linux/fs/f2fs/node.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33        struct f2fs_nm_info *nm_i = NM_I(sbi);
  34        struct sysinfo val;
  35        unsigned long avail_ram;
  36        unsigned long mem_size = 0;
  37        bool res = false;
  38
  39        si_meminfo(&val);
  40
  41        /* only uses low memory */
  42        avail_ram = val.totalram - val.totalhigh;
  43
  44        /*
  45         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46         */
  47        if (type == FREE_NIDS) {
  48                mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49                                                        PAGE_SHIFT;
  50                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51        } else if (type == NAT_ENTRIES) {
  52                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53                                                        PAGE_SHIFT;
  54                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55        } else if (type == DIRTY_DENTS) {
  56                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57                        return false;
  58                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60        } else if (type == INO_ENTRIES) {
  61                int i;
  62
  63                for (i = 0; i <= UPDATE_INO; i++)
  64                        mem_size += (sbi->im[i].ino_num *
  65                                sizeof(struct ino_entry)) >> PAGE_SHIFT;
  66                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67        } else if (type == EXTENT_CACHE) {
  68                mem_size = (atomic_read(&sbi->total_ext_tree) *
  69                                sizeof(struct extent_tree) +
  70                                atomic_read(&sbi->total_ext_node) *
  71                                sizeof(struct extent_node)) >> PAGE_SHIFT;
  72                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  73        } else {
  74                if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75                        return true;
  76        }
  77        return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82        struct address_space *mapping = page->mapping;
  83        unsigned int long flags;
  84
  85        if (PageDirty(page)) {
  86                spin_lock_irqsave(&mapping->tree_lock, flags);
  87                radix_tree_tag_clear(&mapping->page_tree,
  88                                page_index(page),
  89                                PAGECACHE_TAG_DIRTY);
  90                spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92                clear_page_dirty_for_io(page);
  93                dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94        }
  95        ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100        pgoff_t index = current_nat_addr(sbi, nid);
 101        return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106        struct page *src_page;
 107        struct page *dst_page;
 108        pgoff_t src_off;
 109        pgoff_t dst_off;
 110        void *src_addr;
 111        void *dst_addr;
 112        struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114        src_off = current_nat_addr(sbi, nid);
 115        dst_off = next_nat_addr(sbi, src_off);
 116
 117        /* get current nat block page with lock */
 118        src_page = get_meta_page(sbi, src_off);
 119        dst_page = grab_meta_page(sbi, dst_off);
 120        f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122        src_addr = page_address(src_page);
 123        dst_addr = page_address(dst_page);
 124        memcpy(dst_addr, src_addr, PAGE_SIZE);
 125        set_page_dirty(dst_page);
 126        f2fs_put_page(src_page, 1);
 127
 128        set_to_next_nat(nm_i, nid);
 129
 130        return dst_page;
 131}
 132
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135        return radix_tree_lookup(&nm_i->nat_root, n);
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139                nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146        list_del(&e->list);
 147        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148        nm_i->nat_cnt--;
 149        kmem_cache_free(nat_entry_slab, e);
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153                                                struct nat_entry *ne)
 154{
 155        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156        struct nat_entry_set *head;
 157
 158        if (get_nat_flag(ne, IS_DIRTY))
 159                return;
 160
 161        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162        if (!head) {
 163                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 164
 165                INIT_LIST_HEAD(&head->entry_list);
 166                INIT_LIST_HEAD(&head->set_list);
 167                head->set = set;
 168                head->entry_cnt = 0;
 169                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170        }
 171        list_move_tail(&ne->list, &head->entry_list);
 172        nm_i->dirty_nat_cnt++;
 173        head->entry_cnt++;
 174        set_nat_flag(ne, IS_DIRTY, true);
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178                                                struct nat_entry *ne)
 179{
 180        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181        struct nat_entry_set *head;
 182
 183        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184        if (head) {
 185                list_move_tail(&ne->list, &nm_i->nat_entries);
 186                set_nat_flag(ne, IS_DIRTY, false);
 187                head->entry_cnt--;
 188                nm_i->dirty_nat_cnt--;
 189        }
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196                                                        start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 200{
 201        struct f2fs_nm_info *nm_i = NM_I(sbi);
 202        struct nat_entry *e;
 203        bool need = false;
 204
 205        down_read(&nm_i->nat_tree_lock);
 206        e = __lookup_nat_cache(nm_i, nid);
 207        if (e) {
 208                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 210                        need = true;
 211        }
 212        up_read(&nm_i->nat_tree_lock);
 213        return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218        struct f2fs_nm_info *nm_i = NM_I(sbi);
 219        struct nat_entry *e;
 220        bool is_cp = true;
 221
 222        down_read(&nm_i->nat_tree_lock);
 223        e = __lookup_nat_cache(nm_i, nid);
 224        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225                is_cp = false;
 226        up_read(&nm_i->nat_tree_lock);
 227        return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232        struct f2fs_nm_info *nm_i = NM_I(sbi);
 233        struct nat_entry *e;
 234        bool need_update = true;
 235
 236        down_read(&nm_i->nat_tree_lock);
 237        e = __lookup_nat_cache(nm_i, ino);
 238        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 240                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 241                need_update = false;
 242        up_read(&nm_i->nat_tree_lock);
 243        return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248        struct nat_entry *new;
 249
 250        new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251        f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252        memset(new, 0, sizeof(struct nat_entry));
 253        nat_set_nid(new, nid);
 254        nat_reset_flag(new);
 255        list_add_tail(&new->list, &nm_i->nat_entries);
 256        nm_i->nat_cnt++;
 257        return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 261                                                struct f2fs_nat_entry *ne)
 262{
 263        struct f2fs_nm_info *nm_i = NM_I(sbi);
 264        struct nat_entry *e;
 265
 266        e = __lookup_nat_cache(nm_i, nid);
 267        if (!e) {
 268                e = grab_nat_entry(nm_i, nid);
 269                node_info_from_raw_nat(&e->ni, ne);
 270        } else {
 271                f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 272                                nat_get_blkaddr(e) != ne->block_addr ||
 273                                nat_get_version(e) != ne->version);
 274        }
 275}
 276
 277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 278                        block_t new_blkaddr, bool fsync_done)
 279{
 280        struct f2fs_nm_info *nm_i = NM_I(sbi);
 281        struct nat_entry *e;
 282
 283        down_write(&nm_i->nat_tree_lock);
 284        e = __lookup_nat_cache(nm_i, ni->nid);
 285        if (!e) {
 286                e = grab_nat_entry(nm_i, ni->nid);
 287                copy_node_info(&e->ni, ni);
 288                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 289        } else if (new_blkaddr == NEW_ADDR) {
 290                /*
 291                 * when nid is reallocated,
 292                 * previous nat entry can be remained in nat cache.
 293                 * So, reinitialize it with new information.
