linux/fs/jfs/jfs_logmgr.c
<<
>>
Prefs
   1/*
   2 *   Copyright (C) International Business Machines Corp., 2000-2004
   3 *   Portions Copyright (C) Christoph Hellwig, 2001-2002
   4 *
   5 *   This program is free software;  you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  13 *   the GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program;  if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 */
  19
  20/*
  21 *      jfs_logmgr.c: log manager
  22 *
  23 * for related information, see transaction manager (jfs_txnmgr.c), and
  24 * recovery manager (jfs_logredo.c).
  25 *
  26 * note: for detail, RTFS.
  27 *
  28 *      log buffer manager:
  29 * special purpose buffer manager supporting log i/o requirements.
  30 * per log serial pageout of logpage
  31 * queuing i/o requests and redrive i/o at iodone
  32 * maintain current logpage buffer
  33 * no caching since append only
  34 * appropriate jfs buffer cache buffers as needed
  35 *
  36 *      group commit:
  37 * transactions which wrote COMMIT records in the same in-memory
  38 * log page during the pageout of previous/current log page(s) are
  39 * committed together by the pageout of the page.
  40 *
  41 *      TBD lazy commit:
  42 * transactions are committed asynchronously when the log page
  43 * containing it COMMIT is paged out when it becomes full;
  44 *
  45 *      serialization:
  46 * . a per log lock serialize log write.
  47 * . a per log lock serialize group commit.
  48 * . a per log lock serialize log open/close;
  49 *
  50 *      TBD log integrity:
  51 * careful-write (ping-pong) of last logpage to recover from crash
  52 * in overwrite.
  53 * detection of split (out-of-order) write of physical sectors
  54 * of last logpage via timestamp at end of each sector
  55 * with its mirror data array at trailer).
  56 *
  57 *      alternatives:
  58 * lsn - 64-bit monotonically increasing integer vs
  59 * 32-bit lspn and page eor.
  60 */
  61
  62#include <linux/fs.h>
  63#include <linux/blkdev.h>
  64#include <linux/interrupt.h>
  65#include <linux/completion.h>
  66#include <linux/kthread.h>
  67#include <linux/buffer_head.h>          /* for sync_blockdev() */
  68#include <linux/bio.h>
  69#include <linux/freezer.h>
  70#include <linux/export.h>
  71#include <linux/delay.h>
  72#include <linux/mutex.h>
  73#include <linux/seq_file.h>
  74#include <linux/slab.h>
  75#include "jfs_incore.h"
  76#include "jfs_filsys.h"
  77#include "jfs_metapage.h"
  78#include "jfs_superblock.h"
  79#include "jfs_txnmgr.h"
  80#include "jfs_debug.h"
  81
  82
  83/*
  84 * lbuf's ready to be redriven.  Protected by log_redrive_lock (jfsIO thread)
  85 */
  86static struct lbuf *log_redrive_list;
  87static DEFINE_SPINLOCK(log_redrive_lock);
  88
  89
  90/*
  91 *      log read/write serialization (per log)
  92 */
  93#define LOG_LOCK_INIT(log)      mutex_init(&(log)->loglock)
  94#define LOG_LOCK(log)           mutex_lock(&((log)->loglock))
  95#define LOG_UNLOCK(log)         mutex_unlock(&((log)->loglock))
  96
  97
  98/*
  99 *      log group commit serialization (per log)
 100 */
 101
 102#define LOGGC_LOCK_INIT(log)    spin_lock_init(&(log)->gclock)
 103#define LOGGC_LOCK(log)         spin_lock_irq(&(log)->gclock)
 104#define LOGGC_UNLOCK(log)       spin_unlock_irq(&(log)->gclock)
 105#define LOGGC_WAKEUP(tblk)      wake_up_all(&(tblk)->gcwait)
 106
 107/*
 108 *      log sync serialization (per log)
 109 */
 110#define LOGSYNC_DELTA(logsize)          min((logsize)/8, 128*LOGPSIZE)
 111#define LOGSYNC_BARRIER(logsize)        ((logsize)/4)
 112/*
 113#define LOGSYNC_DELTA(logsize)          min((logsize)/4, 256*LOGPSIZE)
 114#define LOGSYNC_BARRIER(logsize)        ((logsize)/2)
 115*/
 116
 117
 118/*
 119 *      log buffer cache synchronization
 120 */
 121static DEFINE_SPINLOCK(jfsLCacheLock);
 122
 123#define LCACHE_LOCK(flags)      spin_lock_irqsave(&jfsLCacheLock, flags)
 124#define LCACHE_UNLOCK(flags)    spin_unlock_irqrestore(&jfsLCacheLock, flags)
 125
 126/*
 127 * See __SLEEP_COND in jfs_locks.h
 128 */
 129#define LCACHE_SLEEP_COND(wq, cond, flags)      \
 130do {                                            \
 131        if (cond)                               \
 132                break;                          \
 133        __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
 134} while (0)
 135
 136#define LCACHE_WAKEUP(event)    wake_up(event)
 137
 138
 139/*
 140 *      lbuf buffer cache (lCache) control
 141 */
 142/* log buffer manager pageout control (cumulative, inclusive) */
 143#define lbmREAD         0x0001
 144#define lbmWRITE        0x0002  /* enqueue at tail of write queue;
 145                                 * init pageout if at head of queue;
 146                                 */
 147#define lbmRELEASE      0x0004  /* remove from write queue
 148                                 * at completion of pageout;
 149                                 * do not free/recycle it yet:
 150                                 * caller will free it;
 151                                 */
 152#define lbmSYNC         0x0008  /* do not return to freelist
 153                                 * when removed from write queue;
 154                                 */
 155#define lbmFREE         0x0010  /* return to freelist
 156                                 * at completion of pageout;
 157                                 * the buffer may be recycled;
 158                                 */
 159#define lbmDONE         0x0020
 160#define lbmERROR        0x0040
 161#define lbmGC           0x0080  /* lbmIODone to perform post-GC processing
 162                                 * of log page
 163                                 */
 164#define lbmDIRECT       0x0100
 165
 166/*
 167 * Global list of active external journals
 168 */
 169static LIST_HEAD(jfs_external_logs);
 170static struct jfs_log *dummy_log;
 171static DEFINE_MUTEX(jfs_log_mutex);
 172
 173/*
 174 * forward references
 175 */
 176static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
 177                         struct lrd * lrd, struct tlock * tlck);
 178
 179static int lmNextPage(struct jfs_log * log);
 180static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
 181                           int activate);
 182
 183static int open_inline_log(struct super_block *sb);
 184static int open_dummy_log(struct super_block *sb);
 185static int lbmLogInit(struct jfs_log * log);
 186static void lbmLogShutdown(struct jfs_log * log);
 187static struct lbuf *lbmAllocate(struct jfs_log * log, int);
 188static void lbmFree(struct lbuf * bp);
 189static void lbmfree(struct lbuf * bp);
 190static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
 191static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
 192static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
 193static int lbmIOWait(struct lbuf * bp, int flag);
 194static bio_end_io_t lbmIODone;
 195static void lbmStartIO(struct lbuf * bp);
 196static void lmGCwrite(struct jfs_log * log, int cant_block);
 197static int lmLogSync(struct jfs_log * log, int hard_sync);
 198
 199
 200
 201/*
 202 *      statistics
 203 */
 204#ifdef CONFIG_JFS_STATISTICS
 205static struct lmStat {
 206        uint commit;            /* # of commit */
 207        uint pagedone;          /* # of page written */
 208        uint submitted;         /* # of pages submitted */
 209        uint full_page;         /* # of full pages submitted */
 210        uint partial_page;      /* # of partial pages submitted */
 211} lmStat;
 212#endif
 213
 214static void write_special_inodes(struct jfs_log *log,
 215                                 int (*writer)(struct address_space *))
 216{
 217        struct jfs_sb_info *sbi;
 218
 219        list_for_each_entry(sbi, &log->sb_list, log_list) {
 220                writer(sbi->ipbmap->i_mapping);
 221                writer(sbi->ipimap->i_mapping);
 222                writer(sbi->direct_inode->i_mapping);
 223        }
 224}
 225
 226/*
 227 * NAME:        lmLog()
 228 *
 229 * FUNCTION:    write a log record;
 230 *
 231 * PARAMETER:
 232 *
 233 * RETURN:      lsn - offset to the next log record to write (end-of-log);
 234 *              -1  - error;
 235 *
 236 * note: todo: log error handler
 237 */
 238int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
 239          struct tlock * tlck)
 240{
 241        int lsn;
 242        int diffp, difft;
 243        struct metapage *mp = NULL;
 244        unsigned long flags;
