linux/fs/jbd2/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd2.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/math64.h>
  40#include <linux/hash.h>
  41#include <linux/log2.h>
  42#include <linux/vmalloc.h>
  43#include <linux/backing-dev.h>
  44#include <linux/bitops.h>
  45#include <linux/ratelimit.h>
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/jbd2.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm/page.h>
  52
  53#ifdef CONFIG_JBD2_DEBUG
  54ushort jbd2_journal_enable_debug __read_mostly;
  55EXPORT_SYMBOL(jbd2_journal_enable_debug);
  56
  57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  59#endif
  60
  61EXPORT_SYMBOL(jbd2_journal_extend);
  62EXPORT_SYMBOL(jbd2_journal_stop);
  63EXPORT_SYMBOL(jbd2_journal_lock_updates);
  64EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  65EXPORT_SYMBOL(jbd2_journal_get_write_access);
  66EXPORT_SYMBOL(jbd2_journal_get_create_access);
  67EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  68EXPORT_SYMBOL(jbd2_journal_set_triggers);
  69EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  70EXPORT_SYMBOL(jbd2_journal_forget);
  71#if 0
  72EXPORT_SYMBOL(journal_sync_buffer);
  73#endif
  74EXPORT_SYMBOL(jbd2_journal_flush);
  75EXPORT_SYMBOL(jbd2_journal_revoke);
  76
  77EXPORT_SYMBOL(jbd2_journal_init_dev);
  78EXPORT_SYMBOL(jbd2_journal_init_inode);
  79EXPORT_SYMBOL(jbd2_journal_check_used_features);
  80EXPORT_SYMBOL(jbd2_journal_check_available_features);
  81EXPORT_SYMBOL(jbd2_journal_set_features);
  82EXPORT_SYMBOL(jbd2_journal_load);
  83EXPORT_SYMBOL(jbd2_journal_destroy);
  84EXPORT_SYMBOL(jbd2_journal_abort);
  85EXPORT_SYMBOL(jbd2_journal_errno);
  86EXPORT_SYMBOL(jbd2_journal_ack_err);
  87EXPORT_SYMBOL(jbd2_journal_clear_err);
  88EXPORT_SYMBOL(jbd2_log_wait_commit);
  89EXPORT_SYMBOL(jbd2_log_start_commit);
  90EXPORT_SYMBOL(jbd2_journal_start_commit);
  91EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  92EXPORT_SYMBOL(jbd2_journal_wipe);
  93EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  94EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  96EXPORT_SYMBOL(jbd2_journal_force_commit);
  97EXPORT_SYMBOL(jbd2_journal_file_inode);
  98EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  99EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
 100EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
 101EXPORT_SYMBOL(jbd2_inode_cache);
 102
 103static void __journal_abort_soft (journal_t *journal, int errno);
 104static int jbd2_journal_create_slab(size_t slab_size);
 105
 106#ifdef CONFIG_JBD2_DEBUG
 107void __jbd2_debug(int level, const char *file, const char *func,
 108                  unsigned int line, const char *fmt, ...)
 109{
 110        struct va_format vaf;
 111        va_list args;
 112
 113        if (level > jbd2_journal_enable_debug)
 114                return;
 115        va_start(args, fmt);
 116        vaf.fmt = fmt;
 117        vaf.va = &args;
 118        printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 119        va_end(args);
 120}
 121EXPORT_SYMBOL(__jbd2_debug);
 122#endif
 123
 124/* Checksumming functions */
 125static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 126{
 127        if (!jbd2_journal_has_csum_v2or3_feature(j))
 128                return 1;
 129
 130        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 131}
 132
 133static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 134{
 135        __u32 csum;
 136        __be32 old_csum;
 137
 138        old_csum = sb->s_checksum;
 139        sb->s_checksum = 0;
 140        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 141        sb->s_checksum = old_csum;
 142
 143        return cpu_to_be32(csum);
 144}
 145
 146static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
 147{
 148        if (!jbd2_journal_has_csum_v2or3(j))
 149                return 1;
 150
 151        return sb->s_checksum == jbd2_superblock_csum(j, sb);
 152}
 153
 154static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
 155{
 156        if (!jbd2_journal_has_csum_v2or3(j))
 157                return;
 158
 159        sb->s_checksum = jbd2_superblock_csum(j, sb);
 160}
 161
 162/*
 163 * Helper function used to manage commit timeouts
 164 */
 165
 166static void commit_timeout(unsigned long __data)
 167{
 168        struct task_struct * p = (struct task_struct *) __data;
 169
 170        wake_up_process(p);
 171}
 172
 173/*
 174 * kjournald2: The main thread function used to manage a logging device
 175 * journal.
 176 *
 177 * This kernel thread is responsible for two things:
 178 *
 179 * 1) COMMIT:  Every so often we need to commit the current state of the
 180 *    filesystem to disk.  The journal thread is responsible for writing
 181 *    all of the metadata buffers to disk.
 182 *
 183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 184 *    of the data in that part of the log has been rewritten elsewhere on
 185 *    the disk.  Flushing these old buffers to reclaim space in the log is
 186 *    known as checkpointing, and this thread is responsible for that job.
 187 */
 188
 189static int kjournald2(void *arg)
 190{
 191        journal_t *journal = arg;
 192        transaction_t *transaction;
 193
 194        /*
 195         * Set up an interval timer which can be used to trigger a commit wakeup
 196         * after the commit interval expires
 197         */
 198        setup_timer(&journal->j_commit_timer, commit_timeout,
 199                        (unsigned long)current);
 200
 201        set_freezable();
 202
 203        /* Record that the journal thread is running */
 204        journal->j_task = current;
 205        wake_up(&journal->j_wait_done_commit);
 206
 207        /*
 208         * And now, wait forever for commit wakeup events.
 209         */
 210        write_lock(&journal->j_state_lock);
 211
 212loop:
 213        if (journal->j_flags & JBD2_UNMOUNT)
 214                goto end_loop;
 215
 216        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 217                journal->j_commit_sequence, journal->j_commit_request);
 218
 219        if (journal->j_commit_sequence != journal->j_commit_request) {
 220                jbd_debug(1, "OK, requests differ\n");
 221                write_unlock(&journal->j_state_lock);
 222                del_timer_sync(&journal->j_commit_timer);
 223                jbd2_journal_commit_transaction(journal);
 224                write_lock(&journal->j_state_lock);
 225                goto loop;
 226        }
 227
 228        wake_up(&journal->j_wait_done_commit);
 229        if (freezing(current)) {
 230                /*
 231                 * The simpler the better. Flushing journal isn't a
 232                 * good idea, because that depends on threads that may
 233                 * be already stopped.
 234                 */
 235                jbd_debug(1, "Now suspending kjournald2\n");
 236                write_unlock(&journal->j_state_lock);
 237                try_to_freeze();
 238                write_lock(&journal->j_state_lock);
 239        } else {
 240                /*
 241                 * We assume on resume that commits are already there,
 242                 * so we don't sleep
 243                 */
 244                DEFINE_WAIT(wait);
 245                int should_sleep = 1;
 246
 247                prepare_to_wait(&journal->j_wait_commit, &wait,
 248                                TASK_INTERRUPTIBLE);
 249                if (journal->j_commit_sequence != journal->j_commit_request)
 250                        should_sleep = 0;
 251                transaction = journal->j_running_transaction;
 252                if (transaction && time_after_eq(jiffies,
 253                                                transaction->t_expires))
 254                        should_sleep = 0;
 255                if (journal->j_flags & JBD2_UNMOUNT)
 256                        should_sleep = 0;
 257                if (should_sleep) {
 258                        write_unlock(&journal->j_state_lock);
 259                        schedule();
 260                        write_lock(&journal->j_state_lock);
 261                }
 262                finish_wait(&journal->j_wait_commit, &wait);
 263        }
 264
 265        jbd_debug(1, "kjournald2 wakes\n");
 266
 267        /*
 268         * Were we woken up by a commit wakeup event?
 269         */
 270        transaction = journal->j_running_transaction;
 271        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 272                journal->j_commit_request = transaction->t_tid;
 273                jbd_debug(1, "woke because of timeout\n");
 274        }
 275        goto loop;
 276
 277end_loop:
 278        write_unlock(&journal->j_state_lock);
 279        del_timer_sync(&journal->j_commit_timer);
 280        journal->j_task = NULL;
 281        wake_up(&journal->j_wait_done_commit);
 282        jbd_debug(1, "Journal thread exiting.\n");
 283        return 0;
 284}
 285
 286static int jbd2_journal_start_thread(journal_t *journal)
 287{
 288        struct task_struct *t;
 289
 290        t = kthread_run(kjournald2, journal, "jbd2/%s",
 291                        journal->j_devname);
 292        if (IS_ERR(t))
 293                return PTR_ERR(t);
 294
 295        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 296        return 0;
 297}
 298
 299static void journal_kill_thread(journal_t *journal)
 300{
 301        write_lock(&journal->j_state_lock);
 302        journal->j_flags |= JBD2_UNMOUNT;
 303
 304        while (journal->j_task) {
 305                write_unlock(&journal->j_state_lock);
 306                wake_up(&journal->j_wait_commit);
 307                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 308                write_lock(&journal->j_state_lock);
 309        }
 310        write_unlock(&journal->j_state_lock);
 311}
 312
 313/*
 314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 315 *
 316 * Writes a metadata buffer to a given disk block.  The actual IO is not
 317 * performed but a new buffer_head is constructed which labels the data
 318 * to be written with the correct destination disk block.
 319 *
 320 * Any magic-number escaping which needs to be done will cause a
 321 * copy-out here.  If the buffer happens to start with the
 322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 323 * magic number is only written to the log for descripter blocks.  In
 324 * this case, we copy the data and replace the first word with 0, and we
 325 * return a result code which indicates that this buffer needs to be
 326 * marked as an escaped buffer in the corresponding log descriptor
 327 * block.  The missing word can then be restored when the block is read
 328 * during recovery.
 329 *
 330 * If the source buffer has already been modified by a new transaction
 331 * since we took the last commit snapshot, we use the frozen copy of
 332 * that data for IO. If we end up using the existing buffer_head's data
 333 * for the write, then we have to make sure nobody modifies it while the
 334 * IO is in progress. do_get_write_access() handles this.
 335 *
 336 * The function returns a pointer to the buffer_head to be used for IO.