 294                 */
 295                copy_node_info(&e->ni, ni);
 296                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 297        }
 298
 299        /* sanity check */
 300        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 301        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 302                        new_blkaddr == NULL_ADDR);
 303        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 304                        new_blkaddr == NEW_ADDR);
 305        f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 306                        nat_get_blkaddr(e) != NULL_ADDR &&
 307                        new_blkaddr == NEW_ADDR);
 308
 309        /* increment version no as node is removed */
 310        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 311                unsigned char version = nat_get_version(e);
 312                nat_set_version(e, inc_node_version(version));
 313
 314                /* in order to reuse the nid */
 315                if (nm_i->next_scan_nid > ni->nid)
 316                        nm_i->next_scan_nid = ni->nid;
 317        }
 318
 319        /* change address */
 320        nat_set_blkaddr(e, new_blkaddr);
 321        if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 322                set_nat_flag(e, IS_CHECKPOINTED, false);
 323        __set_nat_cache_dirty(nm_i, e);
 324
 325        /* update fsync_mark if its inode nat entry is still alive */
 326        if (ni->nid != ni->ino)
 327                e = __lookup_nat_cache(nm_i, ni->ino);
 328        if (e) {
 329                if (fsync_done && ni->nid == ni->ino)
 330                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 331                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 332        }
 333        up_write(&nm_i->nat_tree_lock);
 334}
 335
 336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 337{
 338        struct f2fs_nm_info *nm_i = NM_I(sbi);
 339        int nr = nr_shrink;
 340
 341        if (!down_write_trylock(&nm_i->nat_tree_lock))
 342                return 0;
 343
 344        while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 345                struct nat_entry *ne;
 346                ne = list_first_entry(&nm_i->nat_entries,
 347                                        struct nat_entry, list);
 348                __del_from_nat_cache(nm_i, ne);
 349                nr_shrink--;
 350        }
 351        up_write(&nm_i->nat_tree_lock);
 352        return nr - nr_shrink;
 353}
 354
 355/*
 356 * This function always returns success
 357 */
 358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 359{
 360        struct f2fs_nm_info *nm_i = NM_I(sbi);
 361        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 362        struct f2fs_journal *journal = curseg->journal;
 363        nid_t start_nid = START_NID(nid);
 364        struct f2fs_nat_block *nat_blk;
 365        struct page *page = NULL;
 366        struct f2fs_nat_entry ne;
 367        struct nat_entry *e;
 368        int i;
 369
 370        ni->nid = nid;
 371
 372        /* Check nat cache */
 373        down_read(&nm_i->nat_tree_lock);
 374        e = __lookup_nat_cache(nm_i, nid);
 375        if (e) {
 376                ni->ino = nat_get_ino(e);
 377                ni->blk_addr = nat_get_blkaddr(e);
 378                ni->version = nat_get_version(e);
 379                up_read(&nm_i->nat_tree_lock);
 380                return;
 381        }
 382
 383        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 384
 385        /* Check current segment summary */
 386        down_read(&curseg->journal_rwsem);
 387        i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 388        if (i >= 0) {
 389                ne = nat_in_journal(journal, i);
 390                node_info_from_raw_nat(ni, &ne);
 391        }
 392        up_read(&curseg->journal_rwsem);
 393        if (i >= 0)
 394                goto cache;
 395
 396        /* Fill node_info from nat page */
 397        page = get_current_nat_page(sbi, start_nid);
 398        nat_blk = (struct f2fs_nat_block *)page_address(page);
 399        ne = nat_blk->entries[nid - start_nid];
 400        node_info_from_raw_nat(ni, &ne);
 401        f2fs_put_page(page, 1);
 402cache:
 403        up_read(&nm_i->nat_tree_lock);
 404        /* cache nat entry */
 405        down_write(&nm_i->nat_tree_lock);
 406        cache_nat_entry(sbi, nid, &ne);
 407        up_write(&nm_i->nat_tree_lock);
 408}
 409
 410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 411{
 412        const long direct_index = ADDRS_PER_INODE(dn->inode);
 413        const long direct_blks = ADDRS_PER_BLOCK;
 414        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415        unsigned int skipped_unit = ADDRS_PER_BLOCK;
 416        int cur_level = dn->cur_level;
 417        int max_level = dn->max_level;
 418        pgoff_t base = 0;
 419
 420        if (!dn->max_level)
 421                return pgofs + 1;
 422
 423        while (max_level-- > cur_level)
 424                skipped_unit *= NIDS_PER_BLOCK;
 425
 426        switch (dn->max_level) {
 427        case 3:
 428                base += 2 * indirect_blks;
 429        case 2:
 430                base += 2 * direct_blks;
 431        case 1:
 432                base += direct_index;
 433                break;
 434        default:
 435                f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 436        }
 437
 438        return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 439}
 440
 441/*
 442 * The maximum depth is four.
 443 * Offset[0] will have raw inode offset.
 444 */
 445static int get_node_path(struct inode *inode, long block,
 446                                int offset[4], unsigned int noffset[4])
 447{
 448        const long direct_index = ADDRS_PER_INODE(inode);
 449        const long direct_blks = ADDRS_PER_BLOCK;
 450        const long dptrs_per_blk = NIDS_PER_BLOCK;
 451        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 452        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 453        int n = 0;
 454        int level = 0;
 455
 456        noffset[0] = 0;
 457
 458        if (block < direct_index) {
 459                offset[n] = block;
 460                goto got;
 461        }
 462        block -= direct_index;
 463        if (block < direct_blks) {
 464                offset[n++] = NODE_DIR1_BLOCK;
 465                noffset[n] = 1;
 466                offset[n] = block;
 467                level = 1;
 468                goto got;
 469        }
 470        block -= direct_blks;
 471        if (block < direct_blks) {
 472                offset[n++] = NODE_DIR2_BLOCK;
 473                noffset[n] = 2;
 474                offset[n] = block;
 475                level = 1;
 476                goto got;
 477        }
 478        block -= direct_blks;
 479        if (block < indirect_blks) {
 480                offset[n++] = NODE_IND1_BLOCK;
 481                noffset[n] = 3;
 482                offset[n++] = block / direct_blks;
 483                noffset[n] = 4 + offset[n - 1];
 484                offset[n] = block % direct_blks;
 485                level = 2;
 486                goto got;
 487        }
 488        block -= indirect_blks;
 489        if (block < indirect_blks) {
 490                offset[n++] = NODE_IND2_BLOCK;
 491                noffset[n] = 4 + dptrs_per_blk;
 492                offset[n++] = block / direct_blks;
 493                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 494                offset[n] = block % direct_blks;
 495                level = 2;
 496                goto got;
 497        }
 498        block -= indirect_blks;
 499        if (block < dindirect_blks) {
 500                offset[n++] = NODE_DIND_BLOCK;
 501                noffset[n] = 5 + (dptrs_per_blk * 2);
 502                offset[n++] = block / indirect_blks;
 503                noffset[n] = 6 + (dptrs_per_blk * 2) +
 504                              offset[n - 1] * (dptrs_per_blk + 1);
 505                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 506                noffset[n] = 7 + (dptrs_per_blk * 2) +
 507                              offset[n - 2] * (dptrs_per_blk + 1) +
 508                              offset[n - 1];
 509                offset[n] = block % direct_blks;
 510                level = 3;
 511                goto got;
 512        } else {
 513                BUG();
 514        }
 515got:
 516        return level;
 517}
 518
 519/*
 520 * Caller should call f2fs_put_dnode(dn).
 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 523 * In the case of RDONLY_NODE, we don't need to care about mutex.
