linux/fs/f2fs/super.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
  33#include "trace.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/f2fs.h>
  37
  38static struct proc_dir_entry *f2fs_proc_root;
  39static struct kmem_cache *f2fs_inode_cachep;
  40static struct kset *f2fs_kset;
  41
  42/* f2fs-wide shrinker description */
  43static struct shrinker f2fs_shrinker_info = {
  44        .scan_objects = f2fs_shrink_scan,
  45        .count_objects = f2fs_shrink_count,
  46        .seeks = DEFAULT_SEEKS,
  47};
  48
  49enum {
  50        Opt_gc_background,
  51        Opt_disable_roll_forward,
  52        Opt_norecovery,
  53        Opt_discard,
  54        Opt_noheap,
  55        Opt_user_xattr,
  56        Opt_nouser_xattr,
  57        Opt_acl,
  58        Opt_noacl,
  59        Opt_active_logs,
  60        Opt_disable_ext_identify,
  61        Opt_inline_xattr,
  62        Opt_inline_data,
  63        Opt_inline_dentry,
  64        Opt_flush_merge,
  65        Opt_nobarrier,
  66        Opt_fastboot,
  67        Opt_extent_cache,
  68        Opt_noextent_cache,
  69        Opt_noinline_data,
  70        Opt_data_flush,
  71        Opt_err,
  72};
  73
  74static match_table_t f2fs_tokens = {
  75        {Opt_gc_background, "background_gc=%s"},
  76        {Opt_disable_roll_forward, "disable_roll_forward"},
  77        {Opt_norecovery, "norecovery"},
  78        {Opt_discard, "discard"},
  79        {Opt_noheap, "no_heap"},
  80        {Opt_user_xattr, "user_xattr"},
  81        {Opt_nouser_xattr, "nouser_xattr"},
  82        {Opt_acl, "acl"},
  83        {Opt_noacl, "noacl"},
  84        {Opt_active_logs, "active_logs=%u"},
  85        {Opt_disable_ext_identify, "disable_ext_identify"},
  86        {Opt_inline_xattr, "inline_xattr"},
  87        {Opt_inline_data, "inline_data"},
  88        {Opt_inline_dentry, "inline_dentry"},
  89        {Opt_flush_merge, "flush_merge"},
  90        {Opt_nobarrier, "nobarrier"},
  91        {Opt_fastboot, "fastboot"},
  92        {Opt_extent_cache, "extent_cache"},
  93        {Opt_noextent_cache, "noextent_cache"},
  94        {Opt_noinline_data, "noinline_data"},
  95        {Opt_data_flush, "data_flush"},
  96        {Opt_err, NULL},
  97};
  98
  99/* Sysfs support for f2fs */
 100enum {
 101        GC_THREAD,      /* struct f2fs_gc_thread */
 102        SM_INFO,        /* struct f2fs_sm_info */
 103        NM_INFO,        /* struct f2fs_nm_info */
 104        F2FS_SBI,       /* struct f2fs_sb_info */
 105};
 106
 107struct f2fs_attr {
 108        struct attribute attr;
 109        ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
 110        ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
 111                         const char *, size_t);
 112        int struct_type;
 113        int offset;
 114};
 115
 116static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
 117{
 118        if (struct_type == GC_THREAD)
 119                return (unsigned char *)sbi->gc_thread;
 120        else if (struct_type == SM_INFO)
 121                return (unsigned char *)SM_I(sbi);
 122        else if (struct_type == NM_INFO)
 123                return (unsigned char *)NM_I(sbi);
 124        else if (struct_type == F2FS_SBI)
 125                return (unsigned char *)sbi;
 126        return NULL;
 127}
 128
 129static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
 130                struct f2fs_sb_info *sbi, char *buf)
 131{
 132        struct super_block *sb = sbi->sb;
 133
 134        if (!sb->s_bdev->bd_part)
 135                return snprintf(buf, PAGE_SIZE, "0\n");
 136
 137        return snprintf(buf, PAGE_SIZE, "%llu\n",
 138                (unsigned long long)(sbi->kbytes_written +
 139                        BD_PART_WRITTEN(sbi)));
 140}
 141
 142static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 143                        struct f2fs_sb_info *sbi, char *buf)
 144{
 145        unsigned char *ptr = NULL;
 146        unsigned int *ui;
 147
 148        ptr = __struct_ptr(sbi, a->struct_type);
 149        if (!ptr)
 150                return -EINVAL;
 151
 152        ui = (unsigned int *)(ptr + a->offset);
 153
 154        return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 155}
 156
 157static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 158                        struct f2fs_sb_info *sbi,
 159                        const char *buf, size_t count)
 160{
 161        unsigned char *ptr;
 162        unsigned long t;
 163        unsigned int *ui;
 164        ssize_t ret;
 165
 166        ptr = __struct_ptr(sbi, a->struct_type);
 167        if (!ptr)
 168                return -EINVAL;
 169
 170        ui = (unsigned int *)(ptr + a->offset);
 171
 172        ret = kstrtoul(skip_spaces(buf), 0, &t);
 173        if (ret < 0)
 174                return ret;
 175        *ui = t;
 176        return count;
 177}
 178
 179static ssize_t f2fs_attr_show(struct kobject *kobj,
 180                                struct attribute *attr, char *buf)
 181{
 182        struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 183                                                                s_kobj);
 184        struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 185
 186        return a->show ? a->show(a, sbi, buf) : 0;
 187}
 188
 189static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 190                                                const char *buf, size_t len)
 191{
 192        struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 193                                                                        s_kobj);
 194        struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 195
 196        return a->store ? a->store(a, sbi, buf, len) : 0;
 197}
 198
 199static void f2fs_sb_release(struct kobject *kobj)
 200{
 201        struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 202                                                                s_kobj);
 203        complete(&sbi->s_kobj_unregister);
 204}
 205
 206#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 207static struct f2fs_attr f2fs_attr_##_name = {                   \
 208        .attr = {.name = __stringify(_name), .mode = _mode },   \
 209        .show   = _show,                                        \
 210        .store  = _store,                                       \
 211        .struct_type = _struct_type,                            \
 212        .offset = _offset                                       \
 213}
 214
 215#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
 216        F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
 217                f2fs_sbi_show, f2fs_sbi_store,                  \
 218                offsetof(struct struct_name, elname))
 219
 220#define F2FS_GENERAL_RO_ATTR(name) \
 221static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
 222
 223F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 224F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 225F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 226F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 227F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 228F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 229F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
 230F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 231F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 232F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
 233F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 234F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
 235F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
 236F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 237F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 238F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
 239F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
 240F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
 241
 242#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 243static struct attribute *f2fs_attrs[] = {
 244        ATTR_LIST(gc_min_sleep_time),
 245        ATTR_LIST(gc_max_sleep_time),
 246        ATTR_LIST(gc_no_gc_sleep_time),
 247        ATTR_LIST(gc_idle),
 248        ATTR_LIST(reclaim_segments),
 249        ATTR_LIST(max_small_discards),
 250        ATTR_LIST(batched_trim_sections),
 251        ATTR_LIST(ipu_policy),
 252        ATTR_LIST(min_ipu_util),
 253        ATTR_LIST(min_fsync_blocks),
 254        ATTR_LIST(max_victim_search),
 255        ATTR_LIST(dir_level),
 256        ATTR_LIST(ram_thresh),
 257        ATTR_LIST(ra_nid_pages),
 258        ATTR_LIST(dirty_nats_ratio),
 259        ATTR_LIST(cp_interval),
 260        ATTR_LIST(idle_interval),
 261        ATTR_LIST(lifetime_write_kbytes),
 262        NULL,
 263};
 264
 265static const struct sysfs_ops f2fs_attr_ops = {
 266        .show   = f2fs_attr_show,
 267        .store  = f2fs_attr_store,
 268};
 269
 270static struct kobj_type f2fs_ktype = {
 271        .default_attrs  = f2fs_attrs,
 272        .sysfs_ops      = &f2fs_attr_ops,
 273        .release        = f2fs_sb_release,
 274};
 275
 276void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 277{
 278        struct va_format vaf;
 279        va_list args;
 280
 281        va_start(args, fmt);
 282        vaf.fmt = fmt;
 283        vaf.va = &args;
 284        printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 285        va_end(args);
 286}
 287
 288static void init_once(void *foo)
 289{
 290        struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 291
 292        inode_init_once(&fi->vfs_inode);
 293}
 294
 295static int parse_options(struct super_block *sb, char *options)
 296{
 297        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 298        struct request_queue *q;
 299        substring_t args[MAX_OPT_ARGS];
 300        char *p, *name;
 301        int arg = 0;
 302
 303        if (!options)
 304                return 0;
 305
 306        while ((p = strsep(&options, ",")) != NULL) {
 307                int token;
 308                if (!*p)
 309                        continue;
 310                /*
 311                 * Initialize args struct so we know whether arg was
 312                 * found; some options take optional arguments.
