linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34        unsigned long tmp = 0;
  35        int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38        shift = 56;
  39#endif
  40        while (shift >= 0) {
  41                tmp |= (unsigned long)str[idx++] << shift;
  42                shift -= BITS_PER_BYTE;
  43        }
  44        return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53        int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56        if ((word & 0xffffffff00000000UL) == 0)
  57                num += 32;
  58        else
  59                word >>= 32;
  60#endif
  61        if ((word & 0xffff0000) == 0)
  62                num += 16;
  63        else
  64                word >>= 16;
  65
  66        if ((word & 0xff00) == 0)
  67                num += 8;
  68        else
  69                word >>= 8;
  70
  71        if ((word & 0xf0) == 0)
  72                num += 4;
  73        else
  74                word >>= 4;
  75
  76        if ((word & 0xc) == 0)
  77                num += 2;
  78        else
  79                word >>= 2;
  80
  81        if ((word & 0x2) == 0)
  82                num += 1;
  83        return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96                        unsigned long size, unsigned long offset)
  97{
  98        const unsigned long *p = addr + BIT_WORD(offset);
  99        unsigned long result = size;
 100        unsigned long tmp;
 101
 102        if (offset >= size)
 103                return size;
 104
 105        size -= (offset & ~(BITS_PER_LONG - 1));
 106        offset %= BITS_PER_LONG;
 107
 108        while (1) {
 109                if (*p == 0)
 110                        goto pass;
 111
 112                tmp = __reverse_ulong((unsigned char *)p);
 113
 114                tmp &= ~0UL >> offset;
 115                if (size < BITS_PER_LONG)
 116                        tmp &= (~0UL << (BITS_PER_LONG - size));
 117                if (tmp)
 118                        goto found;
 119pass:
 120                if (size <= BITS_PER_LONG)
 121                        break;
 122                size -= BITS_PER_LONG;
 123                offset = 0;
 124                p++;
 125        }
 126        return result;
 127found:
 128        return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132                        unsigned long size, unsigned long offset)
 133{
 134        const unsigned long *p = addr + BIT_WORD(offset);
 135        unsigned long result = size;
 136        unsigned long tmp;
 137
 138        if (offset >= size)
 139                return size;
 140
 141        size -= (offset & ~(BITS_PER_LONG - 1));
 142        offset %= BITS_PER_LONG;
 143
 144        while (1) {
 145                if (*p == ~0UL)
 146                        goto pass;
 147
 148                tmp = __reverse_ulong((unsigned char *)p);
 149
 150                if (offset)
 151                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 152                if (size < BITS_PER_LONG)
 153                        tmp |= ~0UL >> size;
 154                if (tmp != ~0UL)
 155                        goto found;
 156pass:
 157                if (size <= BITS_PER_LONG)
 158                        break;
 159                size -= BITS_PER_LONG;
 160                offset = 0;
 161                p++;
 162        }
 163        return result;
 164found:
 165        return result - size + __reverse_ffz(tmp);
 166}
 167
 168void register_inmem_page(struct inode *inode, struct page *page)
 169{
 170        struct f2fs_inode_info *fi = F2FS_I(inode);
 171        struct inmem_pages *new;
 172
 173        f2fs_trace_pid(page);
 174
 175        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 176        SetPagePrivate(page);
 177
 178        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 179
 180        /* add atomic page indices to the list */
 181        new->page = page;
 182        INIT_LIST_HEAD(&new->list);
 183
 184        /* increase reference count with clean state */
 185        mutex_lock(&fi->inmem_lock);
 186        get_page(page);
 187        list_add_tail(&new->list, &fi->inmem_pages);
 188        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 189        mutex_unlock(&fi->inmem_lock);
 190
 191        trace_f2fs_register_inmem_page(page, INMEM);
 192}
 193
 194static int __revoke_inmem_pages(struct inode *inode,
 195                                struct list_head *head, bool drop, bool recover)
 196{
 197        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198        struct inmem_pages *cur, *tmp;
 199        int err = 0;
 200
 201        list_for_each_entry_safe(cur, tmp, head, list) {
 202                struct page *page = cur->page;
 203
 204                if (drop)
 205                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 206
 207                lock_page(page);
 208
 209                if (recover) {
 210                        struct dnode_of_data dn;
 211                        struct node_info ni;
 212
 213                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 214
 215                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 216                        if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 217                                err = -EAGAIN;
 218                                goto next;
 219                        }
 220                        get_node_info(sbi, dn.nid, &ni);
 221                        f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 222                                        cur->old_addr, ni.version, true, true);
 223                        f2fs_put_dnode(&dn);
 224                }
 225next:
 226                ClearPageUptodate(page);
 227                set_page_private(page, 0);
 228                ClearPageUptodate(page);
 229                f2fs_put_page(page, 1);
 230
 231                list_del(&cur->list);
 232                kmem_cache_free(inmem_entry_slab, cur);
 233                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 234        }
 235        return err;
 236}
 237
 238void drop_inmem_pages(struct inode *inode)
 239{
 240        struct f2fs_inode_info *fi = F2FS_I(inode);
 241
 242        mutex_lock(&fi->inmem_lock);
 243        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 244        mutex_unlock(&fi->inmem_lock);
 245}
 246
 247static int __commit_inmem_pages(struct inode *inode,
 248                                        struct list_head *revoke_list)
 249{
 250        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 251        struct f2fs_inode_info *fi = F2FS_I(inode);
 252        struct inmem_pages *cur, *tmp;
 253        struct f2fs_io_info fio = {
 254                .sbi = sbi,
 255                .type = DATA,
 256                .rw = WRITE_SYNC | REQ_PRIO,
 257                .encrypted_page = NULL,
 258        };
 259        bool submit_bio = false;
 260        int err = 0;
 261
 262        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 263                struct page *page = cur->page;
 264
 265                lock_page(page);
 266                if (page->mapping == inode->i_mapping) {
 267                        trace_f2fs_commit_inmem_page(page, INMEM);
 268
 269                        set_page_dirty(page);
 270                        f2fs_wait_on_page_writeback(page, DATA, true);
 271                        if (clear_page_dirty_for_io(page))
 272                                inode_dec_dirty_pages(inode);
 273
 274                        fio.page = page;
 275                        err = do_write_data_page(&fio);
 276                        if (err) {
 277                                unlock_page(page);
 278                                break;
 279                        }
 280
 281                        /* record old blkaddr for revoking */
 282                        cur->old_addr = fio.old_blkaddr;
 283
 284                        clear_cold_data(page);
 285                        submit_bio = true;
 286                }
 287                unlock_page(page);
 288                list_move_tail(&cur->list, revoke_list);
 289        }
 290
 291        if (submit_bio)
 292                f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 293
 294        if (!err)
 295                __revoke_inmem_pages(inode, revoke_list, false, false);
 296
 297        return err;
 298}
 299
 300int commit_inmem_pages(struct inode *inode)
 301{
 302        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 303        struct f2fs_inode_info *fi = F2FS_I(inode);
 304        struct list_head revoke_list;
 305        int err;
 306
 307        INIT_LIST_HEAD(&revoke_list);
 308        f2fs_balance_fs(sbi, true);
 309        f2fs_lock_op(sbi);
 310
 311        mutex_lock(&fi->inmem_lock);
 312        err = __commit_inmem_pages(inode, &revoke_list);
 313        if (err) {
 314                int ret;
 315                /*
 316                 * try to revoke all committed pages, but still we could fail
 317                 * due to no memory or other reason, if that happened, EAGAIN
 318                 * will be returned, which means in such case, transaction is
 319                 * already not integrity, caller should use journal to do the
 320                 * recovery or rewrite & commit last transaction. For other
 321                 * error number, revoking was done by filesystem itself.
 322                 */
 323                ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 324                if (ret)
 325                        err = ret;
 326
 327                /* drop all uncommitted pages */
 328                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 329        }
 330        mutex_unlock(&fi->inmem_lock);
 331
 332        f2fs_unlock_op(sbi);
 333        return err;
 334}
 335
 336/*
 337 * This function balances dirty node and dentry pages.
 338 * In addition, it controls garbage collection.
 339 */
 340void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 341{
 342        if (!need)
 343                return;
 344        /*
 345         * We should do GC or end up with checkpoint, if there are so many dirty
 346         * dir/node pages without enough free segments.