 524 */
 525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 526{
 527        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 528        struct page *npage[4];
 529        struct page *parent = NULL;
 530        int offset[4];
 531        unsigned int noffset[4];
 532        nid_t nids[4];
 533        int level, i = 0;
 534        int err = 0;
 535
 536        level = get_node_path(dn->inode, index, offset, noffset);
 537
 538        nids[0] = dn->inode->i_ino;
 539        npage[0] = dn->inode_page;
 540
 541        if (!npage[0]) {
 542                npage[0] = get_node_page(sbi, nids[0]);
 543                if (IS_ERR(npage[0]))
 544                        return PTR_ERR(npage[0]);
 545        }
 546
 547        /* if inline_data is set, should not report any block indices */
 548        if (f2fs_has_inline_data(dn->inode) && index) {
 549                err = -ENOENT;
 550                f2fs_put_page(npage[0], 1);
 551                goto release_out;
 552        }
 553
 554        parent = npage[0];
 555        if (level != 0)
 556                nids[1] = get_nid(parent, offset[0], true);
 557        dn->inode_page = npage[0];
 558        dn->inode_page_locked = true;
 559
 560        /* get indirect or direct nodes */
 561        for (i = 1; i <= level; i++) {
 562                bool done = false;
 563
 564                if (!nids[i] && mode == ALLOC_NODE) {
 565                        /* alloc new node */
 566                        if (!alloc_nid(sbi, &(nids[i]))) {
 567                                err = -ENOSPC;
 568                                goto release_pages;
 569                        }
 570
 571                        dn->nid = nids[i];
 572                        npage[i] = new_node_page(dn, noffset[i], NULL);
 573                        if (IS_ERR(npage[i])) {
 574                                alloc_nid_failed(sbi, nids[i]);
 575                                err = PTR_ERR(npage[i]);
 576                                goto release_pages;
 577                        }
 578
 579                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 580                        alloc_nid_done(sbi, nids[i]);
 581                        done = true;
 582                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 583                        npage[i] = get_node_page_ra(parent, offset[i - 1]);
 584                        if (IS_ERR(npage[i])) {
 585                                err = PTR_ERR(npage[i]);
 586                                goto release_pages;
 587                        }
 588                        done = true;
 589                }
 590                if (i == 1) {
 591                        dn->inode_page_locked = false;
 592                        unlock_page(parent);
 593                } else {
 594                        f2fs_put_page(parent, 1);
 595                }
 596
 597                if (!done) {
 598                        npage[i] = get_node_page(sbi, nids[i]);
 599                        if (IS_ERR(npage[i])) {
 600                                err = PTR_ERR(npage[i]);
 601                                f2fs_put_page(npage[0], 0);
 602                                goto release_out;
 603                        }
 604                }
 605                if (i < level) {
 606                        parent = npage[i];
 607                        nids[i + 1] = get_nid(parent, offset[i], false);
 608                }
 609        }
 610        dn->nid = nids[level];
 611        dn->ofs_in_node = offset[level];
 612        dn->node_page = npage[level];
 613        dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 614        return 0;
 615
 616release_pages:
 617        f2fs_put_page(parent, 1);
 618        if (i > 1)
 619                f2fs_put_page(npage[0], 0);
 620release_out:
 621        dn->inode_page = NULL;
 622        dn->node_page = NULL;
 623        if (err == -ENOENT) {
 624                dn->cur_level = i;
 625                dn->max_level = level;
 626        }
 627        return err;
 628}
 629
 630static void truncate_node(struct dnode_of_data *dn)
 631{
 632        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 633        struct node_info ni;
 634
 635        get_node_info(sbi, dn->nid, &ni);
 636        if (dn->inode->i_blocks == 0) {
 637                f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 638                goto invalidate;
 639        }
 640        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 641
 642        /* Deallocate node address */
 643        invalidate_blocks(sbi, ni.blk_addr);
 644        dec_valid_node_count(sbi, dn->inode);
 645        set_node_addr(sbi, &ni, NULL_ADDR, false);
 646
 647        if (dn->nid == dn->inode->i_ino) {
 648                remove_orphan_inode(sbi, dn->nid);
 649                dec_valid_inode_count(sbi);
 650        } else {
 651                sync_inode_page(dn);
 652        }
 653invalidate:
 654        clear_node_page_dirty(dn->node_page);
 655        set_sbi_flag(sbi, SBI_IS_DIRTY);
 656
 657        f2fs_put_page(dn->node_page, 1);
 658
 659        invalidate_mapping_pages(NODE_MAPPING(sbi),
 660                        dn->node_page->index, dn->node_page->index);
 661
 662        dn->node_page = NULL;
 663        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 664}
 665
 666static int truncate_dnode(struct dnode_of_data *dn)
 667{
 668        struct page *page;
 669
 670        if (dn->nid == 0)
 671                return 1;
 672
 673        /* get direct node */
 674        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 675        if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 676                return 1;
 677        else if (IS_ERR(page))
 678                return PTR_ERR(page);
 679
 680        /* Make dnode_of_data for parameter */
 681        dn->node_page = page;
 682        dn->ofs_in_node = 0;
 683        truncate_data_blocks(dn);
 684        truncate_node(dn);
 685        return 1;
 686}
 687
 688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 689                                                int ofs, int depth)
 690{
 691        struct dnode_of_data rdn = *dn;
 692        struct page *page;
 693        struct f2fs_node *rn;
 694        nid_t child_nid;
 695        unsigned int child_nofs;
 696        int freed = 0;
 697        int i, ret;
 698
 699        if (dn->nid == 0)
 700                return NIDS_PER_BLOCK + 1;
 701
 702        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 703
 704        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 705        if (IS_ERR(page)) {
 706                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 707                return PTR_ERR(page);
 708        }
 709
 710        rn = F2FS_NODE(page);
 711        if (depth < 3) {
 712                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 713                        child_nid = le32_to_cpu(rn->in.nid[i]);
 714                        if (child_nid == 0)
 715                                continue;
 716                        rdn.nid = child_nid;
 717                        ret = truncate_dnode(&rdn);
 718                        if (ret < 0)
 719                                goto out_err;
 720                        if (set_nid(page, i, 0, false))
 721                                dn->node_changed = true;
 722                }
 723        } else {
 724                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 725                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 726                        child_nid = le32_to_cpu(rn->in.nid[i]);
 727                        if (child_nid == 0) {
 728                                child_nofs += NIDS_PER_BLOCK + 1;
 729                                continue;
 730                        }
 731                        rdn.nid = child_nid;
 732                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 733                        if (ret == (NIDS_PER_BLOCK + 1)) {
 734                                if (set_nid(page, i, 0, false))
 735                                        dn->node_changed = true;
 736                                child_nofs += ret;
 737                        } else if (ret < 0 && ret != -ENOENT) {
 738                                goto out_err;
 739                        }
 740                }
 741                freed = child_nofs;
 742        }
 743
 744        if (!ofs) {
 745                /* remove current indirect node */
 746                dn->node_page = page;
 747                truncate_node(dn);
 748                freed++;
 749        } else {
 750                f2fs_put_page(page, 1);
 751        }
 752        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 753        return freed;
 754
 755out_err:
 756        f2fs_put_page(page, 1);
 757        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 758        return ret;
 759}
 760
 761static int truncate_partial_nodes(struct dnode_of_data *dn,
 762                        struct f2fs_inode *ri, int *offset, int depth)
 763{
 764        struct page *pages[2];
 765        nid_t nid[3];
 766        nid_t child_nid;
 767        int err = 0;
 768        int i;
 769        int idx = depth - 2;
 770
 771        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 772        if (!nid[0])
 773                return 0;
 774
 775        /* get indirect nodes in the path */
 776        for (i = 0; i < idx + 1; i++) {
 777                /* reference count'll be increased */
 778                pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 779                if (IS_ERR(pages[i])) {
 780                        err = PTR_ERR(pages[i]);
 781                        idx = i - 1;
 782                        goto fail;
 783                }
 784                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 785        }
 786
 787        /* free direct nodes linked to a partial indirect node */
 788        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 789                child_nid = get_nid(pages[idx], i, false);
 790                if (!child_nid)
 791                        continue;
 792                dn->nid = child_nid;
 793                err = truncate_dnode(dn);
 794                if (err < 0)
 795                        goto fail;
 796                if (set_nid(pages[idx], i, 0, false))
 797                        dn->node_changed = true;
 798        }
 799
 800        if (offset[idx + 1] == 0) {
 801                dn->node_page = pages[idx];
 802                dn->nid = nid[idx];
 803                truncate_node(dn);
 804        } else {
 805                f2fs_put_page(pages[idx], 1);
 806        }
 807        offset[idx]++;
 808        offset[idx + 1] = 0;
 809        idx--;
 810fail:
 811        for (i = idx; i >= 0; i--)
 812                f2fs_put_page(pages[i], 1);
 813
 814        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 815
 816        return err;
 817}
 818
 819/*
 820 * All the block addresses of data and nodes should be nullified.