 313                 */
 314                args[0].to = args[0].from = NULL;
 315                token = match_token(p, f2fs_tokens, args);
 316
 317                switch (token) {
 318                case Opt_gc_background:
 319                        name = match_strdup(&args[0]);
 320
 321                        if (!name)
 322                                return -ENOMEM;
 323                        if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
 324                                set_opt(sbi, BG_GC);
 325                                clear_opt(sbi, FORCE_FG_GC);
 326                        } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
 327                                clear_opt(sbi, BG_GC);
 328                                clear_opt(sbi, FORCE_FG_GC);
 329                        } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
 330                                set_opt(sbi, BG_GC);
 331                                set_opt(sbi, FORCE_FG_GC);
 332                        } else {
 333                                kfree(name);
 334                                return -EINVAL;
 335                        }
 336                        kfree(name);
 337                        break;
 338                case Opt_disable_roll_forward:
 339                        set_opt(sbi, DISABLE_ROLL_FORWARD);
 340                        break;
 341                case Opt_norecovery:
 342                        /* this option mounts f2fs with ro */
 343                        set_opt(sbi, DISABLE_ROLL_FORWARD);
 344                        if (!f2fs_readonly(sb))
 345                                return -EINVAL;
 346                        break;
 347                case Opt_discard:
 348                        q = bdev_get_queue(sb->s_bdev);
 349                        if (blk_queue_discard(q)) {
 350                                set_opt(sbi, DISCARD);
 351                        } else {
 352                                f2fs_msg(sb, KERN_WARNING,
 353                                        "mounting with \"discard\" option, but "
 354                                        "the device does not support discard");
 355                        }
 356                        break;
 357                case Opt_noheap:
 358                        set_opt(sbi, NOHEAP);
 359                        break;
 360#ifdef CONFIG_F2FS_FS_XATTR
 361                case Opt_user_xattr:
 362                        set_opt(sbi, XATTR_USER);
 363                        break;
 364                case Opt_nouser_xattr:
 365                        clear_opt(sbi, XATTR_USER);
 366                        break;
 367                case Opt_inline_xattr:
 368                        set_opt(sbi, INLINE_XATTR);
 369                        break;
 370#else
 371                case Opt_user_xattr:
 372                        f2fs_msg(sb, KERN_INFO,
 373                                "user_xattr options not supported");
 374                        break;
 375                case Opt_nouser_xattr:
 376                        f2fs_msg(sb, KERN_INFO,
 377                                "nouser_xattr options not supported");
 378                        break;
 379                case Opt_inline_xattr:
 380                        f2fs_msg(sb, KERN_INFO,
 381                                "inline_xattr options not supported");
 382                        break;
 383#endif
 384#ifdef CONFIG_F2FS_FS_POSIX_ACL
 385                case Opt_acl:
 386                        set_opt(sbi, POSIX_ACL);
 387                        break;
 388                case Opt_noacl:
 389                        clear_opt(sbi, POSIX_ACL);
 390                        break;
 391#else
 392                case Opt_acl:
 393                        f2fs_msg(sb, KERN_INFO, "acl options not supported");
 394                        break;
 395                case Opt_noacl:
 396                        f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 397                        break;
 398#endif
 399                case Opt_active_logs:
 400                        if (args->from && match_int(args, &arg))
 401                                return -EINVAL;
 402                        if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 403                                return -EINVAL;
 404                        sbi->active_logs = arg;
 405                        break;
 406                case Opt_disable_ext_identify:
 407                        set_opt(sbi, DISABLE_EXT_IDENTIFY);
 408                        break;
 409                case Opt_inline_data:
 410                        set_opt(sbi, INLINE_DATA);
 411                        break;
 412                case Opt_inline_dentry:
 413                        set_opt(sbi, INLINE_DENTRY);
 414                        break;
 415                case Opt_flush_merge:
 416                        set_opt(sbi, FLUSH_MERGE);
 417                        break;
 418                case Opt_nobarrier:
 419                        set_opt(sbi, NOBARRIER);
 420                        break;
 421                case Opt_fastboot:
 422                        set_opt(sbi, FASTBOOT);
 423                        break;
 424                case Opt_extent_cache:
 425                        set_opt(sbi, EXTENT_CACHE);
 426                        break;
 427                case Opt_noextent_cache:
 428                        clear_opt(sbi, EXTENT_CACHE);
 429                        break;
 430                case Opt_noinline_data:
 431                        clear_opt(sbi, INLINE_DATA);
 432                        break;
 433                case Opt_data_flush:
 434                        set_opt(sbi, DATA_FLUSH);
 435                        break;
 436                default:
 437                        f2fs_msg(sb, KERN_ERR,
 438                                "Unrecognized mount option \"%s\" or missing value",
 439                                p);
 440                        return -EINVAL;
 441                }
 442        }
 443        return 0;
 444}
 445
 446static struct inode *f2fs_alloc_inode(struct super_block *sb)
 447{
 448        struct f2fs_inode_info *fi;
 449
 450        fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 451        if (!fi)
 452                return NULL;
 453
 454        init_once((void *) fi);
 455
 456        /* Initialize f2fs-specific inode info */
 457        fi->vfs_inode.i_version = 1;
 458        atomic_set(&fi->dirty_pages, 0);
 459        fi->i_current_depth = 1;
 460        fi->i_advise = 0;
 461        init_rwsem(&fi->i_sem);
 462        INIT_LIST_HEAD(&fi->dirty_list);
 463        INIT_LIST_HEAD(&fi->inmem_pages);
 464        mutex_init(&fi->inmem_lock);
 465
 466        set_inode_flag(fi, FI_NEW_INODE);
 467
 468        if (test_opt(F2FS_SB(sb), INLINE_XATTR))
 469                set_inode_flag(fi, FI_INLINE_XATTR);
 470
 471        /* Will be used by directory only */
 472        fi->i_dir_level = F2FS_SB(sb)->dir_level;
 473        return &fi->vfs_inode;
 474}
 475
 476static int f2fs_drop_inode(struct inode *inode)
 477{
 478        /*
 479         * This is to avoid a deadlock condition like below.