 347         */
 348        if (has_not_enough_free_secs(sbi, 0)) {
 349                mutex_lock(&sbi->gc_mutex);
 350                f2fs_gc(sbi, false);
 351        }
 352}
 353
 354void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 355{
 356        /* try to shrink extent cache when there is no enough memory */
 357        if (!available_free_memory(sbi, EXTENT_CACHE))
 358                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 359
 360        /* check the # of cached NAT entries */
 361        if (!available_free_memory(sbi, NAT_ENTRIES))
 362                try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 363
 364        if (!available_free_memory(sbi, FREE_NIDS))
 365                try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
 366
 367        /* checkpoint is the only way to shrink partial cached entries */
 368        if (!available_free_memory(sbi, NAT_ENTRIES) ||
 369                        !available_free_memory(sbi, INO_ENTRIES) ||
 370                        excess_prefree_segs(sbi) ||
 371                        excess_dirty_nats(sbi) ||
 372                        (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 373                if (test_opt(sbi, DATA_FLUSH)) {
 374                        struct blk_plug plug;
 375
 376                        blk_start_plug(&plug);
 377                        sync_dirty_inodes(sbi, FILE_INODE);
 378                        blk_finish_plug(&plug);
 379                }
 380                f2fs_sync_fs(sbi->sb, true);
 381                stat_inc_bg_cp_count(sbi->stat_info);
 382        }
 383}
 384
 385static int issue_flush_thread(void *data)
 386{
 387        struct f2fs_sb_info *sbi = data;
 388        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 389        wait_queue_head_t *q = &fcc->flush_wait_queue;
 390repeat:
 391        if (kthread_should_stop())
 392                return 0;
 393
 394        if (!llist_empty(&fcc->issue_list)) {
 395                struct bio *bio;
 396                struct flush_cmd *cmd, *next;
 397                int ret;
 398
 399                bio = f2fs_bio_alloc(0);
 400
 401                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 402                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 403
 404                bio->bi_bdev = sbi->sb->s_bdev;
 405                ret = submit_bio_wait(WRITE_FLUSH, bio);
 406
 407                llist_for_each_entry_safe(cmd, next,
 408                                          fcc->dispatch_list, llnode) {
 409                        cmd->ret = ret;
 410                        complete(&cmd->wait);
 411                }
 412                bio_put(bio);
 413                fcc->dispatch_list = NULL;
 414        }
 415
 416        wait_event_interruptible(*q,
 417                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 418        goto repeat;
 419}
 420
 421int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 422{
 423        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 424        struct flush_cmd cmd;
 425
 426        trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 427                                        test_opt(sbi, FLUSH_MERGE));
 428
 429        if (test_opt(sbi, NOBARRIER))
 430                return 0;
 431
 432        if (!test_opt(sbi, FLUSH_MERGE)) {
 433                struct bio *bio = f2fs_bio_alloc(0);
 434                int ret;
 435
 436                bio->bi_bdev = sbi->sb->s_bdev;
 437                ret = submit_bio_wait(WRITE_FLUSH, bio);
 438                bio_put(bio);
 439                return ret;
 440        }
 441
 442        init_completion(&cmd.wait);
 443
 444        llist_add(&cmd.llnode, &fcc->issue_list);
 445
 446        if (!fcc->dispatch_list)
 447                wake_up(&fcc->flush_wait_queue);
 448
 449        wait_for_completion(&cmd.wait);
 450
 451        return cmd.ret;
 452}
 453
 454int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 455{
 456        dev_t dev = sbi->sb->s_bdev->bd_dev;
 457        struct flush_cmd_control *fcc;
 458        int err = 0;
 459
 460        fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 461        if (!fcc)
 462                return -ENOMEM;
 463        init_waitqueue_head(&fcc->flush_wait_queue);
 464        init_llist_head(&fcc->issue_list);
 465        SM_I(sbi)->cmd_control_info = fcc;
 466        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 467                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 468        if (IS_ERR(fcc->f2fs_issue_flush)) {
 469                err = PTR_ERR(fcc->f2fs_issue_flush);
 470                kfree(fcc);
 471                SM_I(sbi)->cmd_control_info = NULL;
 472                return err;
 473        }
 474
 475        return err;
 476}
 477
 478void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 479{
 480        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 481
 482        if (fcc && fcc->f2fs_issue_flush)
 483                kthread_stop(fcc->f2fs_issue_flush);
 484        kfree(fcc);
 485        SM_I(sbi)->cmd_control_info = NULL;
 486}
 487
 488static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 489                enum dirty_type dirty_type)
 490{
 491        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 492
 493        /* need not be added */
 494        if (IS_CURSEG(sbi, segno))
 495                return;
 496
 497        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 498                dirty_i->nr_dirty[dirty_type]++;
 499
 500        if (dirty_type == DIRTY) {
 501                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 502                enum dirty_type t = sentry->type;
 503
 504                if (unlikely(t >= DIRTY)) {
 505                        f2fs_bug_on(sbi, 1);
 506                        return;
 507                }
 508                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 509                        dirty_i->nr_dirty[t]++;
 510        }
 511}
 512
 513static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 514                enum dirty_type dirty_type)
 515{
 516        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 517
 518        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 519                dirty_i->nr_dirty[dirty_type]--;
 520
 521        if (dirty_type == DIRTY) {
 522                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 523                enum dirty_type t = sentry->type;
 524
 525                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 526                        dirty_i->nr_dirty[t]--;
 527
 528                if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 529                        clear_bit(GET_SECNO(sbi, segno),
 530                                                dirty_i->victim_secmap);
 531        }
 532}
 533
 534/*
 535 * Should not occur error such as -ENOMEM.
 536 * Adding dirty entry into seglist is not critical operation.
 537 * If a given segment is one of current working segments, it won't be added.
 538 */
 539static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 540{
 541        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 542        unsigned short valid_blocks;
 543
 544        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 545                return;
 546
 547        mutex_lock(&dirty_i->seglist_lock);
 548
 549        valid_blocks = get_valid_blocks(sbi, segno, 0);
 550
 551        if (valid_blocks == 0) {
 552                __locate_dirty_segment(sbi, segno, PRE);
 553                __remove_dirty_segment(sbi, segno, DIRTY);
 554        } else if (valid_blocks < sbi->blocks_per_seg) {
 555                __locate_dirty_segment(sbi, segno, DIRTY);
 556        } else {
 557                /* Recovery routine with SSR needs this */
 558                __remove_dirty_segment(sbi, segno, DIRTY);
 559        }
 560
 561        mutex_unlock(&dirty_i->seglist_lock);
 562}
 563
 564static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 565                                block_t blkstart, block_t blklen)
 566{
 567        sector_t start = SECTOR_FROM_BLOCK(blkstart);
 568        sector_t len = SECTOR_FROM_BLOCK(blklen);
 569        struct seg_entry *se;
 570        unsigned int offset;
 571        block_t i;
 572
 573        for (i = blkstart; i < blkstart + blklen; i++) {
 574                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 575                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 576
 577                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 578                        sbi->discard_blks--;
 579        }
 580        trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 581        return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 582}
 583
 584bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 585{
 586        int err = -EOPNOTSUPP;
 587
 588        if (test_opt(sbi, DISCARD)) {
 589                struct seg_entry *se = get_seg_entry(sbi,
 590                                GET_SEGNO(sbi, blkaddr));
 591                unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 592
 593                if (f2fs_test_bit(offset, se->discard_map))
 594                        return false;
 595
 596                err = f2fs_issue_discard(sbi, blkaddr, 1);
 597        }
 598
 599        if (err) {
 600                update_meta_page(sbi, NULL, blkaddr);
 601                return true;
 602        }
 603        return false;
 604}
 605
 606static void __add_discard_entry(struct f2fs_sb_info *sbi,
 607                struct cp_control *cpc, struct seg_entry *se,
 608                unsigned int start, unsigned int end)
 609{
 610        struct list_head *head = &SM_I(sbi)->discard_list;
 611        struct discard_entry *new, *last;
 612
 613        if (!list_empty(head)) {
 614                last = list_last_entry(head, struct discard_entry, list);
 615                if (START_BLOCK(sbi, cpc->trim_start) + start ==
 616                                                last->blkaddr + last->len) {
 617                        last->len += end - start;
 618                        goto done;
 619                }
 620        }
 621
 622        new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 623        INIT_LIST_HEAD(&new->list);
 624        new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 625        new->len = end - start;
 626        list_add_tail(&new->list, head);
 627done:
 628        SM_I(sbi)->nr_discards += end - start;
 629}
 630
 631static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 632{
 633        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 634        int max_blocks = sbi->blocks_per_seg;
 635        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 636        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 637        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 638        unsigned long *discard_map = (unsigned long *)se->discard_map;
 639        unsigned long *dmap = SIT_I(sbi)->tmp_map;
 640        unsigned int start = 0, end = -1;
 641        bool force = (cpc->reason == CP_DISCARD);
 642        int i;
 643
 644        if (se->valid_blocks == max_blocks)
 645                return;
 646
 647        if (!force) {
 648                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 649                    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 650                        return;
 651        }
 652
 653        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 654        for (i = 0; i < entries; i++)
 655                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 656                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 657
 658        while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 659                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 660                if (start >= max_blocks)
 661                        break;
 662
 663                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 664                __add_discard_entry(sbi, cpc, se, start, end);
 665        }
 666}
 667
 668void release_discard_addrs(struct f2fs_sb_info *sbi)
 669{
 670        struct list_head *head = &(SM_I(sbi)->discard_list);
 671        struct discard_entry *entry, *this;
 672
 673        /* drop caches */
 674        list_for_each_entry_safe(entry, this, head, list) {
 675                list_del(&entry->list);
 676                kmem_cache_free(discard_entry_slab, entry);
 677        }
 678}
 679
 680/*
 681 * Should call clear_prefree_segments after checkpoint is done.
