linux/fs/jbd2/transaction.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/transaction.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem transaction handling code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages transactions (compound commits managed by the
  16 * journaling code) and handles (individual atomic operations by the
  17 * filesystem).
  18 */
  19
  20#include <linux/time.h>
  21#include <linux/fs.h>
  22#include <linux/jbd2.h>
  23#include <linux/errno.h>
  24#include <linux/slab.h>
  25#include <linux/timer.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/hrtimer.h>
  29#include <linux/backing-dev.h>
  30#include <linux/bug.h>
  31#include <linux/module.h>
  32
  33#include <trace/events/jbd2.h>
  34
  35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
  36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
  37
  38static struct kmem_cache *transaction_cache;
  39int __init jbd2_journal_init_transaction_cache(void)
  40{
  41        J_ASSERT(!transaction_cache);
  42        transaction_cache = kmem_cache_create("jbd2_transaction_s",
  43                                        sizeof(transaction_t),
  44                                        0,
  45                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
  46                                        NULL);
  47        if (transaction_cache)
  48                return 0;
  49        return -ENOMEM;
  50}
  51
  52void jbd2_journal_destroy_transaction_cache(void)
  53{
  54        if (transaction_cache) {
  55                kmem_cache_destroy(transaction_cache);
  56                transaction_cache = NULL;
  57        }
  58}
  59
  60void jbd2_journal_free_transaction(transaction_t *transaction)
  61{
  62        if (unlikely(ZERO_OR_NULL_PTR(transaction)))
  63                return;
  64        kmem_cache_free(transaction_cache, transaction);
  65}
  66
  67/*
  68 * jbd2_get_transaction: obtain a new transaction_t object.
  69 *
  70 * Simply allocate and initialise a new transaction.  Create it in
  71 * RUNNING state and add it to the current journal (which should not
  72 * have an existing running transaction: we only make a new transaction
  73 * once we have started to commit the old one).
  74 *
  75 * Preconditions:
  76 *      The journal MUST be locked.  We don't perform atomic mallocs on the
  77 *      new transaction and we can't block without protecting against other
  78 *      processes trying to touch the journal while it is in transition.
  79 *
  80 */
  81
  82static transaction_t *
  83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
  84{
  85        transaction->t_journal = journal;
  86        transaction->t_state = T_RUNNING;
  87        transaction->t_start_time = ktime_get();
  88        transaction->t_tid = journal->j_transaction_sequence++;
  89        transaction->t_expires = jiffies + journal->j_commit_interval;
  90        spin_lock_init(&transaction->t_handle_lock);
  91        atomic_set(&transaction->t_updates, 0);
  92        atomic_set(&transaction->t_outstanding_credits,
  93                   atomic_read(&journal->j_reserved_credits));
  94        atomic_set(&transaction->t_handle_count, 0);
  95        INIT_LIST_HEAD(&transaction->t_inode_list);
  96        INIT_LIST_HEAD(&transaction->t_private_list);
  97
  98        /* Set up the commit timer for the new transaction. */
  99        journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
 100        add_timer(&journal->j_commit_timer);
 101
 102        J_ASSERT(journal->j_running_transaction == NULL);
 103        journal->j_running_transaction = transaction;
 104        transaction->t_max_wait = 0;
 105        transaction->t_start = jiffies;
 106        transaction->t_requested = 0;
 107
 108        return transaction;
 109}
 110
 111/*
 112 * Handle management.
 113 *
 114 * A handle_t is an object which represents a single atomic update to a
 115 * filesystem, and which tracks all of the modifications which form part
 116 * of that one update.
 117 */
 118
 119/*
 120 * Update transaction's maximum wait time, if debugging is enabled.
 121 *
 122 * In order for t_max_wait to be reliable, it must be protected by a
 123 * lock.  But doing so will mean that start_this_handle() can not be
 124 * run in parallel on SMP systems, which limits our scalability.  So
 125 * unless debugging is enabled, we no longer update t_max_wait, which
 126 * means that maximum wait time reported by the jbd2_run_stats
 127 * tracepoint will always be zero.
 128 */
 129static inline void update_t_max_wait(transaction_t *transaction,
 130                                     unsigned long ts)
 131{
 132#ifdef CONFIG_JBD2_DEBUG
 133        if (jbd2_journal_enable_debug &&
 134            time_after(transaction->t_start, ts)) {
 135                ts = jbd2_time_diff(ts, transaction->t_start);
 136                spin_lock(&transaction->t_handle_lock);
 137                if (ts > transaction->t_max_wait)
 138                        transaction->t_max_wait = ts;
 139                spin_unlock(&transaction->t_handle_lock);
 140        }
 141#endif
 142}
 143
 144/*
 145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 146 * if needed. The function expects running transaction to exist and releases
 147 * j_state_lock.
 148 */
 149static void wait_transaction_locked(journal_t *journal)
 150        __releases(journal->j_state_lock)
 151{
 152        DEFINE_WAIT(wait);
 153        int need_to_start;
 154        tid_t tid = journal->j_running_transaction->t_tid;
 155
 156        prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
 157                        TASK_UNINTERRUPTIBLE);
 158        need_to_start = !tid_geq(journal->j_commit_request, tid);
 159        read_unlock(&journal->j_state_lock);
 160        if (need_to_start)
 161                jbd2_log_start_commit(journal, tid);
 162        schedule();
 163        finish_wait(&journal->j_wait_transaction_locked, &wait);
 164}
 165
 166static void sub_reserved_credits(journal_t *journal, int blocks)
 167{
 168        atomic_sub(blocks, &journal->j_reserved_credits);
 169        wake_up(&journal->j_wait_reserved);
 170}
 171
 172/*
 173 * Wait until we can add credits for handle to the running transaction.  Called
 174 * with j_state_lock held for reading. Returns 0 if handle joined the running
 175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 176 * caller must retry.
 177 */
 178static int add_transaction_credits(journal_t *journal, int blocks,
 179                                   int rsv_blocks)
 180{
 181        transaction_t *t = journal->j_running_transaction;
 182        int needed;
 183        int total = blocks + rsv_blocks;
 184
 185        /*
 186         * If the current transaction is locked down for commit, wait
 187         * for the lock to be released.
 188         */
 189        if (t->t_state == T_LOCKED) {
 190                wait_transaction_locked(journal);
 191                return 1;
 192        }
 193
 194        /*
 195         * If there is not enough space left in the log to write all
 196         * potential buffers requested by this operation, we need to
 197         * stall pending a log checkpoint to free some more log space.
 198         */
 199        needed = atomic_add_return(total, &t->t_outstanding_credits);
 200        if (needed > journal->j_max_transaction_buffers) {
 201                /*
 202                 * If the current transaction is already too large,
 203                 * then start to commit it: we can then go back and
 204                 * attach this handle to a new transaction.
 205                 */
 206                atomic_sub(total, &t->t_outstanding_credits);
 207
 208                /*
 209                 * Is the number of reserved credits in the current transaction too
 210                 * big to fit this handle? Wait until reserved credits are freed.
 211                 */
 212                if (atomic_read(&journal->j_reserved_credits) + total >
 213                    journal->j_max_transaction_buffers) {
 214                        read_unlock(&journal->j_state_lock);
 215                        wait_event(journal->j_wait_reserved,
 216                                   atomic_read(&journal->j_reserved_credits) + total <=
 217                                   journal->j_max_transaction_buffers);
 218                        return 1;
 219                }
 220
 221                wait_transaction_locked(journal);
 222                return 1;
 223        }
 224
 225        /*
 226         * The commit code assumes that it can get enough log space
 227         * without forcing a checkpoint.  This is *critical* for
 228         * correctness: a checkpoint of a buffer which is also
 229         * associated with a committing transaction creates a deadlock,
 230         * so commit simply cannot force through checkpoints.
 231         *
 232         * We must therefore ensure the necessary space in the journal
 233         * *before* starting to dirty potentially checkpointed buffers
 234         * in the new transaction.
 235         */
 236        if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
 237                atomic_sub(total, &t->t_outstanding_credits);
 238                read_unlock(&journal->j_state_lock);
 239                write_lock(&journal->j_state_lock);
 240                if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
 241                        __jbd2_log_wait_for_space(journal);
 242                write_unlock(&journal->j_state_lock);
 243                return 1;
 244        }
 245
 246        /* No reservation? We are done... */
 247        if (!rsv_blocks)
 248                return 0;
 249
 250        needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
 251        /* We allow at most half of a transaction to be reserved */
 252        if (needed > journal->j_max_transaction_buffers / 2) {
 253                sub_reserved_credits(journal, rsv_blocks);
 254                atomic_sub(total, &t->t_outstanding_credits);
 255                read_unlock(&journal->j_state_lock);
 256                wait_event(journal->j_wait_reserved,
 257                         atomic_read(&journal->j_reserved_credits) + rsv_blocks
 258                         <= journal->j_max_transaction_buffers / 2);
 259                return 1;
 260        }
 261        return 0;
 262}
 263
 264/*
 265 * start_this_handle: Given a handle, deal with any locking or stalling
 266 * needed to make sure that there is enough journal space for the handle
 267 * to begin.  Attach the handle to a transaction and set up the
 268 * transaction's buffer credits.
 269 */
 270
 271static int start_this_handle(journal_t *journal, handle_t *handle,
 272                             gfp_t gfp_mask)
 273{
 274        transaction_t   *transaction, *new_transaction = NULL;
 275        int             blocks = handle->h_buffer_credits;
 276        int             rsv_blocks = 0;
 277        unsigned long ts = jiffies;
 278
 279        if (handle->h_rsv_handle)
 280                rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
 281
 282        /*
 283         * Limit the number of reserved credits to 1/2 of maximum transaction
 284         * size and limit the number of total credits to not exceed maximum
 285         * transaction size per operation.
 286         */
 287        if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
 288            (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
 289                printk(KERN_ERR "JBD2: %s wants too many credits "
 290                       "credits:%d rsv_credits:%d max:%d\n",
 291                       current->comm, blocks, rsv_blocks,
 292                       journal->j_max_transaction_buffers);
 293                WARN_ON(1);
 294                return -ENOSPC;
 295        }
 296
 297alloc_transaction:
 298        if (!journal->j_running_transaction) {
 299                /*
 300                 * If __GFP_FS is not present, then we may be being called from
 301                 * inside the fs writeback layer, so we MUST NOT fail.
 302                 */
 303                if ((gfp_mask & __GFP_FS) == 0)
 304                        gfp_mask |= __GFP_NOFAIL;
 305                new_transaction = kmem_cache_zalloc(transaction_cache,
 306                                                    gfp_mask);
 307                if (!new_transaction)
 308                        return -ENOMEM;
 309        }
 310
 311        jbd_debug(3, "New handle %p going live.\n", handle);
 312
 313        /*
 314         * We need to hold j_state_lock until t_updates has been incremented,
 315         * for proper journal barrier handling
 316         */
 317repeat:
 318        read_lock(&journal->j_state_lock);
 319        BUG_ON(journal->j_flags & JBD2_UNMOUNT);
 320        if (is_journal_aborted(journal) ||
 321            (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
 322                read_unlock(&journal->j_state_lock);
 323                jbd2_journal_free_transaction(new_transaction);
 324                return -EROFS;
 325        }
 326
 327        /*
 328         * Wait on the journal's transaction barrier if necessary. Specifically
 329         * we allow reserved handles to proceed because otherwise commit could
 330         * deadlock on page writeback not being able to complete.