 480         * writeback_single_inode(inode)
 481         *  - f2fs_write_data_page
 482         *    - f2fs_gc -> iput -> evict
 483         *       - inode_wait_for_writeback(inode)
 484         */
 485        if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
 486                if (!inode->i_nlink && !is_bad_inode(inode)) {
 487                        /* to avoid evict_inode call simultaneously */
 488                        atomic_inc(&inode->i_count);
 489                        spin_unlock(&inode->i_lock);
 490
 491                        /* some remained atomic pages should discarded */
 492                        if (f2fs_is_atomic_file(inode))
 493                                drop_inmem_pages(inode);
 494
 495                        /* should remain fi->extent_tree for writepage */
 496                        f2fs_destroy_extent_node(inode);
 497
 498                        sb_start_intwrite(inode->i_sb);
 499                        i_size_write(inode, 0);
 500
 501                        if (F2FS_HAS_BLOCKS(inode))
 502                                f2fs_truncate(inode, true);
 503
 504                        sb_end_intwrite(inode->i_sb);
 505
 506                        fscrypt_put_encryption_info(inode, NULL);
 507                        spin_lock(&inode->i_lock);
 508                        atomic_dec(&inode->i_count);
 509                }
 510                return 0;
 511        }
 512        return generic_drop_inode(inode);
 513}
 514
 515/*
 516 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 517 *
 518 * We should call set_dirty_inode to write the dirty inode through write_inode.
 519 */
 520static void f2fs_dirty_inode(struct inode *inode, int flags)
 521{
 522        set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
 523}
 524
 525static void f2fs_i_callback(struct rcu_head *head)
 526{
 527        struct inode *inode = container_of(head, struct inode, i_rcu);
 528        kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 529}
 530
 531static void f2fs_destroy_inode(struct inode *inode)
 532{
 533        call_rcu(&inode->i_rcu, f2fs_i_callback);
 534}
 535
 536static void f2fs_put_super(struct super_block *sb)
 537{
 538        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 539
 540        if (sbi->s_proc) {
 541                remove_proc_entry("segment_info", sbi->s_proc);
 542                remove_proc_entry(sb->s_id, f2fs_proc_root);
 543        }
 544        kobject_del(&sbi->s_kobj);
 545
 546        stop_gc_thread(sbi);
 547
 548        /* prevent remaining shrinker jobs */
 549        mutex_lock(&sbi->umount_mutex);
 550
 551        /*
 552         * We don't need to do checkpoint when superblock is clean.
 553         * But, the previous checkpoint was not done by umount, it needs to do
 554         * clean checkpoint again.
 555         */
 556        if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
 557                        !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
 558                struct cp_control cpc = {
 559                        .reason = CP_UMOUNT,
 560                };
 561                write_checkpoint(sbi, &cpc);
 562        }
 563
 564        /* write_checkpoint can update stat informaion */
 565        f2fs_destroy_stats(sbi);
 566
 567        /*
 568         * normally superblock is clean, so we need to release this.
 569         * In addition, EIO will skip do checkpoint, we need this as well.
 570         */
 571        release_ino_entry(sbi);
 572        release_discard_addrs(sbi);
 573
 574        f2fs_leave_shrinker(sbi);
 575        mutex_unlock(&sbi->umount_mutex);
 576
 577        /* our cp_error case, we can wait for any writeback page */
 578        if (get_pages(sbi, F2FS_WRITEBACK))
 579                f2fs_flush_merged_bios(sbi);
 580
 581        iput(sbi->node_inode);
 582        iput(sbi->meta_inode);
 583
 584        /* destroy f2fs internal modules */
 585        destroy_node_manager(sbi);
 586        destroy_segment_manager(sbi);
 587
 588        kfree(sbi->ckpt);
 589        kobject_put(&sbi->s_kobj);
 590        wait_for_completion(&sbi->s_kobj_unregister);
 591
 592        sb->s_fs_info = NULL;
 593        if (sbi->s_chksum_driver)
 594                crypto_free_shash(sbi->s_chksum_driver);
 595        kfree(sbi->raw_super);
 596        kfree(sbi);
 597}
 598
 599int f2fs_sync_fs(struct super_block *sb, int sync)
 600{
 601        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 602        int err = 0;
 603
 604        trace_f2fs_sync_fs(sb, sync);
 605
 606        if (sync) {
 607                struct cp_control cpc;
 608
 609                cpc.reason = __get_cp_reason(sbi);
 610
 611                mutex_lock(&sbi->gc_mutex);
 612                err = write_checkpoint(sbi, &cpc);
 613                mutex_unlock(&sbi->gc_mutex);
 614        }
 615        f2fs_trace_ios(NULL, 1);
 616
 617        return err;
 618}
 619
 620static int f2fs_freeze(struct super_block *sb)
 621{
 622        int err;
 623
 624        if (f2fs_readonly(sb))
 625                return 0;
 626
 627        err = f2fs_sync_fs(sb, 1);
 628        return err;
 629}
 630
 631static int f2fs_unfreeze(struct super_block *sb)
 632{
 633        return 0;
 634}
 635
 636static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 637{
 638        struct super_block *sb = dentry->d_sb;
 639        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 640        u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 641        block_t total_count, user_block_count, start_count, ovp_count;
 642
 643        total_count = le64_to_cpu(sbi->raw_super->block_count);
 644        user_block_count = sbi->user_block_count;
 645        start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 646        ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 647        buf->f_type = F2FS_SUPER_MAGIC;
 648        buf->f_bsize = sbi->blocksize;
 649
 650        buf->f_blocks = total_count - start_count;
 651        buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
 652        buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 653
 654        buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
 655        buf->f_ffree = buf->f_files - valid_inode_count(sbi);
 656
 657        buf->f_namelen = F2FS_NAME_LEN;
 658        buf->f_fsid.val[0] = (u32)id;
 659        buf->f_fsid.val[1] = (u32)(id >> 32);
 660
 661        return 0;
 662}
 663
 664static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 665{
 666        struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 667
 668        if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