 682 */
 683static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 684{
 685        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 686        unsigned int segno;
 687
 688        mutex_lock(&dirty_i->seglist_lock);
 689        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 690                __set_test_and_free(sbi, segno);
 691        mutex_unlock(&dirty_i->seglist_lock);
 692}
 693
 694void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 695{
 696        struct list_head *head = &(SM_I(sbi)->discard_list);
 697        struct discard_entry *entry, *this;
 698        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 699        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 700        unsigned int start = 0, end = -1;
 701
 702        mutex_lock(&dirty_i->seglist_lock);
 703
 704        while (1) {
 705                int i;
 706                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 707                if (start >= MAIN_SEGS(sbi))
 708                        break;
 709                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 710                                                                start + 1);
 711
 712                for (i = start; i < end; i++)
 713                        clear_bit(i, prefree_map);
 714
 715                dirty_i->nr_dirty[PRE] -= end - start;
 716
 717                if (!test_opt(sbi, DISCARD))
 718                        continue;
 719
 720                f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 721                                (end - start) << sbi->log_blocks_per_seg);
 722        }
 723        mutex_unlock(&dirty_i->seglist_lock);
 724
 725        /* send small discards */
 726        list_for_each_entry_safe(entry, this, head, list) {
 727                if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
 728                        goto skip;
 729                f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 730                cpc->trimmed += entry->len;
 731skip:
 732                list_del(&entry->list);
 733                SM_I(sbi)->nr_discards -= entry->len;
 734                kmem_cache_free(discard_entry_slab, entry);
 735        }
 736}
 737
 738static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 739{
 740        struct sit_info *sit_i = SIT_I(sbi);
 741
 742        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 743                sit_i->dirty_sentries++;
 744                return false;
 745        }
 746
 747        return true;
 748}
 749
 750static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 751                                        unsigned int segno, int modified)
 752{
 753        struct seg_entry *se = get_seg_entry(sbi, segno);
 754        se->type = type;
 755        if (modified)
 756                __mark_sit_entry_dirty(sbi, segno);
 757}
 758
 759static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 760{
 761        struct seg_entry *se;
 762        unsigned int segno, offset;
 763        long int new_vblocks;
 764
 765        segno = GET_SEGNO(sbi, blkaddr);
 766
 767        se = get_seg_entry(sbi, segno);
 768        new_vblocks = se->valid_blocks + del;
 769        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 770
 771        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 772                                (new_vblocks > sbi->blocks_per_seg)));
 773
 774        se->valid_blocks = new_vblocks;
 775        se->mtime = get_mtime(sbi);
 776        SIT_I(sbi)->max_mtime = se->mtime;
 777
 778        /* Update valid block bitmap */
 779        if (del > 0) {
 780                if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 781                        f2fs_bug_on(sbi, 1);
 782                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 783                        sbi->discard_blks--;
 784        } else {
 785                if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 786                        f2fs_bug_on(sbi, 1);
 787                if (f2fs_test_and_clear_bit(offset, se->discard_map))
 788                        sbi->discard_blks++;
 789        }
 790        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 791                se->ckpt_valid_blocks += del;
 792
 793        __mark_sit_entry_dirty(sbi, segno);
 794
 795        /* update total number of valid blocks to be written in ckpt area */
 796        SIT_I(sbi)->written_valid_blocks += del;
 797
 798        if (sbi->segs_per_sec > 1)
 799                get_sec_entry(sbi, segno)->valid_blocks += del;
 800}
 801
 802void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 803{
 804        update_sit_entry(sbi, new, 1);
 805        if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 806                update_sit_entry(sbi, old, -1);
 807
 808        locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 809        locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 810}
 811
 812void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 813{
 814        unsigned int segno = GET_SEGNO(sbi, addr);
 815        struct sit_info *sit_i = SIT_I(sbi);
 816
 817        f2fs_bug_on(sbi, addr == NULL_ADDR);
 818        if (addr == NEW_ADDR)
 819                return;
 820
 821        /* add it into sit main buffer */
 822        mutex_lock(&sit_i->sentry_lock);
 823
 824        update_sit_entry(sbi, addr, -1);
 825
 826        /* add it into dirty seglist */
 827        locate_dirty_segment(sbi, segno);
 828
 829        mutex_unlock(&sit_i->sentry_lock);
 830}
 831
 832bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 833{
 834        struct sit_info *sit_i = SIT_I(sbi);
 835        unsigned int segno, offset;
 836        struct seg_entry *se;
 837        bool is_cp = false;
 838
 839        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 840                return true;
 841
 842        mutex_lock(&sit_i->sentry_lock);
 843
 844        segno = GET_SEGNO(sbi, blkaddr);
 845        se = get_seg_entry(sbi, segno);
 846        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 847
 848        if (f2fs_test_bit(offset, se->ckpt_valid_map))
 849                is_cp = true;
 850
 851        mutex_unlock(&sit_i->sentry_lock);
 852
 853        return is_cp;
 854}
 855
 856/*
 857 * This function should be resided under the curseg_mutex lock
 858 */
 859static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 860                                        struct f2fs_summary *sum)
 861{
 862        struct curseg_info *curseg = CURSEG_I(sbi, type);
 863        void *addr = curseg->sum_blk;
 864        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 865        memcpy(addr, sum, sizeof(struct f2fs_summary));
 866}
 867
 868/*
 869 * Calculate the number of current summary pages for writing
 870 */
 871int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 872{
 873        int valid_sum_count = 0;
 874        int i, sum_in_page;
 875
 876        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 877                if (sbi->ckpt->alloc_type[i] == SSR)
 878                        valid_sum_count += sbi->blocks_per_seg;
 879                else {
 880                        if (for_ra)
 881                                valid_sum_count += le16_to_cpu(
 882                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 883                        else
 884                                valid_sum_count += curseg_blkoff(sbi, i);
 885                }
 886        }
 887
 888        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 889                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 890        if (valid_sum_count <= sum_in_page)
 891                return 1;
 892        else if ((valid_sum_count - sum_in_page) <=
 893                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 894                return 2;
 895        return 3;
 896}
 897
 898/*
 899 * Caller should put this summary page
 900 */
 901struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 902{
 903        return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 904}
 905
 906void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 907{
 908        struct page *page = grab_meta_page(sbi, blk_addr);
 909        void *dst = page_address(page);
 910
 911        if (src)
 912                memcpy(dst, src, PAGE_SIZE);
 913        else
 914                memset(dst, 0, PAGE_SIZE);
 915        set_page_dirty(page);
 916        f2fs_put_page(page, 1);
 917}
 918
 919static void write_sum_page(struct f2fs_sb_info *sbi,
 920                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
 921{
 922        update_meta_page(sbi, (void *)sum_blk, blk_addr);
 923}
 924
 925static void write_current_sum_page(struct f2fs_sb_info *sbi,
 926                                                int type, block_t blk_addr)
 927{
 928        struct curseg_info *curseg = CURSEG_I(sbi, type);
 929        struct page *page = grab_meta_page(sbi, blk_addr);
 930        struct f2fs_summary_block *src = curseg->sum_blk;
 931        struct f2fs_summary_block *dst;
 932
 933        dst = (struct f2fs_summary_block *)page_address(page);
 934
 935        mutex_lock(&curseg->curseg_mutex);
 936
 937        down_read(&curseg->journal_rwsem);
 938        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 939        up_read(&curseg->journal_rwsem);
 940
 941        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 942        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 943
 944        mutex_unlock(&curseg->curseg_mutex);
 945
 946        set_page_dirty(page);
 947        f2fs_put_page(page, 1);
 948}
 949
 950static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 951{
 952        struct curseg_info *curseg = CURSEG_I(sbi, type);
 953        unsigned int segno = curseg->segno + 1;
 954        struct free_segmap_info *free_i = FREE_I(sbi);
 955
 956        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 957                return !test_bit(segno, free_i->free_segmap);
 958        return 0;
 959}
 960
 961/*
 962 * Find a new segment from the free segments bitmap to right order
 963 * This function should be returned with success, otherwise BUG
 964 */
 965static void get_new_segment(struct f2fs_sb_info *sbi,
 966                        unsigned int *newseg, bool new_sec, int dir)
 967{
 968        struct free_segmap_info *free_i = FREE_I(sbi);
 969        unsigned int segno, secno, zoneno;
 970        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 971        unsigned int hint = *newseg / sbi->segs_per_sec;
 972        unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 973        unsigned int left_start = hint;
 974        bool init = true;
 975        int go_left = 0;
 976        int i;
 977
 978        spin_lock(&free_i->segmap_lock);
 979
 980        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 981                segno = find_next_zero_bit(free_i->free_segmap,
 982                                (hint + 1) * sbi->segs_per_sec, *newseg + 1);
 983                if (segno < (hint + 1) * sbi->segs_per_sec)
 984                        goto got_it;
 985        }
 986find_other_zone:
 987        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 988        if (secno >= MAIN_SECS(sbi)) {
 989                if (dir == ALLOC_RIGHT) {
 990                        secno = find_next_zero_bit(free_i->free_secmap,
 991                                                        MAIN_SECS(sbi), 0);
 992                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 993                } else {
 994                        go_left = 1;
 995                        left_start = hint - 1;
 996                }
 997        }
 998        if (go_left == 0)
 999                goto skip_left;
1000
1001        while (test_bit(left_start, free_i->free_secmap)) {
1002                if (left_start > 0) {
1003                        left_start--;
1004                        continue;
1005                }
1006                left_start = find_next_zero_bit(free_i->free_secmap,
1007                                                        MAIN_SECS(sbi), 0);
1008                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009                break;
1010        }
1011        secno = left_start;
1012skip_left:
1013        hint = secno;
1014        segno = secno * sbi->segs_per_sec;
1015        zoneno = secno / sbi->secs_per_zone;
1016
1017        /* give up on finding another zone */
1018        if (!init)
1019                goto got_it;
1020        if (sbi->secs_per_zone == 1)
1021                goto got_it;
1022        if (zoneno == old_zoneno)
1023                goto got_it;