 331         */
 332        if (!handle->h_reserved && journal->j_barrier_count) {
 333                read_unlock(&journal->j_state_lock);
 334                wait_event(journal->j_wait_transaction_locked,
 335                                journal->j_barrier_count == 0);
 336                goto repeat;
 337        }
 338
 339        if (!journal->j_running_transaction) {
 340                read_unlock(&journal->j_state_lock);
 341                if (!new_transaction)
 342                        goto alloc_transaction;
 343                write_lock(&journal->j_state_lock);
 344                if (!journal->j_running_transaction &&
 345                    (handle->h_reserved || !journal->j_barrier_count)) {
 346                        jbd2_get_transaction(journal, new_transaction);
 347                        new_transaction = NULL;
 348                }
 349                write_unlock(&journal->j_state_lock);
 350                goto repeat;
 351        }
 352
 353        transaction = journal->j_running_transaction;
 354
 355        if (!handle->h_reserved) {
 356                /* We may have dropped j_state_lock - restart in that case */
 357                if (add_transaction_credits(journal, blocks, rsv_blocks))
 358                        goto repeat;
 359        } else {
 360                /*
 361                 * We have handle reserved so we are allowed to join T_LOCKED
 362                 * transaction and we don't have to check for transaction size
 363                 * and journal space.
 364                 */
 365                sub_reserved_credits(journal, blocks);
 366                handle->h_reserved = 0;
 367        }
 368
 369        /* OK, account for the buffers that this operation expects to
 370         * use and add the handle to the running transaction. 
 371         */
 372        update_t_max_wait(transaction, ts);
 373        handle->h_transaction = transaction;
 374        handle->h_requested_credits = blocks;
 375        handle->h_start_jiffies = jiffies;
 376        atomic_inc(&transaction->t_updates);
 377        atomic_inc(&transaction->t_handle_count);
 378        jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
 379                  handle, blocks,
 380                  atomic_read(&transaction->t_outstanding_credits),
 381                  jbd2_log_space_left(journal));
 382        read_unlock(&journal->j_state_lock);
 383        current->journal_info = handle;
 384
 385        lock_map_acquire(&handle->h_lockdep_map);
 386        jbd2_journal_free_transaction(new_transaction);
 387        return 0;
 388}
 389
 390static struct lock_class_key jbd2_handle_key;
 391
 392/* Allocate a new handle.  This should probably be in a slab... */
 393static handle_t *new_handle(int nblocks)
 394{
 395        handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
 396        if (!handle)
 397                return NULL;
 398        handle->h_buffer_credits = nblocks;
 399        handle->h_ref = 1;
 400
 401        lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
 402                                                &jbd2_handle_key, 0);
 403
 404        return handle;
 405}
 406
 407/**
 408 * handle_t *jbd2_journal_start() - Obtain a new handle.
 409 * @journal: Journal to start transaction on.
 410 * @nblocks: number of block buffer we might modify
 411 *
 412 * We make sure that the transaction can guarantee at least nblocks of
 413 * modified buffers in the log.  We block until the log can guarantee
 414 * that much space. Additionally, if rsv_blocks > 0, we also create another
 415 * handle with rsv_blocks reserved blocks in the journal. This handle is
 416 * is stored in h_rsv_handle. It is not attached to any particular transaction
 417 * and thus doesn't block transaction commit. If the caller uses this reserved
 418 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 419 * on the parent handle will dispose the reserved one. Reserved handle has to
 420 * be converted to a normal handle using jbd2_journal_start_reserved() before
 421 * it can be used.
 422 *
 423 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 424 * on failure.
 425 */
 426handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
 427                              gfp_t gfp_mask, unsigned int type,
 428                              unsigned int line_no)
 429{
 430        handle_t *handle = journal_current_handle();
 431        int err;
 432
 433        if (!journal)
 434                return ERR_PTR(-EROFS);
 435
 436        if (handle) {
 437                J_ASSERT(handle->h_transaction->t_journal == journal);
 438                handle->h_ref++;
 439                return handle;
 440        }
 441
 442        handle = new_handle(nblocks);
 443        if (!handle)
 444                return ERR_PTR(-ENOMEM);
 445        if (rsv_blocks) {
 446                handle_t *rsv_handle;
 447
 448                rsv_handle = new_handle(rsv_blocks);
 449                if (!rsv_handle) {
 450                        jbd2_free_handle(handle);
 451                        return ERR_PTR(-ENOMEM);
 452                }
 453                rsv_handle->h_reserved = 1;
 454                rsv_handle->h_journal = journal;
 455                handle->h_rsv_handle = rsv_handle;
 456        }
 457
 458        err = start_this_handle(journal, handle, gfp_mask);
 459        if (err < 0) {
 460                if (handle->h_rsv_handle)
 461                        jbd2_free_handle(handle->h_rsv_handle);
 462                jbd2_free_handle(handle);
 463                return ERR_PTR(err);
 464        }
 465        handle->h_type = type;
 466        handle->h_line_no = line_no;
 467        trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
 468                                handle->h_transaction->t_tid, type,
 469                                line_no, nblocks);
 470        return handle;
 471}
 472EXPORT_SYMBOL(jbd2__journal_start);
 473
 474
 475handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
 476{
 477        return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
 478}
 479EXPORT_SYMBOL(jbd2_journal_start);
 480
 481void jbd2_journal_free_reserved(handle_t *handle)
 482{
 483        journal_t *journal = handle->h_journal;
 484
 485        WARN_ON(!handle->h_reserved);
 486        sub_reserved_credits(journal, handle->h_buffer_credits);
 487        jbd2_free_handle(handle);
 488}
 489EXPORT_SYMBOL(jbd2_journal_free_reserved);
 490
 491/**
 492 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
 493 * @handle: handle to start
 494 *
 495 * Start handle that has been previously reserved with jbd2_journal_reserve().
 496 * This attaches @handle to the running transaction (or creates one if there's
 497 * not transaction running). Unlike jbd2_journal_start() this function cannot
 498 * block on journal commit, checkpointing, or similar stuff. It can block on
 499 * memory allocation or frozen journal though.
 500 *
 501 * Return 0 on success, non-zero on error - handle is freed in that case.
 502 */
 503int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
 504                                unsigned int line_no)
 505{
 506        journal_t *journal = handle->h_journal;
 507        int ret = -EIO;
 508
 509        if (WARN_ON(!handle->h_reserved)) {
 510                /* Someone passed in normal handle? Just stop it. */
 511                jbd2_journal_stop(handle);
 512                return ret;
 513        }
 514        /*
 515         * Usefulness of mixing of reserved and unreserved handles is
 516         * questionable. So far nobody seems to need it so just error out.
 517         */
 518        if (WARN_ON(current->journal_info)) {
 519                jbd2_journal_free_reserved(handle);
 520                return ret;
 521        }
 522
 523        handle->h_journal = NULL;
 524        /*
 525         * GFP_NOFS is here because callers are likely from writeback or
 526         * similarly constrained call sites
 527         */
 528        ret = start_this_handle(journal, handle, GFP_NOFS);
 529        if (ret < 0) {
 530                jbd2_journal_free_reserved(handle);
 531                return ret;
 532        }
 533        handle->h_type = type;
 534        handle->h_line_no = line_no;
 535        return 0;
 536}
 537EXPORT_SYMBOL(jbd2_journal_start_reserved);
 538
 539/**
 540 * int jbd2_journal_extend() - extend buffer credits.
 541 * @handle:  handle to 'extend'
 542 * @nblocks: nr blocks to try to extend by.
 543 *
 544 * Some transactions, such as large extends and truncates, can be done
 545 * atomically all at once or in several stages.  The operation requests
 546 * a credit for a number of buffer modications in advance, but can
 547 * extend its credit if it needs more.
 548 *
 549 * jbd2_journal_extend tries to give the running handle more buffer credits.
 550 * It does not guarantee that allocation - this is a best-effort only.
 551 * The calling process MUST be able to deal cleanly with a failure to
 552 * extend here.
 553 *
 554 * Return 0 on success, non-zero on failure.
 555 *
 556 * return code < 0 implies an error
 557 * return code > 0 implies normal transaction-full status.
 558 */
 559int jbd2_journal_extend(handle_t *handle, int nblocks)
 560{
 561        transaction_t *transaction = handle->h_transaction;
 562        journal_t *journal;
 563        int result;
 564        int wanted;
 565
 566        if (is_handle_aborted(handle))
 567                return -EROFS;
 568        journal = transaction->t_journal;
 569
 570        result = 1;
 571
 572        read_lock(&journal->j_state_lock);
 573
 574        /* Don't extend a locked-down transaction! */
 575        if (transaction->t_state != T_RUNNING) {
 576                jbd_debug(3, "denied handle %p %d blocks: "
 577                          "transaction not running\n", handle, nblocks);
 578                goto error_out;
 579        }
 580
 581        spin_lock(&transaction->t_handle_lock);
 582        wanted = atomic_add_return(nblocks,
 583                                   &transaction->t_outstanding_credits);
 584
 585        if (wanted > journal->j_max_transaction_buffers) {
 586                jbd_debug(3, "denied handle %p %d blocks: "
 587                          "transaction too large\n", handle, nblocks);
 588                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 589                goto unlock;
 590        }
 591
 592        if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
 593            jbd2_log_space_left(journal)) {
 594                jbd_debug(3, "denied handle %p %d blocks: "
 595                          "insufficient log space\n", handle, nblocks);
 596                atomic_sub(nblocks, &transaction->t_outstanding_credits);
 597                goto unlock;
 598        }
 599
 600        trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
 601                                 transaction->t_tid,
 602                                 handle->h_type, handle->h_line_no,
 603                                 handle->h_buffer_credits,
 604                                 nblocks);
 605
 606        handle->h_buffer_credits += nblocks;
 607        handle->h_requested_credits += nblocks;
 608        result = 0;
 609
 610        jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
 611unlock:
 612        spin_unlock(&transaction->t_handle_lock);
 613error_out:
 614        read_unlock(&journal->j_state_lock);
 615        return result;
 616}
 617
 618
 619/**
 620 * int jbd2_journal_restart() - restart a handle .
 621 * @handle:  handle to restart
 622 * @nblocks: nr credits requested
 623 *
 624 * Restart a handle for a multi-transaction filesystem
 625 * operation.
 626 *
 627 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 628 * to a running handle, a call to jbd2_journal_restart will commit the
 629 * handle's transaction so far and reattach the handle to a new
 630 * transaction capabable of guaranteeing the requested number of
 631 * credits. We preserve reserved handle if there's any attached to the
 632 * passed in handle.
 633 */
 634int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
 635{
 636        transaction_t *transaction = handle->h_transaction;
 637        journal_t *journal;
 638        tid_t           tid;
 639        int             need_to_start, ret;
 640
 641        /* If we've had an abort of any type, don't even think about
 642         * actually doing the restart! */
 643        if (is_handle_aborted(handle))
 644                return 0;
 645        journal = transaction->t_journal;
 646
 647        /*
 648         * First unlink the handle from its current transaction, and start the
 649         * commit on that.