 821 */
 822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 823{
 824        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 825        int err = 0, cont = 1;
 826        int level, offset[4], noffset[4];
 827        unsigned int nofs = 0;
 828        struct f2fs_inode *ri;
 829        struct dnode_of_data dn;
 830        struct page *page;
 831
 832        trace_f2fs_truncate_inode_blocks_enter(inode, from);
 833
 834        level = get_node_path(inode, from, offset, noffset);
 835restart:
 836        page = get_node_page(sbi, inode->i_ino);
 837        if (IS_ERR(page)) {
 838                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 839                return PTR_ERR(page);
 840        }
 841
 842        set_new_dnode(&dn, inode, page, NULL, 0);
 843        unlock_page(page);
 844
 845        ri = F2FS_INODE(page);
 846        switch (level) {
 847        case 0:
 848        case 1:
 849                nofs = noffset[1];
 850                break;
 851        case 2:
 852                nofs = noffset[1];
 853                if (!offset[level - 1])
 854                        goto skip_partial;
 855                err = truncate_partial_nodes(&dn, ri, offset, level);
 856                if (err < 0 && err != -ENOENT)
 857                        goto fail;
 858                nofs += 1 + NIDS_PER_BLOCK;
 859                break;
 860        case 3:
 861                nofs = 5 + 2 * NIDS_PER_BLOCK;
 862                if (!offset[level - 1])
 863                        goto skip_partial;
 864                err = truncate_partial_nodes(&dn, ri, offset, level);
 865                if (err < 0 && err != -ENOENT)
 866                        goto fail;
 867                break;
 868        default:
 869                BUG();
 870        }
 871
 872skip_partial:
 873        while (cont) {
 874                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 875                switch (offset[0]) {
 876                case NODE_DIR1_BLOCK:
 877                case NODE_DIR2_BLOCK:
 878                        err = truncate_dnode(&dn);
 879                        break;
 880
 881                case NODE_IND1_BLOCK:
 882                case NODE_IND2_BLOCK:
 883                        err = truncate_nodes(&dn, nofs, offset[1], 2);
 884                        break;
 885
 886                case NODE_DIND_BLOCK:
 887                        err = truncate_nodes(&dn, nofs, offset[1], 3);
 888                        cont = 0;
 889                        break;
 890
 891                default:
 892                        BUG();
 893                }
 894                if (err < 0 && err != -ENOENT)
 895                        goto fail;
 896                if (offset[1] == 0 &&
 897                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 898                        lock_page(page);
 899                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 900                                f2fs_put_page(page, 1);
 901                                goto restart;
 902                        }
 903                        f2fs_wait_on_page_writeback(page, NODE, true);
 904                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 905                        set_page_dirty(page);
 906                        unlock_page(page);
 907                }
 908                offset[1] = 0;
 909                offset[0]++;
 910                nofs += err;
 911        }
 912fail:
 913        f2fs_put_page(page, 0);
 914        trace_f2fs_truncate_inode_blocks_exit(inode, err);
 915        return err > 0 ? 0 : err;
 916}
 917
 918int truncate_xattr_node(struct inode *inode, struct page *page)
 919{
 920        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 921        nid_t nid = F2FS_I(inode)->i_xattr_nid;
 922        struct dnode_of_data dn;
 923        struct page *npage;
 924
 925        if (!nid)
 926                return 0;
 927
 928        npage = get_node_page(sbi, nid);
 929        if (IS_ERR(npage))
 930                return PTR_ERR(npage);
 931
 932        F2FS_I(inode)->i_xattr_nid = 0;
 933
 934        /* need to do checkpoint during fsync */
 935        F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 936
 937        set_new_dnode(&dn, inode, page, npage, nid);
 938
 939        if (page)
 940                dn.inode_page_locked = true;
 941        truncate_node(&dn);
 942        return 0;
 943}
 944
 945/*
 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 947 * f2fs_unlock_op().
 948 */
 949int remove_inode_page(struct inode *inode)
 950{
 951        struct dnode_of_data dn;
 952        int err;
 953
 954        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 955        err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 956        if (err)
 957                return err;
 958
 959        err = truncate_xattr_node(inode, dn.inode_page);
 960        if (err) {
 961                f2fs_put_dnode(&dn);
 962                return err;
 963        }
 964
 965        /* remove potential inline_data blocks */
 966        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 967                                S_ISLNK(inode->i_mode))
 968                truncate_data_blocks_range(&dn, 1);
 969
 970        /* 0 is possible, after f2fs_new_inode() has failed */
 971        f2fs_bug_on(F2FS_I_SB(inode),
 972                        inode->i_blocks != 0 && inode->i_blocks != 1);
 973
 974        /* will put inode & node pages */
 975        truncate_node(&dn);
 976        return 0;
 977}
 978
 979struct page *new_inode_page(struct inode *inode)
 980{
 981        struct dnode_of_data dn;
 982
 983        /* allocate inode page for new inode */
 984        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 985
 986        /* caller should f2fs_put_page(page, 1); */
 987        return new_node_page(&dn, 0, NULL);
 988}
 989
 990struct page *new_node_page(struct dnode_of_data *dn,
 991                                unsigned int ofs, struct page *ipage)
 992{
 993        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 994        struct node_info old_ni, new_ni;
 995        struct page *page;
 996        int err;
 997
 998        if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 999                return ERR_PTR(-EPERM);
1000
1001        page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002        if (!page)
1003                return ERR_PTR(-ENOMEM);
1004
1005        if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006                err = -ENOSPC;
1007                goto fail;
1008        }
1009
1010        get_node_info(sbi, dn->nid, &old_ni);
1011
1012        /* Reinitialize old_ni with new node page */
1013        f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014        new_ni = old_ni;
1015        new_ni.ino = dn->inode->i_ino;
1016        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018        f2fs_wait_on_page_writeback(page, NODE, true);
1019        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020        set_cold_node(dn->inode, page);
1021        SetPageUptodate(page);
1022        if (set_page_dirty(page))
1023                dn->node_changed = true;
1024
1025        if (f2fs_has_xattr_block(ofs))
1026                F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028        dn->node_page = page;
1029        if (ipage)
1030                update_inode(dn->inode, ipage);
1031        else
1032                sync_inode_page(dn);
1033        if (ofs == 0)
1034                inc_valid_inode_count(sbi);
1035
1036        return page;
1037
1038fail:
1039        clear_node_page_dirty(page);
1040        f2fs_put_page(page, 1);
1041        return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052        struct node_info ni;
1053        struct f2fs_io_info fio = {
1054                .sbi = sbi,
1055                .type = NODE,
1056                .rw = rw,
1057                .page = page,
1058                .encrypted_page = NULL,
1059        };
1060
1061        get_node_info(sbi, page->index, &ni);
1062
1063        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064                ClearPageUptodate(page);
1065                return -ENOENT;
1066        }
1067
1068        if (PageUptodate(page))
1069                return LOCKED_PAGE;
1070
1071        fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072        return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080        struct page *apage;
1081        int err;
1082
1083        if (!nid)
1084                return;
1085        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086
1087        rcu_read_lock();
1088        apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089        rcu_read_unlock();
1090        if (apage)
1091                return;
1092
1093        apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094        if (!apage)
1095                return;
1096
1097        err = read_node_page(apage, READA);
1098        f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107        struct blk_plug plug;
1108        int i, end;
1109        nid_t nid;
1110
1111        blk_start_plug(&plug);
1112
1113        /* Then, try readahead for siblings of the desired node */
1114        end = start + MAX_RA_NODE;
1115        end = min(end, NIDS_PER_BLOCK);
1116        for (i = start; i < end; i++) {
1117                nid = get_nid(parent, i, false);
1118                ra_node_page(sbi, nid);
1119        }
1120
1121        blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125                                        struct page *parent, int start)
1126{
1127        struct page *page;