 669                if (test_opt(sbi, FORCE_FG_GC))
 670                        seq_printf(seq, ",background_gc=%s", "sync");
 671                else
 672                        seq_printf(seq, ",background_gc=%s", "on");
 673        } else {
 674                seq_printf(seq, ",background_gc=%s", "off");
 675        }
 676        if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 677                seq_puts(seq, ",disable_roll_forward");
 678        if (test_opt(sbi, DISCARD))
 679                seq_puts(seq, ",discard");
 680        if (test_opt(sbi, NOHEAP))
 681                seq_puts(seq, ",no_heap_alloc");
 682#ifdef CONFIG_F2FS_FS_XATTR
 683        if (test_opt(sbi, XATTR_USER))
 684                seq_puts(seq, ",user_xattr");
 685        else
 686                seq_puts(seq, ",nouser_xattr");
 687        if (test_opt(sbi, INLINE_XATTR))
 688                seq_puts(seq, ",inline_xattr");
 689#endif
 690#ifdef CONFIG_F2FS_FS_POSIX_ACL
 691        if (test_opt(sbi, POSIX_ACL))
 692                seq_puts(seq, ",acl");
 693        else
 694                seq_puts(seq, ",noacl");
 695#endif
 696        if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 697                seq_puts(seq, ",disable_ext_identify");
 698        if (test_opt(sbi, INLINE_DATA))
 699                seq_puts(seq, ",inline_data");
 700        else
 701                seq_puts(seq, ",noinline_data");
 702        if (test_opt(sbi, INLINE_DENTRY))
 703                seq_puts(seq, ",inline_dentry");
 704        if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
 705                seq_puts(seq, ",flush_merge");
 706        if (test_opt(sbi, NOBARRIER))
 707                seq_puts(seq, ",nobarrier");
 708        if (test_opt(sbi, FASTBOOT))
 709                seq_puts(seq, ",fastboot");
 710        if (test_opt(sbi, EXTENT_CACHE))
 711                seq_puts(seq, ",extent_cache");
 712        else
 713                seq_puts(seq, ",noextent_cache");
 714        if (test_opt(sbi, DATA_FLUSH))
 715                seq_puts(seq, ",data_flush");
 716        seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 717
 718        return 0;
 719}
 720
 721static int segment_info_seq_show(struct seq_file *seq, void *offset)
 722{
 723        struct super_block *sb = seq->private;
 724        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 725        unsigned int total_segs =
 726                        le32_to_cpu(sbi->raw_super->segment_count_main);
 727        int i;
 728
 729        seq_puts(seq, "format: segment_type|valid_blocks\n"
 730                "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 731
 732        for (i = 0; i < total_segs; i++) {
 733                struct seg_entry *se = get_seg_entry(sbi, i);
 734
 735                if ((i % 10) == 0)
 736                        seq_printf(seq, "%-10d", i);
 737                seq_printf(seq, "%d|%-3u", se->type,
 738                                        get_valid_blocks(sbi, i, 1));
 739                if ((i % 10) == 9 || i == (total_segs - 1))
 740                        seq_putc(seq, '\n');
 741                else
 742                        seq_putc(seq, ' ');
 743        }
 744
 745        return 0;
 746}
 747
 748static int segment_info_open_fs(struct inode *inode, struct file *file)
 749{
 750        return single_open(file, segment_info_seq_show, PDE_DATA(inode));
 751}
 752
 753static const struct file_operations f2fs_seq_segment_info_fops = {
 754        .owner = THIS_MODULE,
 755        .open = segment_info_open_fs,
 756        .read = seq_read,
 757        .llseek = seq_lseek,
 758        .release = single_release,
 759};
 760
 761static void default_options(struct f2fs_sb_info *sbi)
 762{
 763        /* init some FS parameters */
 764        sbi->active_logs = NR_CURSEG_TYPE;
 765
 766        set_opt(sbi, BG_GC);
 767        set_opt(sbi, INLINE_DATA);
 768        set_opt(sbi, EXTENT_CACHE);
 769
 770#ifdef CONFIG_F2FS_FS_XATTR
 771        set_opt(sbi, XATTR_USER);
 772#endif
 773#ifdef CONFIG_F2FS_FS_POSIX_ACL
 774        set_opt(sbi, POSIX_ACL);
 775#endif
 776}
 777
 778static int f2fs_remount(struct super_block *sb, int *flags, char *data)
 779{
 780        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 781        struct f2fs_mount_info org_mount_opt;
 782        int err, active_logs;
 783        bool need_restart_gc = false;
 784        bool need_stop_gc = false;
 785        bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
 786
 787        /*
 788         * Save the old mount options in case we
 789         * need to restore them.
 790         */
 791        org_mount_opt = sbi->mount_opt;
 792        active_logs = sbi->active_logs;
 793
 794        if (*flags & MS_RDONLY) {
 795                set_opt(sbi, FASTBOOT);
 796                set_sbi_flag(sbi, SBI_IS_DIRTY);
 797        }
 798
 799        sync_filesystem(sb);
 800
 801        sbi->mount_opt.opt = 0;
 802        default_options(sbi);
 803
 804        /* parse mount options */
 805        err = parse_options(sb, data);
 806        if (err)
 807                goto restore_opts;
 808
 809        /*
 810         * Previous and new state of filesystem is RO,
 811         * so skip checking GC and FLUSH_MERGE conditions.
 812         */
 813        if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
 814                goto skip;
 815
 816        /* disallow enable/disable extent_cache dynamically */
 817        if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
 818                err = -EINVAL;
 819                f2fs_msg(sbi->sb, KERN_WARNING,
 820                                "switch extent_cache option is not allowed");
 821                goto restore_opts;
 822        }
 823
 824        /*
 825         * We stop the GC thread if FS is mounted as RO
 826         * or if background_gc = off is passed in mount
 827         * option. Also sync the filesystem.
 828         */
 829        if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
 830                if (sbi->gc_thread) {
 831                        stop_gc_thread(sbi);
 832                        f2fs_sync_fs(sb, 1);
 833                        need_restart_gc = true;
 834                }
 835        } else if (!sbi->gc_thread) {
 836                err = start_gc_thread(sbi);
 837                if (err)
 838                        goto restore_opts;
 839                need_stop_gc = true;
 840        }
 841
 842        /*
 843         * We stop issue flush thread if FS is mounted as RO
 844         * or if flush_merge is not passed in mount option.