 337 * 
 338 *
 339 * Return value:
 340 *  <0: Error
 341 * >=0: Finished OK
 342 *
 343 * On success:
 344 * Bit 0 set == escape performed on the data
 345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 346 */
 347
 348int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 349                                  struct journal_head  *jh_in,
 350                                  struct buffer_head **bh_out,
 351                                  sector_t blocknr)
 352{
 353        int need_copy_out = 0;
 354        int done_copy_out = 0;
 355        int do_escape = 0;
 356        char *mapped_data;
 357        struct buffer_head *new_bh;
 358        struct page *new_page;
 359        unsigned int new_offset;
 360        struct buffer_head *bh_in = jh2bh(jh_in);
 361        journal_t *journal = transaction->t_journal;
 362
 363        /*
 364         * The buffer really shouldn't be locked: only the current committing
 365         * transaction is allowed to write it, so nobody else is allowed
 366         * to do any IO.
 367         *
 368         * akpm: except if we're journalling data, and write() output is
 369         * also part of a shared mapping, and another thread has
 370         * decided to launch a writepage() against this buffer.
 371         */
 372        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 373
 374        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 375
 376        /* keep subsequent assertions sane */
 377        atomic_set(&new_bh->b_count, 1);
 378
 379        jbd_lock_bh_state(bh_in);
 380repeat:
 381        /*
 382         * If a new transaction has already done a buffer copy-out, then
 383         * we use that version of the data for the commit.
 384         */
 385        if (jh_in->b_frozen_data) {
 386                done_copy_out = 1;
 387                new_page = virt_to_page(jh_in->b_frozen_data);
 388                new_offset = offset_in_page(jh_in->b_frozen_data);
 389        } else {
 390                new_page = jh2bh(jh_in)->b_page;
 391                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 392        }
 393
 394        mapped_data = kmap_atomic(new_page);
 395        /*
 396         * Fire data frozen trigger if data already wasn't frozen.  Do this
 397         * before checking for escaping, as the trigger may modify the magic
 398         * offset.  If a copy-out happens afterwards, it will have the correct
 399         * data in the buffer.
 400         */
 401        if (!done_copy_out)
 402                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 403                                           jh_in->b_triggers);
 404
 405        /*
 406         * Check for escaping
 407         */
 408        if (*((__be32 *)(mapped_data + new_offset)) ==
 409                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 410                need_copy_out = 1;
 411                do_escape = 1;
 412        }
 413        kunmap_atomic(mapped_data);
 414
 415        /*
 416         * Do we need to do a data copy?
 417         */
 418        if (need_copy_out && !done_copy_out) {
 419                char *tmp;
 420
 421                jbd_unlock_bh_state(bh_in);
 422                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 423                if (!tmp) {
 424                        brelse(new_bh);
 425                        return -ENOMEM;
 426                }
 427                jbd_lock_bh_state(bh_in);
 428                if (jh_in->b_frozen_data) {
 429                        jbd2_free(tmp, bh_in->b_size);
 430                        goto repeat;
 431                }
 432
 433                jh_in->b_frozen_data = tmp;
 434                mapped_data = kmap_atomic(new_page);
 435                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 436                kunmap_atomic(mapped_data);
 437
 438                new_page = virt_to_page(tmp);
 439                new_offset = offset_in_page(tmp);
 440                done_copy_out = 1;
 441
 442                /*
 443                 * This isn't strictly necessary, as we're using frozen
 444                 * data for the escaping, but it keeps consistency with
 445                 * b_frozen_data usage.
 446                 */
 447                jh_in->b_frozen_triggers = jh_in->b_triggers;
 448        }
 449
 450        /*
 451         * Did we need to do an escaping?  Now we've done all the
 452         * copying, we can finally do so.
 453         */
 454        if (do_escape) {
 455                mapped_data = kmap_atomic(new_page);
 456                *((unsigned int *)(mapped_data + new_offset)) = 0;
 457                kunmap_atomic(mapped_data);
 458        }
 459
 460        set_bh_page(new_bh, new_page, new_offset);
 461        new_bh->b_size = bh_in->b_size;
 462        new_bh->b_bdev = journal->j_dev;
 463        new_bh->b_blocknr = blocknr;
 464        new_bh->b_private = bh_in;
 465        set_buffer_mapped(new_bh);
 466        set_buffer_dirty(new_bh);
 467
 468        *bh_out = new_bh;
 469
 470        /*
 471         * The to-be-written buffer needs to get moved to the io queue,
 472         * and the original buffer whose contents we are shadowing or
 473         * copying is moved to the transaction's shadow queue.
 474         */
 475        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 476        spin_lock(&journal->j_list_lock);
 477        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 478        spin_unlock(&journal->j_list_lock);
 479        set_buffer_shadow(bh_in);
 480        jbd_unlock_bh_state(bh_in);
 481
 482        return do_escape | (done_copy_out << 1);
 483}
 484
 485/*
 486 * Allocation code for the journal file.  Manage the space left in the
 487 * journal, so that we can begin checkpointing when appropriate.
 488 */
 489
 490/*
 491 * Called with j_state_lock locked for writing.
 492 * Returns true if a transaction commit was started.
 493 */
 494int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 495{
 496        /* Return if the txn has already requested to be committed */
 497        if (journal->j_commit_request == target)
 498                return 0;
 499
 500        /*
 501         * The only transaction we can possibly wait upon is the
 502         * currently running transaction (if it exists).  Otherwise,
 503         * the target tid must be an old one.
 504         */
 505        if (journal->j_running_transaction &&
 506            journal->j_running_transaction->t_tid == target) {
 507                /*
 508                 * We want a new commit: OK, mark the request and wakeup the
 509                 * commit thread.  We do _not_ do the commit ourselves.
 510                 */
 511
 512                journal->j_commit_request = target;
 513                jbd_debug(1, "JBD2: requesting commit %d/%d\n",
 514                          journal->j_commit_request,
 515                          journal->j_commit_sequence);
 516                journal->j_running_transaction->t_requested = jiffies;
 517                wake_up(&journal->j_wait_commit);
 518                return 1;
 519        } else if (!tid_geq(journal->j_commit_request, target))
 520                /* This should never happen, but if it does, preserve
 521                   the evidence before kjournald goes into a loop and
 522                   increments j_commit_sequence beyond all recognition. */
 523                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 524                          journal->j_commit_request,
 525                          journal->j_commit_sequence,
 526                          target, journal->j_running_transaction ? 
 527                          journal->j_running_transaction->t_tid : 0);
 528        return 0;
 529}
 530
 531int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 532{
 533        int ret;
 534
 535        write_lock(&journal->j_state_lock);
 536        ret = __jbd2_log_start_commit(journal, tid);
 537        write_unlock(&journal->j_state_lock);
 538        return ret;
 539}
 540
 541/*
 542 * Force and wait any uncommitted transactions.  We can only force the running
 543 * transaction if we don't have an active handle, otherwise, we will deadlock.
 544 * Returns: <0 in case of error,
 545 *           0 if nothing to commit,
 546 *           1 if transaction was successfully committed.
 547 */
 548static int __jbd2_journal_force_commit(journal_t *journal)
 549{
 550        transaction_t *transaction = NULL;
 551        tid_t tid;
 552        int need_to_start = 0, ret = 0;
 553
 554        read_lock(&journal->j_state_lock);
 555        if (journal->j_running_transaction && !current->journal_info) {
 556                transaction = journal->j_running_transaction;
 557                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 558                        need_to_start = 1;
 559        } else if (journal->j_committing_transaction)
 560                transaction = journal->j_committing_transaction;
 561
 562        if (!transaction) {
 563                /* Nothing to commit */
 564                read_unlock(&journal->j_state_lock);
 565                return 0;
 566        }
 567        tid = transaction->t_tid;
 568        read_unlock(&journal->j_state_lock);
 569        if (need_to_start)
 570                jbd2_log_start_commit(journal, tid);
 571        ret = jbd2_log_wait_commit(journal, tid);
 572        if (!ret)
 573                ret = 1;
 574
 575        return ret;
 576}
 577
 578/**
 579 * Force and wait upon a commit if the calling process is not within
 580 * transaction.  This is used for forcing out undo-protected data which contains
 581 * bitmaps, when the fs is running out of space.
 582 *
 583 * @journal: journal to force
 584 * Returns true if progress was made.
 585 */
 586int jbd2_journal_force_commit_nested(journal_t *journal)
 587{
 588        int ret;
 589
 590        ret = __jbd2_journal_force_commit(journal);
 591        return ret > 0;
 592}
 593
 594/**
 595 * int journal_force_commit() - force any uncommitted transactions
 596 * @journal: journal to force
 597 *
 598 * Caller want unconditional commit. We can only force the running transaction
 599 * if we don't have an active handle, otherwise, we will deadlock.
 600 */
 601int jbd2_journal_force_commit(journal_t *journal)
 602{
 603        int ret;
 604
 605        J_ASSERT(!current->journal_info);
 606        ret = __jbd2_journal_force_commit(journal);
 607        if (ret > 0)
 608                ret = 0;
 609        return ret;
 610}
 611
 612/*
 613 * Start a commit of the current running transaction (if any).  Returns true
 614 * if a transaction is going to be committed (or is currently already
 615 * committing), and fills its tid in at *ptid
 616 */
 617int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 618{
 619        int ret = 0;
 620
 621        write_lock(&journal->j_state_lock);
 622        if (journal->j_running_transaction) {
 623                tid_t tid = journal->j_running_transaction->t_tid;
 624
 625                __jbd2_log_start_commit(journal, tid);
 626                /* There's a running transaction and we've just made sure
 627                 * it's commit has been scheduled. */
 628                if (ptid)
 629                        *ptid = tid;
 630                ret = 1;
 631        } else if (journal->j_committing_transaction) {
 632                /*
 633                 * If commit has been started, then we have to wait for
 634                 * completion of that transaction.
 635                 */
 636                if (ptid)
 637                        *ptid = journal->j_committing_transaction->t_tid;
 638                ret = 1;
 639        }
 640        write_unlock(&journal->j_state_lock);
 641        return ret;
 642}
 643
 644/*
 645 * Return 1 if a given transaction has not yet sent barrier request
 646 * connected with a transaction commit. If 0 is returned, transaction
 647 * may or may not have sent the barrier. Used to avoid sending barrier
 648 * twice in common cases.
 649 */
 650int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 651{
 652        int ret = 0;
 653        transaction_t *commit_trans;
 654
 655        if (!(journal->j_flags & JBD2_BARRIER))
 656                return 0;
 657        read_lock(&journal->j_state_lock);
 658        /* Transaction already committed? */
 659        if (tid_geq(journal->j_commit_sequence, tid))
 660                goto out;
 661        commit_trans = journal->j_committing_transaction;
 662        if (!commit_trans || commit_trans->t_tid != tid) {
 663                ret = 1;
 664                goto out;
 665        }
 666        /*
 667         * Transaction is being committed and we already proceeded to
 668         * submitting a flush to fs partition?