 245
 246        jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
 247                 log, tblk, lrd, tlck);
 248
 249        LOG_LOCK(log);
 250
 251        /* log by (out-of-transaction) JFS ? */
 252        if (tblk == NULL)
 253                goto writeRecord;
 254
 255        /* log from page ? */
 256        if (tlck == NULL ||
 257            tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
 258                goto writeRecord;
 259
 260        /*
 261         *      initialize/update page/transaction recovery lsn
 262         */
 263        lsn = log->lsn;
 264
 265        LOGSYNC_LOCK(log, flags);
 266
 267        /*
 268         * initialize page lsn if first log write of the page
 269         */
 270        if (mp->lsn == 0) {
 271                mp->log = log;
 272                mp->lsn = lsn;
 273                log->count++;
 274
 275                /* insert page at tail of logsynclist */
 276                list_add_tail(&mp->synclist, &log->synclist);
 277        }
 278
 279        /*
 280         *      initialize/update lsn of tblock of the page
 281         *
 282         * transaction inherits oldest lsn of pages associated
 283         * with allocation/deallocation of resources (their
 284         * log records are used to reconstruct allocation map
 285         * at recovery time: inode for inode allocation map,
 286         * B+-tree index of extent descriptors for block
 287         * allocation map);
 288         * allocation map pages inherit transaction lsn at
 289         * commit time to allow forwarding log syncpt past log
 290         * records associated with allocation/deallocation of
 291         * resources only after persistent map of these map pages
 292         * have been updated and propagated to home.
 293         */
 294        /*
 295         * initialize transaction lsn:
 296         */
 297        if (tblk->lsn == 0) {
 298                /* inherit lsn of its first page logged */
 299                tblk->lsn = mp->lsn;
 300                log->count++;
 301
 302                /* insert tblock after the page on logsynclist */
 303                list_add(&tblk->synclist, &mp->synclist);
 304        }
 305        /*
 306         * update transaction lsn:
 307         */
 308        else {
 309                /* inherit oldest/smallest lsn of page */
 310                logdiff(diffp, mp->lsn, log);
 311                logdiff(difft, tblk->lsn, log);
 312                if (diffp < difft) {
 313                        /* update tblock lsn with page lsn */
 314                        tblk->lsn = mp->lsn;
 315
 316                        /* move tblock after page on logsynclist */
 317                        list_move(&tblk->synclist, &mp->synclist);
 318                }
 319        }
 320
 321        LOGSYNC_UNLOCK(log, flags);
 322
 323        /*
 324         *      write the log record
 325         */
 326      writeRecord:
 327        lsn = lmWriteRecord(log, tblk, lrd, tlck);
 328
 329        /*
 330         * forward log syncpt if log reached next syncpt trigger
 331         */
 332        logdiff(diffp, lsn, log);
 333        if (diffp >= log->nextsync)
 334                lsn = lmLogSync(log, 0);
 335
 336        /* update end-of-log lsn */
 337        log->lsn = lsn;
 338
 339        LOG_UNLOCK(log);
 340
 341        /* return end-of-log address */
 342        return lsn;
 343}
 344
 345/*
 346 * NAME:        lmWriteRecord()
 347 *
 348 * FUNCTION:    move the log record to current log page
 349 *
 350 * PARAMETER:   cd      - commit descriptor
 351 *
 352 * RETURN:      end-of-log address
 353 *
 354 * serialization: LOG_LOCK() held on entry/exit
 355 */
 356static int
 357lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
 358              struct tlock * tlck)
 359{
 360        int lsn = 0;            /* end-of-log address */
 361        struct lbuf *bp;        /* dst log page buffer */
 362        struct logpage *lp;     /* dst log page */
 363        caddr_t dst;            /* destination address in log page */
 364        int dstoffset;          /* end-of-log offset in log page */
 365        int freespace;          /* free space in log page */
 366        caddr_t p;              /* src meta-data page */
 367        caddr_t src;
 368        int srclen;
 369        int nbytes;             /* number of bytes to move */
 370        int i;
 371        int len;
 372        struct linelock *linelock;
 373        struct lv *lv;
 374        struct lvd *lvd;
 375        int l2linesize;
 376
 377        len = 0;
 378
 379        /* retrieve destination log page to write */
 380        bp = (struct lbuf *) log->bp;
 381        lp = (struct logpage *) bp->l_ldata;
 382        dstoffset = log->eor;
 383
 384        /* any log data to write ? */
 385        if (tlck == NULL)
 386                goto moveLrd;
 387
 388        /*
 389         *      move log record data
 390         */
 391        /* retrieve source meta-data page to log */
 392        if (tlck->flag & tlckPAGELOCK) {
 393                p = (caddr_t) (tlck->mp->data);
 394                linelock = (struct linelock *) & tlck->lock;
 395        }
 396        /* retrieve source in-memory inode to log */
 397        else if (tlck->flag & tlckINODELOCK) {
 398                if (tlck->type & tlckDTREE)
 399                        p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
 400                else
 401                        p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
 402                linelock = (struct linelock *) & tlck->lock;
 403        }
 404#ifdef  _JFS_WIP
 405        else if (tlck->flag & tlckINLINELOCK) {
 406
 407                inlinelock = (struct inlinelock *) & tlck;
 408                p = (caddr_t) & inlinelock->pxd;
 409                linelock = (struct linelock *) & tlck;
 410        }
 411#endif                          /* _JFS_WIP */
 412        else {
 413                jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
 414                return 0;       /* Probably should trap */
 415        }
 416        l2linesize = linelock->l2linesize;
 417
 418      moveData:
 419        ASSERT(linelock->index <= linelock->maxcnt);
 420
 421        lv = linelock->lv;
 422        for (i = 0; i < linelock->index; i++, lv++) {
 423                if (lv->length == 0)
 424                        continue;
 425
 426                /* is page full ? */
 427                if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
 428                        /* page become full: move on to next page */
 429                        lmNextPage(log);
 430
 431                        bp = log->bp;
 432                        lp = (struct logpage *) bp->l_ldata;
 433                        dstoffset = LOGPHDRSIZE;
 434                }
 435
 436                /*
 437                 * move log vector data
 438                 */
 439                src = (u8 *) p + (lv->offset << l2linesize);
 440                srclen = lv->length << l2linesize;
 441                len += srclen;
 442                while (srclen > 0) {
 443                        freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
 444                        nbytes = min(freespace, srclen);
 445                        dst = (caddr_t) lp + dstoffset;
 446                        memcpy(dst, src, nbytes);
 447                        dstoffset += nbytes;
 448
 449                        /* is page not full ? */
 450                        if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
 451                                break;
 452
 453                        /* page become full: move on to next page */
 454                        lmNextPage(log);
 455
 456                        bp = (struct lbuf *) log->bp;
 457                        lp = (struct logpage *) bp->l_ldata;
 458                        dstoffset = LOGPHDRSIZE;
 459
 460                        srclen -= nbytes;
 461                        src += nbytes;
 462                }
 463
 464                /*
 465                 * move log vector descriptor
 466                 */
 467                len += 4;
 468                lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
 469                lvd->offset = cpu_to_le16(lv->offset);
 470                lvd->length = cpu_to_le16(lv->length);
 471                dstoffset += 4;
 472                jfs_info("lmWriteRecord: lv offset:%d length:%d",
 473                         lv->offset, lv->length);