 650         */
 651        J_ASSERT(atomic_read(&transaction->t_updates) > 0);
 652        J_ASSERT(journal_current_handle() == handle);
 653
 654        read_lock(&journal->j_state_lock);
 655        spin_lock(&transaction->t_handle_lock);
 656        atomic_sub(handle->h_buffer_credits,
 657                   &transaction->t_outstanding_credits);
 658        if (handle->h_rsv_handle) {
 659                sub_reserved_credits(journal,
 660                                     handle->h_rsv_handle->h_buffer_credits);
 661        }
 662        if (atomic_dec_and_test(&transaction->t_updates))
 663                wake_up(&journal->j_wait_updates);
 664        tid = transaction->t_tid;
 665        spin_unlock(&transaction->t_handle_lock);
 666        handle->h_transaction = NULL;
 667        current->journal_info = NULL;
 668
 669        jbd_debug(2, "restarting handle %p\n", handle);
 670        need_to_start = !tid_geq(journal->j_commit_request, tid);
 671        read_unlock(&journal->j_state_lock);
 672        if (need_to_start)
 673                jbd2_log_start_commit(journal, tid);
 674
 675        lock_map_release(&handle->h_lockdep_map);
 676        handle->h_buffer_credits = nblocks;
 677        ret = start_this_handle(journal, handle, gfp_mask);
 678        return ret;
 679}
 680EXPORT_SYMBOL(jbd2__journal_restart);
 681
 682
 683int jbd2_journal_restart(handle_t *handle, int nblocks)
 684{
 685        return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
 686}
 687EXPORT_SYMBOL(jbd2_journal_restart);
 688
 689/**
 690 * void jbd2_journal_lock_updates () - establish a transaction barrier.
 691 * @journal:  Journal to establish a barrier on.
 692 *
 693 * This locks out any further updates from being started, and blocks
 694 * until all existing updates have completed, returning only once the
 695 * journal is in a quiescent state with no updates running.
 696 *
 697 * The journal lock should not be held on entry.
 698 */
 699void jbd2_journal_lock_updates(journal_t *journal)
 700{
 701        DEFINE_WAIT(wait);
 702
 703        write_lock(&journal->j_state_lock);
 704        ++journal->j_barrier_count;
 705
 706        /* Wait until there are no reserved handles */
 707        if (atomic_read(&journal->j_reserved_credits)) {
 708                write_unlock(&journal->j_state_lock);
 709                wait_event(journal->j_wait_reserved,
 710                           atomic_read(&journal->j_reserved_credits) == 0);
 711                write_lock(&journal->j_state_lock);
 712        }
 713
 714        /* Wait until there are no running updates */
 715        while (1) {
 716                transaction_t *transaction = journal->j_running_transaction;
 717
 718                if (!transaction)
 719                        break;
 720
 721                spin_lock(&transaction->t_handle_lock);
 722                prepare_to_wait(&journal->j_wait_updates, &wait,
 723                                TASK_UNINTERRUPTIBLE);
 724                if (!atomic_read(&transaction->t_updates)) {
 725                        spin_unlock(&transaction->t_handle_lock);
 726                        finish_wait(&journal->j_wait_updates, &wait);
 727                        break;
 728                }
 729                spin_unlock(&transaction->t_handle_lock);
 730                write_unlock(&journal->j_state_lock);
 731                schedule();
 732                finish_wait(&journal->j_wait_updates, &wait);
 733                write_lock(&journal->j_state_lock);
 734        }
 735        write_unlock(&journal->j_state_lock);
 736
 737        /*
 738         * We have now established a barrier against other normal updates, but
 739         * we also need to barrier against other jbd2_journal_lock_updates() calls
 740         * to make sure that we serialise special journal-locked operations
 741         * too.
 742         */
 743        mutex_lock(&journal->j_barrier);
 744}
 745
 746/**
 747 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
 748 * @journal:  Journal to release the barrier on.
 749 *
 750 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
 751 *
 752 * Should be called without the journal lock held.
 753 */
 754void jbd2_journal_unlock_updates (journal_t *journal)
 755{
 756        J_ASSERT(journal->j_barrier_count != 0);
 757
 758        mutex_unlock(&journal->j_barrier);
 759        write_lock(&journal->j_state_lock);
 760        --journal->j_barrier_count;
 761        write_unlock(&journal->j_state_lock);
 762        wake_up(&journal->j_wait_transaction_locked);
 763}
 764
 765static void warn_dirty_buffer(struct buffer_head *bh)
 766{
 767        printk(KERN_WARNING
 768               "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
 769               "There's a risk of filesystem corruption in case of system "
 770               "crash.\n",
 771               bh->b_bdev, (unsigned long long)bh->b_blocknr);
 772}
 773
 774/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
 775static void jbd2_freeze_jh_data(struct journal_head *jh)
 776{
 777        struct page *page;
 778        int offset;
 779        char *source;
 780        struct buffer_head *bh = jh2bh(jh);
 781
 782        J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
 783        page = bh->b_page;
 784        offset = offset_in_page(bh->b_data);
 785        source = kmap_atomic(page);
 786        /* Fire data frozen trigger just before we copy the data */
 787        jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
 788        memcpy(jh->b_frozen_data, source + offset, bh->b_size);
 789        kunmap_atomic(source);
 790
 791        /*
 792         * Now that the frozen data is saved off, we need to store any matching
 793         * triggers.
 794         */
 795        jh->b_frozen_triggers = jh->b_triggers;
 796}
 797
 798/*
 799 * If the buffer is already part of the current transaction, then there
 800 * is nothing we need to do.  If it is already part of a prior
 801 * transaction which we are still committing to disk, then we need to
 802 * make sure that we do not overwrite the old copy: we do copy-out to
 803 * preserve the copy going to disk.  We also account the buffer against
 804 * the handle's metadata buffer credits (unless the buffer is already
 805 * part of the transaction, that is).
 806 *
 807 */
 808static int
 809do_get_write_access(handle_t *handle, struct journal_head *jh,
 810                        int force_copy)
 811{
 812        struct buffer_head *bh;
 813        transaction_t *transaction = handle->h_transaction;
 814        journal_t *journal;
 815        int error;
 816        char *frozen_buffer = NULL;
 817        unsigned long start_lock, time_lock;
 818
 819        if (is_handle_aborted(handle))
 820                return -EROFS;
 821        journal = transaction->t_journal;
 822
 823        jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
 824
 825        JBUFFER_TRACE(jh, "entry");
 826repeat:
 827        bh = jh2bh(jh);
 828
 829        /* @@@ Need to check for errors here at some point. */
 830
 831        start_lock = jiffies;
 832        lock_buffer(bh);
 833        jbd_lock_bh_state(bh);
 834
 835        /* If it takes too long to lock the buffer, trace it */
 836        time_lock = jbd2_time_diff(start_lock, jiffies);
 837        if (time_lock > HZ/10)
 838                trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
 839                        jiffies_to_msecs(time_lock));
 840
 841        /* We now hold the buffer lock so it is safe to query the buffer
 842         * state.  Is the buffer dirty?
 843         *
 844         * If so, there are two possibilities.  The buffer may be
 845         * non-journaled, and undergoing a quite legitimate writeback.
 846         * Otherwise, it is journaled, and we don't expect dirty buffers
 847         * in that state (the buffers should be marked JBD_Dirty
 848         * instead.)  So either the IO is being done under our own
 849         * control and this is a bug, or it's a third party IO such as
 850         * dump(8) (which may leave the buffer scheduled for read ---
 851         * ie. locked but not dirty) or tune2fs (which may actually have
 852         * the buffer dirtied, ugh.)  */
 853
 854        if (buffer_dirty(bh)) {
 855                /*
 856                 * First question: is this buffer already part of the current
 857                 * transaction or the existing committing transaction?
 858                 */
 859                if (jh->b_transaction) {
 860                        J_ASSERT_JH(jh,
 861                                jh->b_transaction == transaction ||
 862                                jh->b_transaction ==
 863                                        journal->j_committing_transaction);
 864                        if (jh->b_next_transaction)
 865                                J_ASSERT_JH(jh, jh->b_next_transaction ==
 866                                                        transaction);
 867                        warn_dirty_buffer(bh);
 868                }
 869                /*
 870                 * In any case we need to clean the dirty flag and we must
 871                 * do it under the buffer lock to be sure we don't race
 872                 * with running write-out.
 873                 */
 874                JBUFFER_TRACE(jh, "Journalling dirty buffer");
 875                clear_buffer_dirty(bh);
 876                set_buffer_jbddirty(bh);
 877        }
 878
 879        unlock_buffer(bh);
 880
 881        error = -EROFS;
 882        if (is_handle_aborted(handle)) {
 883                jbd_unlock_bh_state(bh);
 884                goto out;
 885        }
 886        error = 0;
 887
 888        /*
 889         * The buffer is already part of this transaction if b_transaction or
 890         * b_next_transaction points to it
 891         */
 892        if (jh->b_transaction == transaction ||
 893            jh->b_next_transaction == transaction)
 894                goto done;
 895
 896        /*
 897         * this is the first time this transaction is touching this buffer,
 898         * reset the modified flag
 899         */
 900       jh->b_modified = 0;
 901
 902        /*
 903         * If the buffer is not journaled right now, we need to make sure it
 904         * doesn't get written to disk before the caller actually commits the
 905         * new data
 906         */
 907        if (!jh->b_transaction) {
 908                JBUFFER_TRACE(jh, "no transaction");
 909                J_ASSERT_JH(jh, !jh->b_next_transaction);
 910                JBUFFER_TRACE(jh, "file as BJ_Reserved");
 911                /*
 912                 * Make sure all stores to jh (b_modified, b_frozen_data) are
 913                 * visible before attaching it to the running transaction.
 914                 * Paired with barrier in jbd2_write_access_granted()
 915                 */
 916                smp_wmb();
 917                spin_lock(&journal->j_list_lock);
 918                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
 919                spin_unlock(&journal->j_list_lock);
 920                goto done;
 921        }
 922        /*
 923         * If there is already a copy-out version of this buffer, then we don't
 924         * need to make another one
 925         */
 926        if (jh->b_frozen_data) {
 927                JBUFFER_TRACE(jh, "has frozen data");
 928                J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 929                goto attach_next;
 930        }
 931
 932        JBUFFER_TRACE(jh, "owned by older transaction");
 933        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
 934        J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
 935
 936        /*
 937         * There is one case we have to be very careful about.  If the
 938         * committing transaction is currently writing this buffer out to disk
 939         * and has NOT made a copy-out, then we cannot modify the buffer
 940         * contents at all right now.  The essence of copy-out is that it is
 941         * the extra copy, not the primary copy, which gets journaled.  If the
 942         * primary copy is already going to disk then we cannot do copy-out
 943         * here.
 944         */
 945        if (buffer_shadow(bh)) {
 946                JBUFFER_TRACE(jh, "on shadow: sleep");
 947                jbd_unlock_bh_state(bh);
 948                wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
 949                goto repeat;
 950        }
 951
 952        /*
 953         * Only do the copy if the currently-owning transaction still needs it.
 954         * If buffer isn't on BJ_Metadata list, the committing transaction is
 955         * past that stage (here we use the fact that BH_Shadow is set under
 956         * bh_state lock together with refiling to BJ_Shadow list and at this
 957         * point we know the buffer doesn't have BH_Shadow set).
 958         *
 959         * Subtle point, though: if this is a get_undo_access, then we will be
 960         * relying on the frozen_data to contain the new value of the
 961         * committed_data record after the transaction, so we HAVE to force the
 962         * frozen_data copy in that case.