1128        int err;
1129
1130        if (!nid)
1131                return ERR_PTR(-ENOENT);
1132        f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133repeat:
1134        page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135        if (!page)
1136                return ERR_PTR(-ENOMEM);
1137
1138        err = read_node_page(page, READ_SYNC);
1139        if (err < 0) {
1140                f2fs_put_page(page, 1);
1141                return ERR_PTR(err);
1142        } else if (err == LOCKED_PAGE) {
1143                goto page_hit;
1144        }
1145
1146        if (parent)
1147                ra_node_pages(parent, start + 1);
1148
1149        lock_page(page);
1150
1151        if (unlikely(!PageUptodate(page))) {
1152                f2fs_put_page(page, 1);
1153                return ERR_PTR(-EIO);
1154        }
1155        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156                f2fs_put_page(page, 1);
1157                goto repeat;
1158        }
1159page_hit:
1160        f2fs_bug_on(sbi, nid != nid_of_node(page));
1161        return page;
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166        return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172        nid_t nid = get_nid(parent, start, false);
1173
1174        return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179        int ret = 0;
1180
1181        if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182                ret = update_inode(dn->inode, dn->node_page);
1183        } else if (dn->inode_page) {
1184                if (!dn->inode_page_locked)
1185                        lock_page(dn->inode_page);
1186                ret = update_inode(dn->inode, dn->inode_page);
1187                if (!dn->inode_page_locked)
1188                        unlock_page(dn->inode_page);
1189        } else {
1190                ret = update_inode_page(dn->inode);
1191        }
1192        dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197        struct inode *inode;
1198        struct page *page;
1199
1200        /* should flush inline_data before evict_inode */
1201        inode = ilookup(sbi->sb, ino);
1202        if (!inode)
1203                return;
1204
1205        page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
1206        if (!page)
1207                goto iput_out;
1208
1209        if (!trylock_page(page))
1210                goto release_out;
1211
1212        if (!PageUptodate(page))
1213                goto page_out;
1214
1215        if (!PageDirty(page))
1216                goto page_out;
1217
1218        if (!clear_page_dirty_for_io(page))
1219                goto page_out;
1220
1221        if (!f2fs_write_inline_data(inode, page))
1222                inode_dec_dirty_pages(inode);
1223        else
1224                set_page_dirty(page);
1225page_out:
1226        unlock_page(page);
1227release_out:
1228        f2fs_put_page(page, 0);
1229iput_out:
1230        iput(inode);
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234                                        struct writeback_control *wbc)
1235{
1236        pgoff_t index, end;
1237        struct pagevec pvec;
1238        int step = ino ? 2 : 0;
1239        int nwritten = 0;
1240
1241        pagevec_init(&pvec, 0);
1242
1243next_step:
1244        index = 0;
1245        end = ULONG_MAX;
1246
1247        while (index <= end) {
1248                int i, nr_pages;
1249                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250                                PAGECACHE_TAG_DIRTY,
1251                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252                if (nr_pages == 0)
1253                        break;
1254
1255                for (i = 0; i < nr_pages; i++) {
1256                        struct page *page = pvec.pages[i];
1257
1258                        if (unlikely(f2fs_cp_error(sbi))) {
1259                                pagevec_release(&pvec);
1260                                return -EIO;
1261                        }
1262
1263                        /*
1264                         * flushing sequence with step:
1265                         * 0. indirect nodes
1266                         * 1. dentry dnodes
1267                         * 2. file dnodes
1268                         */
1269                        if (step == 0 && IS_DNODE(page))
1270                                continue;
1271                        if (step == 1 && (!IS_DNODE(page) ||
1272                                                is_cold_node(page)))
1273                                continue;
1274                        if (step == 2 && (!IS_DNODE(page) ||
1275                                                !is_cold_node(page)))
1276                                continue;
1277
1278                        /*
1279                         * If an fsync mode,
1280                         * we should not skip writing node pages.
1281                         */
1282lock_node:
1283                        if (ino && ino_of_node(page) == ino)
1284                                lock_page(page);
1285                        else if (!trylock_page(page))
1286                                continue;
1287
1288                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290                                unlock_page(page);
1291                                continue;
1292                        }
1293                        if (ino && ino_of_node(page) != ino)
1294                                goto continue_unlock;
1295
1296                        if (!PageDirty(page)) {
1297                                /* someone wrote it for us */
1298                                goto continue_unlock;
1299                        }
1300
1301                        /* flush inline_data */
1302                        if (!ino && is_inline_node(page)) {
1303                                clear_inline_node(page);
1304                                unlock_page(page);
1305                                flush_inline_data(sbi, ino_of_node(page));
1306                                goto lock_node;
1307                        }
1308
1309                        f2fs_wait_on_page_writeback(page, NODE, true);
1310
1311                        BUG_ON(PageWriteback(page));
1312                        if (!clear_page_dirty_for_io(page))
1313                                goto continue_unlock;
1314
1315                        /* called by fsync() */
1316                        if (ino && IS_DNODE(page)) {
1317                                set_fsync_mark(page, 1);
1318                                if (IS_INODE(page))
1319                                        set_dentry_mark(page,
1320                                                need_dentry_mark(sbi, ino));
1321                                nwritten++;
1322                        } else {
1323                                set_fsync_mark(page, 0);
1324                                set_dentry_mark(page, 0);
1325                        }
1326
1327                        if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1328                                unlock_page(page);
1329
1330                        if (--wbc->nr_to_write == 0)
1331                                break;
1332                }
1333                pagevec_release(&pvec);
1334                cond_resched();
1335
1336                if (wbc->nr_to_write == 0) {
1337                        step = 2;
1338                        break;
1339                }
1340        }
1341
1342        if (step < 2) {
1343                step++;
1344                goto next_step;
1345        }
1346        return nwritten;
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350{
1351        pgoff_t index = 0, end = ULONG_MAX;
1352        struct pagevec pvec;
1353        int ret2 = 0, ret = 0;
1354
1355        pagevec_init(&pvec, 0);
1356
1357        while (index <= end) {
1358                int i, nr_pages;
1359                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360                                PAGECACHE_TAG_WRITEBACK,
1361                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362                if (nr_pages == 0)
1363                        break;
1364
1365                for (i = 0; i < nr_pages; i++) {
1366                        struct page *page = pvec.pages[i];
1367
1368                        /* until radix tree lookup accepts end_index */
1369                        if (unlikely(page->index > end))
1370                                continue;
1371
1372                        if (ino && ino_of_node(page) == ino) {
1373                                f2fs_wait_on_page_writeback(page, NODE, true);
1374                                if (TestClearPageError(page))
1375                                        ret = -EIO;
1376                        }
1377                }
1378                pagevec_release(&pvec);
1379                cond_resched();
1380        }
1381
1382        if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383                ret2 = -ENOSPC;
1384        if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385                ret2 = -EIO;
1386        if (!ret)
1387                ret = ret2;
1388        return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392                                struct writeback_control *wbc)
1393{
1394        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395        nid_t nid;
1396        struct node_info ni;
1397        struct f2fs_io_info fio = {
1398                .sbi = sbi,
1399                .type = NODE,