 669         */
 670        if (journal->j_fs_dev != journal->j_dev) {
 671                if (!commit_trans->t_need_data_flush ||
 672                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 673                        goto out;
 674        } else {
 675                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 676                        goto out;
 677        }
 678        ret = 1;
 679out:
 680        read_unlock(&journal->j_state_lock);
 681        return ret;
 682}
 683EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 684
 685/*
 686 * Wait for a specified commit to complete.
 687 * The caller may not hold the journal lock.
 688 */
 689int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 690{
 691        int err = 0;
 692
 693        read_lock(&journal->j_state_lock);
 694#ifdef CONFIG_JBD2_DEBUG
 695        if (!tid_geq(journal->j_commit_request, tid)) {
 696                printk(KERN_ERR
 697                       "%s: error: j_commit_request=%d, tid=%d\n",
 698                       __func__, journal->j_commit_request, tid);
 699        }
 700#endif
 701        while (tid_gt(tid, journal->j_commit_sequence)) {
 702                jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
 703                                  tid, journal->j_commit_sequence);
 704                read_unlock(&journal->j_state_lock);
 705                wake_up(&journal->j_wait_commit);
 706                wait_event(journal->j_wait_done_commit,
 707                                !tid_gt(tid, journal->j_commit_sequence));
 708                read_lock(&journal->j_state_lock);
 709        }
 710        read_unlock(&journal->j_state_lock);
 711
 712        if (unlikely(is_journal_aborted(journal)))
 713                err = -EIO;
 714        return err;
 715}
 716
 717/*
 718 * When this function returns the transaction corresponding to tid
 719 * will be completed.  If the transaction has currently running, start
 720 * committing that transaction before waiting for it to complete.  If
 721 * the transaction id is stale, it is by definition already completed,
 722 * so just return SUCCESS.
 723 */
 724int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 725{
 726        int     need_to_wait = 1;
 727
 728        read_lock(&journal->j_state_lock);
 729        if (journal->j_running_transaction &&
 730            journal->j_running_transaction->t_tid == tid) {
 731                if (journal->j_commit_request != tid) {
 732                        /* transaction not yet started, so request it */
 733                        read_unlock(&journal->j_state_lock);
 734                        jbd2_log_start_commit(journal, tid);
 735                        goto wait_commit;
 736                }
 737        } else if (!(journal->j_committing_transaction &&
 738                     journal->j_committing_transaction->t_tid == tid))
 739                need_to_wait = 0;
 740        read_unlock(&journal->j_state_lock);
 741        if (!need_to_wait)
 742                return 0;
 743wait_commit:
 744        return jbd2_log_wait_commit(journal, tid);
 745}
 746EXPORT_SYMBOL(jbd2_complete_transaction);
 747
 748/*
 749 * Log buffer allocation routines:
 750 */
 751
 752int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 753{
 754        unsigned long blocknr;
 755
 756        write_lock(&journal->j_state_lock);
 757        J_ASSERT(journal->j_free > 1);
 758
 759        blocknr = journal->j_head;
 760        journal->j_head++;
 761        journal->j_free--;
 762        if (journal->j_head == journal->j_last)
 763                journal->j_head = journal->j_first;
 764        write_unlock(&journal->j_state_lock);
 765        return jbd2_journal_bmap(journal, blocknr, retp);
 766}
 767
 768/*
 769 * Conversion of logical to physical block numbers for the journal
 770 *
 771 * On external journals the journal blocks are identity-mapped, so
 772 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 773 * ready.
 774 */
 775int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 776                 unsigned long long *retp)
 777{
 778        int err = 0;
 779        unsigned long long ret;
 780
 781        if (journal->j_inode) {
 782                ret = bmap(journal->j_inode, blocknr);
 783                if (ret)
 784                        *retp = ret;
 785                else {
 786                        printk(KERN_ALERT "%s: journal block not found "
 787                                        "at offset %lu on %s\n",
 788                               __func__, blocknr, journal->j_devname);
 789                        err = -EIO;
 790                        __journal_abort_soft(journal, err);
 791                }
 792        } else {
 793                *retp = blocknr; /* +journal->j_blk_offset */
 794        }
 795        return err;
 796}
 797
 798/*
 799 * We play buffer_head aliasing tricks to write data/metadata blocks to
 800 * the journal without copying their contents, but for journal
 801 * descriptor blocks we do need to generate bona fide buffers.
 802 *
 803 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 804 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 805 * But we don't bother doing that, so there will be coherency problems with
 806 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 807 */
 808struct buffer_head *
 809jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 810{
 811        journal_t *journal = transaction->t_journal;
 812        struct buffer_head *bh;
 813        unsigned long long blocknr;
 814        journal_header_t *header;
 815        int err;
 816
 817        err = jbd2_journal_next_log_block(journal, &blocknr);
 818
 819        if (err)
 820                return NULL;
 821
 822        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 823        if (!bh)
 824                return NULL;
 825        lock_buffer(bh);
 826        memset(bh->b_data, 0, journal->j_blocksize);
 827        header = (journal_header_t *)bh->b_data;
 828        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 829        header->h_blocktype = cpu_to_be32(type);
 830        header->h_sequence = cpu_to_be32(transaction->t_tid);
 831        set_buffer_uptodate(bh);
 832        unlock_buffer(bh);
 833        BUFFER_TRACE(bh, "return this buffer");
 834        return bh;
 835}
 836
 837void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 838{
 839        struct jbd2_journal_block_tail *tail;
 840        __u32 csum;
 841
 842        if (!jbd2_journal_has_csum_v2or3(j))
 843                return;
 844
 845        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 846                        sizeof(struct jbd2_journal_block_tail));
 847        tail->t_checksum = 0;
 848        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 849        tail->t_checksum = cpu_to_be32(csum);
 850}
 851
 852/*
 853 * Return tid of the oldest transaction in the journal and block in the journal
 854 * where the transaction starts.
 855 *
 856 * If the journal is now empty, return which will be the next transaction ID
 857 * we will write and where will that transaction start.
 858 *
 859 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 860 * it can.
 861 */
 862int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 863                              unsigned long *block)
 864{
 865        transaction_t *transaction;
 866        int ret;
 867
 868        read_lock(&journal->j_state_lock);
 869        spin_lock(&journal->j_list_lock);
 870        transaction = journal->j_checkpoint_transactions;
 871        if (transaction) {
 872                *tid = transaction->t_tid;
 873                *block = transaction->t_log_start;
 874        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 875                *tid = transaction->t_tid;
 876                *block = transaction->t_log_start;
 877        } else if ((transaction = journal->j_running_transaction) != NULL) {
 878                *tid = transaction->t_tid;
 879                *block = journal->j_head;
 880        } else {
 881                *tid = journal->j_transaction_sequence;
 882                *block = journal->j_head;
 883        }
 884        ret = tid_gt(*tid, journal->j_tail_sequence);
 885        spin_unlock(&journal->j_list_lock);
 886        read_unlock(&journal->j_state_lock);
 887
 888        return ret;
 889}
 890
 891/*
 892 * Update information in journal structure and in on disk journal superblock
 893 * about log tail. This function does not check whether information passed in
 894 * really pushes log tail further. It's responsibility of the caller to make
 895 * sure provided log tail information is valid (e.g. by holding
 896 * j_checkpoint_mutex all the time between computing log tail and calling this
 897 * function as is the case with jbd2_cleanup_journal_tail()).
 898 *
 899 * Requires j_checkpoint_mutex
 900 */
 901int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 902{
 903        unsigned long freed;
 904        int ret;
 905
 906        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 907
 908        /*
 909         * We cannot afford for write to remain in drive's caches since as
 910         * soon as we update j_tail, next transaction can start reusing journal
 911         * space and if we lose sb update during power failure we'd replay
 912         * old transaction with possibly newly overwritten data.
 913         */
 914        ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
 915        if (ret)
 916                goto out;
 917
 918        write_lock(&journal->j_state_lock);
 919        freed = block - journal->j_tail;
 920        if (block < journal->j_tail)
 921                freed += journal->j_last - journal->j_first;
 922
 923        trace_jbd2_update_log_tail(journal, tid, block, freed);
 924        jbd_debug(1,
 925                  "Cleaning journal tail from %d to %d (offset %lu), "
 926                  "freeing %lu\n",
 927                  journal->j_tail_sequence, tid, block, freed);
 928
 929        journal->j_free += freed;
 930        journal->j_tail_sequence = tid;
 931        journal->j_tail = block;
 932        write_unlock(&journal->j_state_lock);
 933
 934out:
 935        return ret;
 936}
 937
 938/*
 939 * This is a variaon of __jbd2_update_log_tail which checks for validity of
 940 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 941 * with other threads updating log tail.