 963         */
 964        if (jh->b_jlist == BJ_Metadata || force_copy) {
 965                JBUFFER_TRACE(jh, "generate frozen data");
 966                if (!frozen_buffer) {
 967                        JBUFFER_TRACE(jh, "allocate memory for buffer");
 968                        jbd_unlock_bh_state(bh);
 969                        frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
 970                                                   GFP_NOFS | __GFP_NOFAIL);
 971                        goto repeat;
 972                }
 973                jh->b_frozen_data = frozen_buffer;
 974                frozen_buffer = NULL;
 975                jbd2_freeze_jh_data(jh);
 976        }
 977attach_next:
 978        /*
 979         * Make sure all stores to jh (b_modified, b_frozen_data) are visible
 980         * before attaching it to the running transaction. Paired with barrier
 981         * in jbd2_write_access_granted()
 982         */
 983        smp_wmb();
 984        jh->b_next_transaction = transaction;
 985
 986done:
 987        jbd_unlock_bh_state(bh);
 988
 989        /*
 990         * If we are about to journal a buffer, then any revoke pending on it is
 991         * no longer valid
 992         */
 993        jbd2_journal_cancel_revoke(handle, jh);
 994
 995out:
 996        if (unlikely(frozen_buffer))    /* It's usually NULL */
 997                jbd2_free(frozen_buffer, bh->b_size);
 998
 999        JBUFFER_TRACE(jh, "exit");
1000        return error;
1001}
1002
1003/* Fast check whether buffer is already attached to the required transaction */
1004static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1005                                                        bool undo)
1006{
1007        struct journal_head *jh;
1008        bool ret = false;
1009
1010        /* Dirty buffers require special handling... */
1011        if (buffer_dirty(bh))
1012                return false;
1013
1014        /*
1015         * RCU protects us from dereferencing freed pages. So the checks we do
1016         * are guaranteed not to oops. However the jh slab object can get freed
1017         * & reallocated while we work with it. So we have to be careful. When
1018         * we see jh attached to the running transaction, we know it must stay
1019         * so until the transaction is committed. Thus jh won't be freed and
1020         * will be attached to the same bh while we run.  However it can
1021         * happen jh gets freed, reallocated, and attached to the transaction
1022         * just after we get pointer to it from bh. So we have to be careful
1023         * and recheck jh still belongs to our bh before we return success.
1024         */
1025        rcu_read_lock();
1026        if (!buffer_jbd(bh))
1027                goto out;
1028        /* This should be bh2jh() but that doesn't work with inline functions */
1029        jh = READ_ONCE(bh->b_private);
1030        if (!jh)
1031                goto out;
1032        /* For undo access buffer must have data copied */
1033        if (undo && !jh->b_committed_data)
1034                goto out;
1035        if (jh->b_transaction != handle->h_transaction &&
1036            jh->b_next_transaction != handle->h_transaction)
1037                goto out;
1038        /*
1039         * There are two reasons for the barrier here:
1040         * 1) Make sure to fetch b_bh after we did previous checks so that we
1041         * detect when jh went through free, realloc, attach to transaction
1042         * while we were checking. Paired with implicit barrier in that path.
1043         * 2) So that access to bh done after jbd2_write_access_granted()
1044         * doesn't get reordered and see inconsistent state of concurrent
1045         * do_get_write_access().
1046         */
1047        smp_mb();
1048        if (unlikely(jh->b_bh != bh))
1049                goto out;
1050        ret = true;
1051out:
1052        rcu_read_unlock();
1053        return ret;
1054}
1055
1056/**
1057 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1058 * @handle: transaction to add buffer modifications to
1059 * @bh:     bh to be used for metadata writes
1060 *
1061 * Returns an error code or 0 on success.
1062 *
1063 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1064 * because we're write()ing a buffer which is also part of a shared mapping.
1065 */
1066
1067int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1068{
1069        struct journal_head *jh;
1070        int rc;
1071
1072        if (jbd2_write_access_granted(handle, bh, false))
1073                return 0;
1074
1075        jh = jbd2_journal_add_journal_head(bh);
1076        /* We do not want to get caught playing with fields which the
1077         * log thread also manipulates.  Make sure that the buffer
1078         * completes any outstanding IO before proceeding. */
1079        rc = do_get_write_access(handle, jh, 0);
1080        jbd2_journal_put_journal_head(jh);
1081        return rc;
1082}
1083
1084
1085/*
1086 * When the user wants to journal a newly created buffer_head
1087 * (ie. getblk() returned a new buffer and we are going to populate it
1088 * manually rather than reading off disk), then we need to keep the
1089 * buffer_head locked until it has been completely filled with new
1090 * data.  In this case, we should be able to make the assertion that
1091 * the bh is not already part of an existing transaction.
1092 *
1093 * The buffer should already be locked by the caller by this point.
1094 * There is no lock ranking violation: it was a newly created,
1095 * unlocked buffer beforehand. */
1096
1097/**
1098 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1099 * @handle: transaction to new buffer to
1100 * @bh: new buffer.
1101 *
1102 * Call this if you create a new bh.
1103 */
1104int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1105{
1106        transaction_t *transaction = handle->h_transaction;
1107        journal_t *journal;
1108        struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1109        int err;
1110
1111        jbd_debug(5, "journal_head %p\n", jh);
1112        err = -EROFS;
1113        if (is_handle_aborted(handle))
1114                goto out;
1115        journal = transaction->t_journal;
1116        err = 0;
1117
1118        JBUFFER_TRACE(jh, "entry");
1119        /*
1120         * The buffer may already belong to this transaction due to pre-zeroing
1121         * in the filesystem's new_block code.  It may also be on the previous,
1122         * committing transaction's lists, but it HAS to be in Forget state in
1123         * that case: the transaction must have deleted the buffer for it to be
1124         * reused here.
1125         */
1126        jbd_lock_bh_state(bh);
1127        J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1128                jh->b_transaction == NULL ||
1129                (jh->b_transaction == journal->j_committing_transaction &&
1130                          jh->b_jlist == BJ_Forget)));
1131
1132        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1133        J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1134
1135        if (jh->b_transaction == NULL) {
1136                /*
1137                 * Previous jbd2_journal_forget() could have left the buffer
1138                 * with jbddirty bit set because it was being committed. When
1139                 * the commit finished, we've filed the buffer for
1140                 * checkpointing and marked it dirty. Now we are reallocating
1141                 * the buffer so the transaction freeing it must have
1142                 * committed and so it's safe to clear the dirty bit.
1143                 */
1144                clear_buffer_dirty(jh2bh(jh));
1145                /* first access by this transaction */
1146                jh->b_modified = 0;
1147
1148                JBUFFER_TRACE(jh, "file as BJ_Reserved");
1149                spin_lock(&journal->j_list_lock);
1150                __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1151        } else if (jh->b_transaction == journal->j_committing_transaction) {
1152                /* first access by this transaction */
1153                jh->b_modified = 0;
1154
1155                JBUFFER_TRACE(jh, "set next transaction");
1156                spin_lock(&journal->j_list_lock);
1157                jh->b_next_transaction = transaction;
1158        }
1159        spin_unlock(&journal->j_list_lock);
1160        jbd_unlock_bh_state(bh);
1161
1162        /*
1163         * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1164         * blocks which contain freed but then revoked metadata.  We need
1165         * to cancel the revoke in case we end up freeing it yet again
1166         * and the reallocating as data - this would cause a second revoke,
1167         * which hits an assertion error.
1168         */
1169        JBUFFER_TRACE(jh, "cancelling revoke");
1170        jbd2_journal_cancel_revoke(handle, jh);
1171out:
1172        jbd2_journal_put_journal_head(jh);
1173        return err;
1174}
1175
1176/**
1177 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1178 *     non-rewindable consequences
1179 * @handle: transaction
1180 * @bh: buffer to undo
1181 *
1182 * Sometimes there is a need to distinguish between metadata which has
1183 * been committed to disk and that which has not.  The ext3fs code uses
1184 * this for freeing and allocating space, we have to make sure that we
1185 * do not reuse freed space until the deallocation has been committed,
1186 * since if we overwrote that space we would make the delete
1187 * un-rewindable in case of a crash.
1188 *
1189 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1190 * buffer for parts of non-rewindable operations such as delete
1191 * operations on the bitmaps.  The journaling code must keep a copy of
1192 * the buffer's contents prior to the undo_access call until such time
1193 * as we know that the buffer has definitely been committed to disk.
1194 *
1195 * We never need to know which transaction the committed data is part
1196 * of, buffers touched here are guaranteed to be dirtied later and so
1197 * will be committed to a new transaction in due course, at which point
1198 * we can discard the old committed data pointer.
1199 *
1200 * Returns error number or 0 on success.
1201 */
1202int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1203{
1204        int err;
1205        struct journal_head *jh;
1206        char *committed_data = NULL;
1207
1208        JBUFFER_TRACE(jh, "entry");
1209        if (jbd2_write_access_granted(handle, bh, true))
1210                return 0;
1211
1212        jh = jbd2_journal_add_journal_head(bh);
1213        /*
1214         * Do this first --- it can drop the journal lock, so we want to
1215         * make sure that obtaining the committed_data is done
1216         * atomically wrt. completion of any outstanding commits.
1217         */
1218        err = do_get_write_access(handle, jh, 1);
1219        if (err)
1220                goto out;
1221
1222repeat:
1223        if (!jh->b_committed_data)
1224                committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1225                                            GFP_NOFS|__GFP_NOFAIL);
1226
1227        jbd_lock_bh_state(bh);
1228        if (!jh->b_committed_data) {
1229                /* Copy out the current buffer contents into the
1230                 * preserved, committed copy. */
1231                JBUFFER_TRACE(jh, "generate b_committed data");
1232                if (!committed_data) {
1233                        jbd_unlock_bh_state(bh);
1234                        goto repeat;
1235                }
1236
1237                jh->b_committed_data = committed_data;
1238                committed_data = NULL;
1239                memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1240        }
1241        jbd_unlock_bh_state(bh);
1242out:
1243        jbd2_journal_put_journal_head(jh);
1244        if (unlikely(committed_data))
1245                jbd2_free(committed_data, bh->b_size);
1246        return err;
1247}
1248
1249/**
1250 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1251 * @bh: buffer to trigger on
1252 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1253 *
1254 * Set any triggers on this journal_head.  This is always safe, because
1255 * triggers for a committing buffer will be saved off, and triggers for
1256 * a running transaction will match the buffer in that transaction.
1257 *
1258 * Call with NULL to clear the triggers.
1259 */
1260void jbd2_journal_set_triggers(struct buffer_head *bh,
1261                               struct jbd2_buffer_trigger_type *type)
1262{
1263        struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1264
1265        if (WARN_ON(!jh))
1266                return;
1267        jh->b_triggers = type;
1268        jbd2_journal_put_journal_head(jh);
1269}
1270
1271void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1272                                struct jbd2_buffer_trigger_type *triggers)
1273{
1274        struct buffer_head *bh = jh2bh(jh);
1275
1276        if (!triggers || !triggers->t_frozen)
1277                return;
1278
1279        triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1280}
1281
1282void jbd2_buffer_abort_trigger(struct journal_head *jh,
1283                               struct jbd2_buffer_trigger_type *triggers)
1284{
1285        if (!triggers || !triggers->t_abort)
1286                return;
1287
1288        triggers->t_abort(triggers, jh2bh(jh));
1289}
1290
1291/**
1292 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1293 * @handle: transaction to add buffer to.
1294 * @bh: buffer to mark
1295 *
1296 * mark dirty metadata which needs to be journaled as part of the current
1297 * transaction.