 845         */
 846        if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
 847                destroy_flush_cmd_control(sbi);
 848        } else if (!SM_I(sbi)->cmd_control_info) {
 849                err = create_flush_cmd_control(sbi);
 850                if (err)
 851                        goto restore_gc;
 852        }
 853skip:
 854        /* Update the POSIXACL Flag */
 855         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 856                (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 857        return 0;
 858restore_gc:
 859        if (need_restart_gc) {
 860                if (start_gc_thread(sbi))
 861                        f2fs_msg(sbi->sb, KERN_WARNING,
 862                                "background gc thread has stopped");
 863        } else if (need_stop_gc) {
 864                stop_gc_thread(sbi);
 865        }
 866restore_opts:
 867        sbi->mount_opt = org_mount_opt;
 868        sbi->active_logs = active_logs;
 869        return err;
 870}
 871
 872static struct super_operations f2fs_sops = {
 873        .alloc_inode    = f2fs_alloc_inode,
 874        .drop_inode     = f2fs_drop_inode,
 875        .destroy_inode  = f2fs_destroy_inode,
 876        .write_inode    = f2fs_write_inode,
 877        .dirty_inode    = f2fs_dirty_inode,
 878        .show_options   = f2fs_show_options,
 879        .evict_inode    = f2fs_evict_inode,
 880        .put_super      = f2fs_put_super,
 881        .sync_fs        = f2fs_sync_fs,
 882        .freeze_fs      = f2fs_freeze,
 883        .unfreeze_fs    = f2fs_unfreeze,
 884        .statfs         = f2fs_statfs,
 885        .remount_fs     = f2fs_remount,
 886};
 887
 888#ifdef CONFIG_F2FS_FS_ENCRYPTION
 889static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
 890{
 891        return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
 892                                F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
 893                                ctx, len, NULL);
 894}
 895
 896static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
 897                                                        void *fs_data)
 898{
 899        return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
 900                                F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
 901                                ctx, len, fs_data, XATTR_CREATE);
 902}
 903
 904static unsigned f2fs_max_namelen(struct inode *inode)
 905{
 906        return S_ISLNK(inode->i_mode) ?
 907                        inode->i_sb->s_blocksize : F2FS_NAME_LEN;
 908}
 909
 910static struct fscrypt_operations f2fs_cryptops = {
 911        .get_context    = f2fs_get_context,
 912        .set_context    = f2fs_set_context,
 913        .is_encrypted   = f2fs_encrypted_inode,
 914        .empty_dir      = f2fs_empty_dir,
 915        .max_namelen    = f2fs_max_namelen,
 916};
 917#else
 918static struct fscrypt_operations f2fs_cryptops = {
 919        .is_encrypted   = f2fs_encrypted_inode,
 920};
 921#endif
 922
 923static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
 924                u64 ino, u32 generation)
 925{
 926        struct f2fs_sb_info *sbi = F2FS_SB(sb);
 927        struct inode *inode;
 928
 929        if (check_nid_range(sbi, ino))
 930                return ERR_PTR(-ESTALE);
 931
 932        /*
 933         * f2fs_iget isn't quite right if the inode is currently unallocated!
 934         * However f2fs_iget currently does appropriate checks to handle stale
 935         * inodes so everything is OK.
 936         */
 937        inode = f2fs_iget(sb, ino);
 938        if (IS_ERR(inode))
 939                return ERR_CAST(inode);
 940        if (unlikely(generation && inode->i_generation != generation)) {
 941                /* we didn't find the right inode.. */
 942                iput(inode);
 943                return ERR_PTR(-ESTALE);
 944        }
 945        return inode;
 946}
 947
 948static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 949                int fh_len, int fh_type)
 950{
 951        return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 952                                    f2fs_nfs_get_inode);
 953}
 954
 955static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
 956                int fh_len, int fh_type)
 957{
 958        return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 959                                    f2fs_nfs_get_inode);
 960}
 961
 962static const struct export_operations f2fs_export_ops = {
 963        .fh_to_dentry = f2fs_fh_to_dentry,
 964        .fh_to_parent = f2fs_fh_to_parent,
 965        .get_parent = f2fs_get_parent,
 966};
 967
 968static loff_t max_file_blocks(void)
 969{
 970        loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
 971        loff_t leaf_count = ADDRS_PER_BLOCK;
 972
 973        /* two direct node blocks */
 974        result += (leaf_count * 2);
 975
 976        /* two indirect node blocks */
 977        leaf_count *= NIDS_PER_BLOCK;
 978        result += (leaf_count * 2);
 979
 980        /* one double indirect node block */
 981        leaf_count *= NIDS_PER_BLOCK;
 982        result += leaf_count;
 983
 984        return result;
 985}
 986
 987static int __f2fs_commit_super(struct buffer_head *bh,
 988                        struct f2fs_super_block *super)
 989{
 990        lock_buffer(bh);
 991        if (super)
 992                memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
 993        set_buffer_uptodate(bh);
 994        set_buffer_dirty(bh);
 995        unlock_buffer(bh);
 996
 997        /* it's rare case, we can do fua all the time */
 998        return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
 999}
1000
1001static inline bool sanity_check_area_boundary(struct super_block *sb,
1002                                        struct buffer_head *bh)
1003{
1004        struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1005                                        (bh->b_data + F2FS_SUPER_OFFSET);
1006        u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1007        u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1008        u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1009        u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1010        u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1011        u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1012        u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1013        u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1014        u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1015        u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1016        u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1017        u32 segment_count = le32_to_cpu(raw_super->segment_count);
1018        u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1019        u64 main_end_blkaddr = main_blkaddr +
1020                                (segment_count_main << log_blocks_per_seg);
1021        u64 seg_end_blkaddr = segment0_blkaddr +
1022                                (segment_count << log_blocks_per_seg);
1023
1024        if (segment0_blkaddr != cp_blkaddr) {
1025                f2fs_msg(sb, KERN_INFO,
1026                        "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1027                        segment0_blkaddr, cp_blkaddr);
1028                return true;
1029        }
1030
1031        if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1032                                                        sit_blkaddr) {
1033                f2fs_msg(sb, KERN_INFO,
1034                        "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1035                        cp_blkaddr, sit_blkaddr,
1036                        segment_count_ckpt << log_blocks_per_seg);
1037                return true;
1038        }
1039
1040        if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1041                                                        nat_blkaddr) {
1042                f2fs_msg(sb, KERN_INFO,
1043                        "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1044                        sit_blkaddr, nat_blkaddr,
1045                        segment_count_sit << log_blocks_per_seg);
1046                return true;
1047        }
1048
1049        if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1050                                                        ssa_blkaddr) {
1051                f2fs_msg(sb, KERN_INFO,