 474        }
 475
 476        if ((i = linelock->next)) {
 477                linelock = (struct linelock *) lid_to_tlock(i);
 478                goto moveData;
 479        }
 480
 481        /*
 482         *      move log record descriptor
 483         */
 484      moveLrd:
 485        lrd->length = cpu_to_le16(len);
 486
 487        src = (caddr_t) lrd;
 488        srclen = LOGRDSIZE;
 489
 490        while (srclen > 0) {
 491                freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
 492                nbytes = min(freespace, srclen);
 493                dst = (caddr_t) lp + dstoffset;
 494                memcpy(dst, src, nbytes);
 495
 496                dstoffset += nbytes;
 497                srclen -= nbytes;
 498
 499                /* are there more to move than freespace of page ? */
 500                if (srclen)
 501                        goto pageFull;
 502
 503                /*
 504                 * end of log record descriptor
 505                 */
 506
 507                /* update last log record eor */
 508                log->eor = dstoffset;
 509                bp->l_eor = dstoffset;
 510                lsn = (log->page << L2LOGPSIZE) + dstoffset;
 511
 512                if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
 513                        tblk->clsn = lsn;
 514                        jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
 515                                 bp->l_eor);
 516
 517                        INCREMENT(lmStat.commit);       /* # of commit */
 518
 519                        /*
 520                         * enqueue tblock for group commit:
 521                         *
 522                         * enqueue tblock of non-trivial/synchronous COMMIT
 523                         * at tail of group commit queue
 524                         * (trivial/asynchronous COMMITs are ignored by
 525                         * group commit.)
 526                         */
 527                        LOGGC_LOCK(log);
 528
 529                        /* init tblock gc state */
 530                        tblk->flag = tblkGC_QUEUE;
 531                        tblk->bp = log->bp;
 532                        tblk->pn = log->page;
 533                        tblk->eor = log->eor;
 534
 535                        /* enqueue transaction to commit queue */
 536                        list_add_tail(&tblk->cqueue, &log->cqueue);
 537
 538                        LOGGC_UNLOCK(log);
 539                }
 540
 541                jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
 542                        le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
 543
 544                /* page not full ? */
 545                if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
 546                        return lsn;
 547
 548              pageFull:
 549                /* page become full: move on to next page */
 550                lmNextPage(log);
 551
 552                bp = (struct lbuf *) log->bp;
 553                lp = (struct logpage *) bp->l_ldata;
 554                dstoffset = LOGPHDRSIZE;
 555                src += nbytes;
 556        }
 557
 558        return lsn;
 559}
 560
 561
 562/*
 563 * NAME:        lmNextPage()
 564 *
 565 * FUNCTION:    write current page and allocate next page.
 566 *
 567 * PARAMETER:   log
 568 *
 569 * RETURN:      0
 570 *
 571 * serialization: LOG_LOCK() held on entry/exit
 572 */
 573static int lmNextPage(struct jfs_log * log)
 574{
 575        struct logpage *lp;
 576        int lspn;               /* log sequence page number */
 577        int pn;                 /* current page number */
 578        struct lbuf *bp;
 579        struct lbuf *nextbp;
 580        struct tblock *tblk;
 581
 582        /* get current log page number and log sequence page number */
 583        pn = log->page;
 584        bp = log->bp;
 585        lp = (struct logpage *) bp->l_ldata;
 586        lspn = le32_to_cpu(lp->h.page);
 587
 588        LOGGC_LOCK(log);
 589
 590        /*
 591         *      write or queue the full page at the tail of write queue
 592         */
 593        /* get the tail tblk on commit queue */
 594        if (list_empty(&log->cqueue))
 595                tblk = NULL;
 596        else
 597                tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
 598
 599        /* every tblk who has COMMIT record on the current page,
 600         * and has not been committed, must be on commit queue
 601         * since tblk is queued at commit queueu at the time
 602         * of writing its COMMIT record on the page before
 603         * page becomes full (even though the tblk thread
 604         * who wrote COMMIT record may have been suspended
 605         * currently);
 606         */
 607
 608        /* is page bound with outstanding tail tblk ? */
 609        if (tblk && tblk->pn == pn) {
 610                /* mark tblk for end-of-page */
 611                tblk->flag |= tblkGC_EOP;
 612
 613                if (log->cflag & logGC_PAGEOUT) {
 614                        /* if page is not already on write queue,
 615                         * just enqueue (no lbmWRITE to prevent redrive)
 616                         * buffer to wqueue to ensure correct serial order
 617                         * of the pages since log pages will be added
 618                         * continuously
 619                         */
 620                        if (bp->l_wqnext == NULL)
 621                                lbmWrite(log, bp, 0, 0);
 622                } else {
 623                        /*
 624                         * No current GC leader, initiate group commit
 625                         */
 626                        log->cflag |= logGC_PAGEOUT;
 627                        lmGCwrite(log, 0);
 628                }
 629        }
 630        /* page is not bound with outstanding tblk:
 631         * init write or mark it to be redriven (lbmWRITE)
 632         */
 633        else {
 634                /* finalize the page */
 635                bp->l_ceor = bp->l_eor;
 636                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 637                lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
 638        }
 639        LOGGC_UNLOCK(log);
 640
 641        /*
 642         *      allocate/initialize next page
 643         */
 644        /* if log wraps, the first data page of log is 2
 645         * (0 never used, 1 is superblock).
 646         */
 647        log->page = (pn == log->size - 1) ? 2 : pn + 1;
 648        log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
 649
 650        /* allocate/initialize next log page buffer */
 651        nextbp = lbmAllocate(log, log->page);
 652        nextbp->l_eor = log->eor;
 653        log->bp = nextbp;
 654
 655        /* initialize next log page */
 656        lp = (struct logpage *) nextbp->l_ldata;
 657        lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
 658        lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
 659
 660        return 0;
 661}
 662
 663
 664/*
 665 * NAME:        lmGroupCommit()
 666 *
 667 * FUNCTION:    group commit
 668 *      initiate pageout of the pages with COMMIT in the order of
 669 *      page number - redrive pageout of the page at the head of
 670 *      pageout queue until full page has been written.
 671 *
 672 * RETURN:
 673 *
 674 * NOTE:
 675 *      LOGGC_LOCK serializes log group commit queue, and
 676 *      transaction blocks on the commit queue.
 677 *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
 678 */
 679int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
 680{
 681        int rc = 0;
 682
 683        LOGGC_LOCK(log);
 684
 685        /* group committed already ? */
 686        if (tblk->flag & tblkGC_COMMITTED) {
 687                if (tblk->flag & tblkGC_ERROR)
 688                        rc = -EIO;
 689
 690                LOGGC_UNLOCK(log);
 691                return rc;
 692        }
 693        jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
 694
 695        if (tblk->xflag & COMMIT_LAZY)
 696                tblk->flag |= tblkGC_LAZY;
 697
 698        if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
 699            (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
 700             || jfs_tlocks_low)) {
 701                /*
 702                 * No pageout in progress
 703                 *
 704                 * start group commit as its group leader.