1400                .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1401                .page = page,
1402                .encrypted_page = NULL,
1403        };
1404
1405        trace_f2fs_writepage(page, NODE);
1406
1407        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408                goto redirty_out;
1409        if (unlikely(f2fs_cp_error(sbi)))
1410                goto redirty_out;
1411
1412        /* get old block addr of this node page */
1413        nid = nid_of_node(page);
1414        f2fs_bug_on(sbi, page->index != nid);
1415
1416        if (wbc->for_reclaim) {
1417                if (!down_read_trylock(&sbi->node_write))
1418                        goto redirty_out;
1419        } else {
1420                down_read(&sbi->node_write);
1421        }
1422
1423        get_node_info(sbi, nid, &ni);
1424
1425        /* This page is already truncated */
1426        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427                ClearPageUptodate(page);
1428                dec_page_count(sbi, F2FS_DIRTY_NODES);
1429                up_read(&sbi->node_write);
1430                unlock_page(page);
1431                return 0;
1432        }
1433
1434        set_page_writeback(page);
1435        fio.old_blkaddr = ni.blk_addr;
1436        write_node_page(nid, &fio);
1437        set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438        dec_page_count(sbi, F2FS_DIRTY_NODES);
1439        up_read(&sbi->node_write);
1440
1441        if (wbc->for_reclaim)
1442                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443
1444        unlock_page(page);
1445
1446        if (unlikely(f2fs_cp_error(sbi)))
1447                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448
1449        return 0;
1450
1451redirty_out:
1452        redirty_page_for_writepage(wbc, page);
1453        return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457                            struct writeback_control *wbc)
1458{
1459        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1460        long diff;
1461
1462        /* balancing f2fs's metadata in background */
1463        f2fs_balance_fs_bg(sbi);
1464
1465        /* collect a number of dirty node pages and write together */
1466        if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1467                goto skip_write;
1468
1469        trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471        diff = nr_pages_to_write(sbi, NODE, wbc);
1472        wbc->sync_mode = WB_SYNC_NONE;
1473        sync_node_pages(sbi, 0, wbc);
1474        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1475        return 0;
1476
1477skip_write:
1478        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479        trace_f2fs_writepages(mapping->host, wbc, NODE);
1480        return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
1484{
1485        trace_f2fs_set_page_dirty(page, NODE);
1486
1487        SetPageUptodate(page);
1488        if (!PageDirty(page)) {
1489                __set_page_dirty_nobuffers(page);
1490                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491                SetPagePrivate(page);
1492                f2fs_trace_pid(page);
1493                return 1;
1494        }
1495        return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502        .writepage      = f2fs_write_node_page,
1503        .writepages     = f2fs_write_node_pages,
1504        .set_page_dirty = f2fs_set_node_page_dirty,
1505        .invalidatepage = f2fs_invalidate_page,
1506        .releasepage    = f2fs_release_page,
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510                                                nid_t n)
1511{
1512        return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516                                                struct free_nid *i)
1517{
1518        list_del(&i->list);
1519        radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1523{
1524        struct f2fs_nm_info *nm_i = NM_I(sbi);
1525        struct free_nid *i;
1526        struct nat_entry *ne;
1527        bool allocated = false;
1528
1529        if (!available_free_memory(sbi, FREE_NIDS))
1530                return -1;
1531
1532        /* 0 nid should not be used */
1533        if (unlikely(nid == 0))
1534                return 0;
1535
1536        if (build) {
1537                /* do not add allocated nids */
1538                ne = __lookup_nat_cache(nm_i, nid);
1539                if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540                                nat_get_blkaddr(ne) != NULL_ADDR))
1541                        allocated = true;
1542                if (allocated)
1543                        return 0;
1544        }
1545
1546        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547        i->nid = nid;
1548        i->state = NID_NEW;
1549
1550        if (radix_tree_preload(GFP_NOFS)) {
1551                kmem_cache_free(free_nid_slab, i);
1552                return 0;
1553        }
1554
1555        spin_lock(&nm_i->free_nid_list_lock);
1556        if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557                spin_unlock(&nm_i->free_nid_list_lock);
1558                radix_tree_preload_end();
1559                kmem_cache_free(free_nid_slab, i);
1560                return 0;
1561        }
1562        list_add_tail(&i->list, &nm_i->free_nid_list);
1563        nm_i->fcnt++;
1564        spin_unlock(&nm_i->free_nid_list_lock);
1565        radix_tree_preload_end();
1566        return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
1571        struct free_nid *i;
1572        bool need_free = false;
1573
1574        spin_lock(&nm_i->free_nid_list_lock);
1575        i = __lookup_free_nid_list(nm_i, nid);
1576        if (i && i->state == NID_NEW) {
1577                __del_from_free_nid_list(nm_i, i);
1578                nm_i->fcnt--;
1579                need_free = true;
1580        }
1581        spin_unlock(&nm_i->free_nid_list_lock);
1582
1583        if (need_free)
1584                kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588                        struct page *nat_page, nid_t start_nid)
1589{
1590        struct f2fs_nm_info *nm_i = NM_I(sbi);
1591        struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592        block_t blk_addr;
1593        int i;
1594
1595        i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599                if (unlikely(start_nid >= nm_i->max_nid))
1600                        break;
1601
1602                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603                f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1604                if (blk_addr == NULL_ADDR) {
1605                        if (add_free_nid(sbi, start_nid, true) < 0)
1606                                break;
1607                }
1608        }
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
1612{
1613        struct f2fs_nm_info *nm_i = NM_I(sbi);
1614        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615        struct f2fs_journal *journal = curseg->journal;
1616        int i = 0;
1617        nid_t nid = nm_i->next_scan_nid;
1618
1619        /* Enough entries */
1620        if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621                return;
1622
1623        /* readahead nat pages to be scanned */
1624        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625                                                        META_NAT, true);
1626
1627        down_read(&nm_i->nat_tree_lock);
1628
1629        while (1) {
1630                struct page *page = get_current_nat_page(sbi, nid);
1631
1632                scan_nat_page(sbi, page, nid);
1633                f2fs_put_page(page, 1);
1634
1635                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636                if (unlikely(nid >= nm_i->max_nid))
1637                        nid = 0;
1638
1639                if (++i >= FREE_NID_PAGES)
1640                        break;
1641        }
1642
1643        /* go to the next free nat pages to find free nids abundantly */
1644        nm_i->next_scan_nid = nid;
1645
1646        /* find free nids from current sum_pages */
1647        down_read(&curseg->journal_rwsem);
1648        for (i = 0; i < nats_in_cursum(journal); i++) {
1649                block_t addr;
1650
1651                addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652                nid = le32_to_cpu(nid_in_journal(journal, i));
1653                if (addr == NULL_ADDR)
1654                        add_free_nid(sbi, nid, true);
1655                else
1656                        remove_free_nid(nm_i, nid);
1657        }
1658        up_read(&curseg->journal_rwsem);
1659        up_read(&nm_i->nat_tree_lock);
1660
1661        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662                                        nm_i->ra_nid_pages, META_NAT, false);
1663}
1664
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672        struct f2fs_nm_info *nm_i = NM_I(sbi);
1673        struct free_nid *i = NULL;
1674retry:
1675        if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1676                return false;
1677
1678        spin_lock(&nm_i->free_nid_list_lock);
1679
1680        /* We should not use stale free nids created by build_free_nids */
1681        if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683                list_for_each_entry(i, &nm_i->free_nid_list, list)
1684                        if (i->state == NID_NEW)
1685                                break;
1686
1687                f2fs_bug_on(sbi, i->state != NID_NEW);
1688                *nid = i->nid;
1689                i->state = NID_ALLOC;