1052                        "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1053                        nat_blkaddr, ssa_blkaddr,
1054                        segment_count_nat << log_blocks_per_seg);
1055                return true;
1056        }
1057
1058        if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1059                                                        main_blkaddr) {
1060                f2fs_msg(sb, KERN_INFO,
1061                        "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1062                        ssa_blkaddr, main_blkaddr,
1063                        segment_count_ssa << log_blocks_per_seg);
1064                return true;
1065        }
1066
1067        if (main_end_blkaddr > seg_end_blkaddr) {
1068                f2fs_msg(sb, KERN_INFO,
1069                        "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1070                        main_blkaddr,
1071                        segment0_blkaddr +
1072                                (segment_count << log_blocks_per_seg),
1073                        segment_count_main << log_blocks_per_seg);
1074                return true;
1075        } else if (main_end_blkaddr < seg_end_blkaddr) {
1076                int err = 0;
1077                char *res;
1078
1079                /* fix in-memory information all the time */
1080                raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1081                                segment0_blkaddr) >> log_blocks_per_seg);
1082
1083                if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1084                        res = "internally";
1085                } else {
1086                        err = __f2fs_commit_super(bh, NULL);
1087                        res = err ? "failed" : "done";
1088                }
1089                f2fs_msg(sb, KERN_INFO,
1090                        "Fix alignment : %s, start(%u) end(%u) block(%u)",
1091                        res, main_blkaddr,
1092                        segment0_blkaddr +
1093                                (segment_count << log_blocks_per_seg),
1094                        segment_count_main << log_blocks_per_seg);
1095                if (err)
1096                        return true;
1097        }
1098        return false;
1099}
1100
1101static int sanity_check_raw_super(struct super_block *sb,
1102                                struct buffer_head *bh)
1103{
1104        struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1105                                        (bh->b_data + F2FS_SUPER_OFFSET);
1106        unsigned int blocksize;
1107
1108        if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1109                f2fs_msg(sb, KERN_INFO,
1110                        "Magic Mismatch, valid(0x%x) - read(0x%x)",
1111                        F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1112                return 1;
1113        }
1114
1115        /* Currently, support only 4KB page cache size */
1116        if (F2FS_BLKSIZE != PAGE_SIZE) {
1117                f2fs_msg(sb, KERN_INFO,
1118                        "Invalid page_cache_size (%lu), supports only 4KB\n",
1119                        PAGE_SIZE);
1120                return 1;
1121        }
1122
1123        /* Currently, support only 4KB block size */
1124        blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1125        if (blocksize != F2FS_BLKSIZE) {
1126                f2fs_msg(sb, KERN_INFO,
1127                        "Invalid blocksize (%u), supports only 4KB\n",
1128                        blocksize);
1129                return 1;
1130        }
1131
1132        /* check log blocks per segment */
1133        if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1134                f2fs_msg(sb, KERN_INFO,
1135                        "Invalid log blocks per segment (%u)\n",
1136                        le32_to_cpu(raw_super->log_blocks_per_seg));
1137                return 1;
1138        }
1139
1140        /* Currently, support 512/1024/2048/4096 bytes sector size */
1141        if (le32_to_cpu(raw_super->log_sectorsize) >
1142                                F2FS_MAX_LOG_SECTOR_SIZE ||
1143                le32_to_cpu(raw_super->log_sectorsize) <
1144                                F2FS_MIN_LOG_SECTOR_SIZE) {
1145                f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1146                        le32_to_cpu(raw_super->log_sectorsize));
1147                return 1;
1148        }
1149        if (le32_to_cpu(raw_super->log_sectors_per_block) +
1150                le32_to_cpu(raw_super->log_sectorsize) !=
1151                        F2FS_MAX_LOG_SECTOR_SIZE) {
1152                f2fs_msg(sb, KERN_INFO,
1153                        "Invalid log sectors per block(%u) log sectorsize(%u)",
1154                        le32_to_cpu(raw_super->log_sectors_per_block),
1155                        le32_to_cpu(raw_super->log_sectorsize));
1156                return 1;
1157        }
1158
1159        /* check reserved ino info */
1160        if (le32_to_cpu(raw_super->node_ino) != 1 ||
1161                le32_to_cpu(raw_super->meta_ino) != 2 ||
1162                le32_to_cpu(raw_super->root_ino) != 3) {
1163                f2fs_msg(sb, KERN_INFO,
1164                        "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1165                        le32_to_cpu(raw_super->node_ino),
1166                        le32_to_cpu(raw_super->meta_ino),
1167                        le32_to_cpu(raw_super->root_ino));
1168                return 1;
1169        }
1170
1171        /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1172        if (sanity_check_area_boundary(sb, bh))
1173                return 1;
1174
1175        return 0;
1176}
1177
1178int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1179{
1180        unsigned int total, fsmeta;
1181        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1182        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1183
1184        total = le32_to_cpu(raw_super->segment_count);
1185        fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1186        fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1187        fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1188        fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1189        fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1190
1191        if (unlikely(fsmeta >= total))
1192                return 1;
1193
1194        if (unlikely(f2fs_cp_error(sbi))) {
1195                f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1196                return 1;
1197        }
1198        return 0;
1199}
1200
1201static void init_sb_info(struct f2fs_sb_info *sbi)
1202{
1203        struct f2fs_super_block *raw_super = sbi->raw_super;
1204        int i;
1205
1206        sbi->log_sectors_per_block =
1207                le32_to_cpu(raw_super->log_sectors_per_block);
1208        sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1209        sbi->blocksize = 1 << sbi->log_blocksize;
1210        sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1211        sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1212        sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1213        sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1214        sbi->total_sections = le32_to_cpu(raw_super->section_count);
1215        sbi->total_node_count =
1216                (le32_to_cpu(raw_super->segment_count_nat) / 2)
1217                        * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1218        sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1219        sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1220        sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1221        sbi->cur_victim_sec = NULL_SECNO;
1222        sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1223
1224        for (i = 0; i < NR_COUNT_TYPE; i++)
1225                atomic_set(&sbi->nr_pages[i], 0);
1226
1227        sbi->dir_level = DEF_DIR_LEVEL;
1228        sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1229        sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1230        clear_sbi_flag(sbi, SBI_NEED_FSCK);
1231
1232        INIT_LIST_HEAD(&sbi->s_list);
1233        mutex_init(&sbi->umount_mutex);
1234}
1235
1236/*
1237 * Read f2fs raw super block.
1238 * Because we have two copies of super block, so read both of them
1239 * to get the first valid one. If any one of them is broken, we pass
1240 * them recovery flag back to the caller.