1024        if (dir == ALLOC_LEFT) {
1025                if (!go_left && zoneno + 1 >= total_zones)
1026                        goto got_it;
1027                if (go_left && zoneno == 0)
1028                        goto got_it;
1029        }
1030        for (i = 0; i < NR_CURSEG_TYPE; i++)
1031                if (CURSEG_I(sbi, i)->zone == zoneno)
1032                        break;
1033
1034        if (i < NR_CURSEG_TYPE) {
1035                /* zone is in user, try another */
1036                if (go_left)
1037                        hint = zoneno * sbi->secs_per_zone - 1;
1038                else if (zoneno + 1 >= total_zones)
1039                        hint = 0;
1040                else
1041                        hint = (zoneno + 1) * sbi->secs_per_zone;
1042                init = false;
1043                goto find_other_zone;
1044        }
1045got_it:
1046        /* set it as dirty segment in free segmap */
1047        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1048        __set_inuse(sbi, segno);
1049        *newseg = segno;
1050        spin_unlock(&free_i->segmap_lock);
1051}
1052
1053static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054{
1055        struct curseg_info *curseg = CURSEG_I(sbi, type);
1056        struct summary_footer *sum_footer;
1057
1058        curseg->segno = curseg->next_segno;
1059        curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060        curseg->next_blkoff = 0;
1061        curseg->next_segno = NULL_SEGNO;
1062
1063        sum_footer = &(curseg->sum_blk->footer);
1064        memset(sum_footer, 0, sizeof(struct summary_footer));
1065        if (IS_DATASEG(type))
1066                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067        if (IS_NODESEG(type))
1068                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069        __set_sit_entry_type(sbi, type, curseg->segno, modified);
1070}
1071
1072/*
1073 * Allocate a current working segment.
1074 * This function always allocates a free segment in LFS manner.
1075 */
1076static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077{
1078        struct curseg_info *curseg = CURSEG_I(sbi, type);
1079        unsigned int segno = curseg->segno;
1080        int dir = ALLOC_LEFT;
1081
1082        write_sum_page(sbi, curseg->sum_blk,
1083                                GET_SUM_BLOCK(sbi, segno));
1084        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085                dir = ALLOC_RIGHT;
1086
1087        if (test_opt(sbi, NOHEAP))
1088                dir = ALLOC_RIGHT;
1089
1090        get_new_segment(sbi, &segno, new_sec, dir);
1091        curseg->next_segno = segno;
1092        reset_curseg(sbi, type, 1);
1093        curseg->alloc_type = LFS;
1094}
1095
1096static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097                        struct curseg_info *seg, block_t start)
1098{
1099        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101        unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104        int i, pos;
1105
1106        for (i = 0; i < entries; i++)
1107                target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1110
1111        seg->next_blkoff = pos;
1112}
1113
1114/*
1115 * If a segment is written by LFS manner, next block offset is just obtained
1116 * by increasing the current block offset. However, if a segment is written by
1117 * SSR manner, next block offset obtained by calling __next_free_blkoff
1118 */
1119static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120                                struct curseg_info *seg)
1121{
1122        if (seg->alloc_type == SSR)
1123                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124        else
1125                seg->next_blkoff++;
1126}
1127
1128/*
1129 * This function always allocates a used segment(from dirty seglist) by SSR
1130 * manner, so it should recover the existing segment information of valid blocks
1131 */
1132static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133{
1134        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135        struct curseg_info *curseg = CURSEG_I(sbi, type);
1136        unsigned int new_segno = curseg->next_segno;
1137        struct f2fs_summary_block *sum_node;
1138        struct page *sum_page;
1139
1140        write_sum_page(sbi, curseg->sum_blk,
1141                                GET_SUM_BLOCK(sbi, curseg->segno));
1142        __set_test_and_inuse(sbi, new_segno);
1143
1144        mutex_lock(&dirty_i->seglist_lock);
1145        __remove_dirty_segment(sbi, new_segno, PRE);
1146        __remove_dirty_segment(sbi, new_segno, DIRTY);
1147        mutex_unlock(&dirty_i->seglist_lock);
1148
1149        reset_curseg(sbi, type, 1);
1150        curseg->alloc_type = SSR;
1151        __next_free_blkoff(sbi, curseg, 0);
1152
1153        if (reuse) {
1154                sum_page = get_sum_page(sbi, new_segno);
1155                sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156                memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157                f2fs_put_page(sum_page, 1);
1158        }
1159}
1160
1161static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1162{
1163        struct curseg_info *curseg = CURSEG_I(sbi, type);
1164        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1165
1166        if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167                return v_ops->get_victim(sbi,
1168                                &(curseg)->next_segno, BG_GC, type, SSR);
1169
1170        /* For data segments, let's do SSR more intensively */
1171        for (; type >= CURSEG_HOT_DATA; type--)
1172                if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173                                                BG_GC, type, SSR))
1174                        return 1;
1175        return 0;
1176}
1177
1178/*
1179 * flush out current segment and replace it with new segment
1180 * This function should be returned with success, otherwise BUG
1181 */
1182static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183                                                int type, bool force)
1184{
1185        struct curseg_info *curseg = CURSEG_I(sbi, type);
1186
1187        if (force)
1188                new_curseg(sbi, type, true);
1189        else if (type == CURSEG_WARM_NODE)
1190                new_curseg(sbi, type, false);
1191        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1192                new_curseg(sbi, type, false);
1193        else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194                change_curseg(sbi, type, true);
1195        else
1196                new_curseg(sbi, type, false);
1197
1198        stat_inc_seg_type(sbi, curseg);
1199}
1200
1201static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1202{
1203        struct curseg_info *curseg = CURSEG_I(sbi, type);
1204        unsigned int old_segno;
1205
1206        old_segno = curseg->segno;
1207        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1208        locate_dirty_segment(sbi, old_segno);
1209}
1210
1211void allocate_new_segments(struct f2fs_sb_info *sbi)
1212{
1213        int i;
1214
1215        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216                __allocate_new_segments(sbi, i);
1217}
1218
1219static const struct segment_allocation default_salloc_ops = {
1220        .allocate_segment = allocate_segment_by_default,
1221};
1222
1223int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224{
1225        __u64 start = F2FS_BYTES_TO_BLK(range->start);
1226        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227        unsigned int start_segno, end_segno;
1228        struct cp_control cpc;
1229        int err = 0;
1230
1231        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232                return -EINVAL;
1233
1234        cpc.trimmed = 0;
1235        if (end <= MAIN_BLKADDR(sbi))
1236                goto out;
1237
1238        /* start/end segment number in main_area */
1239        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241                                                GET_SEGNO(sbi, end);
1242        cpc.reason = CP_DISCARD;
1243        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1244
1245        /* do checkpoint to issue discard commands safely */
1246        for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247                cpc.trim_start = start_segno;
1248
1249                if (sbi->discard_blks == 0)
1250                        break;
1251                else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252                        cpc.trim_end = end_segno;
1253                else
1254                        cpc.trim_end = min_t(unsigned int,
1255                                rounddown(start_segno +
1256                                BATCHED_TRIM_SEGMENTS(sbi),
1257                                sbi->segs_per_sec) - 1, end_segno);
1258
1259                mutex_lock(&sbi->gc_mutex);
1260                err = write_checkpoint(sbi, &cpc);
1261                mutex_unlock(&sbi->gc_mutex);
1262        }
1263out:
1264        range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1265        return err;
1266}
1267
1268static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1269{
1270        struct curseg_info *curseg = CURSEG_I(sbi, type);
1271        if (curseg->next_blkoff < sbi->blocks_per_seg)
1272                return true;
1273        return false;
1274}
1275
1276static int __get_segment_type_2(struct page *page, enum page_type p_type)
1277{
1278        if (p_type == DATA)
1279                return CURSEG_HOT_DATA;
1280        else
1281                return CURSEG_HOT_NODE;
1282}
1283
1284static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285{
1286        if (p_type == DATA) {
1287                struct inode *inode = page->mapping->host;
1288
1289                if (S_ISDIR(inode->i_mode))
1290                        return CURSEG_HOT_DATA;
1291                else
1292                        return CURSEG_COLD_DATA;
1293        } else {
1294                if (IS_DNODE(page) && is_cold_node(page))
1295                        return CURSEG_WARM_NODE;
1296                else
1297                        return CURSEG_COLD_NODE;
1298        }
1299}
1300
1301static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302{
1303        if (p_type == DATA) {
1304                struct inode *inode = page->mapping->host;
1305
1306                if (S_ISDIR(inode->i_mode))
1307                        return CURSEG_HOT_DATA;
1308                else if (is_cold_data(page) || file_is_cold(inode))
1309                        return CURSEG_COLD_DATA;
1310                else
1311                        return CURSEG_WARM_DATA;
1312        } else {
1313                if (IS_DNODE(page))
1314                        return is_cold_node(page) ? CURSEG_WARM_NODE :
1315                                                CURSEG_HOT_NODE;
1316                else
1317                        return CURSEG_COLD_NODE;
1318        }
1319}
1320
1321static int __get_segment_type(struct page *page, enum page_type p_type)
1322{
1323        switch (F2FS_P_SB(page)->active_logs) {
1324        case 2:
1325                return __get_segment_type_2(page, p_type);
1326        case 4:
1327                return __get_segment_type_4(page, p_type);
1328        }
1329        /* NR_CURSEG_TYPE(6) logs by default */
1330        f2fs_bug_on(F2FS_P_SB(page),
1331                F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332        return __get_segment_type_6(page, p_type);
1333}
1334
1335void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1336                block_t old_blkaddr, block_t *new_blkaddr,
1337                struct f2fs_summary *sum, int type)
1338{
1339        struct sit_info *sit_i = SIT_I(sbi);
1340        struct curseg_info *curseg;
1341        bool direct_io = (type == CURSEG_DIRECT_IO);
1342
1343        type = direct_io ? CURSEG_WARM_DATA : type;
1344
1345        curseg = CURSEG_I(sbi, type);
1346
1347        mutex_lock(&curseg->curseg_mutex);
1348        mutex_lock(&sit_i->sentry_lock);
1349
1350        /* direct_io'ed data is aligned to the segment for better performance */
1351        if (direct_io && curseg->next_blkoff &&
1352                                !has_not_enough_free_secs(sbi, 0))
1353                __allocate_new_segments(sbi, type);
1354
1355        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
1357        /*
1358         * __add_sum_entry should be resided under the curseg_mutex
1359         * because, this function updates a summary entry in the
1360         * current summary block.