 942 */
 943void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 944{
 945        mutex_lock(&journal->j_checkpoint_mutex);
 946        if (tid_gt(tid, journal->j_tail_sequence))
 947                __jbd2_update_log_tail(journal, tid, block);
 948        mutex_unlock(&journal->j_checkpoint_mutex);
 949}
 950
 951struct jbd2_stats_proc_session {
 952        journal_t *journal;
 953        struct transaction_stats_s *stats;
 954        int start;
 955        int max;
 956};
 957
 958static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 959{
 960        return *pos ? NULL : SEQ_START_TOKEN;
 961}
 962
 963static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 964{
 965        return NULL;
 966}
 967
 968static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 969{
 970        struct jbd2_stats_proc_session *s = seq->private;
 971
 972        if (v != SEQ_START_TOKEN)
 973                return 0;
 974        seq_printf(seq, "%lu transactions (%lu requested), "
 975                   "each up to %u blocks\n",
 976                   s->stats->ts_tid, s->stats->ts_requested,
 977                   s->journal->j_max_transaction_buffers);
 978        if (s->stats->ts_tid == 0)
 979                return 0;
 980        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
 981            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
 982        seq_printf(seq, "  %ums request delay\n",
 983            (s->stats->ts_requested == 0) ? 0 :
 984            jiffies_to_msecs(s->stats->run.rs_request_delay /
 985                             s->stats->ts_requested));
 986        seq_printf(seq, "  %ums running transaction\n",
 987            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
 988        seq_printf(seq, "  %ums transaction was being locked\n",
 989            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
 990        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
 991            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
 992        seq_printf(seq, "  %ums logging transaction\n",
 993            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
 994        seq_printf(seq, "  %lluus average transaction commit time\n",
 995                   div_u64(s->journal->j_average_commit_time, 1000));
 996        seq_printf(seq, "  %lu handles per transaction\n",
 997            s->stats->run.rs_handle_count / s->stats->ts_tid);
 998        seq_printf(seq, "  %lu blocks per transaction\n",
 999            s->stats->run.rs_blocks / s->stats->ts_tid);
1000        seq_printf(seq, "  %lu logged blocks per transaction\n",
1001            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1002        return 0;
1003}
1004
1005static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1006{
1007}
1008
1009static const struct seq_operations jbd2_seq_info_ops = {
1010        .start  = jbd2_seq_info_start,
1011        .next   = jbd2_seq_info_next,
1012        .stop   = jbd2_seq_info_stop,
1013        .show   = jbd2_seq_info_show,
1014};
1015
1016static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1017{
1018        journal_t *journal = PDE_DATA(inode);
1019        struct jbd2_stats_proc_session *s;
1020        int rc, size;
1021
1022        s = kmalloc(sizeof(*s), GFP_KERNEL);
1023        if (s == NULL)
1024                return -ENOMEM;
1025        size = sizeof(struct transaction_stats_s);
1026        s->stats = kmalloc(size, GFP_KERNEL);
1027        if (s->stats == NULL) {
1028                kfree(s);
1029                return -ENOMEM;
1030        }
1031        spin_lock(&journal->j_history_lock);
1032        memcpy(s->stats, &journal->j_stats, size);
1033        s->journal = journal;
1034        spin_unlock(&journal->j_history_lock);
1035
1036        rc = seq_open(file, &jbd2_seq_info_ops);
1037        if (rc == 0) {
1038                struct seq_file *m = file->private_data;
1039                m->private = s;
1040        } else {
1041                kfree(s->stats);
1042                kfree(s);
1043        }
1044        return rc;
1045
1046}
1047
1048static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1049{
1050        struct seq_file *seq = file->private_data;
1051        struct jbd2_stats_proc_session *s = seq->private;
1052        kfree(s->stats);
1053        kfree(s);
1054        return seq_release(inode, file);
1055}
1056
1057static const struct file_operations jbd2_seq_info_fops = {
1058        .owner          = THIS_MODULE,
1059        .open           = jbd2_seq_info_open,
1060        .read           = seq_read,
1061        .llseek         = seq_lseek,
1062        .release        = jbd2_seq_info_release,
1063};
1064
1065static struct proc_dir_entry *proc_jbd2_stats;
1066
1067static void jbd2_stats_proc_init(journal_t *journal)
1068{
1069        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1070        if (journal->j_proc_entry) {
1071                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1072                                 &jbd2_seq_info_fops, journal);
1073        }
1074}
1075
1076static void jbd2_stats_proc_exit(journal_t *journal)
1077{
1078        remove_proc_entry("info", journal->j_proc_entry);
1079        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1080}
1081
1082/*
1083 * Management for journal control blocks: functions to create and
1084 * destroy journal_t structures, and to initialise and read existing
1085 * journal blocks from disk.  */
1086
1087/* First: create and setup a journal_t object in memory.  We initialise
1088 * very few fields yet: that has to wait until we have created the
1089 * journal structures from from scratch, or loaded them from disk. */
1090
1091static journal_t * journal_init_common (void)
1092{
1093        journal_t *journal;
1094        int err;
1095
1096        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1097        if (!journal)
1098                return NULL;
1099
1100        init_waitqueue_head(&journal->j_wait_transaction_locked);
1101        init_waitqueue_head(&journal->j_wait_done_commit);
1102        init_waitqueue_head(&journal->j_wait_commit);
1103        init_waitqueue_head(&journal->j_wait_updates);
1104        init_waitqueue_head(&journal->j_wait_reserved);
1105        mutex_init(&journal->j_barrier);
1106        mutex_init(&journal->j_checkpoint_mutex);
1107        spin_lock_init(&journal->j_revoke_lock);
1108        spin_lock_init(&journal->j_list_lock);
1109        rwlock_init(&journal->j_state_lock);
1110
1111        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1112        journal->j_min_batch_time = 0;
1113        journal->j_max_batch_time = 15000; /* 15ms */
1114        atomic_set(&journal->j_reserved_credits, 0);
1115
1116        /* The journal is marked for error until we succeed with recovery! */
1117        journal->j_flags = JBD2_ABORT;
1118
1119        /* Set up a default-sized revoke table for the new mount. */
1120        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1121        if (err) {
1122                kfree(journal);
1123                return NULL;
1124        }
1125
1126        spin_lock_init(&journal->j_history_lock);
1127
1128        return journal;
1129}
1130
1131/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1132 *
1133 * Create a journal structure assigned some fixed set of disk blocks to
1134 * the journal.  We don't actually touch those disk blocks yet, but we
1135 * need to set up all of the mapping information to tell the journaling
1136 * system where the journal blocks are.
1137 *
1138 */
1139
1140/**
1141 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1142 *  @bdev: Block device on which to create the journal
1143 *  @fs_dev: Device which hold journalled filesystem for this journal.
1144 *  @start: Block nr Start of journal.
1145 *  @len:  Length of the journal in blocks.
1146 *  @blocksize: blocksize of journalling device
1147 *
1148 *  Returns: a newly created journal_t *
1149 *
1150 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1151 *  range of blocks on an arbitrary block device.
1152 *
1153 */
1154journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1155                        struct block_device *fs_dev,
1156                        unsigned long long start, int len, int blocksize)
1157{
1158        journal_t *journal = journal_init_common();
1159        struct buffer_head *bh;
1160        int n;
1161
1162        if (!journal)
1163                return NULL;
1164
1165        /* journal descriptor can store up to n blocks -bzzz */
1166        journal->j_blocksize = blocksize;
1167        journal->j_dev = bdev;
1168        journal->j_fs_dev = fs_dev;
1169        journal->j_blk_offset = start;
1170        journal->j_maxlen = len;
1171        bdevname(journal->j_dev, journal->j_devname);
1172        strreplace(journal->j_devname, '/', '!');
1173        jbd2_stats_proc_init(journal);
1174        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1175        journal->j_wbufsize = n;
1176        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1177        if (!journal->j_wbuf) {
1178                printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1179                        __func__);
1180                goto out_err;
1181        }
1182
1183        bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1184        if (!bh) {
1185                printk(KERN_ERR
1186                       "%s: Cannot get buffer for journal superblock\n",
1187                       __func__);
1188                goto out_err;
1189        }
1190        journal->j_sb_buffer = bh;
1191        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1192
1193        return journal;
1194out_err:
1195        kfree(journal->j_wbuf);
1196        jbd2_stats_proc_exit(journal);
1197        kfree(journal);
1198        return NULL;
1199}
1200
1201/**
1202 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1203 *  @inode: An inode to create the journal in
1204 *
1205 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1206 * the journal.  The inode must exist already, must support bmap() and
1207 * must have all data blocks preallocated.
1208 */
1209journal_t * jbd2_journal_init_inode (struct inode *inode)
1210{
1211        struct buffer_head *bh;
1212        journal_t *journal = journal_init_common();
1213        char *p;
1214        int err;
1215        int n;
1216        unsigned long long blocknr;
1217
1218        if (!journal)
1219                return NULL;
1220
1221        journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1222        journal->j_inode = inode;
1223        bdevname(journal->j_dev, journal->j_devname);
1224        p = strreplace(journal->j_devname, '/', '!');
1225        sprintf(p, "-%lu", journal->j_inode->i_ino);
1226        jbd_debug(1,
1227                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1228                  journal, inode->i_sb->s_id, inode->i_ino,
1229                  (long long) inode->i_size,
1230                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1231
1232        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1233        journal->j_blocksize = inode->i_sb->s_blocksize;
1234        jbd2_stats_proc_init(journal);
1235
1236        /* journal descriptor can store up to n blocks -bzzz */
1237        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1238        journal->j_wbufsize = n;
1239        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1240        if (!journal->j_wbuf) {
1241                printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1242                        __func__);
1243                goto out_err;
1244        }
1245
1246        err = jbd2_journal_bmap(journal, 0, &blocknr);
1247        /* If that failed, give up */
1248        if (err) {
1249                printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1250                       __func__);
1251                goto out_err;
1252        }
1253
1254        bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1255        if (!bh) {
1256                printk(KERN_ERR
1257                       "%s: Cannot get buffer for journal superblock\n",
1258                       __func__);
1259                goto out_err;
1260        }
1261        journal->j_sb_buffer = bh;
1262        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1263
1264        return journal;
1265out_err:
1266        kfree(journal->j_wbuf);
1267        jbd2_stats_proc_exit(journal);
1268        kfree(journal);
1269        return NULL;
1270}
1271
1272/*
1273 * If the journal init or create aborts, we need to mark the journal
1274 * superblock as being NULL to prevent the journal destroy from writing
1275 * back a bogus superblock.
1276 */
1277static void journal_fail_superblock (journal_t *journal)
1278{
1279        struct buffer_head *bh = journal->j_sb_buffer;
1280        brelse(bh);
1281        journal->j_sb_buffer = NULL;
1282}
1283
1284/*
1285 * Given a journal_t structure, initialise the various fields for
1286 * startup of a new journaling session.  We use this both when creating
1287 * a journal, and after recovering an old journal to reset it for
1288 * subsequent use.
1289 */
1290
1291static int journal_reset(journal_t *journal)
1292{
1293        journal_superblock_t *sb = journal->j_superblock;
1294        unsigned long long first, last;
1295
1296        first = be32_to_cpu(sb->s_first);
1297        last = be32_to_cpu(sb->s_maxlen);
1298        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1299                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1300                       first, last);
1301                journal_fail_superblock(journal);
1302                return -EINVAL;
1303        }
1304
1305        journal->j_first = first;
1306        journal->j_last = last;
1307
1308        journal->j_head = first;
1309        journal->j_tail = first;
1310        journal->j_free = last - first;
1311
1312        journal->j_tail_sequence = journal->j_transaction_sequence;
1313        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1314        journal->j_commit_request = journal->j_commit_sequence;
1315
1316        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1317
1318        /*
1319         * As a special case, if the on-disk copy is already marked as needing
1320         * no recovery (s_start == 0), then we can safely defer the superblock
1321         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1322         * attempting a write to a potential-readonly device.
1323         */
1324        if (sb->s_start == 0) {
1325                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1326                        "(start %ld, seq %d, errno %d)\n",
1327                        journal->j_tail, journal->j_tail_sequence,
1328                        journal->j_errno);
1329                journal->j_flags |= JBD2_FLUSHED;
1330        } else {
1331                /* Lock here to make assertions happy... */
1332                mutex_lock(&journal->j_checkpoint_mutex);
1333                /*
1334                 * Update log tail information. We use WRITE_FUA since new
1335                 * transaction will start reusing journal space and so we
1336                 * must make sure information about current log tail is on
1337                 * disk before that.