1241 */
1242static int read_raw_super_block(struct super_block *sb,
1243                        struct f2fs_super_block **raw_super,
1244                        int *valid_super_block, int *recovery)
1245{
1246        int block;
1247        struct buffer_head *bh;
1248        struct f2fs_super_block *super;
1249        int err = 0;
1250
1251        super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1252        if (!super)
1253                return -ENOMEM;
1254
1255        for (block = 0; block < 2; block++) {
1256                bh = sb_bread(sb, block);
1257                if (!bh) {
1258                        f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1259                                block + 1);
1260                        err = -EIO;
1261                        continue;
1262                }
1263
1264                /* sanity checking of raw super */
1265                if (sanity_check_raw_super(sb, bh)) {
1266                        f2fs_msg(sb, KERN_ERR,
1267                                "Can't find valid F2FS filesystem in %dth superblock",
1268                                block + 1);
1269                        err = -EINVAL;
1270                        brelse(bh);
1271                        continue;
1272                }
1273
1274                if (!*raw_super) {
1275                        memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1276                                                        sizeof(*super));
1277                        *valid_super_block = block;
1278                        *raw_super = super;
1279                }
1280                brelse(bh);
1281        }
1282
1283        /* Fail to read any one of the superblocks*/
1284        if (err < 0)
1285                *recovery = 1;
1286
1287        /* No valid superblock */
1288        if (!*raw_super)
1289                kfree(super);
1290        else
1291                err = 0;
1292
1293        return err;
1294}
1295
1296int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1297{
1298        struct buffer_head *bh;
1299        int err;
1300
1301        /* write back-up superblock first */
1302        bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1303        if (!bh)
1304                return -EIO;
1305        err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1306        brelse(bh);
1307
1308        /* if we are in recovery path, skip writing valid superblock */
1309        if (recover || err)
1310                return err;
1311
1312        /* write current valid superblock */
1313        bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1314        if (!bh)
1315                return -EIO;
1316        err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1317        brelse(bh);
1318        return err;
1319}
1320
1321static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1322{
1323        struct f2fs_sb_info *sbi;
1324        struct f2fs_super_block *raw_super;
1325        struct inode *root;
1326        long err;
1327        bool retry = true, need_fsck = false;
1328        char *options = NULL;
1329        int recovery, i, valid_super_block;
1330        struct curseg_info *seg_i;
1331
1332try_onemore:
1333        err = -EINVAL;
1334        raw_super = NULL;
1335        valid_super_block = -1;
1336        recovery = 0;
1337
1338        /* allocate memory for f2fs-specific super block info */
1339        sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1340        if (!sbi)
1341                return -ENOMEM;
1342
1343        /* Load the checksum driver */
1344        sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1345        if (IS_ERR(sbi->s_chksum_driver)) {
1346                f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1347                err = PTR_ERR(sbi->s_chksum_driver);
1348                sbi->s_chksum_driver = NULL;
1349                goto free_sbi;
1350        }
1351
1352        /* set a block size */
1353        if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1354                f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1355                goto free_sbi;
1356        }
1357
1358        err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1359                                                                &recovery);
1360        if (err)
1361                goto free_sbi;
1362
1363        sb->s_fs_info = sbi;
1364        default_options(sbi);
1365        /* parse mount options */
1366        options = kstrdup((const char *)data, GFP_KERNEL);
1367        if (data && !options) {
1368                err = -ENOMEM;
1369                goto free_sb_buf;
1370        }
1371
1372        err = parse_options(sb, options);
1373        if (err)
1374                goto free_options;
1375
1376        sbi->max_file_blocks = max_file_blocks();
1377        sb->s_maxbytes = sbi->max_file_blocks <<
1378                                le32_to_cpu(raw_super->log_blocksize);
1379        sb->s_max_links = F2FS_LINK_MAX;
1380        get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1381
1382        sb->s_op = &f2fs_sops;
1383        sb->s_cop = &f2fs_cryptops;
1384        sb->s_xattr = f2fs_xattr_handlers;
1385        sb->s_export_op = &f2fs_export_ops;
1386        sb->s_magic = F2FS_SUPER_MAGIC;
1387        sb->s_time_gran = 1;
1388        sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1389                (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1390        memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1391
1392        /* init f2fs-specific super block info */
1393        sbi->sb = sb;
1394        sbi->raw_super = raw_super;
1395        sbi->valid_super_block = valid_super_block;
1396        mutex_init(&sbi->gc_mutex);
1397        mutex_init(&sbi->writepages);
1398        mutex_init(&sbi->cp_mutex);
1399        init_rwsem(&sbi->node_write);
1400
1401        /* disallow all the data/node/meta page writes */
1402        set_sbi_flag(sbi, SBI_POR_DOING);
1403        spin_lock_init(&sbi->stat_lock);
1404
1405        init_rwsem(&sbi->read_io.io_rwsem);
1406        sbi->read_io.sbi = sbi;
1407        sbi->read_io.bio = NULL;
1408        for (i = 0; i < NR_PAGE_TYPE; i++) {
1409                init_rwsem(&sbi->write_io[i].io_rwsem);
1410                sbi->write_io[i].sbi = sbi;
1411                sbi->write_io[i].bio = NULL;
1412        }
1413
1414        init_rwsem(&sbi->cp_rwsem);
1415        init_waitqueue_head(&sbi->cp_wait);
1416        init_sb_info(sbi);
1417
1418        /* get an inode for meta space */
1419        sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1420        if (IS_ERR(sbi->meta_inode)) {
1421                f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1422                err = PTR_ERR(sbi->meta_inode);
1423                goto free_options;
1424        }
1425
1426        err = get_valid_checkpoint(sbi);
1427        if (err) {
1428                f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1429                goto free_meta_inode;
1430        }
1431
1432        sbi->total_valid_node_count =
1433                                le32_to_cpu(sbi->ckpt->valid_node_count);
1434        sbi->total_valid_inode_count =
1435                                le32_to_cpu(sbi->ckpt->valid_inode_count);
1436        sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1437        sbi->total_valid_block_count =
1438                                le64_to_cpu(sbi->ckpt->valid_block_count);
1439        sbi->last_valid_block_count = sbi->total_valid_block_count;
1440        sbi->alloc_valid_block_count = 0;
1441        for (i = 0; i < NR_INODE_TYPE; i++) {
1442                INIT_LIST_HEAD(&sbi->inode_list[i]);
1443                spin_lock_init(&sbi->inode_lock[i]);
1444        }
1445
1446        init_extent_cache_info(sbi);
1447
1448        init_ino_entry_info(sbi);
1449
1450        /* setup f2fs internal modules */
1451        err = build_segment_manager(sbi);
1452        if (err) {
1453                f2fs_msg(sb, KERN_ERR,
1454                        "Failed to initialize F2FS segment manager");
1455                goto free_sm;
1456        }
1457        err = build_node_manager(sbi);
1458        if (err) {
1459                f2fs_msg(sb, KERN_ERR,
1460                        "Failed to initialize F2FS node manager");
1461                goto free_nm;
1462        }
1463
1464        /* For write statistics */
1465        if (sb->s_bdev->bd_part)
1466                sbi->sectors_written_start =
1467                        (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1468
1469        /* Read accumulated write IO statistics if exists */
1470        seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1471        if (__exist_node_summaries(sbi))
1472                sbi->kbytes_written =
1473                        le64_to_cpu(seg_i->journal->info.kbytes_written);
1474
1475        build_gc_manager(sbi);
1476
1477        /* get an inode for node space */
1478        sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1479        if (IS_ERR(sbi->node_inode)) {
1480                f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1481                err = PTR_ERR(sbi->node_inode);
1482                goto free_nm;
1483        }
1484
1485        f2fs_join_shrinker(sbi);
1486
1487        /* if there are nt orphan nodes free them */
1488        err = recover_orphan_inodes(sbi);
1489        if (err)
1490                goto free_node_inode;
1491
1492        /* read root inode and dentry */
1493        root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1494        if (IS_ERR(root)) {
1495                f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1496                err = PTR_ERR(root);
1497                goto free_node_inode;
1498        }
1499        if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1500                iput(root);
1501                err = -EINVAL;
1502                goto free_node_inode;
1503        }
1504
1505        sb->s_root = d_make_root(root); /* allocate root dentry */
1506        if (!sb->s_root) {
1507                err = -ENOMEM;
1508                goto free_root_inode;
1509        }
1510
1511        err = f2fs_build_stats(sbi);
1512        if (err)
1513                goto free_root_inode;
1514
1515        if (f2fs_proc_root)
1516                sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1517
1518        if (sbi->s_proc)
1519                proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1520                                 &f2fs_seq_segment_info_fops, sb);
1521
1522        sbi->s_kobj.kset = f2fs_kset;
1523        init_completion(&sbi->s_kobj_unregister);
1524        err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1525                                                        "%s", sb->s_id);
1526        if (err)
1527                goto free_proc;
1528
1529        /* recover fsynced data */
1530        if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1531                /*
1532                 * mount should be failed, when device has readonly mode, and
1533                 * previous checkpoint was not done by clean system shutdown.