1298 *
1299 * The buffer must have previously had jbd2_journal_get_write_access()
1300 * called so that it has a valid journal_head attached to the buffer
1301 * head.
1302 *
1303 * The buffer is placed on the transaction's metadata list and is marked
1304 * as belonging to the transaction.
1305 *
1306 * Returns error number or 0 on success.
1307 *
1308 * Special care needs to be taken if the buffer already belongs to the
1309 * current committing transaction (in which case we should have frozen
1310 * data present for that commit).  In that case, we don't relink the
1311 * buffer: that only gets done when the old transaction finally
1312 * completes its commit.
1313 */
1314int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1315{
1316        transaction_t *transaction = handle->h_transaction;
1317        journal_t *journal;
1318        struct journal_head *jh;
1319        int ret = 0;
1320
1321        if (is_handle_aborted(handle))
1322                return -EROFS;
1323        if (!buffer_jbd(bh)) {
1324                ret = -EUCLEAN;
1325                goto out;
1326        }
1327        /*
1328         * We don't grab jh reference here since the buffer must be part
1329         * of the running transaction.
1330         */
1331        jh = bh2jh(bh);
1332        /*
1333         * This and the following assertions are unreliable since we may see jh
1334         * in inconsistent state unless we grab bh_state lock. But this is
1335         * crucial to catch bugs so let's do a reliable check until the
1336         * lockless handling is fully proven.
1337         */
1338        if (jh->b_transaction != transaction &&
1339            jh->b_next_transaction != transaction) {
1340                jbd_lock_bh_state(bh);
1341                J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1342                                jh->b_next_transaction == transaction);
1343                jbd_unlock_bh_state(bh);
1344        }
1345        if (jh->b_modified == 1) {
1346                /* If it's in our transaction it must be in BJ_Metadata list. */
1347                if (jh->b_transaction == transaction &&
1348                    jh->b_jlist != BJ_Metadata) {
1349                        jbd_lock_bh_state(bh);
1350                        J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1351                                        jh->b_jlist == BJ_Metadata);
1352                        jbd_unlock_bh_state(bh);
1353                }
1354                goto out;
1355        }
1356
1357        journal = transaction->t_journal;
1358        jbd_debug(5, "journal_head %p\n", jh);
1359        JBUFFER_TRACE(jh, "entry");
1360
1361        jbd_lock_bh_state(bh);
1362
1363        if (jh->b_modified == 0) {
1364                /*
1365                 * This buffer's got modified and becoming part
1366                 * of the transaction. This needs to be done
1367                 * once a transaction -bzzz
1368                 */
1369                jh->b_modified = 1;
1370                if (handle->h_buffer_credits <= 0) {
1371                        ret = -ENOSPC;
1372                        goto out_unlock_bh;
1373                }
1374                handle->h_buffer_credits--;
1375        }
1376
1377        /*
1378         * fastpath, to avoid expensive locking.  If this buffer is already
1379         * on the running transaction's metadata list there is nothing to do.
1380         * Nobody can take it off again because there is a handle open.
1381         * I _think_ we're OK here with SMP barriers - a mistaken decision will
1382         * result in this test being false, so we go in and take the locks.
1383         */
1384        if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1385                JBUFFER_TRACE(jh, "fastpath");
1386                if (unlikely(jh->b_transaction !=
1387                             journal->j_running_transaction)) {
1388                        printk(KERN_ERR "JBD2: %s: "
1389                               "jh->b_transaction (%llu, %p, %u) != "
1390                               "journal->j_running_transaction (%p, %u)\n",
1391                               journal->j_devname,
1392                               (unsigned long long) bh->b_blocknr,
1393                               jh->b_transaction,
1394                               jh->b_transaction ? jh->b_transaction->t_tid : 0,
1395                               journal->j_running_transaction,
1396                               journal->j_running_transaction ?
1397                               journal->j_running_transaction->t_tid : 0);
1398                        ret = -EINVAL;
1399                }
1400                goto out_unlock_bh;
1401        }
1402
1403        set_buffer_jbddirty(bh);
1404
1405        /*
1406         * Metadata already on the current transaction list doesn't
1407         * need to be filed.  Metadata on another transaction's list must
1408         * be committing, and will be refiled once the commit completes:
1409         * leave it alone for now.
1410         */
1411        if (jh->b_transaction != transaction) {
1412                JBUFFER_TRACE(jh, "already on other transaction");
1413                if (unlikely(((jh->b_transaction !=
1414                               journal->j_committing_transaction)) ||
1415                             (jh->b_next_transaction != transaction))) {
1416                        printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1417                               "bad jh for block %llu: "
1418                               "transaction (%p, %u), "
1419                               "jh->b_transaction (%p, %u), "
1420                               "jh->b_next_transaction (%p, %u), jlist %u\n",
1421                               journal->j_devname,
1422                               (unsigned long long) bh->b_blocknr,
1423                               transaction, transaction->t_tid,
1424                               jh->b_transaction,
1425                               jh->b_transaction ?
1426                               jh->b_transaction->t_tid : 0,
1427                               jh->b_next_transaction,
1428                               jh->b_next_transaction ?
1429                               jh->b_next_transaction->t_tid : 0,
1430                               jh->b_jlist);
1431                        WARN_ON(1);
1432                        ret = -EINVAL;
1433                }
1434                /* And this case is illegal: we can't reuse another
1435                 * transaction's data buffer, ever. */
1436                goto out_unlock_bh;
1437        }
1438
1439        /* That test should have eliminated the following case: */
1440        J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1441
1442        JBUFFER_TRACE(jh, "file as BJ_Metadata");
1443        spin_lock(&journal->j_list_lock);
1444        __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1445        spin_unlock(&journal->j_list_lock);
1446out_unlock_bh:
1447        jbd_unlock_bh_state(bh);
1448out:
1449        JBUFFER_TRACE(jh, "exit");
1450        return ret;
1451}
1452
1453/**
1454 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1455 * @handle: transaction handle
1456 * @bh:     bh to 'forget'
1457 *
1458 * We can only do the bforget if there are no commits pending against the
1459 * buffer.  If the buffer is dirty in the current running transaction we
1460 * can safely unlink it.
1461 *
1462 * bh may not be a journalled buffer at all - it may be a non-JBD
1463 * buffer which came off the hashtable.  Check for this.
1464 *
1465 * Decrements bh->b_count by one.
1466 *
1467 * Allow this call even if the handle has aborted --- it may be part of
1468 * the caller's cleanup after an abort.
1469 */
1470int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1471{
1472        transaction_t *transaction = handle->h_transaction;
1473        journal_t *journal;
1474        struct journal_head *jh;
1475        int drop_reserve = 0;
1476        int err = 0;
1477        int was_modified = 0;
1478
1479        if (is_handle_aborted(handle))
1480                return -EROFS;
1481        journal = transaction->t_journal;
1482
1483        BUFFER_TRACE(bh, "entry");
1484
1485        jbd_lock_bh_state(bh);
1486
1487        if (!buffer_jbd(bh))
1488                goto not_jbd;
1489        jh = bh2jh(bh);
1490
1491        /* Critical error: attempting to delete a bitmap buffer, maybe?
1492         * Don't do any jbd operations, and return an error. */
1493        if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1494                         "inconsistent data on disk")) {
1495                err = -EIO;
1496                goto not_jbd;
1497        }
1498
1499        /* keep track of whether or not this transaction modified us */
1500        was_modified = jh->b_modified;
1501
1502        /*
1503         * The buffer's going from the transaction, we must drop
1504         * all references -bzzz
1505         */
1506        jh->b_modified = 0;
1507
1508        if (jh->b_transaction == transaction) {
1509                J_ASSERT_JH(jh, !jh->b_frozen_data);
1510
1511                /* If we are forgetting a buffer which is already part
1512                 * of this transaction, then we can just drop it from
1513                 * the transaction immediately. */
1514                clear_buffer_dirty(bh);
1515                clear_buffer_jbddirty(bh);
1516
1517                JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1518
1519                /*
1520                 * we only want to drop a reference if this transaction
1521                 * modified the buffer
1522                 */
1523                if (was_modified)
1524                        drop_reserve = 1;
1525
1526                /*
1527                 * We are no longer going to journal this buffer.
1528                 * However, the commit of this transaction is still
1529                 * important to the buffer: the delete that we are now
1530                 * processing might obsolete an old log entry, so by
1531                 * committing, we can satisfy the buffer's checkpoint.
1532                 *
1533                 * So, if we have a checkpoint on the buffer, we should
1534                 * now refile the buffer on our BJ_Forget list so that
1535                 * we know to remove the checkpoint after we commit.
1536                 */
1537
1538                spin_lock(&journal->j_list_lock);
1539                if (jh->b_cp_transaction) {
1540                        __jbd2_journal_temp_unlink_buffer(jh);
1541                        __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1542                } else {
1543                        __jbd2_journal_unfile_buffer(jh);
1544                        if (!buffer_jbd(bh)) {
1545                                spin_unlock(&journal->j_list_lock);
1546                                jbd_unlock_bh_state(bh);
1547                                __bforget(bh);
1548                                goto drop;
1549                        }
1550                }
1551                spin_unlock(&journal->j_list_lock);
1552        } else if (jh->b_transaction) {
1553                J_ASSERT_JH(jh, (jh->b_transaction ==
1554                                 journal->j_committing_transaction));
1555                /* However, if the buffer is still owned by a prior
1556                 * (committing) transaction, we can't drop it yet... */
1557                JBUFFER_TRACE(jh, "belongs to older transaction");
1558                /* ... but we CAN drop it from the new transaction if we
1559                 * have also modified it since the original commit. */
1560
1561                if (jh->b_next_transaction) {
1562                        J_ASSERT(jh->b_next_transaction == transaction);
1563                        spin_lock(&journal->j_list_lock);
1564                        jh->b_next_transaction = NULL;
1565                        spin_unlock(&journal->j_list_lock);
1566
1567                        /*
1568                         * only drop a reference if this transaction modified
1569                         * the buffer
1570                         */
1571                        if (was_modified)
1572                                drop_reserve = 1;
1573                }
1574        }
1575
1576not_jbd:
1577        jbd_unlock_bh_state(bh);
1578        __brelse(bh);
1579drop:
1580        if (drop_reserve) {
1581                /* no need to reserve log space for this block -bzzz */
1582                handle->h_buffer_credits++;
1583        }
1584        return err;
1585}
1586
1587/**
1588 * int jbd2_journal_stop() - complete a transaction
1589 * @handle: tranaction to complete.
1590 *
1591 * All done for a particular handle.
1592 *
1593 * There is not much action needed here.  We just return any remaining
1594 * buffer credits to the transaction and remove the handle.  The only
1595 * complication is that we need to start a commit operation if the
1596 * filesystem is marked for synchronous update.
1597 *
1598 * jbd2_journal_stop itself will not usually return an error, but it may
1599 * do so in unusual circumstances.  In particular, expect it to
1600 * return -EIO if a jbd2_journal_abort has been executed since the
1601 * transaction began.
