t disksize;
2374        int progress = 0;
2375
2376        mpd->io_submit.io_end->offset =
2377                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2378        do {
2379                err = mpage_map_one_extent(handle, mpd);
2380                if (err < 0) {
2381                        struct super_block *sb = inode->i_sb;
2382
2383                        if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384                                goto invalidate_dirty_pages;
2385                        /*
2386                         * Let the uper layers retry transient errors.
2387                         * In the case of ENOSPC, if ext4_count_free_blocks()
2388                         * is non-zero, a commit should free up blocks.
2389                         */
2390                        if ((err == -ENOMEM) ||
2391                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392                                if (progress)
2393                                        goto update_disksize;
2394                                return err;
2395                        }
2396                        ext4_msg(sb, KERN_CRIT,
2397                                 "Delayed block allocation failed for "
2398                                 "inode %lu at logical offset %llu with"
2399                                 " max blocks %u with error %d",
2400                                 inode->i_ino,
2401                                 (unsigned long long)map->m_lblk,
2402                                 (unsigned)map->m_len, -err);
2403                        ext4_msg(sb, KERN_CRIT,
2404                                 "This should not happen!! Data will "
2405                                 "be lost\n");
2406                        if (err == -ENOSPC)
2407                                ext4_print_free_blocks(inode);
2408                invalidate_dirty_pages:
2409                        *give_up_on_write = true;
2410                        return err;
2411                }
2412                progress = 1;
2413                /*
2414                 * Update buffer state, submit mapped pages, and get us new
2415                 * extent to map
2416                 */
2417                err = mpage_map_and_submit_buffers(mpd);
2418                if (err < 0)
2419                        goto update_disksize;
2420        } while (map->m_len);
2421
2422update_disksize:
2423        /*
2424         * Update on-disk size after IO is submitted.  Races with
2425         * truncate are avoided by checking i_size under i_data_sem.
2426         */
2427        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428        if (disksize > EXT4_I(inode)->i_disksize) {
2429                int err2;
2430                loff_t i_size;
2431
2432                down_write(&EXT4_I(inode)->i_data_sem);
2433                i_size = i_size_read(inode);
2434                if (disksize > i_size)
2435                        disksize = i_size;
2436                if (disksize > EXT4_I(inode)->i_disksize)
2437                        EXT4_I(inode)->i_disksize = disksize;
2438                err2 = ext4_mark_inode_dirty(handle, inode);
2439                up_write(&EXT4_I(inode)->i_data_sem);
2440                if (err2)
2441                        ext4_error(inode->i_sb,
2442                                   "Failed to mark inode %lu dirty",
2443                                   inode->i_ino);
2444                if (!err)
2445                        err = err2;
2446        }
2447        return err;
2448}
2449
2450/*
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2456 */
2457static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458{
2459        int bpp = ext4_journal_blocks_per_page(inode);
2460
2461        return ext4_meta_trans_blocks(inode,
2462                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463}
2464
2465/*
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 *                               and underlying extent to map
2468 *
2469 * @mpd - where to look for pages
2470 *
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2477 *
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2482 */
2483static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484{
2485        struct address_space *mapping = mpd->inode->i_mapping;
2486        struct pagevec pvec;
2487        unsigned int nr_pages;
2488        long left = mpd->wbc->nr_to_write;
2489        pgoff_t index = mpd->first_page;
2490        pgoff_t end = mpd->last_page;
2491        int tag;
2492        int i, err = 0;
2493        int blkbits = mpd->inode->i_blkbits;
2494        ext4_lblk_t lblk;
2495        struct buffer_head *head;
2496
2497        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498                tag = PAGECACHE_TAG_TOWRITE;
2499        else
2500                tag = PAGECACHE_TAG_DIRTY;
2501
2502        pagevec_init(&pvec, 0);
2503        mpd->map.m_len = 0;
2504        mpd->next_page = index;
2505        while (index <= end) {
2506                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508                if (nr_pages == 0)
2509                        goto out;
2510
2511                for (i = 0; i < nr_pages; i++) {
2512                        struct page *page = pvec.pages[i];
2513
2514                        /*
2515                         * At this point, the page may be truncated or
2516                         * invalidated (changing page->mapping to NULL), or
2517                         * even swizzled back from swapper_space to tmpfs file
2518                         * mapping. However, page->index will not change
2519                         * because we have a reference on the page.
2520                         */
2521                        if (page->index > end)
2522                                goto out;
2523
2524                        /*
2525                         * Accumulated enough dirty pages? This doesn't apply
2526                         * to WB_SYNC_ALL mode. For integrity sync we have to
2527                         * keep going because someone may be concurrently
2528                         * dirtying pages, and we might have synced a lot of
2529                         * newly appeared dirty pages, but have not synced all
2530                         * of the old dirty pages.
2531                         */
2532                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533                                goto out;
2534
2535                        /* If we can't merge this page, we are done. */
2536                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537                                goto out;
2538
2539                        lock_page(page);
2540                        /*
2541                         * If the page is no longer dirty, or its mapping no
2542                         * longer corresponds to inode we are writing (which
2543                         * means it has been truncated or invalidated), or the
2544                         * page is already under writeback and we are not doing
2545                         * a data integrity writeback, skip the page
2546                         */
2547                        if (!PageDirty(page) ||
2548                            (PageWriteback(page) &&
2549                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550                            unlikely(page->mapping != mapping)) {
2551                                unlock_page(page);
2552                                continue;
2553                        }
2554
2555                        wait_on_page_writeback(page);
2556                        BUG_ON(PageWriteback(page));
2557
2558                        if (mpd->map.m_len == 0)
2559                                mpd->first_page = page->index;
2560                        mpd->next_page = page->index + 1;
2561                        /* Add all dirty buffers to mpd */
2562                        lblk = ((ext4_lblk_t)page->index) <<
2563                                (PAGE_SHIFT - blkbits);
2564                        head = page_buffers(page);
2565                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2566                        if (err <= 0)
2567                                goto out;
2568                        err = 0;
2569                        left--;
2570                }
2571                pagevec_release(&pvec);
2572                cond_resched();
2573        }
2574        return 0;
2575out:
2576        pagevec_release(&pvec);
2577        return err;
2578}
2579
2580static int __writepage(struct page *page, struct writeback_control *wbc,
2581                       void *data)
2582{
2583        struct address_space *mapping = data;
2584        int ret = ext4_writepage(page, wbc);
2585        mapping_set_error(mapping, ret);
2586        return ret;
2587}
2588
2589static int ext4_writepages(struct address_space *mapping,
2590                           struct writeback_control *wbc)
2591{
2592        pgoff_t writeback_index = 0;
2593        long nr_to_write = wbc->nr_to_write;
2594        int range_whole = 0;
2595        int cycled = 1;
2596        handle_t *handle = NULL;
2597        struct mpage_da_data mpd;
2598        struct inode *inode = mapping->host;
2599        int needed_blocks, rsv_blocks = 0, ret = 0;
2600        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601        bool done;
2602        struct blk_plug plug;
2603        bool give_up_on_write = false;
2604
2605        trace_ext4_writepages(inode, wbc);
2606
2607        if (dax_mapping(mapping))
2608                return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609                                                   wbc);
2610
2611        /*
2612         * No pages to write? This is mainly a kludge to avoid starting
2613         * a transaction for special inodes like journal inode on last iput()
2614         * because that could violate lock ordering on umount
2615         */
2616        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617                goto out_writepages;
2618
2619        if (ext4_should_journal_data(inode)) {
2620                struct blk_plug plug;
2621
2622                blk_start_plug(&plug);
2623                ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624                blk_finish_plug(&plug);
2625                goto out_writepages;
2626        }
2627
2628        /*
2629         * If the filesystem has aborted, it is read-only, so return
2630         * right away instead of dumping stack traces later on that
2631         * will obscure the real source of the problem.  We test
2632         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633         * the latter could be true if the filesystem is mounted
2634         * read-only, and in that case, ext4_writepages should
2635         * *never* be called, so if that ever happens, we would want
2636         * the stack trace.
2637         */
2638        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639                ret = -EROFS;
2640                goto out_writepages;
2641        }
2642
2643        if (ext4_should_dioread_nolock(inode)) {
2644                /*
2645                 * We may need to convert up to one extent per block in
2646                 * the page and we may dirty the inode.
2647                 */
2648                rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649        }
2650
2651        /*
2652         * If we have inline data and arrive here, it means that
2653         * we will soon create the block for the 1st page, so
2654         * we'd better clear the inline data here.
2655         */
2656        if (ext4_has_inline_data(inode)) {
2657                /* Just inode will be modified... */
2658                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659                if (IS_ERR(handle)) {
2660                        ret = PTR_ERR(handle);
2661                        goto out_writepages;
2662                }
2663                BUG_ON(ext4_test_inode_state(inode,
2664                                EXT4_STATE_MAY_INLINE_DATA));
2665                ext4_destroy_inline_data(handle, inode);
2666                ext4_journal_stop(handle);
2667        }
2668
2669        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670                range_whole = 1;
2671
2672        if (wbc->range_cyclic) {
2673                writeback_index = mapping->writeback_index;
2674                if (writeback_index)
2675                        cycled = 0;
2676                mpd.first_page = writeback_index;
2677                mpd.last_page = -1;
2678        } else {
2679                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2681        }
2682
2683        mpd.inode = inode;
2684        mpd.wbc = wbc;
2685        ext4_io_submit_init(&mpd.io_submit, wbc);
2686retry:
2687        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689        done = false;
2690        blk_start_plug(&plug);
2691        while (!done && mpd.first_page <= mpd.last_page) {
2692                /* For each extent of pages we use new io_end */
2693                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694                if (!mpd.io_submit.io_end) {
2695                        ret = -ENOMEM;
2696                        break;
2697                }
2698
2699                /*
2700                 * We have two constraints: We find one extent to map and we
2701                 * must always write out whole page (makes a difference when
2702                 * blocksize < pagesize) so that we don't block on IO when we
2703                 * try to write out the rest of the page. Journalled mode is
2704                 * not supported by delalloc.
2705                 */
2706                BUG_ON(ext4_should_journal_data(inode));
2707                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708
2709                /* start a new transaction */
2710                handle = ext4_journal_start_with_reserve(inode,
2711                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712                if (IS_ERR(handle)) {
2713                        ret = PTR_ERR(handle);
2714                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715                               "%ld pages, ino %lu; err %d", __func__,
2716                                wbc->nr_to_write, inode->i_ino, ret);
2717                        /* Release allocated io_end */
2718                        ext4_put_io_end(mpd.io_submit.io_end);
2719                        break;
2720                }
2721
2722                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723                ret = mpage_prepare_extent_to_map(&mpd);
2724                if (!ret) {
2725                        if (mpd.map.m_len)
2726                                ret = mpage_map_and_submit_extent(handle, &mpd,
2727                                        &give_up_on_write);
2728                        else {
2729                                /*
2730                                 * We scanned the whole range (or exhausted
2731                                 * nr_to_write), submitted what was mapped and
2732                                 * didn't find anything needing mapping. We are
2733                                 * done.
2734                                 */
2735                                done = true;
2736                        }
2737                }
2738                ext4_journal_stop(handle);
2739                /* Submit prepared bio */
2740                ext4_io_submit(&mpd.io_submit);
2741                /* Unlock pages we didn't use */
2742                mpage_release_unused_pages(&mpd, give_up_on_write);
2743                /* Drop our io_end reference we got from init */
2744                ext4_put_io_end(mpd.io_submit.io_end);
2745
2746                if (ret == -ENOSPC && sbi->s_journal) {
2747                        /*
2748                         * Commit the transaction which would
2749                         * free blocks released in the transaction
2750                         * and try again
2751                         */
2752                        jbd2_journal_force_commit_nested(sbi->s_journal);
2753                        ret = 0;
2754                        continue;
2755                }
2756                /* Fatal error - ENOMEM, EIO... */
2757                if (ret)
2758                        break;
2759        }
2760        blk_finish_plug(&plug);
2761        if (!ret && !cycled && wbc->nr_to_write > 0) {
2762                cycled = 1;
2763                mpd.last_page = writeback_index - 1;
2764                mpd.first_page = 0;
2765                goto retry;
2766        }
2767
2768        /* Update index */
2769        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770                /*
2771                 * Set the writeback_index so that range_cyclic
2772                 * mode will write it back later
2773                 */
2774                mapping->writeback_index = mpd.first_page;
2775
2776out_writepages:
2777        trace_ext4_writepages_result(inode, wbc, ret,
2778                                     nr_to_write - wbc->nr_to_write);
2779        return ret;
2780}
2781
2782static int ext4_nonda_switch(struct super_block *sb)
2783{
2784        s64 free_clusters, dirty_clusters;
2785        struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787        /*
2788         * switch to non delalloc mode if we are running low
2789         * on free block. The free block accounting via percpu
2790         * counters can get slightly wrong with percpu_counter_batch getting
2791         * accumulated on each CPU without updating global counters
2792         * Delalloc need an accurate free block accounting. So switch
2793         * to non delalloc when we are near to error range.