1361         */
1362        __add_sum_entry(sbi, type, sum);
1363
1364        __refresh_next_blkoff(sbi, curseg);
1365
1366        stat_inc_block_count(sbi, curseg);
1367
1368        if (!__has_curseg_space(sbi, type))
1369                sit_i->s_ops->allocate_segment(sbi, type, false);
1370        /*
1371         * SIT information should be updated before segment allocation,
1372         * since SSR needs latest valid block information.
1373         */
1374        refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1375
1376        mutex_unlock(&sit_i->sentry_lock);
1377
1378        if (page && IS_NODESEG(type))
1379                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
1381        mutex_unlock(&curseg->curseg_mutex);
1382}
1383
1384static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1385{
1386        int type = __get_segment_type(fio->page, fio->type);
1387
1388        allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389                                        &fio->new_blkaddr, sum, type);
1390
1391        /* writeout dirty page into bdev */
1392        f2fs_submit_page_mbio(fio);
1393}
1394
1395void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1396{
1397        struct f2fs_io_info fio = {
1398                .sbi = sbi,
1399                .type = META,
1400                .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1401                .old_blkaddr = page->index,
1402                .new_blkaddr = page->index,
1403                .page = page,
1404                .encrypted_page = NULL,
1405        };
1406
1407        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408                fio.rw &= ~REQ_META;
1409
1410        set_page_writeback(page);
1411        f2fs_submit_page_mbio(&fio);
1412}
1413
1414void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415{
1416        struct f2fs_summary sum;
1417
1418        set_summary(&sum, nid, 0, 0);
1419        do_write_page(&sum, fio);
1420}
1421
1422void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1423{
1424        struct f2fs_sb_info *sbi = fio->sbi;
1425        struct f2fs_summary sum;
1426        struct node_info ni;
1427
1428        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429        get_node_info(sbi, dn->nid, &ni);
1430        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1431        do_write_page(&sum, fio);
1432        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1433}
1434
1435void rewrite_data_page(struct f2fs_io_info *fio)
1436{
1437        fio->new_blkaddr = fio->old_blkaddr;
1438        stat_inc_inplace_blocks(fio->sbi);
1439        f2fs_submit_page_mbio(fio);
1440}
1441
1442void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1443                                block_t old_blkaddr, block_t new_blkaddr,
1444                                bool recover_curseg, bool recover_newaddr)
1445{
1446        struct sit_info *sit_i = SIT_I(sbi);
1447        struct curseg_info *curseg;
1448        unsigned int segno, old_cursegno;
1449        struct seg_entry *se;
1450        int type;
1451        unsigned short old_blkoff;
1452
1453        segno = GET_SEGNO(sbi, new_blkaddr);
1454        se = get_seg_entry(sbi, segno);
1455        type = se->type;
1456
1457        if (!recover_curseg) {
1458                /* for recovery flow */
1459                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460                        if (old_blkaddr == NULL_ADDR)
1461                                type = CURSEG_COLD_DATA;
1462                        else
1463                                type = CURSEG_WARM_DATA;
1464                }
1465        } else {
1466                if (!IS_CURSEG(sbi, segno))
1467                        type = CURSEG_WARM_DATA;
1468        }
1469
1470        curseg = CURSEG_I(sbi, type);
1471
1472        mutex_lock(&curseg->curseg_mutex);
1473        mutex_lock(&sit_i->sentry_lock);
1474
1475        old_cursegno = curseg->segno;
1476        old_blkoff = curseg->next_blkoff;
1477
1478        /* change the current segment */
1479        if (segno != curseg->segno) {
1480                curseg->next_segno = segno;
1481                change_curseg(sbi, type, true);
1482        }
1483
1484        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485        __add_sum_entry(sbi, type, sum);
1486
1487        if (!recover_curseg || recover_newaddr)
1488                update_sit_entry(sbi, new_blkaddr, 1);
1489        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1490                update_sit_entry(sbi, old_blkaddr, -1);
1491
1492        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495        locate_dirty_segment(sbi, old_cursegno);
1496
1497        if (recover_curseg) {
1498                if (old_cursegno != curseg->segno) {
1499                        curseg->next_segno = old_cursegno;
1500                        change_curseg(sbi, type, true);
1501                }
1502                curseg->next_blkoff = old_blkoff;
1503        }
1504
1505        mutex_unlock(&sit_i->sentry_lock);
1506        mutex_unlock(&curseg->curseg_mutex);
1507}
1508
1509void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510                                block_t old_addr, block_t new_addr,
1511                                unsigned char version, bool recover_curseg,
1512                                bool recover_newaddr)
1513{
1514        struct f2fs_summary sum;
1515
1516        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518        __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519                                        recover_curseg, recover_newaddr);
1520
1521        f2fs_update_data_blkaddr(dn, new_addr);
1522}
1523
1524void f2fs_wait_on_page_writeback(struct page *page,
1525                                enum page_type type, bool ordered)
1526{
1527        if (PageWriteback(page)) {
1528                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531                if (ordered)
1532                        wait_on_page_writeback(page);
1533                else
1534                        wait_for_stable_page(page);
1535        }
1536}
1537
1538void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539                                                        block_t blkaddr)
1540{
1541        struct page *cpage;
1542
1543        if (blkaddr == NEW_ADDR)
1544                return;
1545
1546        f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1547
1548        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549        if (cpage) {
1550                f2fs_wait_on_page_writeback(cpage, DATA, true);
1551                f2fs_put_page(cpage, 1);
1552        }
1553}
1554
1555static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556{
1557        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558        struct curseg_info *seg_i;
1559        unsigned char *kaddr;
1560        struct page *page;
1561        block_t start;
1562        int i, j, offset;
1563
1564        start = start_sum_block(sbi);
1565
1566        page = get_meta_page(sbi, start++);
1567        kaddr = (unsigned char *)page_address(page);
1568
1569        /* Step 1: restore nat cache */
1570        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573        /* Step 2: restore sit cache */
1574        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576        offset = 2 * SUM_JOURNAL_SIZE;
1577
1578        /* Step 3: restore summary entries */
1579        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580                unsigned short blk_off;
1581                unsigned int segno;
1582
1583                seg_i = CURSEG_I(sbi, i);
1584                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586                seg_i->next_segno = segno;
1587                reset_curseg(sbi, i, 0);
1588                seg_i->alloc_type = ckpt->alloc_type[i];
1589                seg_i->next_blkoff = blk_off;
1590
1591                if (seg_i->alloc_type == SSR)
1592                        blk_off = sbi->blocks_per_seg;
1593
1594                for (j = 0; j < blk_off; j++) {
1595                        struct f2fs_summary *s;
1596                        s = (struct f2fs_summary *)(kaddr + offset);
1597                        seg_i->sum_blk->entries[j] = *s;
1598                        offset += SUMMARY_SIZE;
1599                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1600                                                SUM_FOOTER_SIZE)
1601                                continue;
1602
1603                        f2fs_put_page(page, 1);
1604                        page = NULL;
1605
1606                        page = get_meta_page(sbi, start++);
1607                        kaddr = (unsigned char *)page_address(page);
1608                        offset = 0;
1609                }
1610        }
1611        f2fs_put_page(page, 1);
1612        return 0;
1613}
1614
1615static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616{
1617        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618        struct f2fs_summary_block *sum;
1619        struct curseg_info *curseg;
1620        struct page *new;
1621        unsigned short blk_off;
1622        unsigned int segno = 0;
1623        block_t blk_addr = 0;
1624
1625        /* get segment number and block addr */
1626        if (IS_DATASEG(type)) {
1627                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629                                                        CURSEG_HOT_DATA]);
1630                if (__exist_node_summaries(sbi))
1631                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632                else
1633                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634        } else {
1635                segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636                                                        CURSEG_HOT_NODE]);
1637                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638                                                        CURSEG_HOT_NODE]);
1639                if (__exist_node_summaries(sbi))
1640                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641                                                        type - CURSEG_HOT_NODE);
1642                else
1643                        blk_addr = GET_SUM_BLOCK(sbi, segno);
1644        }
1645
1646        new = get_meta_page(sbi, blk_addr);
1647        sum = (struct f2fs_summary_block *)page_address(new);
1648
1649        if (IS_NODESEG(type)) {
1650                if (__exist_node_summaries(sbi)) {
1651                        struct f2fs_summary *ns = &sum->entries[0];