1690                nm_i->fcnt--;
1691                spin_unlock(&nm_i->free_nid_list_lock);
1692                return true;
1693        }
1694        spin_unlock(&nm_i->free_nid_list_lock);
1695
1696        /* Let's scan nat pages and its caches to get free nids */
1697        mutex_lock(&nm_i->build_lock);
1698        build_free_nids(sbi);
1699        mutex_unlock(&nm_i->build_lock);
1700        goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708        struct f2fs_nm_info *nm_i = NM_I(sbi);
1709        struct free_nid *i;
1710
1711        spin_lock(&nm_i->free_nid_list_lock);
1712        i = __lookup_free_nid_list(nm_i, nid);
1713        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714        __del_from_free_nid_list(nm_i, i);
1715        spin_unlock(&nm_i->free_nid_list_lock);
1716
1717        kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725        struct f2fs_nm_info *nm_i = NM_I(sbi);
1726        struct free_nid *i;
1727        bool need_free = false;
1728
1729        if (!nid)
1730                return;
1731
1732        spin_lock(&nm_i->free_nid_list_lock);
1733        i = __lookup_free_nid_list(nm_i, nid);
1734        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1735        if (!available_free_memory(sbi, FREE_NIDS)) {
1736                __del_from_free_nid_list(nm_i, i);
1737                need_free = true;
1738        } else {
1739                i->state = NID_NEW;
1740                nm_i->fcnt++;
1741        }
1742        spin_unlock(&nm_i->free_nid_list_lock);
1743
1744        if (need_free)
1745                kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750        struct f2fs_nm_info *nm_i = NM_I(sbi);
1751        struct free_nid *i, *next;
1752        int nr = nr_shrink;
1753
1754        if (!mutex_trylock(&nm_i->build_lock))
1755                return 0;
1756
1757        spin_lock(&nm_i->free_nid_list_lock);
1758        list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759                if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1760                        break;
1761                if (i->state == NID_ALLOC)
1762                        continue;
1763                __del_from_free_nid_list(nm_i, i);
1764                kmem_cache_free(free_nid_slab, i);
1765                nm_i->fcnt--;
1766                nr_shrink--;
1767        }
1768        spin_unlock(&nm_i->free_nid_list_lock);
1769        mutex_unlock(&nm_i->build_lock);
1770
1771        return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776        void *src_addr, *dst_addr;
1777        size_t inline_size;
1778        struct page *ipage;
1779        struct f2fs_inode *ri;
1780
1781        ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782        f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783
1784        ri = F2FS_INODE(page);
1785        if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786                clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1787                goto update_inode;
1788        }
1789
1790        dst_addr = inline_xattr_addr(ipage);
1791        src_addr = inline_xattr_addr(page);
1792        inline_size = inline_xattr_size(inode);
1793
1794        f2fs_wait_on_page_writeback(ipage, NODE, true);
1795        memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797        update_inode(inode, ipage);
1798        f2fs_put_page(ipage, 1);
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805        nid_t new_xnid = nid_of_node(page);
1806        struct node_info ni;
1807
1808        /* 1: invalidate the previous xattr nid */
1809        if (!prev_xnid)
1810                goto recover_xnid;
1811
1812        /* Deallocate node address */
1813        get_node_info(sbi, prev_xnid, &ni);
1814        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815        invalidate_blocks(sbi, ni.blk_addr);
1816        dec_valid_node_count(sbi, inode);
1817        set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820        /* 2: allocate new xattr nid */
1821        if (unlikely(!inc_valid_node_count(sbi, inode)))
1822                f2fs_bug_on(sbi, 1);
1823
1824        remove_free_nid(NM_I(sbi), new_xnid);
1825        get_node_info(sbi, new_xnid, &ni);
1826        ni.ino = inode->i_ino;
1827        set_node_addr(sbi, &ni, NEW_ADDR, false);
1828        F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830        /* 3: update xattr blkaddr */
1831        refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832        set_node_addr(sbi, &ni, blkaddr, false);
1833
1834        update_inode_page(inode);
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839        struct f2fs_inode *src, *dst;
1840        nid_t ino = ino_of_node(page);
1841        struct node_info old_ni, new_ni;
1842        struct page *ipage;
1843
1844        get_node_info(sbi, ino, &old_ni);
1845
1846        if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847                return -EINVAL;
1848
1849        ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850        if (!ipage)
1851                return -ENOMEM;
1852
1853        /* Should not use this inode from free nid list */
1854        remove_free_nid(NM_I(sbi), ino);
1855
1856        SetPageUptodate(ipage);
1857        fill_node_footer(ipage, ino, ino, 0, true);
1858
1859        src = F2FS_INODE(page);
1860        dst = F2FS_INODE(ipage);
1861
1862        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863        dst->i_size = 0;
1864        dst->i_blocks = cpu_to_le64(1);
1865        dst->i_links = cpu_to_le32(1);
1866        dst->i_xattr_nid = 0;
1867        dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1868
1869        new_ni = old_ni;
1870        new_ni.ino = ino;
1871
1872        if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873                WARN_ON(1);
1874        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875        inc_valid_inode_count(sbi);
1876        set_page_dirty(ipage);
1877        f2fs_put_page(ipage, 1);
1878        return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882                        unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884        struct f2fs_node *rn;
1885        struct f2fs_summary *sum_entry;
1886        block_t addr;
1887        int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888        int i, idx, last_offset, nrpages;
1889
1890        /* scan the node segment */
1891        last_offset = sbi->blocks_per_seg;
1892        addr = START_BLOCK(sbi, segno);
1893        sum_entry = &sum->entries[0];
1894
1895        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896                nrpages = min(last_offset - i, bio_blocks);
1897
1898                /* readahead node pages */
1899                ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901                for (idx = addr; idx < addr + nrpages; idx++) {
1902                        struct page *page = get_tmp_page(sbi, idx);
1903
1904                        rn = F2FS_NODE(page);
1905                        sum_entry->nid = rn->footer.nid;
1906                        sum_entry->version = 0;
1907                        sum_entry->ofs_in_node = 0;
1908                        sum_entry++;
1909                        f2fs_put_page(page, 1);
1910                }
1911
1912                invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913                                                        addr + nrpages);
1914        }
1915        return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920        struct f2fs_nm_info *nm_i = NM_I(sbi);
1921        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922        struct f2fs_journal *journal = curseg->journal;
1923        int i;
1924
1925        down_write(&curseg->journal_rwsem);
1926        for (i = 0; i < nats_in_cursum(journal); i++) {
1927                struct nat_entry *ne;
1928                struct f2fs_nat_entry raw_ne;
1929                nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
1931                raw_ne = nat_in_journal(journal, i);
1932
1933                ne = __lookup_nat_cache(nm_i, nid);
1934                if (!ne) {
1935                        ne = grab_nat_entry(nm_i, nid);
1936                        node_info_from_raw_nat(&ne->ni, &raw_ne);
1937                }
1938                __set_nat_cache_dirty(nm_i, ne);
1939        }
1940        update_nats_in_cursum(journal, -i);
1941        up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945                                                struct list_head *head, int max)
1946{
1947        struct nat_entry_set *cur;
1948
1949        if (nes->entry_cnt >= max)
1950                goto add_out;
1951
1952        list_for_each_entry(cur, head, set_list) {
1953                if (cur->entry_cnt >= nes->entry_cnt) {
1954                        list_add(&nes->set_list, cur->set_list.prev);
1955                        return;
1956                }
1957        }
1958add_out:
1959        list_add_tail(&nes->set_list, head);
1960}
1961
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963                                        struct nat_entry_set *set)
1964{
1965        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966        struct f2fs_journal *journal = curseg->journal;
1967        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968        bool to_journal = true;
1969        struct f2fs_nat_block *nat_blk;
1970        struct nat_entry *ne, *cur;
1971        struct page *page = NULL;
1972
1973        /*
1974         * there are two steps to flush nat entries:
1975         * #1, flush nat entries to journal in current hot data summary block.