1602 */
1603int jbd2_journal_stop(handle_t *handle)
1604{
1605        transaction_t *transaction = handle->h_transaction;
1606        journal_t *journal;
1607        int err = 0, wait_for_commit = 0;
1608        tid_t tid;
1609        pid_t pid;
1610
1611        if (!transaction) {
1612                /*
1613                 * Handle is already detached from the transaction so
1614                 * there is nothing to do other than decrease a refcount,
1615                 * or free the handle if refcount drops to zero
1616                 */
1617                if (--handle->h_ref > 0) {
1618                        jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1619                                                         handle->h_ref);
1620                        return err;
1621                } else {
1622                        if (handle->h_rsv_handle)
1623                                jbd2_free_handle(handle->h_rsv_handle);
1624                        goto free_and_exit;
1625                }
1626        }
1627        journal = transaction->t_journal;
1628
1629        J_ASSERT(journal_current_handle() == handle);
1630
1631        if (is_handle_aborted(handle))
1632                err = -EIO;
1633        else
1634                J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1635
1636        if (--handle->h_ref > 0) {
1637                jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1638                          handle->h_ref);
1639                return err;
1640        }
1641
1642        jbd_debug(4, "Handle %p going down\n", handle);
1643        trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1644                                transaction->t_tid,
1645                                handle->h_type, handle->h_line_no,
1646                                jiffies - handle->h_start_jiffies,
1647                                handle->h_sync, handle->h_requested_credits,
1648                                (handle->h_requested_credits -
1649                                 handle->h_buffer_credits));
1650
1651        /*
1652         * Implement synchronous transaction batching.  If the handle
1653         * was synchronous, don't force a commit immediately.  Let's
1654         * yield and let another thread piggyback onto this
1655         * transaction.  Keep doing that while new threads continue to
1656         * arrive.  It doesn't cost much - we're about to run a commit
1657         * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1658         * operations by 30x or more...
1659         *
1660         * We try and optimize the sleep time against what the
1661         * underlying disk can do, instead of having a static sleep
1662         * time.  This is useful for the case where our storage is so
1663         * fast that it is more optimal to go ahead and force a flush
1664         * and wait for the transaction to be committed than it is to
1665         * wait for an arbitrary amount of time for new writers to
1666         * join the transaction.  We achieve this by measuring how
1667         * long it takes to commit a transaction, and compare it with
1668         * how long this transaction has been running, and if run time
1669         * < commit time then we sleep for the delta and commit.  This
1670         * greatly helps super fast disks that would see slowdowns as
1671         * more threads started doing fsyncs.
1672         *
1673         * But don't do this if this process was the most recent one
1674         * to perform a synchronous write.  We do this to detect the
1675         * case where a single process is doing a stream of sync
1676         * writes.  No point in waiting for joiners in that case.
1677         *
1678         * Setting max_batch_time to 0 disables this completely.
1679         */
1680        pid = current->pid;
1681        if (handle->h_sync && journal->j_last_sync_writer != pid &&
1682            journal->j_max_batch_time) {
1683                u64 commit_time, trans_time;
1684
1685                journal->j_last_sync_writer = pid;
1686
1687                read_lock(&journal->j_state_lock);
1688                commit_time = journal->j_average_commit_time;
1689                read_unlock(&journal->j_state_lock);
1690
1691                trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1692                                                   transaction->t_start_time));
1693
1694                commit_time = max_t(u64, commit_time,
1695                                    1000*journal->j_min_batch_time);
1696                commit_time = min_t(u64, commit_time,
1697                                    1000*journal->j_max_batch_time);
1698
1699                if (trans_time < commit_time) {
1700                        ktime_t expires = ktime_add_ns(ktime_get(),
1701                                                       commit_time);
1702                        set_current_state(TASK_UNINTERRUPTIBLE);
1703                        schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1704                }
1705        }
1706
1707        if (handle->h_sync)
1708                transaction->t_synchronous_commit = 1;
1709        current->journal_info = NULL;
1710        atomic_sub(handle->h_buffer_credits,
1711                   &transaction->t_outstanding_credits);
1712
1713        /*
1714         * If the handle is marked SYNC, we need to set another commit
1715         * going!  We also want to force a commit if the current
1716         * transaction is occupying too much of the log, or if the
1717         * transaction is too old now.
1718         */
1719        if (handle->h_sync ||
1720            (atomic_read(&transaction->t_outstanding_credits) >
1721             journal->j_max_transaction_buffers) ||
1722            time_after_eq(jiffies, transaction->t_expires)) {
1723                /* Do this even for aborted journals: an abort still
1724                 * completes the commit thread, it just doesn't write
1725                 * anything to disk. */
1726
1727                jbd_debug(2, "transaction too old, requesting commit for "
1728                                        "handle %p\n", handle);
1729                /* This is non-blocking */
1730                jbd2_log_start_commit(journal, transaction->t_tid);
1731
1732                /*
1733                 * Special case: JBD2_SYNC synchronous updates require us
1734                 * to wait for the commit to complete.
1735                 */
1736                if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1737                        wait_for_commit = 1;
1738        }
1739
1740        /*
1741         * Once we drop t_updates, if it goes to zero the transaction
1742         * could start committing on us and eventually disappear.  So
1743         * once we do this, we must not dereference transaction
1744         * pointer again.
1745         */
1746        tid = transaction->t_tid;
1747        if (atomic_dec_and_test(&transaction->t_updates)) {
1748                wake_up(&journal->j_wait_updates);
1749                if (journal->j_barrier_count)
1750                        wake_up(&journal->j_wait_transaction_locked);
1751        }
1752
1753        if (wait_for_commit)
1754                err = jbd2_log_wait_commit(journal, tid);
1755
1756        lock_map_release(&handle->h_lockdep_map);
1757
1758        if (handle->h_rsv_handle)
1759                jbd2_journal_free_reserved(handle->h_rsv_handle);
1760free_and_exit:
1761        jbd2_free_handle(handle);
1762        return err;
1763}
1764
1765/*
1766 *
1767 * List management code snippets: various functions for manipulating the
1768 * transaction buffer lists.
1769 *
1770 */
1771
1772/*
1773 * Append a buffer to a transaction list, given the transaction's list head
1774 * pointer.
1775 *
1776 * j_list_lock is held.
1777 *
1778 * jbd_lock_bh_state(jh2bh(jh)) is held.
1779 */
1780
1781static inline void
1782__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1783{
1784        if (!*list) {
1785                jh->b_tnext = jh->b_tprev = jh;
1786                *list = jh;
1787        } else {
1788                /* Insert at the tail of the list to preserve order */
1789                struct journal_head *first = *list, *last = first->b_tprev;
1790                jh->b_tprev = last;
1791                jh->b_tnext = first;
1792                last->b_tnext = first->b_tprev = jh;
1793        }
1794}
1795
1796/*
1797 * Remove a buffer from a transaction list, given the transaction's list
1798 * head pointer.
1799 *
1800 * Called with j_list_lock held, and the journal may not be locked.
1801 *
1802 * jbd_lock_bh_state(jh2bh(jh)) is held.
1803 */
1804
1805static inline void
1806__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1807{
1808        if (*list == jh) {
1809                *list = jh->b_tnext;
1810                if (*list == jh)
1811                        *list = NULL;
1812        }
1813        jh->b_tprev->b_tnext = jh->b_tnext;
1814        jh->b_tnext->b_tprev = jh->b_tprev;
1815}
1816
1817/*
1818 * Remove a buffer from the appropriate transaction list.
1819 *
1820 * Note that this function can *change* the value of
1821 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1822 * t_reserved_list.  If the caller is holding onto a copy of one of these
1823 * pointers, it could go bad.  Generally the caller needs to re-read the
1824 * pointer from the transaction_t.
1825 *
1826 * Called under j_list_lock.
1827 */
1828static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1829{
1830        struct journal_head **list = NULL;
1831        transaction_t *transaction;
1832        struct buffer_head *bh = jh2bh(jh);
1833
1834        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1835        transaction = jh->b_transaction;
1836        if (transaction)
1837                assert_spin_locked(&transaction->t_journal->j_list_lock);
1838
1839        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1840        if (jh->b_jlist != BJ_None)
1841                J_ASSERT_JH(jh, transaction != NULL);
1842
1843        switch (jh->b_jlist) {
1844        case BJ_None:
1845                return;
1846        case BJ_Metadata:
1847                transaction->t_nr_buffers--;
1848                J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1849                list = &transaction->t_buffers;
1850                break;
1851        case BJ_Forget:
1852                list = &transaction->t_forget;
1853                break;
1854        case BJ_Shadow:
1855                list = &transaction->t_shadow_list;
1856                break;
1857        case BJ_Reserved:
1858                list = &transaction->t_reserved_list;
1859                break;
1860        }
1861
1862        __blist_del_buffer(list, jh);
1863        jh->b_jlist = BJ_None;
1864        if (test_clear_buffer_jbddirty(bh))
1865                mark_buffer_dirty(bh);  /* Expose it to the VM */
1866}
1867
1868/*
1869 * Remove buffer from all transactions.
1870 *
1871 * Called with bh_state lock and j_list_lock
1872 *
1873 * jh and bh may be already freed when this function returns.
1874 */
1875static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1876{
1877        __jbd2_journal_temp_unlink_buffer(jh);
1878        jh->b_transaction = NULL;
1879        jbd2_journal_put_journal_head(jh);
1880}
1881
1882void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1883{
1884        struct buffer_head *bh = jh2bh(jh);
1885
1886        /* Get reference so that buffer cannot be freed before we unlock it */
1887        get_bh(bh);
1888        jbd_lock_bh_state(bh);
1889        spin_lock(&journal->j_list_lock);
1890        __jbd2_journal_unfile_buffer(jh);
1891        spin_unlock(&journal->j_list_lock);
1892        jbd_unlock_bh_state(bh);
1893        __brelse(bh);
1894}
1895
1896/*
1897 * Called from jbd2_journal_try_to_free_buffers().
1898 *
1899 * Called under jbd_lock_bh_state(bh)
1900 */
1901static void
1902__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1903{
1904        struct journal_head *jh;
1905
1906        jh = bh2jh(bh);
1907
1908        if (buffer_locked(bh) || buffer_dirty(bh))
1909                goto out;
1910
1911        if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1912                goto out;
1913
1914        spin_lock(&journal->j_list_lock);
1915        if (jh->b_cp_transaction != NULL) {
1916                /* written-back checkpointed metadata buffer */
1917                JBUFFER_TRACE(jh, "remove from checkpoint list");
1918                __jbd2_journal_remove_checkpoint(jh);
1919        }
1920        spin_unlock(&journal->j_list_lock);
1921out:
1922        return;
1923}
1924
1925/**
1926 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1927 * @journal: journal for operation
1928 * @page: to try and free
1929 * @gfp_mask: we use the mask to detect how hard should we try to release
1930 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1931 * code to release the buffers.
1932 *
1933 *
1934 * For all the buffers on this page,
1935 * if they are fully written out ordered data, move them onto BUF_CLEAN
1936 * so try_to_free_buffers() can reap them.
1937 *
1938 * This function returns non-zero if we wish try_to_free_buffers()
1939 * to be called. We do this if the page is releasable by try_to_free_buffers().
1940 * We also do it if the page has locked or dirty buffers and the caller wants
1941 * us to perform sync or async writeout.
1942 *
1943 * This complicates JBD locking somewhat.  We aren't protected by the
1944 * BKL here.  We wish to remove the buffer from its committing or
1945 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1946 *
1947 * This may *change* the value of transaction_t->t_datalist, so anyone
1948 * who looks at t_datalist needs to lock against this function.
1949 *
1950 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1951 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1952 * will come out of the lock with the buffer dirty, which makes it
1953 * ineligible for release here.
1954 *
1955 * Who else is affected by this?  hmm...  Really the only contender
1956 * is do_get_write_access() - it could be looking at the buffer while
1957 * journal_try_to_free_buffer() is changing its state.  But that
1958 * cannot happen because we never reallocate freed data as metadata
1959 * while the data is part of a transaction.  Yes?