2794         */
2795        free_clusters =
2796                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797        dirty_clusters =
2798                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799        /*
2800         * Start pushing delalloc when 1/2 of free blocks are dirty.
2801         */
2802        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804
2805        if (2 * free_clusters < 3 * dirty_clusters ||
2806            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807                /*
2808                 * free block count is less than 150% of dirty blocks
2809                 * or free blocks is less than watermark
2810                 */
2811                return 1;
2812        }
2813        return 0;
2814}
2815
2816/* We always reserve for an inode update; the superblock could be there too */
2817static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818{
2819        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820                return 1;
2821
2822        if (pos + len <= 0x7fffffffULL)
2823                return 1;
2824
2825        /* We might need to update the superblock to set LARGE_FILE */
2826        return 2;
2827}
2828
2829static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830                               loff_t pos, unsigned len, unsigned flags,
2831                               struct page **pagep, void **fsdata)
2832{
2833        int ret, retries = 0;
2834        struct page *page;
2835        pgoff_t index;
2836        struct inode *inode = mapping->host;
2837        handle_t *handle;
2838
2839        index = pos >> PAGE_SHIFT;
2840
2841        if (ext4_nonda_switch(inode->i_sb)) {
2842                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843                return ext4_write_begin(file, mapping, pos,
2844                                        len, flags, pagep, fsdata);
2845        }
2846        *fsdata = (void *)0;
2847        trace_ext4_da_write_begin(inode, pos, len, flags);
2848
2849        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850                ret = ext4_da_write_inline_data_begin(mapping, inode,
2851                                                      pos, len, flags,
2852                                                      pagep, fsdata);
2853                if (ret < 0)
2854                        return ret;
2855                if (ret == 1)
2856                        return 0;
2857        }
2858
2859        /*
2860         * grab_cache_page_write_begin() can take a long time if the
2861         * system is thrashing due to memory pressure, or if the page
2862         * is being written back.  So grab it first before we start
2863         * the transaction handle.  This also allows us to allocate
2864         * the page (if needed) without using GFP_NOFS.
2865         */
2866retry_grab:
2867        page = grab_cache_page_write_begin(mapping, index, flags);
2868        if (!page)
2869                return -ENOMEM;
2870        unlock_page(page);
2871
2872        /*
2873         * With delayed allocation, we don't log the i_disksize update
2874         * if there is delayed block allocation. But we still need
2875         * to journalling the i_disksize update if writes to the end
2876         * of file which has an already mapped buffer.
2877         */
2878retry_journal:
2879        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880                                ext4_da_write_credits(inode, pos, len));
2881        if (IS_ERR(handle)) {
2882                put_page(page);
2883                return PTR_ERR(handle);
2884        }
2885
2886        lock_page(page);
2887        if (page->mapping != mapping) {
2888                /* The page got truncated from under us */
2889                unlock_page(page);
2890                put_page(page);
2891                ext4_journal_stop(handle);
2892                goto retry_grab;
2893        }
2894        /* In case writeback began while the page was unlocked */
2895        wait_for_stable_page(page);
2896
2897#ifdef CONFIG_EXT4_FS_ENCRYPTION
2898        ret = ext4_block_write_begin(page, pos, len,
2899                                     ext4_da_get_block_prep);
2900#else
2901        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902#endif
2903        if (ret < 0) {
2904                unlock_page(page);
2905                ext4_journal_stop(handle);
2906                /*
2907                 * block_write_begin may have instantiated a few blocks
2908                 * outside i_size.  Trim these off again. Don't need
2909                 * i_size_read because we hold i_mutex.
2910                 */
2911                if (pos + len > inode->i_size)
2912                        ext4_truncate_failed_write(inode);
2913
2914                if (ret == -ENOSPC &&
2915                    ext4_should_retry_alloc(inode->i_sb, &retries))
2916                        goto retry_journal;
2917
2918                put_page(page);
2919                return ret;
2920        }
2921
2922        *pagep = page;
2923        return ret;
2924}
2925
2926/*
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2929 */
2930static int ext4_da_should_update_i_disksize(struct page *page,
2931                                            unsigned long offset)
2932{
2933        struct buffer_head *bh;
2934        struct inode *inode = page->mapping->host;
2935        unsigned int idx;
2936        int i;
2937
2938        bh = page_buffers(page);
2939        idx = offset >> inode->i_blkbits;
2940
2941        for (i = 0; i < idx; i++)
2942                bh = bh->b_this_page;
2943
2944        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945                return 0;
2946        return 1;
2947}
2948
2949static int ext4_da_write_end(struct file *file,
2950                             struct address_space *mapping,
2951                             loff_t pos, unsigned len, unsigned copied,
2952                             struct page *page, void *fsdata)
2953{
2954        struct inode *inode = mapping->host;
2955        int ret = 0, ret2;
2956        handle_t *handle = ext4_journal_current_handle();
2957        loff_t new_i_size;
2958        unsigned long start, end;
2959        int write_mode = (int)(unsigned long)fsdata;
2960
2961        if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962                return ext4_write_end(file, mapping, pos,
2963                                      len, copied, page, fsdata);
2964
2965        trace_ext4_da_write_end(inode, pos, len, copied);
2966        start = pos & (PAGE_SIZE - 1);
2967        end = start + copied - 1;
2968
2969        /*
2970         * generic_write_end() will run mark_inode_dirty() if i_size
2971         * changes.  So let's piggyback the i_disksize mark_inode_dirty
2972         * into that.
2973         */
2974        new_i_size = pos + copied;
2975        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976                if (ext4_has_inline_data(inode) ||
2977                    ext4_da_should_update_i_disksize(page, end)) {
2978                        ext4_update_i_disksize(inode, new_i_size);
2979                        /* We need to mark inode dirty even if
2980                         * new_i_size is less that inode->i_size
2981                         * bu greater than i_disksize.(hint delalloc)
2982                         */
2983                        ext4_mark_inode_dirty(handle, inode);
2984                }
2985        }
2986
2987        if (write_mode != CONVERT_INLINE_DATA &&
2988            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989            ext4_has_inline_data(inode))
2990                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991                                                     page);
2992        else
2993                ret2 = generic_write_end(file, mapping, pos, len, copied,
2994                                                        page, fsdata);
2995
2996        copied = ret2;
2997        if (ret2 < 0)
2998                ret = ret2;
2999        ret2 = ext4_journal_stop(handle);
3000        if (!ret)
3001                ret = ret2;
3002
3003        return ret ? ret : copied;
3004}
3005
3006static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007                                   unsigned int length)
3008{
3009        /*
3010         * Drop reserved blocks
3011         */
3012        BUG_ON(!PageLocked(page));
3013        if (!page_has_buffers(page))
3014                goto out;
3015
3016        ext4_da_page_release_reservation(page, offset, length);
3017
3018out:
3019        ext4_invalidatepage(page, offset, length);
3020
3021        return;
3022}
3023
3024/*
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3026 */
3027int ext4_alloc_da_blocks(struct inode *inode)
3028{
3029        trace_ext4_alloc_da_blocks(inode);
3030
3031        if (!EXT4_I(inode)->i_reserved_data_blocks)
3032                return 0;
3033
3034        /*
3035         * We do something simple for now.  The filemap_flush() will
3036         * also start triggering a write of the data blocks, which is
3037         * not strictly speaking necessary (and for users of
3038         * laptop_mode, not even desirable).  However, to do otherwise
3039         * would require replicating code paths in:
3040         *
3041         * ext4_writepages() ->
3042         *    write_cache_pages() ---> (via passed in callback function)
3043         *        __mpage_da_writepage() -->
3044         *           mpage_add_bh_to_extent()
3045         *           mpage_da_map_blocks()
3046         *
3047         * The problem is that write_cache_pages(), located in
3048         * mm/page-writeback.c, marks pages clean in preparation for
3049         * doing I/O, which is not desirable if we're not planning on
3050         * doing I/O at all.
3051         *
3052         * We could call write_cache_pages(), and then redirty all of
3053         * the pages by calling redirty_page_for_writepage() but that
3054         * would be ugly in the extreme.  So instead we would need to
3055         * replicate parts of the code in the above functions,
3056         * simplifying them because we wouldn't actually intend to
3057         * write out the pages, but rather only collect contiguous
3058         * logical block extents, call the multi-block allocator, and
3059         * then update the buffer heads with the block allocations.
3060         *
3061         * For now, though, we'll cheat by calling filemap_flush(),
3062         * which will map the blocks, and start the I/O, but not
3063         * actually wait for the I/O to complete.
3064         */
3065        return filemap_flush(inode->i_mapping);
3066}
3067
3068/*
3069 * bmap() is special.  It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3071 *
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3078 *
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3081 */
3082static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083{
3084        struct inode *inode = mapping->host;
3085        journal_t *journal;
3086        int err;
3087
3088        /*
3089         * We can get here for an inline file via the FIBMAP ioctl
3090         */
3091        if (ext4_has_inline_data(inode))
3092                return 0;
3093
3094        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095                        test_opt(inode->i_sb, DELALLOC)) {
3096                /*
3097                 * With delalloc we want to sync the file
3098                 * so that we can make sure we allocate
3099                 * blocks for file
3100                 */
3101                filemap_write_and_wait(mapping);
3102        }
3103
3104        if (EXT4_JOURNAL(inode) &&
3105            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106                /*
3107                 * This is a REALLY heavyweight approach, but the use of
3108                 * bmap on dirty files is expected to be extremely rare:
3109                 * only if we run lilo or swapon on a freshly made file
3110                 * do we expect this to happen.
3111                 *
3112                 * (bmap requires CAP_SYS_RAWIO so this does not
3113                 * represent an unprivileged user DOS attack --- we'd be
3114                 * in trouble if mortal users could trigger this path at
3115                 * will.)
3116                 *
3117                 * NB. EXT4_STATE_JDATA is not set on files other than
3118                 * regular files.  If somebody wants to bmap a directory
3119                 * or symlink and gets confused because the buffer
3120                 * hasn't yet been flushed to disk, they deserve
3121                 * everything they get.