 705                 */
 706                log->cflag |= logGC_PAGEOUT;
 707
 708                lmGCwrite(log, 0);
 709        }
 710
 711        if (tblk->xflag & COMMIT_LAZY) {
 712                /*
 713                 * Lazy transactions can leave now
 714                 */
 715                LOGGC_UNLOCK(log);
 716                return 0;
 717        }
 718
 719        /* lmGCwrite gives up LOGGC_LOCK, check again */
 720
 721        if (tblk->flag & tblkGC_COMMITTED) {
 722                if (tblk->flag & tblkGC_ERROR)
 723                        rc = -EIO;
 724
 725                LOGGC_UNLOCK(log);
 726                return rc;
 727        }
 728
 729        /* upcount transaction waiting for completion
 730         */
 731        log->gcrtc++;
 732        tblk->flag |= tblkGC_READY;
 733
 734        __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
 735                     LOGGC_LOCK(log), LOGGC_UNLOCK(log));
 736
 737        /* removed from commit queue */
 738        if (tblk->flag & tblkGC_ERROR)
 739                rc = -EIO;
 740
 741        LOGGC_UNLOCK(log);
 742        return rc;
 743}
 744
 745/*
 746 * NAME:        lmGCwrite()
 747 *
 748 * FUNCTION:    group commit write
 749 *      initiate write of log page, building a group of all transactions
 750 *      with commit records on that page.
 751 *
 752 * RETURN:      None
 753 *
 754 * NOTE:
 755 *      LOGGC_LOCK must be held by caller.
 756 *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
 757 */
 758static void lmGCwrite(struct jfs_log * log, int cant_write)
 759{
 760        struct lbuf *bp;
 761        struct logpage *lp;
 762        int gcpn;               /* group commit page number */
 763        struct tblock *tblk;
 764        struct tblock *xtblk = NULL;
 765
 766        /*
 767         * build the commit group of a log page
 768         *
 769         * scan commit queue and make a commit group of all
 770         * transactions with COMMIT records on the same log page.
 771         */
 772        /* get the head tblk on the commit queue */
 773        gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
 774
 775        list_for_each_entry(tblk, &log->cqueue, cqueue) {
 776                if (tblk->pn != gcpn)
 777                        break;
 778
 779                xtblk = tblk;
 780
 781                /* state transition: (QUEUE, READY) -> COMMIT */
 782                tblk->flag |= tblkGC_COMMIT;
 783        }
 784        tblk = xtblk;           /* last tblk of the page */
 785
 786        /*
 787         * pageout to commit transactions on the log page.
 788         */
 789        bp = (struct lbuf *) tblk->bp;
 790        lp = (struct logpage *) bp->l_ldata;
 791        /* is page already full ? */
 792        if (tblk->flag & tblkGC_EOP) {
 793                /* mark page to free at end of group commit of the page */
 794                tblk->flag &= ~tblkGC_EOP;
 795                tblk->flag |= tblkGC_FREE;
 796                bp->l_ceor = bp->l_eor;
 797                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 798                lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
 799                         cant_write);
 800                INCREMENT(lmStat.full_page);
 801        }
 802        /* page is not yet full */
 803        else {
 804                bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
 805                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 806                lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
 807                INCREMENT(lmStat.partial_page);
 808        }
 809}
 810
 811/*
 812 * NAME:        lmPostGC()
 813 *
 814 * FUNCTION:    group commit post-processing
 815 *      Processes transactions after their commit records have been written
 816 *      to disk, redriving log I/O if necessary.
 817 *
 818 * RETURN:      None
 819 *
 820 * NOTE:
 821 *      This routine is called a interrupt time by lbmIODone
 822 */
 823static void lmPostGC(struct lbuf * bp)
 824{
 825        unsigned long flags;
 826        struct jfs_log *log = bp->l_log;
 827        struct logpage *lp;
 828        struct tblock *tblk, *temp;
 829
 830        //LOGGC_LOCK(log);
 831        spin_lock_irqsave(&log->gclock, flags);
 832        /*
 833         * current pageout of group commit completed.
 834         *
 835         * remove/wakeup transactions from commit queue who were
 836         * group committed with the current log page
 837         */
 838        list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
 839                if (!(tblk->flag & tblkGC_COMMIT))
 840                        break;
 841                /* if transaction was marked GC_COMMIT then
 842                 * it has been shipped in the current pageout
 843                 * and made it to disk - it is committed.
 844                 */
 845
 846                if (bp->l_flag & lbmERROR)
 847                        tblk->flag |= tblkGC_ERROR;
 848
 849                /* remove it from the commit queue */
 850                list_del(&tblk->cqueue);
 851                tblk->flag &= ~tblkGC_QUEUE;
 852
 853                if (tblk == log->flush_tblk) {
 854                        /* we can stop flushing the log now */
 855                        clear_bit(log_FLUSH, &log->flag);
 856                        log->flush_tblk = NULL;
 857                }
 858
 859                jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
 860                         tblk->flag);
 861
 862                if (!(tblk->xflag & COMMIT_FORCE))
 863                        /*
 864                         * Hand tblk over to lazy commit thread
 865                         */
 866                        txLazyUnlock(tblk);
 867                else {
 868                        /* state transition: COMMIT -> COMMITTED */
 869                        tblk->flag |= tblkGC_COMMITTED;
 870
 871                        if (tblk->flag & tblkGC_READY)
 872                                log->gcrtc--;
 873
 874                        LOGGC_WAKEUP(tblk);
 875                }
 876
 877                /* was page full before pageout ?
 878                 * (and this is the last tblk bound with the page)
 879                 */
 880                if (tblk->flag & tblkGC_FREE)
 881                        lbmFree(bp);
 882                /* did page become full after pageout ?
 883                 * (and this is the last tblk bound with the page)
 884                 */
 885                else if (tblk->flag & tblkGC_EOP) {
 886                        /* finalize the page */
 887                        lp = (struct logpage *) bp->l_ldata;
 888                        bp->l_ceor = bp->l_eor;
 889                        lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
 890                        jfs_info("lmPostGC: calling lbmWrite");
 891                        lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
 892                                 1);
 893                }
 894
 895        }
 896
 897        /* are there any transactions who have entered lnGroupCommit()
 898         * (whose COMMITs are after that of the last log page written.
 899         * They are waiting for new group commit (above at (SLEEP 1))
 900         * or lazy transactions are on a full (queued) log page,
 901         * select the latest ready transaction as new group leader and
 902         * wake her up to lead her group.
 903         */
 904        if ((!list_empty(&log->cqueue)) &&
 905            ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
 906             test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
 907                /*
 908                 * Call lmGCwrite with new group leader
 909                 */
 910                lmGCwrite(log, 1);
 911
 912        /* no transaction are ready yet (transactions are only just
 913         * queued (GC_QUEUE) and not entered for group commit yet).
 914         * the first transaction entering group commit
 915         * will elect herself as new group leader.
 916         */
 917        else
 918                log->cflag &= ~logGC_PAGEOUT;
 919
 920        //LOGGC_UNLOCK(log);
 921        spin_unlock_irqrestore(&log->gclock, flags);
 922        return;
 923}
 924
 925/*
 926 * NAME:        lmLogSync()
 927 *
 928 * FUNCTION:    write log SYNCPT record for specified log
 929 *      if new sync address is available
 930 *      (normally the case if sync() is executed by back-ground
 931 *      process).