1960 *
1961 * Return 0 on failure, 1 on success
1962 */
1963int jbd2_journal_try_to_free_buffers(journal_t *journal,
1964                                struct page *page, gfp_t gfp_mask)
1965{
1966        struct buffer_head *head;
1967        struct buffer_head *bh;
1968        int ret = 0;
1969
1970        J_ASSERT(PageLocked(page));
1971
1972        head = page_buffers(page);
1973        bh = head;
1974        do {
1975                struct journal_head *jh;
1976
1977                /*
1978                 * We take our own ref against the journal_head here to avoid
1979                 * having to add tons of locking around each instance of
1980                 * jbd2_journal_put_journal_head().
1981                 */
1982                jh = jbd2_journal_grab_journal_head(bh);
1983                if (!jh)
1984                        continue;
1985
1986                jbd_lock_bh_state(bh);
1987                __journal_try_to_free_buffer(journal, bh);
1988                jbd2_journal_put_journal_head(jh);
1989                jbd_unlock_bh_state(bh);
1990                if (buffer_jbd(bh))
1991                        goto busy;
1992        } while ((bh = bh->b_this_page) != head);
1993
1994        ret = try_to_free_buffers(page);
1995
1996busy:
1997        return ret;
1998}
1999
2000/*
2001 * This buffer is no longer needed.  If it is on an older transaction's
2002 * checkpoint list we need to record it on this transaction's forget list
2003 * to pin this buffer (and hence its checkpointing transaction) down until
2004 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2005 * release it.
2006 * Returns non-zero if JBD no longer has an interest in the buffer.
2007 *
2008 * Called under j_list_lock.
2009 *
2010 * Called under jbd_lock_bh_state(bh).
2011 */
2012static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2013{
2014        int may_free = 1;
2015        struct buffer_head *bh = jh2bh(jh);
2016
2017        if (jh->b_cp_transaction) {
2018                JBUFFER_TRACE(jh, "on running+cp transaction");
2019                __jbd2_journal_temp_unlink_buffer(jh);
2020                /*
2021                 * We don't want to write the buffer anymore, clear the
2022                 * bit so that we don't confuse checks in
2023                 * __journal_file_buffer
2024                 */
2025                clear_buffer_dirty(bh);
2026                __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2027                may_free = 0;
2028        } else {
2029                JBUFFER_TRACE(jh, "on running transaction");
2030                __jbd2_journal_unfile_buffer(jh);
2031        }
2032        return may_free;
2033}
2034
2035/*
2036 * jbd2_journal_invalidatepage
2037 *
2038 * This code is tricky.  It has a number of cases to deal with.
2039 *
2040 * There are two invariants which this code relies on:
2041 *
2042 * i_size must be updated on disk before we start calling invalidatepage on the
2043 * data.
2044 *
2045 *  This is done in ext3 by defining an ext3_setattr method which
2046 *  updates i_size before truncate gets going.  By maintaining this
2047 *  invariant, we can be sure that it is safe to throw away any buffers
2048 *  attached to the current transaction: once the transaction commits,
2049 *  we know that the data will not be needed.
2050 *
2051 *  Note however that we can *not* throw away data belonging to the
2052 *  previous, committing transaction!
2053 *
2054 * Any disk blocks which *are* part of the previous, committing
2055 * transaction (and which therefore cannot be discarded immediately) are
2056 * not going to be reused in the new running transaction
2057 *
2058 *  The bitmap committed_data images guarantee this: any block which is
2059 *  allocated in one transaction and removed in the next will be marked
2060 *  as in-use in the committed_data bitmap, so cannot be reused until
2061 *  the next transaction to delete the block commits.  This means that
2062 *  leaving committing buffers dirty is quite safe: the disk blocks
2063 *  cannot be reallocated to a different file and so buffer aliasing is
2064 *  not possible.
2065 *
2066 *
2067 * The above applies mainly to ordered data mode.  In writeback mode we
2068 * don't make guarantees about the order in which data hits disk --- in
2069 * particular we don't guarantee that new dirty data is flushed before
2070 * transaction commit --- so it is always safe just to discard data
2071 * immediately in that mode.  --sct
2072 */
2073
2074/*
2075 * The journal_unmap_buffer helper function returns zero if the buffer
2076 * concerned remains pinned as an anonymous buffer belonging to an older
2077 * transaction.
2078 *
2079 * We're outside-transaction here.  Either or both of j_running_transaction
2080 * and j_committing_transaction may be NULL.
2081 */
2082static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2083                                int partial_page)
2084{
2085        transaction_t *transaction;
2086        struct journal_head *jh;
2087        int may_free = 1;
2088
2089        BUFFER_TRACE(bh, "entry");
2090
2091        /*
2092         * It is safe to proceed here without the j_list_lock because the
2093         * buffers cannot be stolen by try_to_free_buffers as long as we are
2094         * holding the page lock. --sct
2095         */
2096
2097        if (!buffer_jbd(bh))
2098                goto zap_buffer_unlocked;
2099
2100        /* OK, we have data buffer in journaled mode */
2101        write_lock(&journal->j_state_lock);
2102        jbd_lock_bh_state(bh);
2103        spin_lock(&journal->j_list_lock);
2104
2105        jh = jbd2_journal_grab_journal_head(bh);
2106        if (!jh)
2107                goto zap_buffer_no_jh;
2108
2109        /*
2110         * We cannot remove the buffer from checkpoint lists until the
2111         * transaction adding inode to orphan list (let's call it T)
2112         * is committed.  Otherwise if the transaction changing the
2113         * buffer would be cleaned from the journal before T is
2114         * committed, a crash will cause that the correct contents of
2115         * the buffer will be lost.  On the other hand we have to
2116         * clear the buffer dirty bit at latest at the moment when the
2117         * transaction marking the buffer as freed in the filesystem
2118         * structures is committed because from that moment on the
2119         * block can be reallocated and used by a different page.
2120         * Since the block hasn't been freed yet but the inode has
2121         * already been added to orphan list, it is safe for us to add
2122         * the buffer to BJ_Forget list of the newest transaction.
2123         *
2124         * Also we have to clear buffer_mapped flag of a truncated buffer
2125         * because the buffer_head may be attached to the page straddling
2126         * i_size (can happen only when blocksize < pagesize) and thus the
2127         * buffer_head can be reused when the file is extended again. So we end
2128         * up keeping around invalidated buffers attached to transactions'
2129         * BJ_Forget list just to stop checkpointing code from cleaning up
2130         * the transaction this buffer was modified in.
2131         */
2132        transaction = jh->b_transaction;
2133        if (transaction == NULL) {
2134                /* First case: not on any transaction.  If it
2135                 * has no checkpoint link, then we can zap it:
2136                 * it's a writeback-mode buffer so we don't care
2137                 * if it hits disk safely. */
2138                if (!jh->b_cp_transaction) {
2139                        JBUFFER_TRACE(jh, "not on any transaction: zap");
2140                        goto zap_buffer;
2141                }
2142
2143                if (!buffer_dirty(bh)) {
2144                        /* bdflush has written it.  We can drop it now */
2145                        __jbd2_journal_remove_checkpoint(jh);
2146                        goto zap_buffer;
2147                }
2148
2149                /* OK, it must be in the journal but still not
2150                 * written fully to disk: it's metadata or
2151                 * journaled data... */
2152
2153                if (journal->j_running_transaction) {
2154                        /* ... and once the current transaction has
2155                         * committed, the buffer won't be needed any
2156                         * longer. */
2157                        JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2158                        may_free = __dispose_buffer(jh,
2159                                        journal->j_running_transaction);
2160                        goto zap_buffer;
2161                } else {
2162                        /* There is no currently-running transaction. So the
2163                         * orphan record which we wrote for this file must have
2164                         * passed into commit.  We must attach this buffer to
2165                         * the committing transaction, if it exists. */
2166                        if (journal->j_committing_transaction) {
2167                                JBUFFER_TRACE(jh, "give to committing trans");
2168                                may_free = __dispose_buffer(jh,
2169                                        journal->j_committing_transaction);
2170                                goto zap_buffer;
2171                        } else {
2172                                /* The orphan record's transaction has
2173                                 * committed.  We can cleanse this buffer */
2174                                clear_buffer_jbddirty(bh);
2175                                __jbd2_journal_remove_checkpoint(jh);
2176                                goto zap_buffer;
2177                        }
2178                }
2179        } else if (transaction == journal->j_committing_transaction) {
2180                JBUFFER_TRACE(jh, "on committing transaction");
2181                /*
2182                 * The buffer is committing, we simply cannot touch
2183                 * it. If the page is straddling i_size we have to wait
2184                 * for commit and try again.
2185                 */
2186                if (partial_page) {
2187                        jbd2_journal_put_journal_head(jh);
2188                        spin_unlock(&journal->j_list_lock);
2189                        jbd_unlock_bh_state(bh);
2190                        write_unlock(&journal->j_state_lock);
2191                        return -EBUSY;
2192                }
2193                /*
2194                 * OK, buffer won't be reachable after truncate. We just set
2195                 * j_next_transaction to the running transaction (if there is
2196                 * one) and mark buffer as freed so that commit code knows it
2197                 * should clear dirty bits when it is done with the buffer.
2198                 */
2199                set_buffer_freed(bh);
2200                if (journal->j_running_transaction && buffer_jbddirty(bh))
2201                        jh->b_next_transaction = journal->j_running_transaction;
2202                jbd2_journal_put_journal_head(jh);
2203                spin_unlock(&journal->j_list_lock);
2204                jbd_unlock_bh_state(bh);
2205                write_unlock(&journal->j_state_lock);
2206                return 0;
2207        } else {
2208                /* Good, the buffer belongs to the running transaction.
2209                 * We are writing our own transaction's data, not any
2210                 * previous one's, so it is safe to throw it away
2211                 * (remember that we expect the filesystem to have set
2212                 * i_size already for this truncate so recovery will not
2213                 * expose the disk blocks we are discarding here.) */
2214                J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2215                JBUFFER_TRACE(jh, "on running transaction");
2216                may_free = __dispose_buffer(jh, transaction);
2217        }
2218
2219zap_buffer:
2220        /*
2221         * This is tricky. Although the buffer is truncated, it may be reused
2222         * if blocksize < pagesize and it is attached to the page straddling
2223         * EOF. Since the buffer might have been added to BJ_Forget list of the
2224         * running transaction, journal_get_write_access() won't clear
2225         * b_modified and credit accounting gets confused. So clear b_modified
2226         * here.
2227         */
2228        jh->b_modified = 0;
2229        jbd2_journal_put_journal_head(jh);
2230zap_buffer_no_jh:
2231        spin_unlock(&journal->j_list_lock);
2232        jbd_unlock_bh_state(bh);
2233        write_unlock(&journal->j_state_lock);
2234zap_buffer_unlocked:
2235        clear_buffer_dirty(bh);
2236        J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2237        clear_buffer_mapped(bh);
2238        clear_buffer_req(bh);
2239        clear_buffer_new(bh);
2240        clear_buffer_delay(bh);
2241        clear_buffer_unwritten(bh);
2242        bh->b_bdev = NULL;
2243        return may_free;
2244}
2245
2246/**
2247 * void jbd2_journal_invalidatepage()
2248 * @journal: journal to use for flush...