1338                 */
1339                jbd2_journal_update_sb_log_tail(journal,
1340                                                journal->j_tail_sequence,
1341                                                journal->j_tail,
1342                                                WRITE_FUA);
1343                mutex_unlock(&journal->j_checkpoint_mutex);
1344        }
1345        return jbd2_journal_start_thread(journal);
1346}
1347
1348static int jbd2_write_superblock(journal_t *journal, int write_op)
1349{
1350        struct buffer_head *bh = journal->j_sb_buffer;
1351        journal_superblock_t *sb = journal->j_superblock;
1352        int ret;
1353
1354        trace_jbd2_write_superblock(journal, write_op);
1355        if (!(journal->j_flags & JBD2_BARRIER))
1356                write_op &= ~(REQ_FUA | REQ_FLUSH);
1357        lock_buffer(bh);
1358        if (buffer_write_io_error(bh)) {
1359                /*
1360                 * Oh, dear.  A previous attempt to write the journal
1361                 * superblock failed.  This could happen because the
1362                 * USB device was yanked out.  Or it could happen to
1363                 * be a transient write error and maybe the block will
1364                 * be remapped.  Nothing we can do but to retry the
1365                 * write and hope for the best.
1366                 */
1367                printk(KERN_ERR "JBD2: previous I/O error detected "
1368                       "for journal superblock update for %s.\n",
1369                       journal->j_devname);
1370                clear_buffer_write_io_error(bh);
1371                set_buffer_uptodate(bh);
1372        }
1373        jbd2_superblock_csum_set(journal, sb);
1374        get_bh(bh);
1375        bh->b_end_io = end_buffer_write_sync;
1376        ret = submit_bh(write_op, bh);
1377        wait_on_buffer(bh);
1378        if (buffer_write_io_error(bh)) {
1379                clear_buffer_write_io_error(bh);
1380                set_buffer_uptodate(bh);
1381                ret = -EIO;
1382        }
1383        if (ret) {
1384                printk(KERN_ERR "JBD2: Error %d detected when updating "
1385                       "journal superblock for %s.\n", ret,
1386                       journal->j_devname);
1387                jbd2_journal_abort(journal, ret);
1388        }
1389
1390        return ret;
1391}
1392
1393/**
1394 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395 * @journal: The journal to update.
1396 * @tail_tid: TID of the new transaction at the tail of the log
1397 * @tail_block: The first block of the transaction at the tail of the log
1398 * @write_op: With which operation should we write the journal sb
1399 *
1400 * Update a journal's superblock information about log tail and write it to
1401 * disk, waiting for the IO to complete.
1402 */
1403int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404                                     unsigned long tail_block, int write_op)
1405{
1406        journal_superblock_t *sb = journal->j_superblock;
1407        int ret;
1408
1409        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1410        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1411                  tail_block, tail_tid);
1412
1413        sb->s_sequence = cpu_to_be32(tail_tid);
1414        sb->s_start    = cpu_to_be32(tail_block);
1415
1416        ret = jbd2_write_superblock(journal, write_op);
1417        if (ret)
1418                goto out;
1419
1420        /* Log is no longer empty */
1421        write_lock(&journal->j_state_lock);
1422        WARN_ON(!sb->s_sequence);
1423        journal->j_flags &= ~JBD2_FLUSHED;
1424        write_unlock(&journal->j_state_lock);
1425
1426out:
1427        return ret;
1428}
1429
1430/**
1431 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1432 * @journal: The journal to update.
1433 * @write_op: With which operation should we write the journal sb
1434 *
1435 * Update a journal's dynamic superblock fields to show that journal is empty.
1436 * Write updated superblock to disk waiting for IO to complete.
1437 */
1438static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1439{
1440        journal_superblock_t *sb = journal->j_superblock;
1441
1442        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1443        read_lock(&journal->j_state_lock);
1444        /* Is it already empty? */
1445        if (sb->s_start == 0) {
1446                read_unlock(&journal->j_state_lock);
1447                return;
1448        }
1449        jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1450                  journal->j_tail_sequence);
1451
1452        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1453        sb->s_start    = cpu_to_be32(0);
1454        read_unlock(&journal->j_state_lock);
1455
1456        jbd2_write_superblock(journal, write_op);
1457
1458        /* Log is no longer empty */
1459        write_lock(&journal->j_state_lock);
1460        journal->j_flags |= JBD2_FLUSHED;
1461        write_unlock(&journal->j_state_lock);
1462}
1463
1464
1465/**
1466 * jbd2_journal_update_sb_errno() - Update error in the journal.
1467 * @journal: The journal to update.
1468 *
1469 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1470 * to complete.
1471 */
1472void jbd2_journal_update_sb_errno(journal_t *journal)
1473{
1474        journal_superblock_t *sb = journal->j_superblock;
1475
1476        read_lock(&journal->j_state_lock);
1477        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1478                  journal->j_errno);
1479        sb->s_errno    = cpu_to_be32(journal->j_errno);
1480        read_unlock(&journal->j_state_lock);
1481
1482        jbd2_write_superblock(journal, WRITE_FUA);
1483}
1484EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1485
1486/*
1487 * Read the superblock for a given journal, performing initial
1488 * validation of the format.
1489 */
1490static int journal_get_superblock(journal_t *journal)
1491{
1492        struct buffer_head *bh;
1493        journal_superblock_t *sb;
1494        int err = -EIO;
1495
1496        bh = journal->j_sb_buffer;
1497
1498        J_ASSERT(bh != NULL);
1499        if (!buffer_uptodate(bh)) {
1500                ll_rw_block(READ, 1, &bh);
1501                wait_on_buffer(bh);
1502                if (!buffer_uptodate(bh)) {
1503                        printk(KERN_ERR
1504                                "JBD2: IO error reading journal superblock\n");
1505                        goto out;
1506                }
1507        }
1508
1509        if (buffer_verified(bh))
1510                return 0;
1511
1512        sb = journal->j_superblock;
1513
1514        err = -EINVAL;
1515
1516        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1517            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1518                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1519                goto out;
1520        }
1521
1522        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1523        case JBD2_SUPERBLOCK_V1:
1524                journal->j_format_version = 1;
1525                break;
1526        case JBD2_SUPERBLOCK_V2:
1527                journal->j_format_version = 2;
1528                break;
1529        default:
1530                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1531                goto out;
1532        }
1533
1534        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1535                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1536        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1537                printk(KERN_WARNING "JBD2: journal file too short\n");
1538                goto out;
1539        }
1540
1541        if (be32_to_cpu(sb->s_first) == 0 ||
1542            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1543                printk(KERN_WARNING
1544                        "JBD2: Invalid start block of journal: %u\n",
1545                        be32_to_cpu(sb->s_first));
1546                goto out;
1547        }
1548
1549        if (jbd2_has_feature_csum2(journal) &&
1550            jbd2_has_feature_csum3(journal)) {
1551                /* Can't have checksum v2 and v3 at the same time! */
1552                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1553                       "at the same time!\n");
1554                goto out;
1555        }
1556
1557        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1558            jbd2_has_feature_checksum(journal)) {
1559                /* Can't have checksum v1 and v2 on at the same time! */
1560                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1561                       "at the same time!\n");
1562                goto out;
1563        }
1564
1565        if (!jbd2_verify_csum_type(journal, sb)) {
1566                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1567                goto out;
1568        }
1569
1570        /* Load the checksum driver */
1571        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1572                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1573                if (IS_ERR(journal->j_chksum_driver)) {
1574                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1575                        err = PTR_ERR(journal->j_chksum_driver);
1576                        journal->j_chksum_driver = NULL;
1577                        goto out;
1578                }
1579        }
1580
1581        /* Check superblock checksum */
1582        if (!jbd2_superblock_csum_verify(journal, sb)) {
1583                printk(KERN_ERR "JBD2: journal checksum error\n");
1584                err = -EFSBADCRC;
1585                goto out;
1586        }
1587
1588        /* Precompute checksum seed for all metadata */
1589        if (jbd2_journal_has_csum_v2or3(journal))
1590                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1591                                                   sizeof(sb->s_uuid));
1592
1593        set_buffer_verified(bh);
1594
1595        return 0;
1596
1597out:
1598        journal_fail_superblock(journal);
1599        return err;
1600}
1601
1602/*
1603 * Load the on-disk journal superblock and read the key fields into the
1604 * journal_t.
1605 */
1606
1607static int load_superblock(journal_t *journal)
1608{
1609        int err;
1610        journal_superblock_t *sb;
1611
1612        err = journal_get_superblock(journal);
1613        if (err)
1614                return err;
1615
1616        sb = journal->j_superblock;
1617
1618        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1619        journal->j_tail = be32_to_cpu(sb->s_start);
1620        journal->j_first = be32_to_cpu(sb->s_first);
1621        journal->j_last = be32_to_cpu(sb->s_maxlen);
1622        journal->j_errno = be32_to_cpu(sb->s_errno);
1623
1624        return 0;
1625}
1626
1627
1628/**
1629 * int jbd2_journal_load() - Read journal from disk.
1630 * @journal: Journal to act on.
1631 *
1632 * Given a journal_t structure which tells us which disk blocks contain
1633 * a journal, read the journal from disk to initialise the in-memory
1634 * structures.
1635 */
1636int jbd2_journal_load(journal_t *journal)
1637{
1638        int err;
1639        journal_superblock_t *sb;
1640
1641        err = load_superblock(journal);
1642        if (err)
1643                return err;
1644
1645        sb = journal->j_superblock;
1646        /* If this is a V2 superblock, then we have to check the
1647         * features flags on it. */
1648
1649        if (journal->j_format_version >= 2) {
1650                if ((sb->s_feature_ro_compat &
1651                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1652                    (sb->s_feature_incompat &
1653                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1654                        printk(KERN_WARNING
1655                                "JBD2: Unrecognised features on journal\n");
1656                        return -EINVAL;
1657                }
1658        }
1659
1660        /*
1661         * Create a slab for this blocksize
1662         */
1663        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1664        if (err)
1665                return err;
1666
1667        /* Let the recovery code check whether it needs to recover any
1668         * data from the journal. */
1669        if (jbd2_journal_recover(journal))
1670                goto recovery_error;
1671
1672        if (journal->j_failed_commit) {
1673                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1674                       "is corrupt.\n", journal->j_failed_commit,
1675                       journal->j_devname);
1676                return -EFSCORRUPTED;
1677        }
1678
1679        /* OK, we've finished with the dynamic journal bits:
1680         * reinitialise the dynamic contents of the superblock in memory
1681         * and reset them on disk. */
1682        if (journal_reset(journal))
1683                goto recovery_error;
1684
1685        journal->j_flags &= ~JBD2_ABORT;
1686        journal->j_flags |= JBD2_LOADED;
1687        return 0;
1688
1689recovery_error:
1690        printk(KERN_WARNING "JBD2: recovery failed\n");
1691        return -EIO;
1692}
1693
1694/**
1695 * void jbd2_journal_destroy() - Release a journal_t structure.