1976         * #2, flush nat entries to nat page.
1977         */
1978        if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1979                to_journal = false;
1980
1981        if (to_journal) {
1982                down_write(&curseg->journal_rwsem);
1983        } else {
1984                page = get_next_nat_page(sbi, start_nid);
1985                nat_blk = page_address(page);
1986                f2fs_bug_on(sbi, !nat_blk);
1987        }
1988
1989        /* flush dirty nats in nat entry set */
1990        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991                struct f2fs_nat_entry *raw_ne;
1992                nid_t nid = nat_get_nid(ne);
1993                int offset;
1994
1995                if (nat_get_blkaddr(ne) == NEW_ADDR)
1996                        continue;
1997
1998                if (to_journal) {
1999                        offset = lookup_journal_in_cursum(journal,
2000                                                        NAT_JOURNAL, nid, 1);
2001                        f2fs_bug_on(sbi, offset < 0);
2002                        raw_ne = &nat_in_journal(journal, offset);
2003                        nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004                } else {
2005                        raw_ne = &nat_blk->entries[nid - start_nid];
2006                }
2007                raw_nat_from_node_info(raw_ne, &ne->ni);
2008                nat_reset_flag(ne);
2009                __clear_nat_cache_dirty(NM_I(sbi), ne);
2010                if (nat_get_blkaddr(ne) == NULL_ADDR)
2011                        add_free_nid(sbi, nid, false);
2012        }
2013
2014        if (to_journal)
2015                up_write(&curseg->journal_rwsem);
2016        else
2017                f2fs_put_page(page, 1);
2018
2019        f2fs_bug_on(sbi, set->entry_cnt);
2020
2021        radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022        kmem_cache_free(nat_entry_set_slab, set);
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030        struct f2fs_nm_info *nm_i = NM_I(sbi);
2031        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032        struct f2fs_journal *journal = curseg->journal;
2033        struct nat_entry_set *setvec[SETVEC_SIZE];
2034        struct nat_entry_set *set, *tmp;
2035        unsigned int found;
2036        nid_t set_idx = 0;
2037        LIST_HEAD(sets);
2038
2039        if (!nm_i->dirty_nat_cnt)
2040                return;
2041
2042        down_write(&nm_i->nat_tree_lock);
2043
2044        /*
2045         * if there are no enough space in journal to store dirty nat
2046         * entries, remove all entries from journal and merge them
2047         * into nat entry set.
2048         */
2049        if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2050                remove_nats_in_journal(sbi);
2051
2052        while ((found = __gang_lookup_nat_set(nm_i,
2053                                        set_idx, SETVEC_SIZE, setvec))) {
2054                unsigned idx;
2055                set_idx = setvec[found - 1]->set + 1;
2056                for (idx = 0; idx < found; idx++)
2057                        __adjust_nat_entry_set(setvec[idx], &sets,
2058                                                MAX_NAT_JENTRIES(journal));
2059        }
2060
2061        /* flush dirty nats in nat entry set */
2062        list_for_each_entry_safe(set, tmp, &sets, set_list)
2063                __flush_nat_entry_set(sbi, set);
2064
2065        up_write(&nm_i->nat_tree_lock);
2066
2067        f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073        struct f2fs_nm_info *nm_i = NM_I(sbi);
2074        unsigned char *version_bitmap;
2075        unsigned int nat_segs, nat_blocks;
2076
2077        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079        /* segment_count_nat includes pair segment so divide to 2. */
2080        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081        nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085        /* not used nids: 0, node, meta, (and root counted as valid node) */
2086        nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087        nm_i->fcnt = 0;
2088        nm_i->nat_cnt = 0;
2089        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090        nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091        nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092
2093        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094        INIT_LIST_HEAD(&nm_i->free_nid_list);
2095        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097        INIT_LIST_HEAD(&nm_i->nat_entries);
2098
2099        mutex_init(&nm_i->build_lock);
2100        spin_lock_init(&nm_i->free_nid_list_lock);
2101        init_rwsem(&nm_i->nat_tree_lock);
2102
2103        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106        if (!version_bitmap)
2107                return -EFAULT;
2108
2109        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110                                        GFP_KERNEL);
2111        if (!nm_i->nat_bitmap)
2112                return -ENOMEM;
2113        return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
2117{
2118        int err;
2119
2120        sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2121        if (!sbi->nm_info)
2122                return -ENOMEM;
2123
2124        err = init_node_manager(sbi);
2125        if (err)
2126                return err;
2127
2128        build_free_nids(sbi);
2129        return 0;
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134        struct f2fs_nm_info *nm_i = NM_I(sbi);
2135        struct free_nid *i, *next_i;
2136        struct nat_entry *natvec[NATVEC_SIZE];
2137        struct nat_entry_set *setvec[SETVEC_SIZE];
2138        nid_t nid = 0;
2139        unsigned int found;
2140
2141        if (!nm_i)
2142                return;
2143
2144        /* destroy free nid list */
2145        spin_lock(&nm_i->free_nid_list_lock);
2146        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147                f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148                __del_from_free_nid_list(nm_i, i);
2149                nm_i->fcnt--;
2150                spin_unlock(&nm_i->free_nid_list_lock);
2151                kmem_cache_free(free_nid_slab, i);
2152                spin_lock(&nm_i->free_nid_list_lock);
2153        }
2154        f2fs_bug_on(sbi, nm_i->fcnt);
2155        spin_unlock(&nm_i->free_nid_list_lock);
2156
2157        /* destroy nat cache */
2158        down_write(&nm_i->nat_tree_lock);
2159        while ((found = __gang_lookup_nat_cache(nm_i,
2160                                        nid, NATVEC_SIZE, natvec))) {
2161                unsigned idx;
2162
2163                nid = nat_get_nid(natvec[found - 1]) + 1;
2164                for (idx = 0; idx < found; idx++)
2165                        __del_from_nat_cache(nm_i, natvec[idx]);
2166        }
2167        f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169        /* destroy nat set cache */
2170        nid = 0;
2171        while ((found = __gang_lookup_nat_set(nm_i,
2172                                        nid, SETVEC_SIZE, setvec))) {
2173                unsigned idx;
2174
2175                nid = setvec[found - 1]->set + 1;
2176                for (idx = 0; idx < found; idx++) {
2177                        /* entry_cnt is not zero, when cp_error was occurred */
2178                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181                }
2182        }
2183        up_write(&nm_i->nat_tree_lock);
2184
2185        kfree(nm_i->nat_bitmap);
2186        sbi->nm_info = NULL;
2187        kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192        nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193                        sizeof(struct nat_entry));
2194        if (!nat_entry_slab)
2195                goto fail;
2196
2197        free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198                        sizeof(struct free_nid));
2199        if (!free_nid_slab)
2200                goto destroy_nat_entry;
2201
2202        nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203                        sizeof(struct nat_entry_set));
2204        if (!nat_entry_set_slab)
2205                goto destroy_free_nid;
2206        return 0;
2207
2208destroy_free_nid:
2209        kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211        kmem_cache_destroy(nat_entry_slab);
2212fail:
2213        return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
2218        kmem_cache_destroy(nat_entry_set_slab);
2219        kmem_cache_destroy(free_nid_slab);
2220        kmem_cache_destroy(nat_entry_slab);
2221}
2222