3122                 */
3123
3124                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125                journal = EXT4_JOURNAL(inode);
3126                jbd2_journal_lock_updates(journal);
3127                err = jbd2_journal_flush(journal);
3128                jbd2_journal_unlock_updates(journal);
3129
3130                if (err)
3131                        return 0;
3132        }
3133
3134        return generic_block_bmap(mapping, block, ext4_get_block);
3135}
3136
3137static int ext4_readpage(struct file *file, struct page *page)
3138{
3139        int ret = -EAGAIN;
3140        struct inode *inode = page->mapping->host;
3141
3142        trace_ext4_readpage(page);
3143
3144        if (ext4_has_inline_data(inode))
3145                ret = ext4_readpage_inline(inode, page);
3146
3147        if (ret == -EAGAIN)
3148                return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149
3150        return ret;
3151}
3152
3153static int
3154ext4_readpages(struct file *file, struct address_space *mapping,
3155                struct list_head *pages, unsigned nr_pages)
3156{
3157        struct inode *inode = mapping->host;
3158
3159        /* If the file has inline data, no need to do readpages. */
3160        if (ext4_has_inline_data(inode))
3161                return 0;
3162
3163        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164}
3165
3166static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167                                unsigned int length)
3168{
3169        trace_ext4_invalidatepage(page, offset, length);
3170
3171        /* No journalling happens on data buffers when this function is used */
3172        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
3174        block_invalidatepage(page, offset, length);
3175}
3176
3177static int __ext4_journalled_invalidatepage(struct page *page,
3178                                            unsigned int offset,
3179                                            unsigned int length)
3180{
3181        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
3183        trace_ext4_journalled_invalidatepage(page, offset, length);
3184
3185        /*
3186         * If it's a full truncate we just forget about the pending dirtying
3187         */
3188        if (offset == 0 && length == PAGE_SIZE)
3189                ClearPageChecked(page);
3190
3191        return jbd2_journal_invalidatepage(journal, page, offset, length);
3192}
3193
3194/* Wrapper for aops... */
3195static void ext4_journalled_invalidatepage(struct page *page,
3196                                           unsigned int offset,
3197                                           unsigned int length)
3198{
3199        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200}
3201
3202static int ext4_releasepage(struct page *page, gfp_t wait)
3203{
3204        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205
3206        trace_ext4_releasepage(page);
3207
3208        /* Page has dirty journalled data -> cannot release */
3209        if (PageChecked(page))
3210                return 0;
3211        if (journal)
3212                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213        else
3214                return try_to_free_buffers(page);
3215}
3216
3217#ifdef CONFIG_FS_DAX
3218int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219                            struct buffer_head *bh_result, int create)
3220{
3221        int ret, err;
3222        int credits;
3223        struct ext4_map_blocks map;
3224        handle_t *handle = NULL;
3225        int flags = 0;
3226
3227        ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228                   inode->i_ino, create);
3229        map.m_lblk = iblock;
3230        map.m_len = bh_result->b_size >> inode->i_blkbits;
3231        credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232        if (create) {
3233                flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235                if (IS_ERR(handle)) {
3236                        ret = PTR_ERR(handle);
3237                        return ret;
3238                }
3239        }
3240
3241        ret = ext4_map_blocks(handle, inode, &map, flags);
3242        if (create) {
3243                err = ext4_journal_stop(handle);
3244                if (ret >= 0 && err < 0)
3245                        ret = err;
3246        }
3247        if (ret <= 0)
3248                goto out;
3249        if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250                int err2;
3251
3252                /*
3253                 * We are protected by i_mmap_sem so we know block cannot go
3254                 * away from under us even though we dropped i_data_sem.
3255                 * Convert extent to written and write zeros there.
3256                 *
3257                 * Note: We may get here even when create == 0.
3258                 */
3259                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260                if (IS_ERR(handle)) {
3261                        ret = PTR_ERR(handle);
3262                        goto out;
3263                }
3264
3265                err = ext4_map_blocks(handle, inode, &map,
3266                      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267                if (err < 0)
3268                        ret = err;
3269                err2 = ext4_journal_stop(handle);
3270                if (err2 < 0 && ret > 0)
3271                        ret = err2;
3272        }
3273out:
3274        WARN_ON_ONCE(ret == 0 && create);
3275        if (ret > 0) {
3276                map_bh(bh_result, inode->i_sb, map.m_pblk);
3277                /*
3278                 * At least for now we have to clear BH_New so that DAX code
3279                 * doesn't attempt to zero blocks again in a racy way.
3280                 */
3281                map.m_flags &= ~EXT4_MAP_NEW;
3282                ext4_update_bh_state(bh_result, map.m_flags);
3283                bh_result->b_size = map.m_len << inode->i_blkbits;
3284                ret = 0;
3285        }
3286        return ret;
3287}
3288#endif
3289
3290static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291                            ssize_t size, void *private)
3292{
3293        ext4_io_end_t *io_end = private;
3294
3295        /* if not async direct IO just return */
3296        if (!io_end)
3297                return 0;
3298
3299        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301                  io_end, io_end->inode->i_ino, iocb, offset, size);
3302
3303        /*
3304         * Error during AIO DIO. We cannot convert unwritten extents as the
3305         * data was not written. Just clear the unwritten flag and drop io_end.
3306         */
3307        if (size <= 0) {
3308                ext4_clear_io_unwritten_flag(io_end);
3309                size = 0;
3310        }
3311        io_end->offset = offset;
3312        io_end->size = size;
3313        ext4_put_io_end(io_end);
3314
3315        return 0;
3316}
3317
3318/*
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3322 *
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3326 *
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3331 *
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list.  So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3335 *
3336 */
3337static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338                                  loff_t offset)
3339{
3340        struct file *file = iocb->ki_filp;
3341        struct inode *inode = file->f_mapping->host;
3342        ssize_t ret;
3343        size_t count = iov_iter_count(iter);
3344        int overwrite = 0;
3345        get_block_t *get_block_func = NULL;
3346        int dio_flags = 0;
3347        loff_t final_size = offset + count;
3348
3349        /* Use the old path for reads and writes beyond i_size. */
3350        if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351                return ext4_ind_direct_IO(iocb, iter, offset);
3352
3353        BUG_ON(iocb->private == NULL);
3354
3355        /*
3356         * Make all waiters for direct IO properly wait also for extent
3357         * conversion. This also disallows race between truncate() and
3358         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359         */
3360        if (iov_iter_rw(iter) == WRITE)
3361                inode_dio_begin(inode);
3362
3363        /* If we do a overwrite dio, i_mutex locking can be released */
3364        overwrite = *((int *)iocb->private);
3365
3366        if (overwrite)
3367                inode_unlock(inode);
3368
3369        /*
3370         * We could direct write to holes and fallocate.
3371         *
3372         * Allocated blocks to fill the hole are marked as unwritten to prevent
3373         * parallel buffered read to expose the stale data before DIO complete
3374         * the data IO.
3375         *
3376         * As to previously fallocated extents, ext4 get_block will just simply
3377         * mark the buffer mapped but still keep the extents unwritten.
3378         *
3379         * For non AIO case, we will convert those unwritten extents to written
3380         * after return back from blockdev_direct_IO. That way we save us from
3381         * allocating io_end structure and also the overhead of offloading
3382         * the extent convertion to a workqueue.
3383         *
3384         * For async DIO, the conversion needs to be deferred when the
3385         * IO is completed. The ext4 end_io callback function will be
3386         * called to take care of the conversion work.  Here for async
3387         * case, we allocate an io_end structure to hook to the iocb.
3388         */
3389        iocb->private = NULL;
3390        if (overwrite)
3391                get_block_func = ext4_dio_get_block_overwrite;
3392        else if (is_sync_kiocb(iocb)) {
3393                get_block_func = ext4_dio_get_block_unwritten_sync;
3394                dio_flags = DIO_LOCKING;
3395        } else {
3396                get_block_func = ext4_dio_get_block_unwritten_async;
3397                dio_flags = DIO_LOCKING;
3398        }
3399#ifdef CONFIG_EXT4_FS_ENCRYPTION
3400        BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401#endif
3402        if (IS_DAX(inode))
3403                ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404                                ext4_end_io_dio, dio_flags);
3405        else
3406                ret = __blockdev_direct_IO(iocb, inode,
3407                                           inode->i_sb->s_bdev, iter, offset,
3408                                           get_block_func,
3409                                           ext4_end_io_dio, NULL, dio_flags);
3410
3411        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412                                                EXT4_STATE_DIO_UNWRITTEN)) {
3413                int err;
3414                /*
3415                 * for non AIO case, since the IO is already
3416                 * completed, we could do the conversion right here
3417                 */
3418                err = ext4_convert_unwritten_extents(NULL, inode,
3419                                                     offset, ret);
3420                if (err < 0)
3421                        ret = err;
3422                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423        }
3424
3425        if (iov_iter_rw(iter) == WRITE)
3426                inode_dio_end(inode);
3427        /* take i_mutex locking again if we do a ovewrite dio */
3428        if (overwrite)
3429                inode_lock(inode);
3430
3431        return ret;
3432}
3433
3434static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435                              loff_t offset)
3436{
3437        struct file *file = iocb->ki_filp;
3438        struct inode *inode = file->f_mapping->host;
3439        size_t count = iov_iter_count(iter);
3440        ssize_t ret;
3441
3442#ifdef CONFIG_EXT4_FS_ENCRYPTION
3443        if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444                return 0;
3445#endif
3446
3447        /*
3448         * If we are doing data journalling we don't support O_DIRECT
3449         */
3450        if (ext4_should_journal_data(inode))
3451                return 0;
3452
3453        /* Let buffer I/O handle the inline data case. */
3454        if (ext4_has_inline_data(inode))
3455                return 0;
3456
3457        trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459                ret = ext4_ext_direct_IO(iocb, iter, offset);
3460        else
3461                ret = ext4_ind_direct_IO(iocb, iter, offset);
3462        trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463        return ret;
3464}
3465
3466/*
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks.  The page is
3470 * not necessarily locked.