1696 * @journal: Journal to act on.
1697 *
1698 * Release a journal_t structure once it is no longer in use by the
1699 * journaled object.
1700 * Return <0 if we couldn't clean up the journal.
1701 */
1702int jbd2_journal_destroy(journal_t *journal)
1703{
1704        int err = 0;
1705
1706        /* Wait for the commit thread to wake up and die. */
1707        journal_kill_thread(journal);
1708
1709        /* Force a final log commit */
1710        if (journal->j_running_transaction)
1711                jbd2_journal_commit_transaction(journal);
1712
1713        /* Force any old transactions to disk */
1714
1715        /* Totally anal locking here... */
1716        spin_lock(&journal->j_list_lock);
1717        while (journal->j_checkpoint_transactions != NULL) {
1718                spin_unlock(&journal->j_list_lock);
1719                mutex_lock(&journal->j_checkpoint_mutex);
1720                err = jbd2_log_do_checkpoint(journal);
1721                mutex_unlock(&journal->j_checkpoint_mutex);
1722                /*
1723                 * If checkpointing failed, just free the buffers to avoid
1724                 * looping forever
1725                 */
1726                if (err) {
1727                        jbd2_journal_destroy_checkpoint(journal);
1728                        spin_lock(&journal->j_list_lock);
1729                        break;
1730                }
1731                spin_lock(&journal->j_list_lock);
1732        }
1733
1734        J_ASSERT(journal->j_running_transaction == NULL);
1735        J_ASSERT(journal->j_committing_transaction == NULL);
1736        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1737        spin_unlock(&journal->j_list_lock);
1738
1739        if (journal->j_sb_buffer) {
1740                if (!is_journal_aborted(journal)) {
1741                        mutex_lock(&journal->j_checkpoint_mutex);
1742
1743                        write_lock(&journal->j_state_lock);
1744                        journal->j_tail_sequence =
1745                                ++journal->j_transaction_sequence;
1746                        write_unlock(&journal->j_state_lock);
1747
1748                        jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1749                        mutex_unlock(&journal->j_checkpoint_mutex);
1750                } else
1751                        err = -EIO;
1752                brelse(journal->j_sb_buffer);
1753        }
1754
1755        if (journal->j_proc_entry)
1756                jbd2_stats_proc_exit(journal);
1757        iput(journal->j_inode);
1758        if (journal->j_revoke)
1759                jbd2_journal_destroy_revoke(journal);
1760        if (journal->j_chksum_driver)
1761                crypto_free_shash(journal->j_chksum_driver);
1762        kfree(journal->j_wbuf);
1763        kfree(journal);
1764
1765        return err;
1766}
1767
1768
1769/**
1770 *int jbd2_journal_check_used_features () - Check if features specified are used.
1771 * @journal: Journal to check.
1772 * @compat: bitmask of compatible features
1773 * @ro: bitmask of features that force read-only mount
1774 * @incompat: bitmask of incompatible features
1775 *
1776 * Check whether the journal uses all of a given set of
1777 * features.  Return true (non-zero) if it does.
1778 **/
1779
1780int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1781                                 unsigned long ro, unsigned long incompat)
1782{
1783        journal_superblock_t *sb;
1784
1785        if (!compat && !ro && !incompat)
1786                return 1;
1787        /* Load journal superblock if it is not loaded yet. */
1788        if (journal->j_format_version == 0 &&
1789            journal_get_superblock(journal) != 0)
1790                return 0;
1791        if (journal->j_format_version == 1)
1792                return 0;
1793
1794        sb = journal->j_superblock;
1795
1796        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1797            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1798            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1799                return 1;
1800
1801        return 0;
1802}
1803
1804/**
1805 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1806 * @journal: Journal to check.
1807 * @compat: bitmask of compatible features
1808 * @ro: bitmask of features that force read-only mount
1809 * @incompat: bitmask of incompatible features
1810 *
1811 * Check whether the journaling code supports the use of
1812 * all of a given set of features on this journal.  Return true
1813 * (non-zero) if it can. */
1814
1815int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1816                                      unsigned long ro, unsigned long incompat)
1817{
1818        if (!compat && !ro && !incompat)
1819                return 1;
1820
1821        /* We can support any known requested features iff the
1822         * superblock is in version 2.  Otherwise we fail to support any
1823         * extended sb features. */
1824
1825        if (journal->j_format_version != 2)
1826                return 0;
1827
1828        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1829            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1830            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1831                return 1;
1832
1833        return 0;
1834}
1835
1836/**
1837 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1838 * @journal: Journal to act on.
1839 * @compat: bitmask of compatible features
1840 * @ro: bitmask of features that force read-only mount
1841 * @incompat: bitmask of incompatible features
1842 *
1843 * Mark a given journal feature as present on the
1844 * superblock.  Returns true if the requested features could be set.
1845 *
1846 */
1847
1848int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1849                          unsigned long ro, unsigned long incompat)
1850{
1851#define INCOMPAT_FEATURE_ON(f) \
1852                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1853#define COMPAT_FEATURE_ON(f) \
1854                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1855        journal_superblock_t *sb;
1856
1857        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1858                return 1;
1859
1860        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1861                return 0;
1862
1863        /* If enabling v2 checksums, turn on v3 instead */
1864        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1865                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1866                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1867        }
1868
1869        /* Asking for checksumming v3 and v1?  Only give them v3. */
1870        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1871            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1872                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1873
1874        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1875                  compat, ro, incompat);
1876
1877        sb = journal->j_superblock;
1878
1879        /* If enabling v3 checksums, update superblock */
1880        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1881                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1882                sb->s_feature_compat &=
1883                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1884
1885                /* Load the checksum driver */
1886                if (journal->j_chksum_driver == NULL) {
1887                        journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1888                                                                      0, 0);
1889                        if (IS_ERR(journal->j_chksum_driver)) {
1890                                printk(KERN_ERR "JBD2: Cannot load crc32c "
1891                                       "driver.\n");
1892                                journal->j_chksum_driver = NULL;
1893                                return 0;
1894                        }
1895
1896                        /* Precompute checksum seed for all metadata */
1897                        journal->j_csum_seed = jbd2_chksum(journal, ~0,
1898                                                           sb->s_uuid,
1899                                                           sizeof(sb->s_uuid));
1900                }
1901        }
1902
1903        /* If enabling v1 checksums, downgrade superblock */
1904        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1905                sb->s_feature_incompat &=
1906                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1907                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1908
1909        sb->s_feature_compat    |= cpu_to_be32(compat);
1910        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1911        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1912
1913        return 1;
1914#undef COMPAT_FEATURE_ON
1915#undef INCOMPAT_FEATURE_ON
1916}
1917
1918/*
1919 * jbd2_journal_clear_features () - Clear a given journal feature in the
1920 *                                  superblock
1921 * @journal: Journal to act on.
1922 * @compat: bitmask of compatible features
1923 * @ro: bitmask of features that force read-only mount
1924 * @incompat: bitmask of incompatible features
1925 *
1926 * Clear a given journal feature as present on the
1927 * superblock.
1928 */
1929void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1930                                unsigned long ro, unsigned long incompat)
1931{
1932        journal_superblock_t *sb;
1933
1934        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1935                  compat, ro, incompat);
1936
1937        sb = journal->j_superblock;
1938
1939        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1940        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1941        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1942}
1943EXPORT_SYMBOL(jbd2_journal_clear_features);
1944
1945/**
1946 * int jbd2_journal_flush () - Flush journal
1947 * @journal: Journal to act on.
1948 *
1949 * Flush all data for a given journal to disk and empty the journal.
1950 * Filesystems can use this when remounting readonly to ensure that
1951 * recovery does not need to happen on remount.
1952 */
1953
1954int jbd2_journal_flush(journal_t *journal)
1955{
1956        int err = 0;
1957        transaction_t *transaction = NULL;
1958
1959        write_lock(&journal->j_state_lock);
1960
1961        /* Force everything buffered to the log... */
1962        if (journal->j_running_transaction) {
1963                transaction = journal->j_running_transaction;
1964                __jbd2_log_start_commit(journal, transaction->t_tid);
1965        } else if (journal->j_committing_transaction)
1966                transaction = journal->j_committing_transaction;
1967
1968        /* Wait for the log commit to complete... */
1969        if (transaction) {
1970                tid_t tid = transaction->t_tid;
1971
1972                write_unlock(&journal->j_state_lock);
1973                jbd2_log_wait_commit(journal, tid);
1974        } else {
1975                write_unlock(&journal->j_state_lock);
1976        }
1977
1978        /* ...and flush everything in the log out to disk. */
1979        spin_lock(&journal->j_list_lock);
1980        while (!err && journal->j_checkpoint_transactions != NULL) {
1981                spin_unlock(&journal->j_list_lock);
1982                mutex_lock(&journal->j_checkpoint_mutex);
1983                err = jbd2_log_do_checkpoint(journal);
1984                mutex_unlock(&journal->j_checkpoint_mutex);
1985                spin_lock(&journal->j_list_lock);
1986        }
1987        spin_unlock(&journal->j_list_lock);
1988
1989        if (is_journal_aborted(journal))
1990                return -EIO;
1991
1992        mutex_lock(&journal->j_checkpoint_mutex);
1993        if (!err) {
1994                err = jbd2_cleanup_journal_tail(journal);
1995                if (err < 0) {
1996                        mutex_unlock(&journal->j_checkpoint_mutex);
1997                        goto out;
1998                }
1999                err = 0;
2000        }
2001
2002        /* Finally, mark the journal as really needing no recovery.
2003         * This sets s_start==0 in the underlying superblock, which is
2004         * the magic code for a fully-recovered superblock.  Any future
2005         * commits of data to the journal will restore the current
2006         * s_start value. */
2007        jbd2_mark_journal_empty(journal, WRITE_FUA);
2008        mutex_unlock(&journal->j_checkpoint_mutex);
2009        write_lock(&journal->j_state_lock);
2010        J_ASSERT(!journal->j_running_transaction);
2011        J_ASSERT(!journal->j_committing_transaction);
2012        J_ASSERT(!journal->j_checkpoint_transactions);
2013        J_ASSERT(journal->j_head == journal->j_tail);
2014        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2015        write_unlock(&journal->j_state_lock);
2016out:
2017        return err;
2018}
2019
2020/**
2021 * int jbd2_journal_wipe() - Wipe journal contents
2022 * @journal: Journal to act on.
2023 * @write: flag (see below)
2024 *
2025 * Wipe out all of the contents of a journal, safely.  This will produce
2026 * a warning if the journal contains any valid recovery information.