1652                        int i;
1653                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1654                                ns->version = 0;
1655                                ns->ofs_in_node = 0;
1656                        }
1657                } else {
1658                        int err;
1659
1660                        err = restore_node_summary(sbi, segno, sum);
1661                        if (err) {
1662                                f2fs_put_page(new, 1);
1663                                return err;
1664                        }
1665                }
1666        }
1667
1668        /* set uncompleted segment to curseg */
1669        curseg = CURSEG_I(sbi, type);
1670        mutex_lock(&curseg->curseg_mutex);
1671
1672        /* update journal info */
1673        down_write(&curseg->journal_rwsem);
1674        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675        up_write(&curseg->journal_rwsem);
1676
1677        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679        curseg->next_segno = segno;
1680        reset_curseg(sbi, type, 0);
1681        curseg->alloc_type = ckpt->alloc_type[type];
1682        curseg->next_blkoff = blk_off;
1683        mutex_unlock(&curseg->curseg_mutex);
1684        f2fs_put_page(new, 1);
1685        return 0;
1686}
1687
1688static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689{
1690        int type = CURSEG_HOT_DATA;
1691        int err;
1692
1693        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694                int npages = npages_for_summary_flush(sbi, true);
1695
1696                if (npages >= 2)
1697                        ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698                                                        META_CP, true);
1699
1700                /* restore for compacted data summary */
1701                if (read_compacted_summaries(sbi))
1702                        return -EINVAL;
1703                type = CURSEG_HOT_NODE;
1704        }
1705
1706        if (__exist_node_summaries(sbi))
1707                ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708                                        NR_CURSEG_TYPE - type, META_CP, true);
1709
1710        for (; type <= CURSEG_COLD_NODE; type++) {
1711                err = read_normal_summaries(sbi, type);
1712                if (err)
1713                        return err;
1714        }
1715
1716        return 0;
1717}
1718
1719static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720{
1721        struct page *page;
1722        unsigned char *kaddr;
1723        struct f2fs_summary *summary;
1724        struct curseg_info *seg_i;
1725        int written_size = 0;
1726        int i, j;
1727
1728        page = grab_meta_page(sbi, blkaddr++);
1729        kaddr = (unsigned char *)page_address(page);
1730
1731        /* Step 1: write nat cache */
1732        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734        written_size += SUM_JOURNAL_SIZE;
1735
1736        /* Step 2: write sit cache */
1737        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739        written_size += SUM_JOURNAL_SIZE;
1740
1741        /* Step 3: write summary entries */
1742        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743                unsigned short blkoff;
1744                seg_i = CURSEG_I(sbi, i);
1745                if (sbi->ckpt->alloc_type[i] == SSR)
1746                        blkoff = sbi->blocks_per_seg;
1747                else
1748                        blkoff = curseg_blkoff(sbi, i);
1749
1750                for (j = 0; j < blkoff; j++) {
1751                        if (!page) {
1752                                page = grab_meta_page(sbi, blkaddr++);
1753                                kaddr = (unsigned char *)page_address(page);
1754                                written_size = 0;
1755                        }
1756                        summary = (struct f2fs_summary *)(kaddr + written_size);
1757                        *summary = seg_i->sum_blk->entries[j];
1758                        written_size += SUMMARY_SIZE;
1759
1760                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1761                                                        SUM_FOOTER_SIZE)
1762                                continue;
1763
1764                        set_page_dirty(page);
1765                        f2fs_put_page(page, 1);
1766                        page = NULL;
1767                }
1768        }
1769        if (page) {
1770                set_page_dirty(page);
1771                f2fs_put_page(page, 1);
1772        }
1773}
1774
1775static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776                                        block_t blkaddr, int type)
1777{
1778        int i, end;
1779        if (IS_DATASEG(type))
1780                end = type + NR_CURSEG_DATA_TYPE;
1781        else
1782                end = type + NR_CURSEG_NODE_TYPE;
1783
1784        for (i = type; i < end; i++)
1785                write_current_sum_page(sbi, i, blkaddr + (i - type));
1786}
1787
1788void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789{
1790        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791                write_compacted_summaries(sbi, start_blk);
1792        else
1793                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794}
1795
1796void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797{
1798        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799}
1800
1801int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802                                        unsigned int val, int alloc)
1803{
1804        int i;
1805
1806        if (type == NAT_JOURNAL) {
1807                for (i = 0; i < nats_in_cursum(journal); i++) {
1808                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809                                return i;
1810                }
1811                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812                        return update_nats_in_cursum(journal, 1);
1813        } else if (type == SIT_JOURNAL) {
1814                for (i = 0; i < sits_in_cursum(journal); i++)
1815                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816                                return i;
1817                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818                        return update_sits_in_cursum(journal, 1);
1819        }
1820        return -1;
1821}
1822
1823static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824                                        unsigned int segno)
1825{
1826        return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827}
1828
1829static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830                                        unsigned int start)
1831{
1832        struct sit_info *sit_i = SIT_I(sbi);
1833        struct page *src_page, *dst_page;
1834        pgoff_t src_off, dst_off;
1835        void *src_addr, *dst_addr;
1836
1837        src_off = current_sit_addr(sbi, start);
1838        dst_off = next_sit_addr(sbi, src_off);
1839
1840        /* get current sit block page without lock */
1841        src_page = get_meta_page(sbi, src_off);
1842        dst_page = grab_meta_page(sbi, dst_off);
1843        f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845        src_addr = page_address(src_page);
1846        dst_addr = page_address(dst_page);
1847        memcpy(dst_addr, src_addr, PAGE_SIZE);
1848
1849        set_page_dirty(dst_page);
1850        f2fs_put_page(src_page, 1);
1851
1852        set_to_next_sit(sit_i, start);
1853
1854        return dst_page;
1855}
1856
1857static struct sit_entry_set *grab_sit_entry_set(void)
1858{
1859        struct sit_entry_set *ses =
1860                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1861
1862        ses->entry_cnt = 0;
1863        INIT_LIST_HEAD(&ses->set_list);
1864        return ses;
1865}
1866
1867static void release_sit_entry_set(struct sit_entry_set *ses)
1868{
1869        list_del(&ses->set_list);
1870        kmem_cache_free(sit_entry_set_slab, ses);
1871}
1872
1873static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874                                                struct list_head *head)
1875{
1876        struct sit_entry_set *next = ses;
1877
1878        if (list_is_last(&ses->set_list, head))
1879                return;
1880
1881        list_for_each_entry_continue(next, head, set_list)
1882                if (ses->entry_cnt <= next->entry_cnt)
1883                        break;
1884
1885        list_move_tail(&ses->set_list, &next->set_list);
1886}
1887
1888static void add_sit_entry(unsigned int segno, struct list_head *head)
1889{
1890        struct sit_entry_set *ses;
1891        unsigned int start_segno = START_SEGNO(segno);
1892
1893        list_for_each_entry(ses, head, set_list) {
1894                if (ses->start_segno == start_segno) {
1895                        ses->entry_cnt++;
1896                        adjust_sit_entry_set(ses, head);
1897                        return;
1898                }
1899        }
1900
1901        ses = grab_sit_entry_set();
1902
1903        ses->start_segno = start_segno;
1904        ses->entry_cnt++;
1905        list_add(&ses->set_list, head);
1906}
1907
1908static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909{
1910        struct f2fs_sm_info *sm_info = SM_I(sbi);
1911        struct list_head *set_list = &sm_info->sit_entry_set;
1912        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913        unsigned int segno;
1914
1915        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916                add_sit_entry(segno, set_list);
1917}
1918
1919static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920{
1921        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922        struct f2fs_journal *journal = curseg->journal;
1923        int i;
1924
1925        down_write(&curseg->journal_rwsem);
1926        for (i = 0; i < sits_in_cursum(journal); i++) {
1927                unsigned int segno;
1928                bool dirtied;
1929
1930                segno = le32_to_cpu(segno_in_journal(journal, i));
1931                dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933                if (!dirtied)
1934                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935        }
1936        update_sits_in_cursum(journal, -i);
1937        up_write(&curseg->journal_rwsem);
1938}
1939
1940/*
1941 * CP calls this function, which flushes SIT entries including sit_journal,
1942 * and moves prefree segs to free segs.