3471 *
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3475 *
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3478 */
3479static int ext4_journalled_set_page_dirty(struct page *page)
3480{
3481        SetPageChecked(page);
3482        return __set_page_dirty_nobuffers(page);
3483}
3484
3485static const struct address_space_operations ext4_aops = {
3486        .readpage               = ext4_readpage,
3487        .readpages              = ext4_readpages,
3488        .writepage              = ext4_writepage,
3489        .writepages             = ext4_writepages,
3490        .write_begin            = ext4_write_begin,
3491        .write_end              = ext4_write_end,
3492        .bmap                   = ext4_bmap,
3493        .invalidatepage         = ext4_invalidatepage,
3494        .releasepage            = ext4_releasepage,
3495        .direct_IO              = ext4_direct_IO,
3496        .migratepage            = buffer_migrate_page,
3497        .is_partially_uptodate  = block_is_partially_uptodate,
3498        .error_remove_page      = generic_error_remove_page,
3499};
3500
3501static const struct address_space_operations ext4_journalled_aops = {
3502        .readpage               = ext4_readpage,
3503        .readpages              = ext4_readpages,
3504        .writepage              = ext4_writepage,
3505        .writepages             = ext4_writepages,
3506        .write_begin            = ext4_write_begin,
3507        .write_end              = ext4_journalled_write_end,
3508        .set_page_dirty         = ext4_journalled_set_page_dirty,
3509        .bmap                   = ext4_bmap,
3510        .invalidatepage         = ext4_journalled_invalidatepage,
3511        .releasepage            = ext4_releasepage,
3512        .direct_IO              = ext4_direct_IO,
3513        .is_partially_uptodate  = block_is_partially_uptodate,
3514        .error_remove_page      = generic_error_remove_page,
3515};
3516
3517static const struct address_space_operations ext4_da_aops = {
3518        .readpage               = ext4_readpage,
3519        .readpages              = ext4_readpages,
3520        .writepage              = ext4_writepage,
3521        .writepages             = ext4_writepages,
3522        .write_begin            = ext4_da_write_begin,
3523        .write_end              = ext4_da_write_end,
3524        .bmap                   = ext4_bmap,
3525        .invalidatepage         = ext4_da_invalidatepage,
3526        .releasepage            = ext4_releasepage,
3527        .direct_IO              = ext4_direct_IO,
3528        .migratepage            = buffer_migrate_page,
3529        .is_partially_uptodate  = block_is_partially_uptodate,
3530        .error_remove_page      = generic_error_remove_page,
3531};
3532
3533void ext4_set_aops(struct inode *inode)
3534{
3535        switch (ext4_inode_journal_mode(inode)) {
3536        case EXT4_INODE_ORDERED_DATA_MODE:
3537                ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538                break;
3539        case EXT4_INODE_WRITEBACK_DATA_MODE:
3540                ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541                break;
3542        case EXT4_INODE_JOURNAL_DATA_MODE:
3543                inode->i_mapping->a_ops = &ext4_journalled_aops;
3544                return;
3545        default:
3546                BUG();
3547        }
3548        if (test_opt(inode->i_sb, DELALLOC))
3549                inode->i_mapping->a_ops = &ext4_da_aops;
3550        else
3551                inode->i_mapping->a_ops = &ext4_aops;
3552}
3553
3554static int __ext4_block_zero_page_range(handle_t *handle,
3555                struct address_space *mapping, loff_t from, loff_t length)
3556{
3557        ext4_fsblk_t index = from >> PAGE_SHIFT;
3558        unsigned offset = from & (PAGE_SIZE-1);
3559        unsigned blocksize, pos;
3560        ext4_lblk_t iblock;
3561        struct inode *inode = mapping->host;
3562        struct buffer_head *bh;
3563        struct page *page;
3564        int err = 0;
3565
3566        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3568        if (!page)
3569                return -ENOMEM;
3570
3571        blocksize = inode->i_sb->s_blocksize;
3572
3573        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574
3575        if (!page_has_buffers(page))
3576                create_empty_buffers(page, blocksize, 0);
3577
3578        /* Find the buffer that contains "offset" */
3579        bh = page_buffers(page);
3580        pos = blocksize;
3581        while (offset >= pos) {
3582                bh = bh->b_this_page;
3583                iblock++;
3584                pos += blocksize;
3585        }
3586        if (buffer_freed(bh)) {
3587                BUFFER_TRACE(bh, "freed: skip");
3588                goto unlock;
3589        }
3590        if (!buffer_mapped(bh)) {
3591                BUFFER_TRACE(bh, "unmapped");
3592                ext4_get_block(inode, iblock, bh, 0);
3593                /* unmapped? It's a hole - nothing to do */
3594                if (!buffer_mapped(bh)) {
3595                        BUFFER_TRACE(bh, "still unmapped");
3596                        goto unlock;
3597                }
3598        }
3599
3600        /* Ok, it's mapped. Make sure it's up-to-date */
3601        if (PageUptodate(page))
3602                set_buffer_uptodate(bh);
3603
3604        if (!buffer_uptodate(bh)) {
3605                err = -EIO;
3606                ll_rw_block(READ, 1, &bh);
3607                wait_on_buffer(bh);
3608                /* Uhhuh. Read error. Complain and punt. */
3609                if (!buffer_uptodate(bh))
3610                        goto unlock;
3611                if (S_ISREG(inode->i_mode) &&
3612                    ext4_encrypted_inode(inode)) {
3613                        /* We expect the key to be set. */
3614                        BUG_ON(!ext4_has_encryption_key(inode));
3615                        BUG_ON(blocksize != PAGE_SIZE);
3616                        WARN_ON_ONCE(ext4_decrypt(page));
3617                }
3618        }
3619        if (ext4_should_journal_data(inode)) {
3620                BUFFER_TRACE(bh, "get write access");
3621                err = ext4_journal_get_write_access(handle, bh);
3622                if (err)
3623                        goto unlock;
3624        }
3625        zero_user(page, offset, length);
3626        BUFFER_TRACE(bh, "zeroed end of block");
3627
3628        if (ext4_should_journal_data(inode)) {
3629                err = ext4_handle_dirty_metadata(handle, inode, bh);
3630        } else {
3631                err = 0;
3632                mark_buffer_dirty(bh);
3633                if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634                        err = ext4_jbd2_file_inode(handle, inode);
3635        }
3636
3637unlock:
3638        unlock_page(page);
3639        put_page(page);
3640        return err;
3641}
3642
3643/*
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'.  The range to be zero'd must
3646 * be contained with in one block.  If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3649 */
3650static int ext4_block_zero_page_range(handle_t *handle,
3651                struct address_space *mapping, loff_t from, loff_t length)
3652{
3653        struct inode *inode = mapping->host;
3654        unsigned offset = from & (PAGE_SIZE-1);
3655        unsigned blocksize = inode->i_sb->s_blocksize;
3656        unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658        /*
3659         * correct length if it does not fall between
3660         * 'from' and the end of the block
3661         */
3662        if (length > max || length < 0)
3663                length = max;
3664
3665        if (IS_DAX(inode))
3666                return dax_zero_page_range(inode, from, length, ext4_get_block);
3667        return __ext4_block_zero_page_range(handle, mapping, from, length);
3668}
3669
3670/*
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3675 */
3676static int ext4_block_truncate_page(handle_t *handle,
3677                struct address_space *mapping, loff_t from)
3678{
3679        unsigned offset = from & (PAGE_SIZE-1);
3680        unsigned length;
3681        unsigned blocksize;
3682        struct inode *inode = mapping->host;
3683
3684        blocksize = inode->i_sb->s_blocksize;
3685        length = blocksize - (offset & (blocksize - 1));
3686
3687        return ext4_block_zero_page_range(handle, mapping, from, length);
3688}
3689
3690int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691                             loff_t lstart, loff_t length)
3692{
3693        struct super_block *sb = inode->i_sb;
3694        struct address_space *mapping = inode->i_mapping;
3695        unsigned partial_start, partial_end;
3696        ext4_fsblk_t start, end;
3697        loff_t byte_end = (lstart + length - 1);
3698        int err = 0;
3699
3700        partial_start = lstart & (sb->s_blocksize - 1);
3701        partial_end = byte_end & (sb->s_blocksize - 1);
3702
3703        start = lstart >> sb->s_blocksize_bits;
3704        end = byte_end >> sb->s_blocksize_bits;
3705
3706        /* Handle partial zero within the single block */
3707        if (start == end &&
3708            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709                err = ext4_block_zero_page_range(handle, mapping,
3710                                                 lstart, length);
3711                return err;
3712        }
3713        /* Handle partial zero out on the start of the range */
3714        if (partial_start) {
3715                err = ext4_block_zero_page_range(handle, mapping,
3716                                                 lstart, sb->s_blocksize);
3717                if (err)
3718                        return err;
3719        }
3720        /* Handle partial zero out on the end of the range */
3721        if (partial_end != sb->s_blocksize - 1)
3722                err = ext4_block_zero_page_range(handle, mapping,
3723                                                 byte_end - partial_end,
3724                                                 partial_end + 1);
3725        return err;
3726}
3727
3728int ext4_can_truncate(struct inode *inode)
3729{
3730        if (S_ISREG(inode->i_mode))
3731                return 1;
3732        if (S_ISDIR(inode->i_mode))
3733                return 1;
3734        if (S_ISLNK(inode->i_mode))
3735                return !ext4_inode_is_fast_symlink(inode);
3736        return 0;
3737}
3738
3739/*
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3744 */
3745int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746                                      loff_t len)
3747{
3748        handle_t *handle;
3749        loff_t size = i_size_read(inode);
3750
3751        WARN_ON(!inode_is_locked(inode));
3752        if (offset > size || offset + len < size)
3753                return 0;
3754
3755        if (EXT4_I(inode)->i_disksize >= size)
3756                return 0;
3757
3758        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759        if (IS_ERR(handle))
3760                return PTR_ERR(handle);
3761        ext4_update_i_disksize(inode, size);
3762        ext4_mark_inode_dirty(handle, inode);
3763        ext4_journal_stop(handle);
3764
3765        return 0;
3766}
3767
3768/*
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3771 *
3772 * @inode:  File inode
3773 * @offset: The offset where the hole will begin
3774 * @len:    The length of the hole
3775 *
3776 * Returns: 0 on success or negative on failure
3777 */
3778
3779int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780{
3781        struct super_block *sb = inode->i_sb;
3782        ext4_lblk_t first_block, stop_block;
3783        struct address_space *mapping = inode->i_mapping;
3784        loff_t first_block_offset, last_block_offset;
3785        handle_t *handle;
3786        unsigned int credits;
3787        int ret = 0;
3788
3789        if (!S_ISREG(inode->i_mode))
3790                return -EOPNOTSUPP;
3791
3792        trace_ext4_punch_hole(inode, offset, length, 0);
3793
3794        /*
3795         * Write out all dirty pages to avoid race conditions
3796         * Then release them.
3797         */
3798        if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799                ret = filemap_write_and_wait_range(mapping, offset,
3800                                                   offset + length - 1);
3801                if (ret)
3802                        return ret;
3803        }
3804
3805        inode_lock(inode);
3806
3807        /* No need to punch hole beyond i_size */
3808        if (offset >= inode->i_size)
3809                goto out_mutex;
3810
3811        /*
3812         * If the hole extends beyond i_size, set the hole
3813         * to end after the page that contains i_size
3814         */
3815        if (offset + length > inode->i_size) {
3816                length = inode->i_size +
3817                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818                   offset;
3819        }
3820
3821        if (offset & (sb->s_blocksize - 1) ||
3822            (offset + length) & (sb->s_blocksize - 1)) {
3823                /*
3824                 * Attach jinode to inode for jbd2 if we do any zeroing of
3825                 * partial block
3826                 */
3827                ret = ext4_inode_attach_jinode(inode);
3828                if (ret < 0)
3829                        goto out_mutex;
3830
3831        }
3832
3833        /* Wait all existing dio workers, newcomers will block on i_mutex */
3834        ext4_inode_block_unlocked_dio(inode);
3835        inode_dio_wait(inode);
3836
3837        /*
3838         * Prevent page faults from reinstantiating pages we have released from
3839         * page cache.
3840         */
3841        down_write(&EXT4_I(inode)->i_mmap_sem);
3842        first_block_offset = round_up(offset, sb->s_blocksize);
3843        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844
3845        /* Now release the pages and zero block aligned part of pages*/
3846        if (last_block_offset > first_block_offset) {
3847                ret = ext4_update_disksize_before_punch(inode, offset, length);
3848                if (ret)
3849                        goto out_dio;
3850                truncate_pagecache_range(inode, first_block_offset,
3851                                         last_block_offset);
3852        }
3853
3854        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855                credits = ext4_writepage_trans_blocks(inode);
3856        else
3857                credits = ext4_blocks_for_truncate(inode);
3858        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859        if (IS_ERR(handle)) {
3860                ret = PTR_ERR(handle);
3861                ext4_std_error(sb, ret);
3862                goto out_dio;
3863        }
3864
3865        ret = ext4_zero_partial_blocks(handle, inode, offset,
3866                                       length);
3867        if (ret)
3868                goto out_stop;
3869
3870        first_block = (offset + sb->s_blocksize - 1) >>
3871                EXT4_BLOCK_SIZE_BITS(sb);
3872        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874        /* If there are no blocks to remove, return now */
3875        if (first_block >= stop_block)
3876                goto out_stop;
3877
3878        down_write(&EXT4_I(inode)->i_data_sem);
3879        ext4_discard_preallocations(inode);
3880
3881        ret = ext4_es_remove_extent(inode, first_block,
3882                                    stop_block - first_block);
3883        if (ret) {
3884                up_write(&EXT4_I(inode)->i_data_sem);
3885                goto out_stop;
3886        }
3887
3888        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889                ret = ext4_ext_remove_space(inode, first_block,
3890                                            stop_block - 1);
3891        else
3892                ret = ext4_ind_remove_space(handle, inode, first_block,
3893                                            stop_block);
3894
3895        up_write(&EXT4_I(inode)->i_data_sem);
3896        if (IS_SYNC(inode))
3897                ext4_handle_sync(handle);
3898
3899        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900        ext4_mark_inode_dirty(handle, inode);
3901out_stop:
3902        ext4_journal_stop(handle);
3903out_dio:
3904        up_write(&EXT4_I(inode)->i_mmap_sem);
3905        ext4_inode_resume_unlocked_dio(inode);
3906out_mutex:
3907        inode_unlock(inode);
3908        return ret;
3909}
3910
3911int ext4_inode_attach_jinode(struct inode *inode)
3912{
3913        struct ext4_inode_info *ei = EXT4_I(inode);
3914        struct jbd2_inode *jinode;
3915
3916        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917                return 0;
3918
3919        jinode = jbd2_alloc_inode(GFP_KERNEL);
3920        spin_lock(&inode->i_lock);
3921        if (!ei->jinode) {
3922                if (!jinode) {
3923                        spin_unlock(&inode->i_lock);
3924                        return -ENOMEM;
3925                }
3926                ei->jinode = jinode;
3927                jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928                jinode = NULL;
3929        }
3930        spin_unlock(&inode->i_lock);
3931        if (unlikely(jinode != NULL))
3932                jbd2_free_inode(jinode);
3933        return 0;
3934}
3935
3936/*
3937 * ext4_truncate()
3938 *
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3942 *
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk.  We must be able to restart the truncate after a crash.
3946 *
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable.  It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3952 *
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3955 *
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go.  So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem.  But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3963 */
3964void ext4_truncate(struct inode *inode)
3965{
3966        struct ext4_inode_info *ei = EXT4_I(inode);
3967        unsigned int credits;
3968        handle_t *handle;
3969        struct address_space *mapping = inode->i_mapping;
3970
3971        /*
3972         * There is a possibility that we're either freeing the inode
3973         * or it's a completely new inode. In those cases we might not
3974         * have i_mutex locked because it's not necessary.