2249 * @page:    page to flush
2250 * @offset:  start of the range to invalidate
2251 * @length:  length of the range to invalidate
2252 *
2253 * Reap page buffers containing data after in the specified range in page.
2254 * Can return -EBUSY if buffers are part of the committing transaction and
2255 * the page is straddling i_size. Caller then has to wait for current commit
2256 * and try again.
2257 */
2258int jbd2_journal_invalidatepage(journal_t *journal,
2259                                struct page *page,
2260                                unsigned int offset,
2261                                unsigned int length)
2262{
2263        struct buffer_head *head, *bh, *next;
2264        unsigned int stop = offset + length;
2265        unsigned int curr_off = 0;
2266        int partial_page = (offset || length < PAGE_SIZE);
2267        int may_free = 1;
2268        int ret = 0;
2269
2270        if (!PageLocked(page))
2271                BUG();
2272        if (!page_has_buffers(page))
2273                return 0;
2274
2275        BUG_ON(stop > PAGE_SIZE || stop < length);
2276
2277        /* We will potentially be playing with lists other than just the
2278         * data lists (especially for journaled data mode), so be
2279         * cautious in our locking. */
2280
2281        head = bh = page_buffers(page);
2282        do {
2283                unsigned int next_off = curr_off + bh->b_size;
2284                next = bh->b_this_page;
2285
2286                if (next_off > stop)
2287                        return 0;
2288
2289                if (offset <= curr_off) {
2290                        /* This block is wholly outside the truncation point */
2291                        lock_buffer(bh);
2292                        ret = journal_unmap_buffer(journal, bh, partial_page);
2293                        unlock_buffer(bh);
2294                        if (ret < 0)
2295                                return ret;
2296                        may_free &= ret;
2297                }
2298                curr_off = next_off;
2299                bh = next;
2300
2301        } while (bh != head);
2302
2303        if (!partial_page) {
2304                if (may_free && try_to_free_buffers(page))
2305                        J_ASSERT(!page_has_buffers(page));
2306        }
2307        return 0;
2308}
2309
2310/*
2311 * File a buffer on the given transaction list.
2312 */
2313void __jbd2_journal_file_buffer(struct journal_head *jh,
2314                        transaction_t *transaction, int jlist)
2315{
2316        struct journal_head **list = NULL;
2317        int was_dirty = 0;
2318        struct buffer_head *bh = jh2bh(jh);
2319
2320        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2321        assert_spin_locked(&transaction->t_journal->j_list_lock);
2322
2323        J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2324        J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2325                                jh->b_transaction == NULL);
2326
2327        if (jh->b_transaction && jh->b_jlist == jlist)
2328                return;
2329
2330        if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2331            jlist == BJ_Shadow || jlist == BJ_Forget) {
2332                /*
2333                 * For metadata buffers, we track dirty bit in buffer_jbddirty
2334                 * instead of buffer_dirty. We should not see a dirty bit set
2335                 * here because we clear it in do_get_write_access but e.g.
2336                 * tune2fs can modify the sb and set the dirty bit at any time
2337                 * so we try to gracefully handle that.
2338                 */
2339                if (buffer_dirty(bh))
2340                        warn_dirty_buffer(bh);
2341                if (test_clear_buffer_dirty(bh) ||
2342                    test_clear_buffer_jbddirty(bh))
2343                        was_dirty = 1;
2344        }
2345
2346        if (jh->b_transaction)
2347                __jbd2_journal_temp_unlink_buffer(jh);
2348        else
2349                jbd2_journal_grab_journal_head(bh);
2350        jh->b_transaction = transaction;
2351
2352        switch (jlist) {
2353        case BJ_None:
2354                J_ASSERT_JH(jh, !jh->b_committed_data);
2355                J_ASSERT_JH(jh, !jh->b_frozen_data);
2356                return;
2357        case BJ_Metadata:
2358                transaction->t_nr_buffers++;
2359                list = &transaction->t_buffers;
2360                break;
2361        case BJ_Forget:
2362                list = &transaction->t_forget;
2363                break;
2364        case BJ_Shadow:
2365                list = &transaction->t_shadow_list;
2366                break;
2367        case BJ_Reserved:
2368                list = &transaction->t_reserved_list;
2369                break;
2370        }
2371
2372        __blist_add_buffer(list, jh);
2373        jh->b_jlist = jlist;
2374
2375        if (was_dirty)
2376                set_buffer_jbddirty(bh);
2377}
2378
2379void jbd2_journal_file_buffer(struct journal_head *jh,
2380                                transaction_t *transaction, int jlist)
2381{
2382        jbd_lock_bh_state(jh2bh(jh));
2383        spin_lock(&transaction->t_journal->j_list_lock);
2384        __jbd2_journal_file_buffer(jh, transaction, jlist);
2385        spin_unlock(&transaction->t_journal->j_list_lock);
2386        jbd_unlock_bh_state(jh2bh(jh));
2387}
2388
2389/*
2390 * Remove a buffer from its current buffer list in preparation for
2391 * dropping it from its current transaction entirely.  If the buffer has
2392 * already started to be used by a subsequent transaction, refile the
2393 * buffer on that transaction's metadata list.
2394 *
2395 * Called under j_list_lock
2396 * Called under jbd_lock_bh_state(jh2bh(jh))
2397 *
2398 * jh and bh may be already free when this function returns
2399 */
2400void __jbd2_journal_refile_buffer(struct journal_head *jh)
2401{
2402        int was_dirty, jlist;
2403        struct buffer_head *bh = jh2bh(jh);
2404
2405        J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2406        if (jh->b_transaction)
2407                assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2408
2409        /* If the buffer is now unused, just drop it. */
2410        if (jh->b_next_transaction == NULL) {
2411                __jbd2_journal_unfile_buffer(jh);
2412                return;
2413        }
2414
2415        /*
2416         * It has been modified by a later transaction: add it to the new
2417         * transaction's metadata list.
2418         */
2419
2420        was_dirty = test_clear_buffer_jbddirty(bh);
2421        __jbd2_journal_temp_unlink_buffer(jh);
2422        /*
2423         * We set b_transaction here because b_next_transaction will inherit
2424         * our jh reference and thus __jbd2_journal_file_buffer() must not
2425         * take a new one.
2426         */
2427        jh->b_transaction = jh->b_next_transaction;
2428        jh->b_next_transaction = NULL;
2429        if (buffer_freed(bh))
2430                jlist = BJ_Forget;
2431        else if (jh->b_modified)
2432                jlist = BJ_Metadata;
2433        else
2434                jlist = BJ_Reserved;
2435        __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2436        J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2437
2438        if (was_dirty)
2439                set_buffer_jbddirty(bh);
2440}
2441
2442/*
2443 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2444 * bh reference so that we can safely unlock bh.
2445 *
2446 * The jh and bh may be freed by this call.
2447 */
2448void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2449{
2450        struct buffer_head *bh = jh2bh(jh);
2451
2452        /* Get reference so that buffer cannot be freed before we unlock it */
2453        get_bh(bh);
2454        jbd_lock_bh_state(bh);
2455        spin_lock(&journal->j_list_lock);
2456        __jbd2_journal_refile_buffer(jh);
2457        jbd_unlock_bh_state(bh);
2458        spin_unlock(&journal->j_list_lock);
2459        __brelse(bh);
2460}
2461
2462/*
2463 * File inode in the inode list of the handle's transaction
2464 */
2465int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2466{
2467        transaction_t *transaction = handle->h_transaction;
2468        journal_t *journal;
2469
2470        if (is_handle_aborted(handle))
2471                return -EROFS;
2472        journal = transaction->t_journal;
2473
2474        jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2475                        transaction->t_tid);
2476
2477        /*
2478         * First check whether inode isn't already on the transaction's
2479         * lists without taking the lock. Note that this check is safe
2480         * without the lock as we cannot race with somebody removing inode
2481         * from the transaction. The reason is that we remove inode from the
2482         * transaction only in journal_release_jbd_inode() and when we commit
2483         * the transaction. We are guarded from the first case by holding
2484         * a reference to the inode. We are safe against the second case
2485         * because if jinode->i_transaction == transaction, commit code
2486         * cannot touch the transaction because we hold reference to it,
2487         * and if jinode->i_next_transaction == transaction, commit code
2488         * will only file the inode where we want it.
2489         */
2490        if (jinode->i_transaction == transaction ||
2491            jinode->i_next_transaction == transaction)
2492                return 0;
2493
2494        spin_lock(&journal->j_list_lock);
2495
2496        if (jinode->i_transaction == transaction ||
2497            jinode->i_next_transaction == transaction)
2498                goto done;
2499
2500        /*
2501         * We only ever set this variable to 1 so the test is safe. Since
2502         * t_need_data_flush is likely to be set, we do the test to save some
2503         * cacheline bouncing
2504         */
2505        if (!transaction->t_need_data_flush)
2506                transaction->t_need_data_flush = 1;
2507        /* On some different transaction's list - should be
2508         * the committing one */
2509        if (jinode->i_transaction) {
2510                J_ASSERT(jinode->i_next_transaction == NULL);
2511                J_ASSERT(jinode->i_transaction ==
2512                                        journal->j_committing_transaction);
2513                jinode->i_next_transaction = transaction;
2514                goto done;
2515        }
2516        /* Not on any transaction list... */
2517        J_ASSERT(!jinode->i_next_transaction);
2518        jinode->i_transaction = transaction;
2519        list_add(&jinode->i_list, &transaction->t_inode_list);
2520done:
2521        spin_unlock(&journal->j_list_lock);
2522
2523        return 0;
2524}
2525
2526/*
2527 * File truncate and transaction commit interact with each other in a
2528 * non-trivial way.  If a transaction writing data block A is
2529 * committing, we cannot discard the data by truncate until we have
2530 * written them.  Otherwise if we crashed after the transaction with
2531 * write has committed but before the transaction with truncate has
2532 * committed, we could see stale data in block A.  This function is a
2533 * helper to solve this problem.  It starts writeout of the truncated
2534 * part in case it is in the committing transaction.
2535 *
2536 * Filesystem code must call this function when inode is journaled in
2537 * ordered mode before truncation happens and after the inode has been
2538 * placed on orphan list with the new inode size. The second condition
2539 * avoids the race that someone writes new data and we start
2540 * committing the transaction after this function has been called but
2541 * before a transaction for truncate is started (and furthermore it
2542 * allows us to optimize the case where the addition to orphan list
2543 * happens in the same transaction as write --- we don't have to write
2544 * any data in such case).
2545 */
2546int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2547                                        struct jbd2_inode *jinode,
2548                                        loff_t new_size)
2549{
2550        transaction_t *inode_trans, *commit_trans;
2551        int ret = 0;
2552
2553        /* This is a quick check to avoid locking if not necessary */
2554        if (!jinode->i_transaction)
2555                goto out;
2556        /* Locks are here just to force reading of recent values, it is
2557         * enough that the transaction was not committing before we started
2558         * a transaction adding the inode to orphan list */
2559        read_lock(&journal->j_state_lock);
2560        commit_trans = journal->j_committing_transaction;
2561        read_unlock(&journal->j_state_lock);
2562        spin_lock(&journal->j_list_lock);
2563        inode_trans = jinode->i_transaction;
2564        spin_unlock(&journal->j_list_lock);
2565        if (inode_trans == commit_trans) {
2566                ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2567                        new_size, LLONG_MAX);
2568                if (ret)
2569                        jbd2_journal_abort(journal, ret);
2570        }
2571out:
2572        return ret;
2573}
2574