 932 *      calculate new value of i_nextsync which determines when
 933 *      this code is called again.
 934 *
 935 * PARAMETERS:  log     - log structure
 936 *              hard_sync - 1 to force all metadata to be written
 937 *
 938 * RETURN:      0
 939 *
 940 * serialization: LOG_LOCK() held on entry/exit
 941 */
 942static int lmLogSync(struct jfs_log * log, int hard_sync)
 943{
 944        int logsize;
 945        int written;            /* written since last syncpt */
 946        int free;               /* free space left available */
 947        int delta;              /* additional delta to write normally */
 948        int more;               /* additional write granted */
 949        struct lrd lrd;
 950        int lsn;
 951        struct logsyncblk *lp;
 952        unsigned long flags;
 953
 954        /* push dirty metapages out to disk */
 955        if (hard_sync)
 956                write_special_inodes(log, filemap_fdatawrite);
 957        else
 958                write_special_inodes(log, filemap_flush);
 959
 960        /*
 961         *      forward syncpt
 962         */
 963        /* if last sync is same as last syncpt,
 964         * invoke sync point forward processing to update sync.
 965         */
 966
 967        if (log->sync == log->syncpt) {
 968                LOGSYNC_LOCK(log, flags);
 969                if (list_empty(&log->synclist))
 970                        log->sync = log->lsn;
 971                else {
 972                        lp = list_entry(log->synclist.next,
 973                                        struct logsyncblk, synclist);
 974                        log->sync = lp->lsn;
 975                }
 976                LOGSYNC_UNLOCK(log, flags);
 977
 978        }
 979
 980        /* if sync is different from last syncpt,
 981         * write a SYNCPT record with syncpt = sync.
 982         * reset syncpt = sync
 983         */
 984        if (log->sync != log->syncpt) {
 985                lrd.logtid = 0;
 986                lrd.backchain = 0;
 987                lrd.type = cpu_to_le16(LOG_SYNCPT);
 988                lrd.length = 0;
 989                lrd.log.syncpt.sync = cpu_to_le32(log->sync);
 990                lsn = lmWriteRecord(log, NULL, &lrd, NULL);
 991
 992                log->syncpt = log->sync;
 993        } else
 994                lsn = log->lsn;
 995
 996        /*
 997         *      setup next syncpt trigger (SWAG)
 998         */
 999        logsize = log->logsize;
1000
1001        logdiff(written, lsn, log);
1002        free = logsize - written;
1003        delta = LOGSYNC_DELTA(logsize);
1004        more = min(free / 2, delta);
1005        if (more < 2 * LOGPSIZE) {
1006                jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1007                /*
1008                 *      log wrapping
1009                 *
1010                 * option 1 - panic ? No.!
1011                 * option 2 - shutdown file systems
1012                 *            associated with log ?
1013                 * option 3 - extend log ?
1014                 * option 4 - second chance
1015                 *
1016                 * mark log wrapped, and continue.
1017                 * when all active transactions are completed,
1018                 * mark log valid for recovery.
1019                 * if crashed during invalid state, log state
1020                 * implies invalid log, forcing fsck().
1021                 */
1022                /* mark log state log wrap in log superblock */
1023                /* log->state = LOGWRAP; */
1024
1025                /* reset sync point computation */
1026                log->syncpt = log->sync = lsn;
1027                log->nextsync = delta;
1028        } else
1029                /* next syncpt trigger = written + more */
1030                log->nextsync = written + more;
1031
1032        /* if number of bytes written from last sync point is more
1033         * than 1/4 of the log size, stop new transactions from
1034         * starting until all current transactions are completed
1035         * by setting syncbarrier flag.
1036         */
1037        if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1038            (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1039                set_bit(log_SYNCBARRIER, &log->flag);
1040                jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1041                         log->syncpt);
1042                /*
1043                 * We may have to initiate group commit
1044                 */
1045                jfs_flush_journal(log, 0);
1046        }
1047
1048        return lsn;
1049}
1050
1051/*
1052 * NAME:        jfs_syncpt
1053 *
1054 * FUNCTION:    write log SYNCPT record for specified log
1055 *
1056 * PARAMETERS:  log       - log structure
1057 *              hard_sync - set to 1 to force metadata to be written
1058 */
1059void jfs_syncpt(struct jfs_log *log, int hard_sync)
1060{       LOG_LOCK(log);
1061        if (!test_bit(log_QUIESCE, &log->flag))
1062                lmLogSync(log, hard_sync);
1063        LOG_UNLOCK(log);
1064}
1065
1066/*
1067 * NAME:        lmLogOpen()
1068 *
1069 * FUNCTION:    open the log on first open;
1070 *      insert filesystem in the active list of the log.
1071 *
1072 * PARAMETER:   ipmnt   - file system mount inode
1073 *              iplog   - log inode (out)
1074 *
1075 * RETURN:
1076 *
1077 * serialization:
1078 */
1079int lmLogOpen(struct super_block *sb)
1080{
1081        int rc;
1082        struct block_device *bdev;
1083        struct jfs_log *log;
1084        struct jfs_sb_info *sbi = JFS_SBI(sb);
1085
1086        if (sbi->flag & JFS_NOINTEGRITY)
1087                return open_dummy_log(sb);
1088
1089        if (sbi->mntflag & JFS_INLINELOG)
1090                return open_inline_log(sb);
1091
1092        mutex_lock(&jfs_log_mutex);
1093        list_for_each_entry(log, &jfs_external_logs, journal_list) {
1094                if (log->bdev->bd_dev == sbi->logdev) {
1095                        if (memcmp(log->uuid, sbi->loguuid,
1096                                   sizeof(log->uuid))) {
1097                                jfs_warn("wrong uuid on JFS journal\n");
1098                                mutex_unlock(&jfs_log_mutex);
1099                                return -EINVAL;
1100                        }
1101                        /*
1102                         * add file system to log active file system list
1103                         */
1104                        if ((rc = lmLogFileSystem(log, sbi, 1))) {
1105                                mutex_unlock(&jfs_log_mutex);
1106                                return rc;
1107                        }
1108                        goto journal_found;
1109                }
1110        }
1111
1112        if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1113                mutex_unlock(&jfs_log_mutex);
1114                return -ENOMEM;
1115        }
1116        INIT_LIST_HEAD(&log->sb_list);
1117        init_waitqueue_head(&log->syncwait);
1118
1119        /*
1120         *      external log as separate logical volume
1121         *
1122         * file systems to log may have n-to-1 relationship;
1123         */
1124
1125        bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1126                                 log);
1127        if (IS_ERR(bdev)) {
1128                rc = PTR_ERR(bdev);
1129                goto free;
1130        }
1131
1132        log->bdev = bdev;
1133        memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1134
1135        /*
1136         * initialize log:
1137         */
1138        if ((rc = lmLogInit(log)))
1139                goto close;
1140
1141        list_add(&log->journal_list, &jfs_external_logs);
1142
1143        /*
1144         * add file system to log active file system list
1145         */
1146        if ((rc = lmLogFileSystem(log, sbi, 1)))
1147                goto shutdown;
1148
1149journal_found:
1150        LOG_LOCK(log);
1151        list_add(&sbi->log_list, &log->sb_list);
1152        sbi->log = log;
1153        LOG_UNLOCK(log);
1154
1155        mutex_unlock(&jfs_log_mutex);
1156        return 0;
1157
1158        /*
1159         *      unwind on error
1160         */
1161      shutdown:         /* unwind lbmLogInit() */
1162        list_del(&log->journal_list);
1163        lbmLogShutdown(log);
1164
1165      close:            /* close external log device */
1166        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1167
1168      free:             /* free log descriptor */
1169        mutex_unlock(&jfs_log_mutex);
1170        kfree(log);
1171
1172        jfs_warn("lmLogOpen: exit(%d)", rc);
1173        return rc;
1174}
1175
1176static int open_inline_log(struct super_block *sb)
1177{
1178        struct jfs_log *log;
1179        int rc;
1180
1181        if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1182                return -ENOMEM;
1183        INIT_LIST_HEAD(&log->sb_list);
1184        init_waitqueue_head(&log->syncwait);
1185
1186        set_bit(log_INLINELOG, &log->flag);
1187        log->bdev = sb->s_bdev;
1188        log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1189        log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1190            (L2LOGPSIZE - sb->s_blocksize_bits);
1191        log->l2bsize = sb->s_blocksize_bits;
1192        ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1193
1194        /*
1195         * initialize log.