3975         */
3976        if (!(inode->i_state & (I_NEW|I_FREEING)))
3977                WARN_ON(!inode_is_locked(inode));
3978        trace_ext4_truncate_enter(inode);
3979
3980        if (!ext4_can_truncate(inode))
3981                return;
3982
3983        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984
3985        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987
3988        if (ext4_has_inline_data(inode)) {
3989                int has_inline = 1;
3990
3991                ext4_inline_data_truncate(inode, &has_inline);
3992                if (has_inline)
3993                        return;
3994        }
3995
3996        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998                if (ext4_inode_attach_jinode(inode) < 0)
3999                        return;
4000        }
4001
4002        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003                credits = ext4_writepage_trans_blocks(inode);
4004        else
4005                credits = ext4_blocks_for_truncate(inode);
4006
4007        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008        if (IS_ERR(handle)) {
4009                ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010                return;
4011        }
4012
4013        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014                ext4_block_truncate_page(handle, mapping, inode->i_size);
4015
4016        /*
4017         * We add the inode to the orphan list, so that if this
4018         * truncate spans multiple transactions, and we crash, we will
4019         * resume the truncate when the filesystem recovers.  It also
4020         * marks the inode dirty, to catch the new size.
4021         *
4022         * Implication: the file must always be in a sane, consistent
4023         * truncatable state while each transaction commits.
4024         */
4025        if (ext4_orphan_add(handle, inode))
4026                goto out_stop;
4027
4028        down_write(&EXT4_I(inode)->i_data_sem);
4029
4030        ext4_discard_preallocations(inode);
4031
4032        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033                ext4_ext_truncate(handle, inode);
4034        else
4035                ext4_ind_truncate(handle, inode);
4036
4037        up_write(&ei->i_data_sem);
4038
4039        if (IS_SYNC(inode))
4040                ext4_handle_sync(handle);
4041
4042out_stop:
4043        /*
4044         * If this was a simple ftruncate() and the file will remain alive,
4045         * then we need to clear up the orphan record which we created above.
4046         * However, if this was a real unlink then we were called by
4047         * ext4_evict_inode(), and we allow that function to clean up the
4048         * orphan info for us.
4049         */
4050        if (inode->i_nlink)
4051                ext4_orphan_del(handle, inode);
4052
4053        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054        ext4_mark_inode_dirty(handle, inode);
4055        ext4_journal_stop(handle);
4056
4057        trace_ext4_truncate_exit(inode);
4058}
4059
4060/*
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4065 */
4066static int __ext4_get_inode_loc(struct inode *inode,
4067                                struct ext4_iloc *iloc, int in_mem)
4068{
4069        struct ext4_group_desc  *gdp;
4070        struct buffer_head      *bh;
4071        struct super_block      *sb = inode->i_sb;
4072        ext4_fsblk_t            block;
4073        int                     inodes_per_block, inode_offset;
4074
4075        iloc->bh = NULL;
4076        if (!ext4_valid_inum(sb, inode->i_ino))
4077                return -EFSCORRUPTED;
4078
4079        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081        if (!gdp)
4082                return -EIO;
4083
4084        /*
4085         * Figure out the offset within the block group inode table
4086         */
4087        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088        inode_offset = ((inode->i_ino - 1) %
4089                        EXT4_INODES_PER_GROUP(sb));
4090        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093        bh = sb_getblk(sb, block);
4094        if (unlikely(!bh))
4095                return -ENOMEM;
4096        if (!buffer_uptodate(bh)) {
4097                lock_buffer(bh);
4098
4099                /*
4100                 * If the buffer has the write error flag, we have failed
4101                 * to write out another inode in the same block.  In this
4102                 * case, we don't have to read the block because we may
4103                 * read the old inode data successfully.
4104                 */
4105                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106                        set_buffer_uptodate(bh);
4107
4108                if (buffer_uptodate(bh)) {
4109                        /* someone brought it uptodate while we waited */
4110                        unlock_buffer(bh);
4111                        goto has_buffer;
4112                }
4113
4114                /*
4115                 * If we have all information of the inode in memory and this
4116                 * is the only valid inode in the block, we need not read the
4117                 * block.
4118                 */
4119                if (in_mem) {
4120                        struct buffer_head *bitmap_bh;
4121                        int i, start;
4122
4123                        start = inode_offset & ~(inodes_per_block - 1);
4124
4125                        /* Is the inode bitmap in cache? */
4126                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127                        if (unlikely(!bitmap_bh))
4128                                goto make_io;
4129
4130                        /*
4131                         * If the inode bitmap isn't in cache then the
4132                         * optimisation may end up performing two reads instead
4133                         * of one, so skip it.
4134                         */
4135                        if (!buffer_uptodate(bitmap_bh)) {
4136                                brelse(bitmap_bh);
4137                                goto make_io;
4138                        }
4139                        for (i = start; i < start + inodes_per_block; i++) {
4140                                if (i == inode_offset)
4141                                        continue;
4142                                if (ext4_test_bit(i, bitmap_bh->b_data))
4143                                        break;
4144                        }
4145                        brelse(bitmap_bh);
4146                        if (i == start + inodes_per_block) {
4147                                /* all other inodes are free, so skip I/O */
4148                                memset(bh->b_data, 0, bh->b_size);
4149                                set_buffer_uptodate(bh);
4150                                unlock_buffer(bh);
4151                                goto has_buffer;
4152                        }
4153                }
4154
4155make_io:
4156                /*
4157                 * If we need to do any I/O, try to pre-readahead extra
4158                 * blocks from the inode table.
4159                 */
4160                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161                        ext4_fsblk_t b, end, table;
4162                        unsigned num;
4163                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164
4165                        table = ext4_inode_table(sb, gdp);
4166                        /* s_inode_readahead_blks is always a power of 2 */
4167                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168                        if (table > b)
4169                                b = table;
4170                        end = b + ra_blks;
4171                        num = EXT4_INODES_PER_GROUP(sb);
4172                        if (ext4_has_group_desc_csum(sb))
4173                                num -= ext4_itable_unused_count(sb, gdp);
4174                        table += num / inodes_per_block;
4175                        if (end > table)
4176                                end = table;
4177                        while (b <= end)
4178                                sb_breadahead(sb, b++);
4179                }
4180
4181                /*
4182                 * There are other valid inodes in the buffer, this inode
4183                 * has in-inode xattrs, or we don't have this inode in memory.
4184                 * Read the block from disk.
4185                 */
4186                trace_ext4_load_inode(inode);
4187                get_bh(bh);
4188                bh->b_end_io = end_buffer_read_sync;
4189                submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190                wait_on_buffer(bh);
4191                if (!buffer_uptodate(bh)) {
4192                        EXT4_ERROR_INODE_BLOCK(inode, block,
4193                                               "unable to read itable block");
4194                        brelse(bh);
4195                        return -EIO;
4196                }
4197        }
4198has_buffer:
4199        iloc->bh = bh;
4200        return 0;
4201}
4202
4203int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204{
4205        /* We have all inode data except xattrs in memory here. */
4206        return __ext4_get_inode_loc(inode, iloc,
4207                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208}
4209
4210void ext4_set_inode_flags(struct inode *inode)
4211{
4212        unsigned int flags = EXT4_I(inode)->i_flags;
4213        unsigned int new_fl = 0;
4214
4215        if (flags & EXT4_SYNC_FL)
4216                new_fl |= S_SYNC;
4217        if (flags & EXT4_APPEND_FL)
4218                new_fl |= S_APPEND;
4219        if (flags & EXT4_IMMUTABLE_FL)
4220                new_fl |= S_IMMUTABLE;
4221        if (flags & EXT4_NOATIME_FL)
4222                new_fl |= S_NOATIME;
4223        if (flags & EXT4_DIRSYNC_FL)
4224                new_fl |= S_DIRSYNC;
4225        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226                new_fl |= S_DAX;
4227        inode_set_flags(inode, new_fl,
4228                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229}
4230
4231/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233{
4234        unsigned int vfs_fl;
4235        unsigned long old_fl, new_fl;
4236
4237        do {
4238                vfs_fl = ei->vfs_inode.i_flags;
4239                old_fl = ei->i_flags;
4240                new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241                                EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242                                EXT4_DIRSYNC_FL);
4243                if (vfs_fl & S_SYNC)
4244                        new_fl |= EXT4_SYNC_FL;
4245                if (vfs_fl & S_APPEND)
4246                        new_fl |= EXT4_APPEND_FL;
4247                if (vfs_fl & S_IMMUTABLE)
4248                        new_fl |= EXT4_IMMUTABLE_FL;
4249                if (vfs_fl & S_NOATIME)
4250                        new_fl |= EXT4_NOATIME_FL;
4251                if (vfs_fl & S_DIRSYNC)
4252                        new_fl |= EXT4_DIRSYNC_FL;
4253        } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254}
4255
4256static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257                                  struct ext4_inode_info *ei)
4258{
4259        blkcnt_t i_blocks ;
4260        struct inode *inode = &(ei->vfs_inode);
4261        struct super_block *sb = inode->i_sb;
4262
4263        if (ext4_has_feature_huge_file(sb)) {
4264                /* we are using combined 48 bit field */
4265                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266                                        le32_to_cpu(raw_inode->i_blocks_lo);
4267                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268                        /* i_blocks represent file system block size */
4269                        return i_blocks  << (inode->i_blkbits - 9);
4270                } else {
4271                        return i_blocks;
4272                }
4273        } else {
4274                return le32_to_cpu(raw_inode->i_blocks_lo);
4275        }
4276}
4277
4278static inline void ext4_iget_extra_inode(struct inode *inode,
4279                                         struct ext4_inode *raw_inode,
4280                                         struct ext4_inode_info *ei)
4281{
4282        __le32 *magic = (void *)raw_inode +
4283                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286                ext4_find_inline_data_nolock(inode);
4287        } else
4288                EXT4_I(inode)->i_inline_off = 0;
4289}
4290
4291int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292{
4293        if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294                return -EOPNOTSUPP;
4295        *projid = EXT4_I(inode)->i_projid;
4296        return 0;
4297}
4298
4299struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300{
4301        struct ext4_iloc iloc;
4302        struct ext4_inode *raw_inode;
4303        struct ext4_inode_info *ei;
4304        struct inode *inode;
4305        journal_t *journal = EXT4_SB(sb)->s_journal;
4306        long ret;
4307        int block;
4308        uid_t i_uid;
4309        gid_t i_gid;
4310        projid_t i_projid;
4311
4312        inode = iget_locked(sb, ino);
4313        if (!inode)
4314                return ERR_PTR(-ENOMEM);
4315        if (!(inode->i_state & I_NEW))
4316                return inode;
4317
4318        ei = EXT4_I(inode);
4319        iloc.bh = NULL;
4320
4321        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322        if (ret < 0)
4323                goto bad_inode;
4324        raw_inode = ext4_raw_inode(&iloc);
4325
4326        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329                    EXT4_INODE_SIZE(inode->i_sb)) {
4330                        EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331                                EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332                                EXT4_INODE_SIZE(inode->i_sb));
4333                        ret = -EFSCORRUPTED;
4334                        goto bad_inode;
4335                }
4336        } else
4337                ei->i_extra_isize = 0;
4338
4339        /* Precompute checksum seed for inode metadata */
4340        if (ext4_has_metadata_csum(sb)) {
4341                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342                __u32 csum;
4343                __le32 inum = cpu_to_le32(inode->i_ino);
4344                __le32 gen = raw_inode->i_generation;
4345                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346                                   sizeof(inum));
4347                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348                                              sizeof(gen));
4349        }
4350
4351        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352                EXT4_ERROR_INODE(inode, "checksum invalid");
4353                ret = -EFSBADCRC;
4354                goto bad_inode;
4355        }
4356
4357        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360        if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364        else
4365                i_projid = EXT4_DEF_PROJID;
4366
4367        if (!(test_opt(inode->i_sb, NO_UID32))) {
4368                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370        }
4371        i_uid_write(inode, i_uid);
4372        i_gid_write(inode, i_gid);
4373        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375
4376        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4377        ei->i_inline_off = 0;
4378        ei->i_dir_start_lookup = 0;
4379        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380        /* We now have enough fields to check if the inode was active or not.