2027 * Must be called between journal_init_*() and jbd2_journal_load().
2028 *
2029 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2030 * we merely suppress recovery.
2031 */
2032
2033int jbd2_journal_wipe(journal_t *journal, int write)
2034{
2035        int err = 0;
2036
2037        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2038
2039        err = load_superblock(journal);
2040        if (err)
2041                return err;
2042
2043        if (!journal->j_tail)
2044                goto no_recovery;
2045
2046        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2047                write ? "Clearing" : "Ignoring");
2048
2049        err = jbd2_journal_skip_recovery(journal);
2050        if (write) {
2051                /* Lock to make assertions happy... */
2052                mutex_lock(&journal->j_checkpoint_mutex);
2053                jbd2_mark_journal_empty(journal, WRITE_FUA);
2054                mutex_unlock(&journal->j_checkpoint_mutex);
2055        }
2056
2057 no_recovery:
2058        return err;
2059}
2060
2061/*
2062 * Journal abort has very specific semantics, which we describe
2063 * for journal abort.
2064 *
2065 * Two internal functions, which provide abort to the jbd layer
2066 * itself are here.
2067 */
2068
2069/*
2070 * Quick version for internal journal use (doesn't lock the journal).
2071 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2072 * and don't attempt to make any other journal updates.
2073 */
2074void __jbd2_journal_abort_hard(journal_t *journal)
2075{
2076        transaction_t *transaction;
2077
2078        if (journal->j_flags & JBD2_ABORT)
2079                return;
2080
2081        printk(KERN_ERR "Aborting journal on device %s.\n",
2082               journal->j_devname);
2083
2084        write_lock(&journal->j_state_lock);
2085        journal->j_flags |= JBD2_ABORT;
2086        transaction = journal->j_running_transaction;
2087        if (transaction)
2088                __jbd2_log_start_commit(journal, transaction->t_tid);
2089        write_unlock(&journal->j_state_lock);
2090}
2091
2092/* Soft abort: record the abort error status in the journal superblock,
2093 * but don't do any other IO. */
2094static void __journal_abort_soft (journal_t *journal, int errno)
2095{
2096        if (journal->j_flags & JBD2_ABORT)
2097                return;
2098
2099        if (!journal->j_errno)
2100                journal->j_errno = errno;
2101
2102        __jbd2_journal_abort_hard(journal);
2103
2104        if (errno) {
2105                jbd2_journal_update_sb_errno(journal);
2106                write_lock(&journal->j_state_lock);
2107                journal->j_flags |= JBD2_REC_ERR;
2108                write_unlock(&journal->j_state_lock);
2109        }
2110}
2111
2112/**
2113 * void jbd2_journal_abort () - Shutdown the journal immediately.
2114 * @journal: the journal to shutdown.
2115 * @errno:   an error number to record in the journal indicating
2116 *           the reason for the shutdown.
2117 *
2118 * Perform a complete, immediate shutdown of the ENTIRE
2119 * journal (not of a single transaction).  This operation cannot be
2120 * undone without closing and reopening the journal.
2121 *
2122 * The jbd2_journal_abort function is intended to support higher level error
2123 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2124 * mode.
2125 *
2126 * Journal abort has very specific semantics.  Any existing dirty,
2127 * unjournaled buffers in the main filesystem will still be written to
2128 * disk by bdflush, but the journaling mechanism will be suspended
2129 * immediately and no further transaction commits will be honoured.
2130 *
2131 * Any dirty, journaled buffers will be written back to disk without
2132 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2133 * filesystem, but we _do_ attempt to leave as much data as possible
2134 * behind for fsck to use for cleanup.
2135 *
2136 * Any attempt to get a new transaction handle on a journal which is in
2137 * ABORT state will just result in an -EROFS error return.  A
2138 * jbd2_journal_stop on an existing handle will return -EIO if we have
2139 * entered abort state during the update.
2140 *
2141 * Recursive transactions are not disturbed by journal abort until the
2142 * final jbd2_journal_stop, which will receive the -EIO error.
2143 *
2144 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2145 * which will be recorded (if possible) in the journal superblock.  This
2146 * allows a client to record failure conditions in the middle of a
2147 * transaction without having to complete the transaction to record the
2148 * failure to disk.  ext3_error, for example, now uses this
2149 * functionality.
2150 *
2151 * Errors which originate from within the journaling layer will NOT
2152 * supply an errno; a null errno implies that absolutely no further
2153 * writes are done to the journal (unless there are any already in
2154 * progress).
2155 *
2156 */
2157
2158void jbd2_journal_abort(journal_t *journal, int errno)
2159{
2160        __journal_abort_soft(journal, errno);
2161}
2162
2163/**
2164 * int jbd2_journal_errno () - returns the journal's error state.
2165 * @journal: journal to examine.
2166 *
2167 * This is the errno number set with jbd2_journal_abort(), the last
2168 * time the journal was mounted - if the journal was stopped
2169 * without calling abort this will be 0.
2170 *
2171 * If the journal has been aborted on this mount time -EROFS will
2172 * be returned.
2173 */
2174int jbd2_journal_errno(journal_t *journal)
2175{
2176        int err;
2177
2178        read_lock(&journal->j_state_lock);
2179        if (journal->j_flags & JBD2_ABORT)
2180                err = -EROFS;
2181        else
2182                err = journal->j_errno;
2183        read_unlock(&journal->j_state_lock);
2184        return err;
2185}
2186
2187/**
2188 * int jbd2_journal_clear_err () - clears the journal's error state
2189 * @journal: journal to act on.
2190 *
2191 * An error must be cleared or acked to take a FS out of readonly
2192 * mode.
2193 */
2194int jbd2_journal_clear_err(journal_t *journal)
2195{
2196        int err = 0;
2197
2198        write_lock(&journal->j_state_lock);
2199        if (journal->j_flags & JBD2_ABORT)
2200                err = -EROFS;
2201        else
2202                journal->j_errno = 0;
2203        write_unlock(&journal->j_state_lock);
2204        return err;
2205}
2206
2207/**
2208 * void jbd2_journal_ack_err() - Ack journal err.
2209 * @journal: journal to act on.
2210 *
2211 * An error must be cleared or acked to take a FS out of readonly
2212 * mode.
2213 */
2214void jbd2_journal_ack_err(journal_t *journal)
2215{
2216        write_lock(&journal->j_state_lock);
2217        if (journal->j_errno)
2218                journal->j_flags |= JBD2_ACK_ERR;
2219        write_unlock(&journal->j_state_lock);
2220}
2221
2222int jbd2_journal_blocks_per_page(struct inode *inode)
2223{
2224        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2225}
2226
2227/*
2228 * helper functions to deal with 32 or 64bit block numbers.
2229 */
2230size_t journal_tag_bytes(journal_t *journal)
2231{
2232        size_t sz;
2233
2234        if (jbd2_has_feature_csum3(journal))
2235                return sizeof(journal_block_tag3_t);
2236
2237        sz = sizeof(journal_block_tag_t);
2238
2239        if (jbd2_has_feature_csum2(journal))
2240                sz += sizeof(__u16);
2241
2242        if (jbd2_has_feature_64bit(journal))
2243                return sz;
2244        else
2245                return sz - sizeof(__u32);
2246}
2247
2248/*
2249 * JBD memory management
2250 *
2251 * These functions are used to allocate block-sized chunks of memory
2252 * used for making copies of buffer_head data.  Very often it will be
2253 * page-sized chunks of data, but sometimes it will be in
2254 * sub-page-size chunks.  (For example, 16k pages on Power systems
2255 * with a 4k block file system.)  For blocks smaller than a page, we
2256 * use a SLAB allocator.  There are slab caches for each block size,
2257 * which are allocated at mount time, if necessary, and we only free
2258 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2259 * this reason we don't need to a mutex to protect access to
2260 * jbd2_slab[] allocating or releasing memory; only in
2261 * jbd2_journal_create_slab().
2262 */
2263#define JBD2_MAX_SLABS 8
2264static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2265
2266static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2267        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2268        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2269};
2270
2271
2272static void jbd2_journal_destroy_slabs(void)
2273{
2274        int i;
2275
2276        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2277                if (jbd2_slab[i])
2278                        kmem_cache_destroy(jbd2_slab[i]);
2279                jbd2_slab[i] = NULL;
2280        }
2281}
2282
2283static int jbd2_journal_create_slab(size_t size)
2284{
2285        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286        int i = order_base_2(size) - 10;
2287        size_t slab_size;
2288
2289        if (size == PAGE_SIZE)
2290                return 0;
2291
2292        if (i >= JBD2_MAX_SLABS)
2293                return -EINVAL;
2294
2295        if (unlikely(i < 0))
2296                i = 0;
2297        mutex_lock(&jbd2_slab_create_mutex);
2298        if (jbd2_slab[i]) {
2299                mutex_unlock(&jbd2_slab_create_mutex);
2300                return 0;       /* Already created */
2301        }
2302
2303        slab_size = 1 << (i+10);
2304        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305                                         slab_size, 0, NULL);
2306        mutex_unlock(&jbd2_slab_create_mutex);
2307        if (!jbd2_slab[i]) {
2308                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309                return -ENOMEM;
2310        }
2311        return 0;
2312}
2313
2314static struct kmem_cache *get_slab(size_t size)
2315{
2316        int i = order_base_2(size) - 10;
2317
2318        BUG_ON(i >= JBD2_MAX_SLABS);
2319        if (unlikely(i < 0))
2320                i = 0;
2321        BUG_ON(jbd2_slab[i] == NULL);
2322        return jbd2_slab[i];
2323}
2324
2325void *jbd2_alloc(size_t size, gfp_t flags)
2326{
2327        void *ptr;
2328
2329        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330
2331        flags |= __GFP_REPEAT;
2332        if (size == PAGE_SIZE)
2333                ptr = (void *)__get_free_pages(flags, 0);
2334        else if (size > PAGE_SIZE) {
2335                int order = get_order(size);
2336
2337                if (order < 3)
2338                        ptr = (void *)__get_free_pages(flags, order);
2339                else
2340                        ptr = vmalloc(size);
2341        } else
2342                ptr = kmem_cache_alloc(get_slab(size), flags);
2343
2344        /* Check alignment; SLUB has gotten this wrong in the past,
2345         * and this can lead to user data corruption! */
2346        BUG_ON(((unsigned long) ptr) & (size-1));
2347
2348        return ptr;
2349}
2350
2351void jbd2_free(void *ptr, size_t size)
2352{
2353        if (size == PAGE_SIZE) {
2354                free_pages((unsigned long)ptr, 0);
2355                return;
2356        }
2357        if (size > PAGE_SIZE) {
2358                int order = get_order(size);
2359
2360                if (order < 3)
2361                        free_pages((unsigned long)ptr, order);
2362                else
2363                        vfree(ptr);
2364                return;
2365        }
2366        kmem_cache_free(get_slab(size), ptr);
2367};
2368
2369/*
2370 * Journal_head storage management
2371 */
2372static struct kmem_cache *jbd2_journal_head_cache;
2373#ifdef CONFIG_JBD2_DEBUG
2374static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375#endif
2376
2377static int jbd2_journal_init_journal_head_cache(void)
2378{
2379        int retval;
2380
2381        J_ASSERT(jbd2_journal_head_cache == NULL);
2382        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2383                                sizeof(struct journal_head),
2384                                0,              /* offset */
2385                                SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2386                                NULL);          /* ctor */
2387        retval = 0;
2388        if (!jbd2_journal_head_cache) {
2389                retval = -ENOMEM;
2390                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2391        }
2392        return retval;
2393}
2394
2395static void jbd2_journal_destroy_journal_head_cache(void)
2396{
2397        if (jbd2_journal_head_cache) {
2398                kmem_cache_destroy(jbd2_journal_head_cache);
2399                jbd2_journal_head_cache = NULL;
2400        }
2401}
2402
2403/*
2404 * journal_head splicing and dicing
2405 */
2406static struct journal_head *journal_alloc_journal_head(void)
2407{
2408        struct journal_head *ret;
2409
2410#ifdef CONFIG_JBD2_DEBUG
2411        atomic_inc(&nr_journal_heads);
2412#endif
2413        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2414        if (!ret) {
2415                jbd_debug(1, "out of memory for journal_head\n");
2416                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2417                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2418                                GFP_NOFS | __GFP_NOFAIL);
2419        }
2420        return ret;
2421}
2422
2423static void journal_free_journal_head(struct journal_head *jh)
2424{
2425#ifdef CONFIG_JBD2_DEBUG
2426        atomic_dec(&nr_journal_heads);
2427        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2428#endif
2429        kmem_cache_free(jbd2_journal_head_cache, jh);
2430}
2431
2432/*
2433 * A journal_head is attached to a buffer_head whenever JBD has an
2434 * interest in the buffer.