1196         */
1197        if ((rc = lmLogInit(log))) {
1198                kfree(log);
1199                jfs_warn("lmLogOpen: exit(%d)", rc);
1200                return rc;
1201        }
1202
1203        list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1204        JFS_SBI(sb)->log = log;
1205
1206        return rc;
1207}
1208
1209static int open_dummy_log(struct super_block *sb)
1210{
1211        int rc;
1212
1213        mutex_lock(&jfs_log_mutex);
1214        if (!dummy_log) {
1215                dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1216                if (!dummy_log) {
1217                        mutex_unlock(&jfs_log_mutex);
1218                        return -ENOMEM;
1219                }
1220                INIT_LIST_HEAD(&dummy_log->sb_list);
1221                init_waitqueue_head(&dummy_log->syncwait);
1222                dummy_log->no_integrity = 1;
1223                /* Make up some stuff */
1224                dummy_log->base = 0;
1225                dummy_log->size = 1024;
1226                rc = lmLogInit(dummy_log);
1227                if (rc) {
1228                        kfree(dummy_log);
1229                        dummy_log = NULL;
1230                        mutex_unlock(&jfs_log_mutex);
1231                        return rc;
1232                }
1233        }
1234
1235        LOG_LOCK(dummy_log);
1236        list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1237        JFS_SBI(sb)->log = dummy_log;
1238        LOG_UNLOCK(dummy_log);
1239        mutex_unlock(&jfs_log_mutex);
1240
1241        return 0;
1242}
1243
1244/*
1245 * NAME:        lmLogInit()
1246 *
1247 * FUNCTION:    log initialization at first log open.
1248 *
1249 *      logredo() (or logformat()) should have been run previously.
1250 *      initialize the log from log superblock.
1251 *      set the log state in the superblock to LOGMOUNT and
1252 *      write SYNCPT log record.
1253 *
1254 * PARAMETER:   log     - log structure
1255 *
1256 * RETURN:      0       - if ok
1257 *              -EINVAL - bad log magic number or superblock dirty
1258 *              error returned from logwait()
1259 *
1260 * serialization: single first open thread
1261 */
1262int lmLogInit(struct jfs_log * log)
1263{
1264        int rc = 0;
1265        struct lrd lrd;
1266        struct logsuper *logsuper;
1267        struct lbuf *bpsuper;
1268        struct lbuf *bp;
1269        struct logpage *lp;
1270        int lsn = 0;
1271
1272        jfs_info("lmLogInit: log:0x%p", log);
1273
1274        /* initialize the group commit serialization lock */
1275        LOGGC_LOCK_INIT(log);
1276
1277        /* allocate/initialize the log write serialization lock */
1278        LOG_LOCK_INIT(log);
1279
1280        LOGSYNC_LOCK_INIT(log);
1281
1282        INIT_LIST_HEAD(&log->synclist);
1283
1284        INIT_LIST_HEAD(&log->cqueue);
1285        log->flush_tblk = NULL;
1286
1287        log->count = 0;
1288
1289        /*
1290         * initialize log i/o
1291         */
1292        if ((rc = lbmLogInit(log)))
1293                return rc;
1294
1295        if (!test_bit(log_INLINELOG, &log->flag))
1296                log->l2bsize = L2LOGPSIZE;
1297
1298        /* check for disabled journaling to disk */
1299        if (log->no_integrity) {
1300                /*
1301                 * Journal pages will still be filled.  When the time comes
1302                 * to actually do the I/O, the write is not done, and the
1303                 * endio routine is called directly.
1304                 */
1305                bp = lbmAllocate(log , 0);
1306                log->bp = bp;
1307                bp->l_pn = bp->l_eor = 0;
1308        } else {
1309                /*
1310                 * validate log superblock
1311                 */
1312                if ((rc = lbmRead(log, 1, &bpsuper)))
1313                        goto errout10;
1314
1315                logsuper = (struct logsuper *) bpsuper->l_ldata;
1316
1317                if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1318                        jfs_warn("*** Log Format Error ! ***");
1319                        rc = -EINVAL;
1320                        goto errout20;
1321                }
1322
1323                /* logredo() should have been run successfully. */
1324                if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1325                        jfs_warn("*** Log Is Dirty ! ***");
1326                        rc = -EINVAL;
1327                        goto errout20;
1328                }
1329
1330                /* initialize log from log superblock */
1331                if (test_bit(log_INLINELOG,&log->flag)) {
1332                        if (log->size != le32_to_cpu(logsuper->size)) {
1333                                rc = -EINVAL;
1334                                goto errout20;
1335                        }
1336                        jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1337                                 "size:0x%x", log,
1338                                 (unsigned long long) log->base, log->size);
1339                } else {
1340                        if (memcmp(logsuper->uuid, log->uuid, 16)) {
1341                                jfs_warn("wrong uuid on JFS log device");
1342                                goto errout20;
1343                        }
1344                        log->size = le32_to_cpu(logsuper->size);
1345                        log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1346                        jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1347                                 "size:0x%x", log,
1348                                 (unsigned long long) log->base, log->size);
1349                }
1350
1351                log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1352                log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1353
1354                /*
1355                 * initialize for log append write mode
1356                 */
1357                /* establish current/end-of-log page/buffer */
1358                if ((rc = lbmRead(log, log->page, &bp)))
1359                        goto errout20;
1360
1361                lp = (struct logpage *) bp->l_ldata;
1362
1363                jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1364                         le32_to_cpu(logsuper->end), log->page, log->eor,
1365                         le16_to_cpu(lp->h.eor));
1366
1367                log->bp = bp;
1368                bp->l_pn = log->page;
1369                bp->l_eor = log->eor;
1370
1371                /* if current page is full, move on to next page */
1372                if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1373                        lmNextPage(log);
1374
1375                /*
1376                 * initialize log syncpoint
1377                 */
1378                /*
1379                 * write the first SYNCPT record with syncpoint = 0
1380                 * (i.e., log redo up to HERE !);
1381                 * remove current page from lbm write queue at end of pageout
1382                 * (to write log superblock update), but do not release to
1383                 * freelist;
1384                 */
1385                lrd.logtid = 0;
1386                lrd.backchain = 0;
1387                lrd.type = cpu_to_le16(LOG_SYNCPT);
1388                lrd.length = 0;
1389                lrd.log.syncpt.sync = 0;
1390                lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1391                bp = log->bp;
1392                bp->l_ceor = bp->l_eor;
1393                lp = (struct logpage *) bp->l_ldata;
1394                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1395                lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1396                if ((rc = lbmIOWait(bp, 0)))
1397                        goto errout30;
1398
1399                /*
1400                 * update/write superblock
1401                 */
1402                logsuper->state = cpu_to_le32(LOGMOUNT);
1403                log->serial = le32_to_cpu(logsuper->serial) + 1;
1404                logsuper->serial = cpu_to_le32(log->serial);
1405                lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1406                if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1407                        goto errout30;
1408        }
1409
1410        /* initialize logsync parameters */
1411        log->logsize = (log->size - 2) << L2LOGPSIZE;
1412        log->lsn = lsn;
1413        log->syncpt = lsn;
1414        log->sync = log->syncpt;
1415        log->nextsync = LOGSYNC_DELTA(log->logsize);
1416
1417        jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1418                 log->lsn, log->syncpt, log->sync);
1419
1420        /*
1421         * initialize for lazy/group commit
1422         */
1423        log->clsn = lsn;
1424
1425        return 0;
1426
1427        /*
1428         *      unwind on error
1429         */
1430      errout30:         /* release log page */
1431        log->wqueue = NULL;
1432        bp->l_wqnext = NULL;
1433        lbmFree(bp);
1434
1435      errout20:         /* release log superblock */
1436        lbmFree(bpsuper);
1437
1438      errout10:         /* unwind lbmLogInit() */
1439        lbmLogShutdown(log);
1440
1441        jfs_warn("lmLogInit: exit(%d)", rc);
1442        return rc;
1443}
1444
1445
1446/*
1447 * NAME:        lmLogClose()
1448 *
1449 * FUNCTION:    remove file system <ipmnt> from active list of log <iplog>
1450 *              and close it on last close.