4381         * This is needed because nfsd might try to access dead inodes
4382         * the test is that same one that e2fsck uses
4383         * NeilBrown 1999oct15
4384         */
4385        if (inode->i_nlink == 0) {
4386                if ((inode->i_mode == 0 ||
4387                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388                    ino != EXT4_BOOT_LOADER_INO) {
4389                        /* this inode is deleted */
4390                        ret = -ESTALE;
4391                        goto bad_inode;
4392                }
4393                /* The only unlinked inodes we let through here have
4394                 * valid i_mode and are being read by the orphan
4395                 * recovery code: that's fine, we're about to complete
4396                 * the process of deleting those.
4397                 * OR it is the EXT4_BOOT_LOADER_INO which is
4398                 * not initialized on a new filesystem. */
4399        }
4400        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403        if (ext4_has_feature_64bit(sb))
4404                ei->i_file_acl |=
4405                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406        inode->i_size = ext4_isize(raw_inode);
4407        ei->i_disksize = inode->i_size;
4408#ifdef CONFIG_QUOTA
4409        ei->i_reserved_quota = 0;
4410#endif
4411        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412        ei->i_block_group = iloc.block_group;
4413        ei->i_last_alloc_group = ~0;
4414        /*
4415         * NOTE! The in-memory inode i_data array is in little-endian order
4416         * even on big-endian machines: we do NOT byteswap the block numbers!
4417         */
4418        for (block = 0; block < EXT4_N_BLOCKS; block++)
4419                ei->i_data[block] = raw_inode->i_block[block];
4420        INIT_LIST_HEAD(&ei->i_orphan);
4421
4422        /*
4423         * Set transaction id's of transactions that have to be committed
4424         * to finish f[data]sync. We set them to currently running transaction
4425         * as we cannot be sure that the inode or some of its metadata isn't
4426         * part of the transaction - the inode could have been reclaimed and
4427         * now it is reread from disk.
4428         */
4429        if (journal) {
4430                transaction_t *transaction;
4431                tid_t tid;
4432
4433                read_lock(&journal->j_state_lock);
4434                if (journal->j_running_transaction)
4435                        transaction = journal->j_running_transaction;
4436                else
4437                        transaction = journal->j_committing_transaction;
4438                if (transaction)
4439                        tid = transaction->t_tid;
4440                else
4441                        tid = journal->j_commit_sequence;
4442                read_unlock(&journal->j_state_lock);
4443                ei->i_sync_tid = tid;
4444                ei->i_datasync_tid = tid;
4445        }
4446
4447        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448                if (ei->i_extra_isize == 0) {
4449                        /* The extra space is currently unused. Use it. */
4450                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4451                                            EXT4_GOOD_OLD_INODE_SIZE;
4452                } else {
4453                        ext4_iget_extra_inode(inode, raw_inode, ei);
4454                }
4455        }
4456
4457        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463                inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466                                inode->i_version |=
4467                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468                }
4469        }
4470
4471        ret = 0;
4472        if (ei->i_file_acl &&
4473            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475                                 ei->i_file_acl);
4476                ret = -EFSCORRUPTED;
4477                goto bad_inode;
4478        } else if (!ext4_has_inline_data(inode)) {
4479                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481                            (S_ISLNK(inode->i_mode) &&
4482                             !ext4_inode_is_fast_symlink(inode))))
4483                                /* Validate extent which is part of inode */
4484                                ret = ext4_ext_check_inode(inode);
4485                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486                           (S_ISLNK(inode->i_mode) &&
4487                            !ext4_inode_is_fast_symlink(inode))) {
4488                        /* Validate block references which are part of inode */
4489                        ret = ext4_ind_check_inode(inode);
4490                }
4491        }
4492        if (ret)
4493                goto bad_inode;
4494
4495        if (S_ISREG(inode->i_mode)) {
4496                inode->i_op = &ext4_file_inode_operations;
4497                inode->i_fop = &ext4_file_operations;
4498                ext4_set_aops(inode);
4499        } else if (S_ISDIR(inode->i_mode)) {
4500                inode->i_op = &ext4_dir_inode_operations;
4501                inode->i_fop = &ext4_dir_operations;
4502        } else if (S_ISLNK(inode->i_mode)) {
4503                if (ext4_encrypted_inode(inode)) {
4504                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505                        ext4_set_aops(inode);
4506                } else if (ext4_inode_is_fast_symlink(inode)) {
4507                        inode->i_link = (char *)ei->i_data;
4508                        inode->i_op = &ext4_fast_symlink_inode_operations;
4509                        nd_terminate_link(ei->i_data, inode->i_size,
4510                                sizeof(ei->i_data) - 1);
4511                } else {
4512                        inode->i_op = &ext4_symlink_inode_operations;
4513                        ext4_set_aops(inode);
4514                }
4515                inode_nohighmem(inode);
4516        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518                inode->i_op = &ext4_special_inode_operations;
4519                if (raw_inode->i_block[0])
4520                        init_special_inode(inode, inode->i_mode,
4521                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522                else
4523                        init_special_inode(inode, inode->i_mode,
4524                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525        } else if (ino == EXT4_BOOT_LOADER_INO) {
4526                make_bad_inode(inode);
4527        } else {
4528                ret = -EFSCORRUPTED;
4529                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530                goto bad_inode;
4531        }
4532        brelse(iloc.bh);
4533        ext4_set_inode_flags(inode);
4534        unlock_new_inode(inode);
4535        return inode;
4536
4537bad_inode:
4538        brelse(iloc.bh);
4539        iget_failed(inode);
4540        return ERR_PTR(ret);
4541}
4542
4543struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544{
4545        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546                return ERR_PTR(-EFSCORRUPTED);
4547        return ext4_iget(sb, ino);
4548}
4549
4550static int ext4_inode_blocks_set(handle_t *handle,
4551                                struct ext4_inode *raw_inode,
4552                                struct ext4_inode_info *ei)
4553{
4554        struct inode *inode = &(ei->vfs_inode);
4555        u64 i_blocks = inode->i_blocks;
4556        struct super_block *sb = inode->i_sb;
4557
4558        if (i_blocks <= ~0U) {
4559                /*
4560                 * i_blocks can be represented in a 32 bit variable
4561                 * as multiple of 512 bytes
4562                 */
4563                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4564                raw_inode->i_blocks_high = 0;
4565                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566                return 0;
4567        }
4568        if (!ext4_has_feature_huge_file(sb))
4569                return -EFBIG;
4570
4571        if (i_blocks <= 0xffffffffffffULL) {
4572                /*
4573                 * i_blocks can be represented in a 48 bit variable
4574                 * as multiple of 512 bytes
4575                 */
4576                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579        } else {
4580                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581                /* i_block is stored in file system block size */
4582                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4584                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585        }
4586        return 0;
4587}
4588
4589struct other_inode {
4590        unsigned long           orig_ino;
4591        struct ext4_inode       *raw_inode;
4592};
4593
4594static int other_inode_match(struct inode * inode, unsigned long ino,
4595                             void *data)
4596{
4597        struct other_inode *oi = (struct other_inode *) data;
4598
4599        if ((inode->i_ino != ino) ||
4600            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601                               I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602            ((inode->i_state & I_DIRTY_TIME) == 0))
4603                return 0;
4604        spin_lock(&inode->i_lock);
4605        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607            (inode->i_state & I_DIRTY_TIME)) {
4608                struct ext4_inode_info  *ei = EXT4_I(inode);
4609
4610                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611                spin_unlock(&inode->i_lock);
4612
4613                spin_lock(&ei->i_raw_lock);
4614                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617                ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618                spin_unlock(&ei->i_raw_lock);
4619                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620                return -1;
4621        }
4622        spin_unlock(&inode->i_lock);
4623        return -1;
4624}
4625
4626/*
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4629 */
4630static void ext4_update_other_inodes_time(struct super_block *sb,
4631                                          unsigned long orig_ino, char *buf)
4632{
4633        struct other_inode oi;
4634        unsigned long ino;
4635        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636        int inode_size = EXT4_INODE_SIZE(sb);
4637
4638        oi.orig_ino = orig_ino;
4639        /*
4640         * Calculate the first inode in the inode table block.  Inode
4641         * numbers are one-based.  That is, the first inode in a block
4642         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643         */
4644        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646                if (ino == orig_ino)
4647                        continue;
4648                oi.raw_inode = (struct ext4_inode *) buf;
4649                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650        }
4651}
4652
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache.  This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
4660static int ext4_do_update_inode(handle_t *handle,
4661                                struct inode *inode,
4662                                struct ext4_iloc *iloc)
4663{
4664        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665        struct ext4_inode_info *ei = EXT4_I(inode);
4666        struct buffer_head *bh = iloc->bh;
4667        struct super_block *sb = inode->i_sb;
4668        int err = 0, rc, block;
4669        int need_datasync = 0, set_large_file = 0;
4670        uid_t i_uid;
4671        gid_t i_gid;
4672        projid_t i_projid;
4673
4674        spin_lock(&ei->i_raw_lock);
4675
4676        /* For fields not tracked in the in-memory inode,
4677         * initialise them to zero for new inodes. */
4678        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680
4681        ext4_get_inode_flags(ei);
4682        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683        i_uid = i_uid_read(inode);
4684        i_gid = i_gid_read(inode);
4685        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686        if (!(test_opt(inode->i_sb, NO_UID32))) {
4687                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689/*
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4692 */
4693                if (!ei->i_dtime) {
4694                        raw_inode->i_uid_high =
4695                                cpu_to_le16(high_16_bits(i_uid));
4696                        raw_inode->i_gid_high =
4697                                cpu_to_le16(high_16_bits(i_gid));
4698                } else {
4699                        raw_inode->i_uid_high = 0;
4700                        raw_inode->i_gid_high = 0;
4701                }
4702        } else {
4703                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705                raw_inode->i_uid_high = 0;
4706                raw_inode->i_gid_high = 0;
4707        }
4708        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709
4710        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
4715        err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716        if (err) {
4717                spin_unlock(&ei->i_raw_lock);
4718                goto out_brelse;
4719        }
4720        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723                raw_inode->i_file_acl_high =
4724                        cpu_to_le16(ei->i_file_acl >> 32);
4725        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726        if (ei->i_disksize != ext4_isize(raw_inode)) {
4727                ext4_isize_set(raw_inode, ei->i_disksize);
4728                need_datasync = 1;
4729        }
4730        if (ei->i_disksize > 0x7fffffffULL) {
4731                if (!ext4_has_feature_large_file(sb) ||
4732                                EXT4_SB(sb)->s_es->s_rev_level ==
4733                    cpu_to_le32(EXT4_GOOD_OLD_REV))
4734                        set_large_file = 1;
4735        }
4736        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738                if (old_valid_dev(inode->i_rdev)) {
4739                        raw_inode->i_block[0] =
4740                                cpu_to_le32(old_encode_dev(inode->i_rdev));
4741                        raw_inode->i_block[1] = 0;
4742                } else {
4743                        raw_inode->i_block[0] = 0;
4744                        raw_inode->i_block[1] =
4745                                cpu_to_le32(new_encode_dev(inode->i_rdev));
4746                        raw_inode->i_block[2] = 0;
4747                }
4748        } else if (!ext4_has_inline_data(inode)) {
4749                for (block = 0; block < EXT4_N_BLOCKS; block++)
4750                        raw_inode->i_block[block] = ei->i_data[block];
4751        }
4752
4753        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754                raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755                if (ei->i_extra_isize) {
4756                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757                                raw_inode->i_version_hi =
4758                                        cpu_to_le32(inode->i_version >> 32);
4759                        raw_inode->i_extra_isize =
4760                                cpu_to_le16(ei->i_extra_isize);
4761                }
4762        }
4763
4764        BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765                        EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766               i_projid != EXT4_DEF_PROJID);
4767
4768        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770                raw_inode->i_projid = cpu_to_le32(i_projid);
4771
4772        ext4_inode_csum_set(inode, raw_inode, ei);
4773        spin_unlock(&ei->i_raw_lock);
4774        if (inode->i_sb->s_flags & MS_LAZYTIME)
4775                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776                                              bh->b_data);
4777
4778        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780        if (!err)
4781                err = rc;
4782        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783        if (set_large_file) {
4784                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786                if (err)
4787                        goto out_brelse;
4788                ext4_update_dynamic_rev(sb);
4789                ext4_set_feature_large_file(sb);
4790                ext4_handle_sync(handle);
4791                err = ext4_handle_dirty_super(handle, sb);
4792        }
4793        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794out_brelse:
4795        brelse(bh);
4796        ext4_std_error(inode->i_sb, err);
4797        return err;
4798}
4799
4800/*
4801 * ext4_write_inode()
4802 *
4803 * We are called from a few places:
4804 *
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 *   Here, there will be no transaction running. We wait for any running
4807 *   transaction to commit.