2435 *
2436 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2437 * is set.  This bit is tested in core kernel code where we need to take
2438 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2439 * there.
2440 *
2441 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2442 *
2443 * When a buffer has its BH_JBD bit set it is immune from being released by
2444 * core kernel code, mainly via ->b_count.
2445 *
2446 * A journal_head is detached from its buffer_head when the journal_head's
2447 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2448 * transaction (b_cp_transaction) hold their references to b_jcount.
2449 *
2450 * Various places in the kernel want to attach a journal_head to a buffer_head
2451 * _before_ attaching the journal_head to a transaction.  To protect the
2452 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2453 * journal_head's b_jcount refcount by one.  The caller must call
2454 * jbd2_journal_put_journal_head() to undo this.
2455 *
2456 * So the typical usage would be:
2457 *
2458 *      (Attach a journal_head if needed.  Increments b_jcount)
2459 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2460 *      ...
2461 *      (Get another reference for transaction)
2462 *      jbd2_journal_grab_journal_head(bh);
2463 *      jh->b_transaction = xxx;
2464 *      (Put original reference)
2465 *      jbd2_journal_put_journal_head(jh);
2466 */
2467
2468/*
2469 * Give a buffer_head a journal_head.
2470 *
2471 * May sleep.
2472 */
2473struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2474{
2475        struct journal_head *jh;
2476        struct journal_head *new_jh = NULL;
2477
2478repeat:
2479        if (!buffer_jbd(bh))
2480                new_jh = journal_alloc_journal_head();
2481
2482        jbd_lock_bh_journal_head(bh);
2483        if (buffer_jbd(bh)) {
2484                jh = bh2jh(bh);
2485        } else {
2486                J_ASSERT_BH(bh,
2487                        (atomic_read(&bh->b_count) > 0) ||
2488                        (bh->b_page && bh->b_page->mapping));
2489
2490                if (!new_jh) {
2491                        jbd_unlock_bh_journal_head(bh);
2492                        goto repeat;
2493                }
2494
2495                jh = new_jh;
2496                new_jh = NULL;          /* We consumed it */
2497                set_buffer_jbd(bh);
2498                bh->b_private = jh;
2499                jh->b_bh = bh;
2500                get_bh(bh);
2501                BUFFER_TRACE(bh, "added journal_head");
2502        }
2503        jh->b_jcount++;
2504        jbd_unlock_bh_journal_head(bh);
2505        if (new_jh)
2506                journal_free_journal_head(new_jh);
2507        return bh->b_private;
2508}
2509
2510/*
2511 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2512 * having a journal_head, return NULL
2513 */
2514struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2515{
2516        struct journal_head *jh = NULL;
2517
2518        jbd_lock_bh_journal_head(bh);
2519        if (buffer_jbd(bh)) {
2520                jh = bh2jh(bh);
2521                jh->b_jcount++;
2522        }
2523        jbd_unlock_bh_journal_head(bh);
2524        return jh;
2525}
2526
2527static void __journal_remove_journal_head(struct buffer_head *bh)
2528{
2529        struct journal_head *jh = bh2jh(bh);
2530
2531        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2532        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2533        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2534        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2535        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2536        J_ASSERT_BH(bh, buffer_jbd(bh));
2537        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2538        BUFFER_TRACE(bh, "remove journal_head");
2539        if (jh->b_frozen_data) {
2540                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2541                jbd2_free(jh->b_frozen_data, bh->b_size);
2542        }
2543        if (jh->b_committed_data) {
2544                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2545                jbd2_free(jh->b_committed_data, bh->b_size);
2546        }
2547        bh->b_private = NULL;
2548        jh->b_bh = NULL;        /* debug, really */
2549        clear_buffer_jbd(bh);
2550        journal_free_journal_head(jh);
2551}
2552
2553/*
2554 * Drop a reference on the passed journal_head.  If it fell to zero then
2555 * release the journal_head from the buffer_head.
2556 */
2557void jbd2_journal_put_journal_head(struct journal_head *jh)
2558{
2559        struct buffer_head *bh = jh2bh(jh);
2560
2561        jbd_lock_bh_journal_head(bh);
2562        J_ASSERT_JH(jh, jh->b_jcount > 0);
2563        --jh->b_jcount;
2564        if (!jh->b_jcount) {
2565                __journal_remove_journal_head(bh);
2566                jbd_unlock_bh_journal_head(bh);
2567                __brelse(bh);
2568        } else
2569                jbd_unlock_bh_journal_head(bh);
2570}
2571
2572/*
2573 * Initialize jbd inode head
2574 */
2575void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2576{
2577        jinode->i_transaction = NULL;
2578        jinode->i_next_transaction = NULL;
2579        jinode->i_vfs_inode = inode;
2580        jinode->i_flags = 0;
2581        INIT_LIST_HEAD(&jinode->i_list);
2582}
2583
2584/*
2585 * Function to be called before we start removing inode from memory (i.e.,
2586 * clear_inode() is a fine place to be called from). It removes inode from
2587 * transaction's lists.
2588 */
2589void jbd2_journal_release_jbd_inode(journal_t *journal,
2590                                    struct jbd2_inode *jinode)
2591{
2592        if (!journal)
2593                return;
2594restart:
2595        spin_lock(&journal->j_list_lock);
2596        /* Is commit writing out inode - we have to wait */
2597        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2598                wait_queue_head_t *wq;
2599                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2600                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2601                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2602                spin_unlock(&journal->j_list_lock);
2603                schedule();
2604                finish_wait(wq, &wait.wait);
2605                goto restart;
2606        }
2607
2608        if (jinode->i_transaction) {
2609                list_del(&jinode->i_list);
2610                jinode->i_transaction = NULL;
2611        }
2612        spin_unlock(&journal->j_list_lock);
2613}
2614
2615
2616#ifdef CONFIG_PROC_FS
2617
2618#define JBD2_STATS_PROC_NAME "fs/jbd2"
2619
2620static void __init jbd2_create_jbd_stats_proc_entry(void)
2621{
2622        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2623}
2624
2625static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2626{
2627        if (proc_jbd2_stats)
2628                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2629}
2630
2631#else
2632
2633#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2634#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2635
2636#endif
2637
2638struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2639
2640static int __init jbd2_journal_init_handle_cache(void)
2641{
2642        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2643        if (jbd2_handle_cache == NULL) {
2644                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2645                return -ENOMEM;
2646        }
2647        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2648        if (jbd2_inode_cache == NULL) {
2649                printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2650                kmem_cache_destroy(jbd2_handle_cache);
2651                return -ENOMEM;
2652        }
2653        return 0;
2654}
2655
2656static void jbd2_journal_destroy_handle_cache(void)
2657{
2658        if (jbd2_handle_cache)
2659                kmem_cache_destroy(jbd2_handle_cache);
2660        if (jbd2_inode_cache)
2661                kmem_cache_destroy(jbd2_inode_cache);
2662
2663}
2664
2665/*
2666 * Module startup and shutdown
2667 */
2668
2669static int __init journal_init_caches(void)
2670{
2671        int ret;
2672
2673        ret = jbd2_journal_init_revoke_caches();
2674        if (ret == 0)
2675                ret = jbd2_journal_init_journal_head_cache();
2676        if (ret == 0)
2677                ret = jbd2_journal_init_handle_cache();
2678        if (ret == 0)
2679                ret = jbd2_journal_init_transaction_cache();
2680        return ret;
2681}
2682
2683static void jbd2_journal_destroy_caches(void)
2684{
2685        jbd2_journal_destroy_revoke_caches();
2686        jbd2_journal_destroy_journal_head_cache();
2687        jbd2_journal_destroy_handle_cache();
2688        jbd2_journal_destroy_transaction_cache();
2689        jbd2_journal_destroy_slabs();
2690}
2691
2692static int __init journal_init(void)
2693{
2694        int ret;
2695
2696        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2697
2698        ret = journal_init_caches();
2699        if (ret == 0) {
2700                jbd2_create_jbd_stats_proc_entry();
2701        } else {
2702                jbd2_journal_destroy_caches();
2703        }
2704        return ret;
2705}
2706
2707static void __exit journal_exit(void)
2708{
2709#ifdef CONFIG_JBD2_DEBUG
2710        int n = atomic_read(&nr_journal_heads);
2711        if (n)
2712                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2713#endif
2714        jbd2_remove_jbd_stats_proc_entry();
2715        jbd2_journal_destroy_caches();
2716}
2717
2718MODULE_LICENSE("GPL");
2719module_init(journal_init);
2720module_exit(journal_exit);
2721
2722