1943 */
1944void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945{
1946        struct sit_info *sit_i = SIT_I(sbi);
1947        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949        struct f2fs_journal *journal = curseg->journal;
1950        struct sit_entry_set *ses, *tmp;
1951        struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952        bool to_journal = true;
1953        struct seg_entry *se;
1954
1955        mutex_lock(&sit_i->sentry_lock);
1956
1957        if (!sit_i->dirty_sentries)
1958                goto out;
1959
1960        /*
1961         * add and account sit entries of dirty bitmap in sit entry
1962         * set temporarily
1963         */
1964        add_sits_in_set(sbi);
1965
1966        /*
1967         * if there are no enough space in journal to store dirty sit
1968         * entries, remove all entries from journal and add and account
1969         * them in sit entry set.
1970         */
1971        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
1972                remove_sits_in_journal(sbi);
1973
1974        /*
1975         * there are two steps to flush sit entries:
1976         * #1, flush sit entries to journal in current cold data summary block.
1977         * #2, flush sit entries to sit page.
1978         */
1979        list_for_each_entry_safe(ses, tmp, head, set_list) {
1980                struct page *page = NULL;
1981                struct f2fs_sit_block *raw_sit = NULL;
1982                unsigned int start_segno = ses->start_segno;
1983                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984                                                (unsigned long)MAIN_SEGS(sbi));
1985                unsigned int segno = start_segno;
1986
1987                if (to_journal &&
1988                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989                        to_journal = false;
1990
1991                if (to_journal) {
1992                        down_write(&curseg->journal_rwsem);
1993                } else {
1994                        page = get_next_sit_page(sbi, start_segno);
1995                        raw_sit = page_address(page);
1996                }
1997
1998                /* flush dirty sit entries in region of current sit set */
1999                for_each_set_bit_from(segno, bitmap, end) {
2000                        int offset, sit_offset;
2001
2002                        se = get_seg_entry(sbi, segno);
2003
2004                        /* add discard candidates */
2005                        if (cpc->reason != CP_DISCARD) {
2006                                cpc->trim_start = segno;
2007                                add_discard_addrs(sbi, cpc);
2008                        }
2009
2010                        if (to_journal) {
2011                                offset = lookup_journal_in_cursum(journal,
2012                                                        SIT_JOURNAL, segno, 1);
2013                                f2fs_bug_on(sbi, offset < 0);
2014                                segno_in_journal(journal, offset) =
2015                                                        cpu_to_le32(segno);
2016                                seg_info_to_raw_sit(se,
2017                                        &sit_in_journal(journal, offset));
2018                        } else {
2019                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020                                seg_info_to_raw_sit(se,
2021                                                &raw_sit->entries[sit_offset]);
2022                        }
2023
2024                        __clear_bit(segno, bitmap);
2025                        sit_i->dirty_sentries--;
2026                        ses->entry_cnt--;
2027                }
2028
2029                if (to_journal)
2030                        up_write(&curseg->journal_rwsem);
2031                else
2032                        f2fs_put_page(page, 1);
2033
2034                f2fs_bug_on(sbi, ses->entry_cnt);
2035                release_sit_entry_set(ses);
2036        }
2037
2038        f2fs_bug_on(sbi, !list_empty(head));
2039        f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040out:
2041        if (cpc->reason == CP_DISCARD) {
2042                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043                        add_discard_addrs(sbi, cpc);
2044        }
2045        mutex_unlock(&sit_i->sentry_lock);
2046
2047        set_prefree_as_free_segments(sbi);
2048}
2049
2050static int build_sit_info(struct f2fs_sb_info *sbi)
2051{
2052        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054        struct sit_info *sit_i;
2055        unsigned int sit_segs, start;
2056        char *src_bitmap, *dst_bitmap;
2057        unsigned int bitmap_size;
2058
2059        /* allocate memory for SIT information */
2060        sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061        if (!sit_i)
2062                return -ENOMEM;
2063
2064        SM_I(sbi)->sit_info = sit_i;
2065
2066        sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067                                        sizeof(struct seg_entry), GFP_KERNEL);
2068        if (!sit_i->sentries)
2069                return -ENOMEM;
2070
2071        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2073        if (!sit_i->dirty_sentries_bitmap)
2074                return -ENOMEM;
2075
2076        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077                sit_i->sentries[start].cur_valid_map
2078                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079                sit_i->sentries[start].ckpt_valid_map
2080                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081                sit_i->sentries[start].discard_map
2082                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083                if (!sit_i->sentries[start].cur_valid_map ||
2084                                !sit_i->sentries[start].ckpt_valid_map ||
2085                                !sit_i->sentries[start].discard_map)
2086                        return -ENOMEM;
2087        }
2088
2089        sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090        if (!sit_i->tmp_map)
2091                return -ENOMEM;
2092
2093        if (sbi->segs_per_sec > 1) {
2094                sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095                                        sizeof(struct sec_entry), GFP_KERNEL);
2096                if (!sit_i->sec_entries)
2097                        return -ENOMEM;
2098        }
2099
2100        /* get information related with SIT */
2101        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103        /* setup SIT bitmap from ckeckpoint pack */
2104        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107        dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108        if (!dst_bitmap)
2109                return -ENOMEM;
2110
2111        /* init SIT information */
2112        sit_i->s_ops = &default_salloc_ops;
2113
2114        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116        sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117        sit_i->sit_bitmap = dst_bitmap;
2118        sit_i->bitmap_size = bitmap_size;
2119        sit_i->dirty_sentries = 0;
2120        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122        sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123        mutex_init(&sit_i->sentry_lock);
2124        return 0;
2125}
2126
2127static int build_free_segmap(struct f2fs_sb_info *sbi)
2128{
2129        struct free_segmap_info *free_i;
2130        unsigned int bitmap_size, sec_bitmap_size;
2131
2132        /* allocate memory for free segmap information */
2133        free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134        if (!free_i)
2135                return -ENOMEM;
2136
2137        SM_I(sbi)->free_info = free_i;
2138
2139        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140        free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141        if (!free_i->free_segmap)
2142                return -ENOMEM;
2143
2144        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145        free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146        if (!free_i->free_secmap)
2147                return -ENOMEM;
2148
2149        /* set all segments as dirty temporarily */
2150        memset(free_i->free_segmap, 0xff, bitmap_size);
2151        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153        /* init free segmap information */
2154        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155        free_i->free_segments = 0;
2156        free_i->free_sections = 0;
2157        spin_lock_init(&free_i->segmap_lock);
2158        return 0;
2159}
2160
2161static int build_curseg(struct f2fs_sb_info *sbi)
2162{
2163        struct curseg_info *array;
2164        int i;
2165
2166        array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2167        if (!array)
2168                return -ENOMEM;
2169
2170        SM_I(sbi)->curseg_array = array;
2171
2172        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173                mutex_init(&array[i].curseg_mutex);
2174                array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2175                if (!array[i].sum_blk)
2176                        return -ENOMEM;
2177                init_rwsem(&array[i].journal_rwsem);
2178                array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179                                                        GFP_KERNEL);
2180                if (!array[i].journal)
2181                        return -ENOMEM;
2182                array[i].segno = NULL_SEGNO;
2183                array[i].next_blkoff = 0;
2184        }
2185        return restore_curseg_summaries(sbi);
2186}
2187
2188static void build_sit_entries(struct f2fs_sb_info *sbi)
2189{
2190        struct sit_info *sit_i = SIT_I(sbi);
2191        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192        struct f2fs_journal *journal = curseg->journal;
2193        int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194        unsigned int i, start, end;
2195        unsigned int readed, start_blk = 0;
2196        int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2197
2198        do {
2199                readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2200
2201                start = start_blk * sit_i->sents_per_block;
2202                end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204                for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205                        struct seg_entry *se = &sit_i->sentries[start];
2206                        struct f2fs_sit_block *sit_blk;
2207                        struct f2fs_sit_entry sit;
2208                        struct page *page;
2209
2210                        down_read(&curseg->journal_rwsem);
2211                        for (i = 0; i < sits_in_cursum(journal); i++) {
2212                                if (le32_to_cpu(segno_in_journal(journal, i))
2213                                                                == start) {