1451 *
1452 * PARAMETER:   sb      - superblock
1453 *
1454 * RETURN:      errors from subroutines
1455 *
1456 * serialization:
1457 */
1458int lmLogClose(struct super_block *sb)
1459{
1460        struct jfs_sb_info *sbi = JFS_SBI(sb);
1461        struct jfs_log *log = sbi->log;
1462        struct block_device *bdev;
1463        int rc = 0;
1464
1465        jfs_info("lmLogClose: log:0x%p", log);
1466
1467        mutex_lock(&jfs_log_mutex);
1468        LOG_LOCK(log);
1469        list_del(&sbi->log_list);
1470        LOG_UNLOCK(log);
1471        sbi->log = NULL;
1472
1473        /*
1474         * We need to make sure all of the "written" metapages
1475         * actually make it to disk
1476         */
1477        sync_blockdev(sb->s_bdev);
1478
1479        if (test_bit(log_INLINELOG, &log->flag)) {
1480                /*
1481                 *      in-line log in host file system
1482                 */
1483                rc = lmLogShutdown(log);
1484                kfree(log);
1485                goto out;
1486        }
1487
1488        if (!log->no_integrity)
1489                lmLogFileSystem(log, sbi, 0);
1490
1491        if (!list_empty(&log->sb_list))
1492                goto out;
1493
1494        /*
1495         * TODO: ensure that the dummy_log is in a state to allow
1496         * lbmLogShutdown to deallocate all the buffers and call
1497         * kfree against dummy_log.  For now, leave dummy_log & its
1498         * buffers in memory, and resuse if another no-integrity mount
1499         * is requested.
1500         */
1501        if (log->no_integrity)
1502                goto out;
1503
1504        /*
1505         *      external log as separate logical volume
1506         */
1507        list_del(&log->journal_list);
1508        bdev = log->bdev;
1509        rc = lmLogShutdown(log);
1510
1511        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1512
1513        kfree(log);
1514
1515      out:
1516        mutex_unlock(&jfs_log_mutex);
1517        jfs_info("lmLogClose: exit(%d)", rc);
1518        return rc;
1519}
1520
1521
1522/*
1523 * NAME:        jfs_flush_journal()
1524 *
1525 * FUNCTION:    initiate write of any outstanding transactions to the journal
1526 *              and optionally wait until they are all written to disk
1527 *
1528 *              wait == 0  flush until latest txn is committed, don't wait
1529 *              wait == 1  flush until latest txn is committed, wait
1530 *              wait > 1   flush until all txn's are complete, wait
1531 */
1532void jfs_flush_journal(struct jfs_log *log, int wait)
1533{
1534        int i;
1535        struct tblock *target = NULL;
1536
1537        /* jfs_write_inode may call us during read-only mount */
1538        if (!log)
1539                return;
1540
1541        jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1542
1543        LOGGC_LOCK(log);
1544
1545        if (!list_empty(&log->cqueue)) {
1546                /*
1547                 * This ensures that we will keep writing to the journal as long
1548                 * as there are unwritten commit records
1549                 */
1550                target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1551
1552                if (test_bit(log_FLUSH, &log->flag)) {
1553                        /*
1554                         * We're already flushing.
1555                         * if flush_tblk is NULL, we are flushing everything,
1556                         * so leave it that way.  Otherwise, update it to the
1557                         * latest transaction
1558                         */
1559                        if (log->flush_tblk)
1560                                log->flush_tblk = target;
1561                } else {
1562                        /* Only flush until latest transaction is committed */
1563                        log->flush_tblk = target;
1564                        set_bit(log_FLUSH, &log->flag);
1565
1566                        /*
1567                         * Initiate I/O on outstanding transactions
1568                         */
1569                        if (!(log->cflag & logGC_PAGEOUT)) {
1570                                log->cflag |= logGC_PAGEOUT;
1571                                lmGCwrite(log, 0);
1572                        }
1573                }
1574        }
1575        if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1576                /* Flush until all activity complete */
1577                set_bit(log_FLUSH, &log->flag);
1578                log->flush_tblk = NULL;
1579        }
1580
1581        if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1582                DECLARE_WAITQUEUE(__wait, current);
1583
1584                add_wait_queue(&target->gcwait, &__wait);
1585                set_current_state(TASK_UNINTERRUPTIBLE);
1586                LOGGC_UNLOCK(log);
1587                schedule();
1588                LOGGC_LOCK(log);
1589                remove_wait_queue(&target->gcwait, &__wait);
1590        }
1591        LOGGC_UNLOCK(log);
1592
1593        if (wait < 2)
1594                return;
1595
1596        write_special_inodes(log, filemap_fdatawrite);
1597
1598        /*
1599         * If there was recent activity, we may need to wait
1600         * for the lazycommit thread to catch up
1601         */
1602        if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1603                for (i = 0; i < 200; i++) {     /* Too much? */
1604                        msleep(250);
1605                        write_special_inodes(log, filemap_fdatawrite);
1606                        if (list_empty(&log->cqueue) &&
1607                            list_empty(&log->synclist))
1608                                break;
1609                }
1610        }
1611        assert(list_empty(&log->cqueue));
1612
1613#ifdef CONFIG_JFS_DEBUG
1614        if (!list_empty(&log->synclist)) {
1615                struct logsyncblk *lp;
1616
1617                printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1618                list_for_each_entry(lp, &log->synclist, synclist) {
1619                        if (lp->xflag & COMMIT_PAGE) {
1620                                struct metapage *mp = (struct metapage *)lp;
1621                                print_hex_dump(KERN_ERR, "metapage: ",
1622                                               DUMP_PREFIX_ADDRESS, 16, 4,
1623                                               mp, sizeof(struct metapage), 0);
1624                                print_hex_dump(KERN_ERR, "page: ",
1625                                               DUMP_PREFIX_ADDRESS, 16,
1626                                               sizeof(long), mp->page,
1627                                               sizeof(struct page), 0);
1628                        } else
1629                                print_hex_dump(KERN_ERR, "tblock:",
1630                                               DUMP_PREFIX_ADDRESS, 16, 4,
1631                                               lp, sizeof(struct tblock), 0);
1632                }
1633        }
1634#else
1635        WARN_ON(!list_empty(&log->synclist));
1636#endif
1637        clear_bit(log_FLUSH, &log->flag);
1638}
1639
1640/*
1641 * NAME:        lmLogShutdown()
1642 *
1643 * FUNCTION:    log shutdown at last LogClose().