4808 *
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 *   We wait on commit, if told to.
4811 *
4812 * - Within iput_final() -> write_inode_now()
4813 *   We wait on commit, if told to.
4814 *
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
4819 *
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4823 *
4824 * It would be a bug for them to not do this.  The code:
4825 *
4826 *      mark_inode_dirty(inode)
4827 *      stuff();
4828 *      inode->i_size = expr;
4829 *
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost.  Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4833 */
4834int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835{
4836        int err;
4837
4838        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839                return 0;
4840
4841        if (EXT4_SB(inode->i_sb)->s_journal) {
4842                if (ext4_journal_current_handle()) {
4843                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844                        dump_stack();
4845                        return -EIO;
4846                }
4847
4848                /*
4849                 * No need to force transaction in WB_SYNC_NONE mode. Also
4850                 * ext4_sync_fs() will force the commit after everything is
4851                 * written.
4852                 */
4853                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854                        return 0;
4855
4856                err = ext4_force_commit(inode->i_sb);
4857        } else {
4858                struct ext4_iloc iloc;
4859
4860                err = __ext4_get_inode_loc(inode, &iloc, 0);
4861                if (err)
4862                        return err;
4863                /*
4864                 * sync(2) will flush the whole buffer cache. No need to do
4865                 * it here separately for each inode.
4866                 */
4867                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868                        sync_dirty_buffer(iloc.bh);
4869                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871                                         "IO error syncing inode");
4872                        err = -EIO;
4873                }
4874                brelse(iloc.bh);
4875        }
4876        return err;
4877}
4878
4879/*
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4883 */
4884static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885{
4886        struct page *page;
4887        unsigned offset;
4888        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889        tid_t commit_tid = 0;
4890        int ret;
4891
4892        offset = inode->i_size & (PAGE_SIZE - 1);
4893        /*
4894         * All buffers in the last page remain valid? Then there's nothing to
4895         * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896         * blocksize case
4897         */
4898        if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899                return;
4900        while (1) {
4901                page = find_lock_page(inode->i_mapping,
4902                                      inode->i_size >> PAGE_SHIFT);
4903                if (!page)
4904                        return;
4905                ret = __ext4_journalled_invalidatepage(page, offset,
4906                                                PAGE_SIZE - offset);
4907                unlock_page(page);
4908                put_page(page);
4909                if (ret != -EBUSY)
4910                        return;
4911                commit_tid = 0;
4912                read_lock(&journal->j_state_lock);
4913                if (journal->j_committing_transaction)
4914                        commit_tid = journal->j_committing_transaction->t_tid;
4915                read_unlock(&journal->j_state_lock);
4916                if (commit_tid)
4917                        jbd2_log_wait_commit(journal, commit_tid);
4918        }
4919}
4920
4921/*
4922 * ext4_setattr()
4923 *
4924 * Called from notify_change.
4925 *
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible.  In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk.  (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4935 *
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4942 *
4943 * Called with inode->i_mutex down.
4944 */
4945int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946{
4947        struct inode *inode = d_inode(dentry);
4948        int error, rc = 0;
4949        int orphan = 0;
4950        const unsigned int ia_valid = attr->ia_valid;
4951
4952        error = inode_change_ok(inode, attr);
4953        if (error)
4954                return error;
4955
4956        if (is_quota_modification(inode, attr)) {
4957                error = dquot_initialize(inode);
4958                if (error)
4959                        return error;
4960        }
4961        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963                handle_t *handle;
4964
4965                /* (user+group)*(old+new) structure, inode write (sb,
4966                 * inode block, ? - but truncate inode update has it) */
4967                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970                if (IS_ERR(handle)) {
4971                        error = PTR_ERR(handle);
4972                        goto err_out;
4973                }
4974                error = dquot_transfer(inode, attr);
4975                if (error) {
4976                        ext4_journal_stop(handle);
4977                        return error;
4978                }
4979                /* Update corresponding info in inode so that everything is in
4980                 * one transaction */
4981                if (attr->ia_valid & ATTR_UID)
4982                        inode->i_uid = attr->ia_uid;
4983                if (attr->ia_valid & ATTR_GID)
4984                        inode->i_gid = attr->ia_gid;
4985                error = ext4_mark_inode_dirty(handle, inode);
4986                ext4_journal_stop(handle);
4987        }
4988
4989        if (attr->ia_valid & ATTR_SIZE) {
4990                handle_t *handle;
4991                loff_t oldsize = inode->i_size;
4992                int shrink = (attr->ia_size <= inode->i_size);
4993
4994                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
4997                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998                                return -EFBIG;
4999                }
5000                if (!S_ISREG(inode->i_mode))
5001                        return -EINVAL;
5002
5003                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004                        inode_inc_iversion(inode);
5005
5006                if (ext4_should_order_data(inode) &&
5007                    (attr->ia_size < inode->i_size)) {
5008                        error = ext4_begin_ordered_truncate(inode,
5009                                                            attr->ia_size);
5010                        if (error)
5011                                goto err_out;
5012                }
5013                if (attr->ia_size != inode->i_size) {
5014                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015                        if (IS_ERR(handle)) {
5016                                error = PTR_ERR(handle);
5017                                goto err_out;
5018                        }
5019                        if (ext4_handle_valid(handle) && shrink) {
5020                                error = ext4_orphan_add(handle, inode);
5021                                orphan = 1;
5022                        }
5023                        /*
5024                         * Update c/mtime on truncate up, ext4_truncate() will
5025                         * update c/mtime in shrink case below
5026                         */
5027                        if (!shrink) {
5028                                inode->i_mtime = ext4_current_time(inode);
5029                                inode->i_ctime = inode->i_mtime;
5030                        }
5031                        down_write(&EXT4_I(inode)->i_data_sem);
5032                        EXT4_I(inode)->i_disksize = attr->ia_size;
5033                        rc = ext4_mark_inode_dirty(handle, inode);
5034                        if (!error)
5035                                error = rc;
5036                        /*
5037                         * We have to update i_size under i_data_sem together
5038                         * with i_disksize to avoid races with writeback code
5039                         * running ext4_wb_update_i_disksize().
5040                         */
5041                        if (!error)
5042                                i_size_write(inode, attr->ia_size);
5043                        up_write(&EXT4_I(inode)->i_data_sem);
5044                        ext4_journal_stop(handle);
5045                        if (error) {
5046                                if (orphan)
5047                                        ext4_orphan_del(NULL, inode);
5048                                goto err_out;
5049                        }
5050                }
5051                if (!shrink)
5052                        pagecache_isize_extended(inode, oldsize, inode->i_size);
5053
5054                /*
5055                 * Blocks are going to be removed from the inode. Wait
5056                 * for dio in flight.  Temporarily disable
5057                 * dioread_nolock to prevent livelock.
5058                 */
5059                if (orphan) {
5060                        if (!ext4_should_journal_data(inode)) {
5061                                ext4_inode_block_unlocked_dio(inode);
5062                                inode_dio_wait(inode);
5063                                ext4_inode_resume_unlocked_dio(inode);
5064                        } else
5065                                ext4_wait_for_tail_page_commit(inode);
5066                }
5067                down_write(&EXT4_I(inode)->i_mmap_sem);
5068                /*
5069                 * Truncate pagecache after we've waited for commit
5070                 * in data=journal mode to make pages freeable.
5071                 */
5072                truncate_pagecache(inode, inode->i_size);
5073                if (shrink)
5074                        ext4_truncate(inode);
5075                up_write(&EXT4_I(inode)->i_mmap_sem);
5076        }
5077
5078        if (!rc) {
5079                setattr_copy(inode, attr);
5080                mark_inode_dirty(inode);
5081        }
5082
5083        /*
5084         * If the call to ext4_truncate failed to get a transaction handle at
5085         * all, we need to clean up the in-core orphan list manually.
5086         */
5087        if (orphan && inode->i_nlink)
5088                ext4_orphan_del(NULL, inode);
5089
5090        if (!rc && (ia_valid & ATTR_MODE))
5091                rc = posix_acl_chmod(inode, inode->i_mode);
5092
5093err_out:
5094        ext4_std_error(inode->i_sb, error);
5095        if (!error)
5096                error = rc;
5097        return error;
5098}
5099
5100int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101                 struct kstat *stat)
5102{
5103        struct inode *inode;
5104        unsigned long long delalloc_blocks;
5105
5106        inode = d_inode(dentry);
5107        generic_fillattr(inode, stat);
5108
5109        /*
5110         * If there is inline data in the inode, the inode will normally not
5111         * have data blocks allocated (it may have an external xattr block).
5112         * Report at least one sector for such files, so tools like tar, rsync,
5113         * others doen't incorrectly think the file is completely sparse.
5114         */
5115        if (unlikely(ext4_has_inline_data(inode)))
5116                stat->blocks += (stat->size + 511) >> 9;
5117
5118        /*
5119         * We can't update i_blocks if the block allocation is delayed
5120         * otherwise in the case of system crash before the real block
5121         * allocation is done, we will have i_blocks inconsistent with
5122         * on-disk file blocks.
5123         * We always keep i_blocks updated together with real
5124         * allocation. But to not confuse with user, stat
5125         * will return the blocks that include the delayed allocation
5126         * blocks for this file.
5127         */
5128        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129                                   EXT4_I(inode)->i_reserved_data_blocks);
5130        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131        return 0;
5132}
5133
5134static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135                                   int pextents)
5136{
5137        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138                return ext4_ind_trans_blocks(inode, lblocks);
5139        return ext4_ext_index_trans_blocks(inode, pextents);
5140}
5141
5142/*
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5146 *
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5150 *
5151 * Also account for superblock, inode, quota and xattr blocks
5152 */
5153static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154                                  int pextents)
5155{
5156        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157        int gdpblocks;
5158        int idxblocks;
5159        int ret = 0;
5160
5161        /*
5162         * How many index blocks need to touch to map @lblocks logical blocks
5163         * to @pextents physical extents?
5164         */
5165        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166
5167        ret = idxblocks;
5168
5169        /*
5170         * Now let's see how many group bitmaps and group descriptors need
5171         * to account
5172         */
5173        groups = idxblocks + pextents;
5174        gdpblocks = groups;
5175        if (groups > ngroups)
5176                groups = ngroups;
5177        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180        /* bitmaps and block group descriptor blocks */
5181        ret += groups + gdpblocks;
5182
5183        /* Blocks for super block, inode, quota and xattr blocks */
5184        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186        return ret;
5187}
5188
5189/*
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5193 *
5194 * This could be called via ext4_write_begin()
5195 *
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5198 */
5199int ext4_writepage_trans_blocks(struct inode *inode)
5200{
5201        int bpp = ext4_journal_blocks_per_page(inode);
5202        int ret;
5203
5204        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205
5206        /* Account for data blocks for journalled mode */
5207        if (ext4_should_journal_data(inode))
5208                ret += bpp;
5209        return ret;
5210}
5211
5212/*
5213 * Calculate the journal credits for a chunk of data modification.
5214 *
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217 *
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5220 */
5221int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222{
5223        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224}
5225
5226/*
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5229 */
5230int ext4_mark_iloc_dirty(handle_t *handle,
5231                         struct inode *inode, struct ext4_iloc *iloc)
5232{
5233        int err = 0;
5234
5235        if (IS_I_VERSION(inode))
5236                inode_inc_iversion(inode);
5237
5238        /* the do_update_inode consumes one bh->b_count */
5239        get_bh(iloc->bh);
5240
5241        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242        err = ext4_do_update_inode(handle, inode, iloc);
5243        put_bh(iloc->bh);
5244        return err;
5245}
5246
5247/*
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh.  This _must_ be cleaned up later.