2214                                        sit = sit_in_journal(journal, i);
2215                                        up_read(&curseg->journal_rwsem);
2216                                        goto got_it;
2217                                }
2218                        }
2219                        up_read(&curseg->journal_rwsem);
2220
2221                        page = get_current_sit_page(sbi, start);
2222                        sit_blk = (struct f2fs_sit_block *)page_address(page);
2223                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224                        f2fs_put_page(page, 1);
2225got_it:
2226                        check_block_count(sbi, start, &sit);
2227                        seg_info_from_raw_sit(se, &sit);
2228
2229                        /* build discard map only one time */
2230                        memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231                        sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2232
2233                        if (sbi->segs_per_sec > 1) {
2234                                struct sec_entry *e = get_sec_entry(sbi, start);
2235                                e->valid_blocks += se->valid_blocks;
2236                        }
2237                }
2238                start_blk += readed;
2239        } while (start_blk < sit_blk_cnt);
2240}
2241
2242static void init_free_segmap(struct f2fs_sb_info *sbi)
2243{
2244        unsigned int start;
2245        int type;
2246
2247        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248                struct seg_entry *sentry = get_seg_entry(sbi, start);
2249                if (!sentry->valid_blocks)
2250                        __set_free(sbi, start);
2251        }
2252
2253        /* set use the current segments */
2254        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2256                __set_test_and_inuse(sbi, curseg_t->segno);
2257        }
2258}
2259
2260static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261{
2262        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263        struct free_segmap_info *free_i = FREE_I(sbi);
2264        unsigned int segno = 0, offset = 0;
2265        unsigned short valid_blocks;
2266
2267        while (1) {
2268                /* find dirty segment based on free segmap */
2269                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270                if (segno >= MAIN_SEGS(sbi))
2271                        break;
2272                offset = segno + 1;
2273                valid_blocks = get_valid_blocks(sbi, segno, 0);
2274                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2275                        continue;
2276                if (valid_blocks > sbi->blocks_per_seg) {
2277                        f2fs_bug_on(sbi, 1);
2278                        continue;
2279                }
2280                mutex_lock(&dirty_i->seglist_lock);
2281                __locate_dirty_segment(sbi, segno, DIRTY);
2282                mutex_unlock(&dirty_i->seglist_lock);
2283        }
2284}
2285
2286static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287{
2288        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291        dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292        if (!dirty_i->victim_secmap)
2293                return -ENOMEM;
2294        return 0;
2295}
2296
2297static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298{
2299        struct dirty_seglist_info *dirty_i;
2300        unsigned int bitmap_size, i;
2301
2302        /* allocate memory for dirty segments list information */
2303        dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2304        if (!dirty_i)
2305                return -ENOMEM;
2306
2307        SM_I(sbi)->dirty_info = dirty_i;
2308        mutex_init(&dirty_i->seglist_lock);
2309
2310        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312        for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2314                if (!dirty_i->dirty_segmap[i])
2315                        return -ENOMEM;
2316        }
2317
2318        init_dirty_segmap(sbi);
2319        return init_victim_secmap(sbi);
2320}
2321
2322/*
2323 * Update min, max modified time for cost-benefit GC algorithm
2324 */
2325static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326{
2327        struct sit_info *sit_i = SIT_I(sbi);
2328        unsigned int segno;
2329
2330        mutex_lock(&sit_i->sentry_lock);
2331
2332        sit_i->min_mtime = LLONG_MAX;
2333
2334        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335                unsigned int i;
2336                unsigned long long mtime = 0;
2337
2338                for (i = 0; i < sbi->segs_per_sec; i++)
2339                        mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341                mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343                if (sit_i->min_mtime > mtime)
2344                        sit_i->min_mtime = mtime;
2345        }
2346        sit_i->max_mtime = get_mtime(sbi);
2347        mutex_unlock(&sit_i->sentry_lock);
2348}
2349
2350int build_segment_manager(struct f2fs_sb_info *sbi)
2351{
2352        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354        struct f2fs_sm_info *sm_info;
2355        int err;
2356
2357        sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358        if (!sm_info)
2359                return -ENOMEM;
2360
2361        /* init sm info */
2362        sbi->sm_info = sm_info;
2363        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370        sm_info->rec_prefree_segments = sm_info->main_segments *
2371                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372        sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2373        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2375
2376        INIT_LIST_HEAD(&sm_info->discard_list);
2377        sm_info->nr_discards = 0;
2378        sm_info->max_discards = 0;
2379
2380        sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382        INIT_LIST_HEAD(&sm_info->sit_entry_set);
2383
2384        if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385                err = create_flush_cmd_control(sbi);
2386                if (err)
2387                        return err;
2388        }
2389
2390        err = build_sit_info(sbi);
2391        if (err)
2392                return err;
2393        err = build_free_segmap(sbi);
2394        if (err)
2395                return err;
2396        err = build_curseg(sbi);
2397        if (err)
2398                return err;
2399
2400        /* reinit free segmap based on SIT */
2401        build_sit_entries(sbi);
2402
2403        init_free_segmap(sbi);
2404        err = build_dirty_segmap(sbi);
2405        if (err)
2406                return err;
2407
2408        init_min_max_mtime(sbi);
2409        return 0;
2410}
2411
2412static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413                enum dirty_type dirty_type)
2414{
2415        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417        mutex_lock(&dirty_i->seglist_lock);
2418        kvfree(dirty_i->dirty_segmap[dirty_type]);
2419        dirty_i->nr_dirty[dirty_type] = 0;
2420        mutex_unlock(&dirty_i->seglist_lock);
2421}
2422
2423static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424{
2425        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2426        kvfree(dirty_i->victim_secmap);
2427}
2428
2429static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430{
2431        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432        int i;
2433
2434        if (!dirty_i)
2435                return;
2436
2437        /* discard pre-free/dirty segments list */
2438        for (i = 0; i < NR_DIRTY_TYPE; i++)
2439                discard_dirty_segmap(sbi, i);
2440
2441        destroy_victim_secmap(sbi);
2442        SM_I(sbi)->dirty_info = NULL;
2443        kfree(dirty_i);
2444}
2445
2446static void destroy_curseg(struct f2fs_sb_info *sbi)
2447{
2448        struct curseg_info *array = SM_I(sbi)->curseg_array;
2449        int i;
2450
2451        if (!array)
2452                return;
2453        SM_I(sbi)->curseg_array = NULL;
2454        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455                kfree(array[i].sum_blk);
2456                kfree(array[i].journal);
2457        }
2458        kfree(array);
2459}
2460
2461static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462{
2463        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2464        if (!free_i)
2465                return;
2466        SM_I(sbi)->free_info = NULL;
2467        kvfree(free_i->free_segmap);
2468        kvfree(free_i->free_secmap);
2469        kfree(free_i);
2470}
2471
2472static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473{
2474        struct sit_info *sit_i = SIT_I(sbi);
2475        unsigned int start;
2476
2477        if (!sit_i)
2478                return;
2479
2480        if (sit_i->sentries) {
2481                for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482                        kfree(sit_i->sentries[start].cur_valid_map);
2483                        kfree(sit_i->sentries[start].ckpt_valid_map);
2484                        kfree(sit_i->sentries[start].discard_map);
2485                }
2486        }
2487        kfree(sit_i->tmp_map);
2488
2489        kvfree(sit_i->sentries);
2490        kvfree(sit_i->sec_entries);
2491        kvfree(sit_i->dirty_sentries_bitmap);
2492
2493        SM_I(sbi)->sit_info = NULL;
2494        kfree(sit_i->sit_bitmap);
2495        kfree(sit_i);
2496}
2497
2498void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499{
2500        struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502        if (!sm_info)
2503                return;
2504        destroy_flush_cmd_control(sbi);
2505        destroy_dirty_segmap(sbi);
2506        destroy_curseg(sbi);
2507        destroy_free_segmap(sbi);
2508        destroy_sit_info(sbi);
2509        sbi->sm_info = NULL;
2510        kfree(sm_info);
2511}
2512
2513int __init create_segment_manager_caches(void)
2514{
2515        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516                        sizeof(struct discard_entry));
2517        if (!discard_entry_slab)
2518                goto fail;
2519
2520        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2521                        sizeof(struct sit_entry_set));
2522        if (!sit_entry_set_slab)
2523                goto destory_discard_entry;
2524
2525        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526                        sizeof(struct inmem_pages));
2527        if (!inmem_entry_slab)
2528                goto destroy_sit_entry_set;
2529        return 0;
2530
2531destroy_sit_entry_set:
2532        kmem_cache_destroy(sit_entry_set_slab);
2533destory_discard_entry:
2534        kmem_cache_destroy(discard_entry_slab);
2535fail:
2536        return -ENOMEM;
2537}
2538
2539void destroy_segment_manager_caches(void)
2540{
2541        kmem_cache_destroy(sit_entry_set_slab);
2542        kmem_cache_destroy(discard_entry_slab);
2543        kmem_cache_destroy(inmem_entry_slab);
2544}
2545