1534                 */
1535                if (bdev_read_only(sb->s_bdev) &&
1536                                !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1537                        err = -EROFS;
1538                        goto free_kobj;
1539                }
1540
1541                if (need_fsck)
1542                        set_sbi_flag(sbi, SBI_NEED_FSCK);
1543
1544                err = recover_fsync_data(sbi);
1545                if (err) {
1546                        need_fsck = true;
1547                        f2fs_msg(sb, KERN_ERR,
1548                                "Cannot recover all fsync data errno=%ld", err);
1549                        goto free_kobj;
1550                }
1551        }
1552        /* recover_fsync_data() cleared this already */
1553        clear_sbi_flag(sbi, SBI_POR_DOING);
1554
1555        /*
1556         * If filesystem is not mounted as read-only then
1557         * do start the gc_thread.
1558         */
1559        if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1560                /* After POR, we can run background GC thread.*/
1561                err = start_gc_thread(sbi);
1562                if (err)
1563                        goto free_kobj;
1564        }
1565        kfree(options);
1566
1567        /* recover broken superblock */
1568        if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1569                err = f2fs_commit_super(sbi, true);
1570                f2fs_msg(sb, KERN_INFO,
1571                        "Try to recover %dth superblock, ret: %ld",
1572                        sbi->valid_super_block ? 1 : 2, err);
1573        }
1574
1575        f2fs_update_time(sbi, CP_TIME);
1576        f2fs_update_time(sbi, REQ_TIME);
1577        return 0;
1578
1579free_kobj:
1580        kobject_del(&sbi->s_kobj);
1581        kobject_put(&sbi->s_kobj);
1582        wait_for_completion(&sbi->s_kobj_unregister);
1583free_proc:
1584        if (sbi->s_proc) {
1585                remove_proc_entry("segment_info", sbi->s_proc);
1586                remove_proc_entry(sb->s_id, f2fs_proc_root);
1587        }
1588        f2fs_destroy_stats(sbi);
1589free_root_inode:
1590        dput(sb->s_root);
1591        sb->s_root = NULL;
1592free_node_inode:
1593        mutex_lock(&sbi->umount_mutex);
1594        f2fs_leave_shrinker(sbi);
1595        iput(sbi->node_inode);
1596        mutex_unlock(&sbi->umount_mutex);
1597free_nm:
1598        destroy_node_manager(sbi);
1599free_sm:
1600        destroy_segment_manager(sbi);
1601        kfree(sbi->ckpt);
1602free_meta_inode:
1603        make_bad_inode(sbi->meta_inode);
1604        iput(sbi->meta_inode);
1605free_options:
1606        kfree(options);
1607free_sb_buf:
1608        kfree(raw_super);
1609free_sbi:
1610        if (sbi->s_chksum_driver)
1611                crypto_free_shash(sbi->s_chksum_driver);
1612        kfree(sbi);
1613
1614        /* give only one another chance */
1615        if (retry) {
1616                retry = false;
1617                shrink_dcache_sb(sb);
1618                goto try_onemore;
1619        }
1620        return err;
1621}
1622
1623static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1624                        const char *dev_name, void *data)
1625{
1626        return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1627}
1628
1629static void kill_f2fs_super(struct super_block *sb)
1630{
1631        if (sb->s_root)
1632                set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1633        kill_block_super(sb);
1634}
1635
1636static struct file_system_type f2fs_fs_type = {
1637        .owner          = THIS_MODULE,
1638        .name           = "f2fs",
1639        .mount          = f2fs_mount,
1640        .kill_sb        = kill_f2fs_super,
1641        .fs_flags       = FS_REQUIRES_DEV,
1642};
1643MODULE_ALIAS_FS("f2fs");
1644
1645static int __init init_inodecache(void)
1646{
1647        f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1648                        sizeof(struct f2fs_inode_info), 0,
1649                        SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1650        if (!f2fs_inode_cachep)
1651                return -ENOMEM;
1652        return 0;
1653}
1654
1655static void destroy_inodecache(void)
1656{
1657        /*
1658         * Make sure all delayed rcu free inodes are flushed before we
1659         * destroy cache.
1660         */
1661        rcu_barrier();
1662        kmem_cache_destroy(f2fs_inode_cachep);
1663}
1664
1665static int __init init_f2fs_fs(void)
1666{
1667        int err;
1668
1669        f2fs_build_trace_ios();
1670
1671        err = init_inodecache();
1672        if (err)
1673                goto fail;
1674        err = create_node_manager_caches();
1675        if (err)
1676                goto free_inodecache;
1677        err = create_segment_manager_caches();
1678        if (err)
1679                goto free_node_manager_caches;
1680        err = create_checkpoint_caches();
1681        if (err)
1682                goto free_segment_manager_caches;
1683        err = create_extent_cache();
1684        if (err)
1685                goto free_checkpoint_caches;
1686        f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1687        if (!f2fs_kset) {
1688                err = -ENOMEM;
1689                goto free_extent_cache;
1690        }
1691        err = register_shrinker(&f2fs_shrinker_info);
1692        if (err)
1693                goto free_kset;
1694
1695        err = register_filesystem(&f2fs_fs_type);
1696        if (err)
1697                goto free_shrinker;
1698        err = f2fs_create_root_stats();
1699        if (err)
1700                goto free_filesystem;
1701        f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1702        return 0;
1703
1704free_filesystem:
1705        unregister_filesystem(&f2fs_fs_type);
1706free_shrinker:
1707        unregister_shrinker(&f2fs_shrinker_info);
1708free_kset:
1709        kset_unregister(f2fs_kset);
1710free_extent_cache:
1711        destroy_extent_cache();
1712free_checkpoint_caches:
1713        destroy_checkpoint_caches();
1714free_segment_manager_caches:
1715        destroy_segment_manager_caches();
1716free_node_manager_caches:
1717        destroy_node_manager_caches();
1718free_inodecache:
1719        destroy_inodecache();
1720fail:
1721        return err;
1722}
1723
1724static void __exit exit_f2fs_fs(void)
1725{
1726        remove_proc_entry("fs/f2fs", NULL);
1727        f2fs_destroy_root_stats();
1728        unregister_shrinker(&f2fs_shrinker_info);
1729        unregister_filesystem(&f2fs_fs_type);
1730        destroy_extent_cache();
1731        destroy_checkpoint_caches();
1732        destroy_segment_manager_caches();
1733        destroy_node_manager_caches();
1734        destroy_inodecache();
1735        kset_unregister(f2fs_kset);
1736        f2fs_destroy_trace_ios();
1737}
1738
1739module_init(init_f2fs_fs)
1740module_exit(exit_f2fs_fs)
1741
1742MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1743MODULE_DESCRIPTION("Flash Friendly File System");
1744MODULE_LICENSE("GPL");
1745