5250 */
5251
5252int
5253ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254                         struct ext4_iloc *iloc)
5255{
5256        int err;
5257
5258        err = ext4_get_inode_loc(inode, iloc);
5259        if (!err) {
5260                BUFFER_TRACE(iloc->bh, "get_write_access");
5261                err = ext4_journal_get_write_access(handle, iloc->bh);
5262                if (err) {
5263                        brelse(iloc->bh);
5264                        iloc->bh = NULL;
5265                }
5266        }
5267        ext4_std_error(inode->i_sb, err);
5268        return err;
5269}
5270
5271/*
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5274 */
5275static int ext4_expand_extra_isize(struct inode *inode,
5276                                   unsigned int new_extra_isize,
5277                                   struct ext4_iloc iloc,
5278                                   handle_t *handle)
5279{
5280        struct ext4_inode *raw_inode;
5281        struct ext4_xattr_ibody_header *header;
5282
5283        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284                return 0;
5285
5286        raw_inode = ext4_raw_inode(&iloc);
5287
5288        header = IHDR(inode, raw_inode);
5289
5290        /* No extended attributes present */
5291        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294                        new_extra_isize);
5295                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296                return 0;
5297        }
5298
5299        /* try to expand with EAs present */
5300        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301                                          raw_inode, handle);
5302}
5303
5304/*
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O.  This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5311 *
5312 * Is this cheating?  Not really.  Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
5316 */
5317int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318{
5319        struct ext4_iloc iloc;
5320        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321        static unsigned int mnt_count;
5322        int err, ret;
5323
5324        might_sleep();
5325        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326        err = ext4_reserve_inode_write(handle, inode, &iloc);
5327        if (err)
5328                return err;
5329        if (ext4_handle_valid(handle) &&
5330            EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331            !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332                /*
5333                 * We need extra buffer credits since we may write into EA block
5334                 * with this same handle. If journal_extend fails, then it will
5335                 * only result in a minor loss of functionality for that inode.
5336                 * If this is felt to be critical, then e2fsck should be run to
5337                 * force a large enough s_min_extra_isize.
5338                 */
5339                if ((jbd2_journal_extend(handle,
5340                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341                        ret = ext4_expand_extra_isize(inode,
5342                                                      sbi->s_want_extra_isize,
5343                                                      iloc, handle);
5344                        if (ret) {
5345                                ext4_set_inode_state(inode,
5346                                                     EXT4_STATE_NO_EXPAND);
5347                                if (mnt_count !=
5348                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349                                        ext4_warning(inode->i_sb,
5350                                        "Unable to expand inode %lu. Delete"
5351                                        " some EAs or run e2fsck.",
5352                                        inode->i_ino);
5353                                        mnt_count =
5354                                          le16_to_cpu(sbi->s_es->s_mnt_count);
5355                                }
5356                        }
5357                }
5358        }
5359        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5360}
5361
5362/*
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5364 *
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5368 *
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5371 *
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5375 *
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5379 */
5380void ext4_dirty_inode(struct inode *inode, int flags)
5381{
5382        handle_t *handle;
5383
5384        if (flags == I_DIRTY_TIME)
5385                return;
5386        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387        if (IS_ERR(handle))
5388                goto out;
5389
5390        ext4_mark_inode_dirty(handle, inode);
5391
5392        ext4_journal_stop(handle);
5393out:
5394        return;
5395}
5396
5397#if 0
5398/*
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early.  Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5404 */
5405static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406{
5407        struct ext4_iloc iloc;
5408
5409        int err = 0;
5410        if (handle) {
5411                err = ext4_get_inode_loc(inode, &iloc);
5412                if (!err) {
5413                        BUFFER_TRACE(iloc.bh, "get_write_access");
5414                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5415                        if (!err)
5416                                err = ext4_handle_dirty_metadata(handle,
5417                                                                 NULL,
5418                                                                 iloc.bh);
5419                        brelse(iloc.bh);
5420                }
5421        }
5422        ext4_std_error(inode->i_sb, err);
5423        return err;
5424}
5425#endif
5426
5427int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428{
5429        journal_t *journal;
5430        handle_t *handle;
5431        int err;
5432
5433        /*
5434         * We have to be very careful here: changing a data block's
5435         * journaling status dynamically is dangerous.  If we write a
5436         * data block to the journal, change the status and then delete
5437         * that block, we risk forgetting to revoke the old log record
5438         * from the journal and so a subsequent replay can corrupt data.
5439         * So, first we make sure that the journal is empty and that
5440         * nobody is changing anything.
5441         */
5442
5443        journal = EXT4_JOURNAL(inode);
5444        if (!journal)
5445                return 0;
5446        if (is_journal_aborted(journal))
5447                return -EROFS;
5448        /* We have to allocate physical blocks for delalloc blocks
5449         * before flushing journal. otherwise delalloc blocks can not
5450         * be allocated any more. even more truncate on delalloc blocks
5451         * could trigger BUG by flushing delalloc blocks in journal.
5452         * There is no delalloc block in non-journal data mode.
5453         */
5454        if (val && test_opt(inode->i_sb, DELALLOC)) {
5455                err = ext4_alloc_da_blocks(inode);
5456                if (err < 0)
5457                        return err;
5458        }
5459
5460        /* Wait for all existing dio workers */
5461        ext4_inode_block_unlocked_dio(inode);
5462        inode_dio_wait(inode);
5463
5464        jbd2_journal_lock_updates(journal);
5465
5466        /*
5467         * OK, there are no updates running now, and all cached data is
5468         * synced to disk.  We are now in a completely consistent state
5469         * which doesn't have anything in the journal, and we know that
5470         * no filesystem updates are running, so it is safe to modify
5471         * the inode's in-core data-journaling state flag now.
5472         */
5473
5474        if (val)
5475                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476        else {
5477                err = jbd2_journal_flush(journal);
5478                if (err < 0) {
5479                        jbd2_journal_unlock_updates(journal);
5480                        ext4_inode_resume_unlocked_dio(inode);
5481                        return err;
5482                }
5483                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484        }
5485        ext4_set_aops(inode);
5486
5487        jbd2_journal_unlock_updates(journal);
5488        ext4_inode_resume_unlocked_dio(inode);
5489
5490        /* Finally we can mark the inode as dirty. */
5491
5492        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493        if (IS_ERR(handle))
5494                return PTR_ERR(handle);
5495
5496        err = ext4_mark_inode_dirty(handle, inode);
5497        ext4_handle_sync(handle);
5498        ext4_journal_stop(handle);
5499        ext4_std_error(inode->i_sb, err);
5500
5501        return err;
5502}
5503
5504static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505{
5506        return !buffer_mapped(bh);
5507}
5508
5509int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510{
5511        struct page *page = vmf->page;
5512        loff_t size;
5513        unsigned long len;
5514        int ret;
5515        struct file *file = vma->vm_file;
5516        struct inode *inode = file_inode(file);
5517        struct address_space *mapping = inode->i_mapping;
5518        handle_t *handle;
5519        get_block_t *get_block;
5520        int retries = 0;
5521
5522        sb_start_pagefault(inode->i_sb);
5523        file_update_time(vma->vm_file);
5524
5525        down_read(&EXT4_I(inode)->i_mmap_sem);
5526        /* Delalloc case is easy... */
5527        if (test_opt(inode->i_sb, DELALLOC) &&
5528            !ext4_should_journal_data(inode) &&
5529            !ext4_nonda_switch(inode->i_sb)) {
5530                do {
5531                        ret = block_page_mkwrite(vma, vmf,
5532                                                   ext4_da_get_block_prep);
5533                } while (ret == -ENOSPC &&
5534                       ext4_should_retry_alloc(inode->i_sb, &retries));
5535                goto out_ret;
5536        }
5537
5538        lock_page(page);
5539        size = i_size_read(inode);
5540        /* Page got truncated from under us? */
5541        if (page->mapping != mapping || page_offset(page) > size) {
5542                unlock_page(page);
5543                ret = VM_FAULT_NOPAGE;
5544                goto out;
5545        }
5546
5547        if (page->index == size >> PAGE_SHIFT)
5548                len = size & ~PAGE_MASK;
5549        else
5550                len = PAGE_SIZE;
5551        /*
5552         * Return if we have all the buffers mapped. This avoids the need to do
5553         * journal_start/journal_stop which can block and take a long time
5554         */
5555        if (page_has_buffers(page)) {
5556                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557                                            0, len, NULL,
5558                                            ext4_bh_unmapped)) {
5559                        /* Wait so that we don't change page under IO */
5560                        wait_for_stable_page(page);
5561                        ret = VM_FAULT_LOCKED;
5562                        goto out;
5563                }
5564        }
5565        unlock_page(page);
5566        /* OK, we need to fill the hole... */
5567        if (ext4_should_dioread_nolock(inode))
5568                get_block = ext4_get_block_unwritten;
5569        else
5570                get_block = ext4_get_block;
5571retry_alloc:
5572        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573                                    ext4_writepage_trans_blocks(inode));
5574        if (IS_ERR(handle)) {
5575                ret = VM_FAULT_SIGBUS;
5576                goto out;
5577        }
5578        ret = block_page_mkwrite(vma, vmf, get_block);
5579        if (!ret && ext4_should_journal_data(inode)) {
5580                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582                        unlock_page(page);
5583                        ret = VM_FAULT_SIGBUS;
5584                        ext4_journal_stop(handle);
5585                        goto out;
5586                }
5587                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588        }
5589        ext4_journal_stop(handle);
5590        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591                goto retry_alloc;
5592out_ret:
5593        ret = block_page_mkwrite_return(ret);
5594out:
5595        up_read(&EXT4_I(inode)->i_mmap_sem);
5596        sb_end_pagefault(inode->i_sb);
5597        return ret;
5598}
5599
5600int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601{
5602        struct inode *inode = file_inode(vma->vm_file);
5603        int err;
5604
5605        down_read(&EXT4_I(inode)->i_mmap_sem);
5606        err = filemap_fault(vma, vmf);
5607        up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609        return err;
5610}
5611
5612/*
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5615 *
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5619 */
5620int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621                         unsigned int map_len, struct extent_status *result)
5622{
5623        struct ext4_map_blocks map;
5624        struct extent_status es = {};
5625        int ret;
5626
5627        map.m_lblk = lblk;
5628        map.m_len = map_len;
5629
5630        /*
5631         * For non-extent based files this loop may iterate several times since
5632         * we do not determine full hole size.
5633         */
5634        while (map.m_len > 0) {
5635                ret = ext4_map_blocks(NULL, inode, &map, 0);
5636                if (ret < 0)
5637                        return ret;
5638                /* There's extent covering m_lblk? Just return it. */
5639                if (ret > 0) {
5640                        int status;
5641
5642                        ext4_es_store_pblock(result, map.m_pblk);
5643                        result->es_lblk = map.m_lblk;
5644                        result->es_len = map.m_len;
5645                        if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646                                status = EXTENT_STATUS_UNWRITTEN;
5647                        else
5648                                status = EXTENT_STATUS_WRITTEN;
5649                        ext4_es_store_status(result, status);
5650                        return 1;
5651                }
5652                ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653                                                  map.m_lblk + map.m_len - 1,
5654                                                  &es);
5655                /* Is delalloc data before next block in extent tree? */
5656                if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657                        ext4_lblk_t offset = 0;
5658
5659                        if (es.es_lblk < lblk)
5660                                offset = lblk - es.es_lblk;
5661                        result->es_lblk = es.es_lblk + offset;
5662                        ext4_es_store_pblock(result,
5663                                             ext4_es_pblock(&es) + offset);
5664                        result->es_len = es.es_len - offset;
5665                        ext4_es_store_status(result, ext4_es_status(&es));
5666
5667                        return 1;
5668                }
5669                /* There's a hole at m_lblk, advance us after it */
5670                map.m_lblk += map.m_len;
5671                map_len -= map.m_len;
5672                map.m_len = map_len;
5673                cond_resched();
5674        }
5675        result->es_len = 0;
5676        return 0;
5677}
5678