1644 *
1645 *              write log syncpt record.
1646 *              update super block to set redone flag to 0.
1647 *
1648 * PARAMETER:   log     - log inode
1649 *
1650 * RETURN:      0       - success
1651 *
1652 * serialization: single last close thread
1653 */
1654int lmLogShutdown(struct jfs_log * log)
1655{
1656        int rc;
1657        struct lrd lrd;
1658        int lsn;
1659        struct logsuper *logsuper;
1660        struct lbuf *bpsuper;
1661        struct lbuf *bp;
1662        struct logpage *lp;
1663
1664        jfs_info("lmLogShutdown: log:0x%p", log);
1665
1666        jfs_flush_journal(log, 2);
1667
1668        /*
1669         * write the last SYNCPT record with syncpoint = 0
1670         * (i.e., log redo up to HERE !)
1671         */
1672        lrd.logtid = 0;
1673        lrd.backchain = 0;
1674        lrd.type = cpu_to_le16(LOG_SYNCPT);
1675        lrd.length = 0;
1676        lrd.log.syncpt.sync = 0;
1677
1678        lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1679        bp = log->bp;
1680        lp = (struct logpage *) bp->l_ldata;
1681        lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1682        lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1683        lbmIOWait(log->bp, lbmFREE);
1684        log->bp = NULL;
1685
1686        /*
1687         * synchronous update log superblock
1688         * mark log state as shutdown cleanly
1689         * (i.e., Log does not need to be replayed).
1690         */
1691        if ((rc = lbmRead(log, 1, &bpsuper)))
1692                goto out;
1693
1694        logsuper = (struct logsuper *) bpsuper->l_ldata;
1695        logsuper->state = cpu_to_le32(LOGREDONE);
1696        logsuper->end = cpu_to_le32(lsn);
1697        lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1698        rc = lbmIOWait(bpsuper, lbmFREE);
1699
1700        jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1701                 lsn, log->page, log->eor);
1702
1703      out:
1704        /*
1705         * shutdown per log i/o
1706         */
1707        lbmLogShutdown(log);
1708
1709        if (rc) {
1710                jfs_warn("lmLogShutdown: exit(%d)", rc);
1711        }
1712        return rc;
1713}
1714
1715
1716/*
1717 * NAME:        lmLogFileSystem()
1718 *
1719 * FUNCTION:    insert (<activate> = true)/remove (<activate> = false)
1720 *      file system into/from log active file system list.
1721 *
1722 * PARAMETE:    log     - pointer to logs inode.
1723 *              fsdev   - kdev_t of filesystem.
1724 *              serial  - pointer to returned log serial number
1725 *              activate - insert/remove device from active list.
1726 *
1727 * RETURN:      0       - success
1728 *              errors returned by vms_iowait().
1729 */
1730static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1731                           int activate)
1732{
1733        int rc = 0;
1734        int i;
1735        struct logsuper *logsuper;
1736        struct lbuf *bpsuper;
1737        char *uuid = sbi->uuid;
1738
1739        /*
1740         * insert/remove file system device to log active file system list.
1741         */
1742        if ((rc = lbmRead(log, 1, &bpsuper)))
1743                return rc;
1744
1745        logsuper = (struct logsuper *) bpsuper->l_ldata;
1746        if (activate) {
1747                for (i = 0; i < MAX_ACTIVE; i++)
1748                        if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1749                                memcpy(logsuper->active[i].uuid, uuid, 16);
1750                                sbi->aggregate = i;
1751                                break;
1752                        }
1753                if (i == MAX_ACTIVE) {
1754                        jfs_warn("Too many file systems sharing journal!");
1755                        lbmFree(bpsuper);
1756                        return -EMFILE; /* Is there a better rc? */
1757                }
1758        } else {
1759                for (i = 0; i < MAX_ACTIVE; i++)
1760                        if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1761                                memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1762                                break;
1763                        }
1764                if (i == MAX_ACTIVE) {
1765                        jfs_warn("Somebody stomped on the journal!");
1766                        lbmFree(bpsuper);
1767                        return -EIO;
1768                }
1769
1770        }
1771
1772        /*
1773         * synchronous write log superblock:
1774         *
1775         * write sidestream bypassing write queue:
1776         * at file system mount, log super block is updated for
1777         * activation of the file system before any log record
1778         * (MOUNT record) of the file system, and at file system
1779         * unmount, all meta data for the file system has been
1780         * flushed before log super block is updated for deactivation
1781         * of the file system.
1782         */
1783        lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1784        rc = lbmIOWait(bpsuper, lbmFREE);
1785
1786        return rc;
1787}
1788
1789/*
1790 *              log buffer manager (lbm)
1791 *              ------------------------
1792 *
1793 * special purpose buffer manager supporting log i/o requirements.
1794 *
1795 * per log write queue:
1796 * log pageout occurs in serial order by fifo write queue and
1797 * restricting to a single i/o in pregress at any one time.
1798 * a circular singly-linked list
1799 * (log->wrqueue points to the tail, and buffers are linked via
1800 * bp->wrqueue field), and
1801 * maintains log page in pageout ot waiting for pageout in serial pageout.
1802 */
1803
1804/*
1805 *      lbmLogInit()
1806 *
1807 * initialize per log I/O setup at lmLogInit()
1808 */
1809static int lbmLogInit(struct jfs_log * log)
1810{                               /* log inode */
1811        int i;
1812        struct lbuf *lbuf;
1813
1814        jfs_info("lbmLogInit: log:0x%p", log);
1815
1816        /* initialize current buffer cursor */
1817        log->bp = NULL;
1818
1819        /* initialize log device write queue */
1820        log->wqueue = NULL;
1821
1822        /*
1823         * Each log has its own buffer pages allocated to it.  These are
1824         * not managed by the page cache.  This ensures that a transaction
1825         * writing to the log does not block trying to allocate a page from
1826         * the page cache (for the log).  This would be bad, since page
1827         * allocation waits on the kswapd thread that may be committing inodes
1828         * which would cause log activity.  Was that clear?  I'm trying to
1829         * avoid deadlock here.
1830         */
1831        init_waitqueue_head(&log->free_wait);
1832
1833        log->lbuf_free = NULL;
1834
1835        for (i = 0; i < LOGPAGES;) {
1836                char *buffer;
1837                uint offset;
1838                struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1839
1840                if (!page)
1841                        goto error;
1842                buffer = page_address(page);
1843                for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1844                        lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1845                        if (lbuf == NULL) {
1846                                if (offset == 0)
1847                                        __free_page(page);
1848                                goto error;
1849                        }
1850                        if (offset) /* we already have one reference */
1851                                get_page(page);
1852                        lbuf->l_offset = offset;
1853                        lbuf->l_ldata = buffer + offset;
1854                        lbuf->l_page = page;
1855                        lbuf->l_log = log;
1856                        init_waitqueue_head(&lbuf->l_ioevent);
1857
1858                        lbuf->l_freelist = log->lbuf_free;
1859                        log->lbuf_free = lbuf;
1860                        i++;
1861                }
1862        }
1863
1864        return (0);
1865
1866      error:
1867        lbmLogShutdown(log);
1868        return -ENOMEM;
1869}
1870
1871
1872/*
1873 *      lbmLogShutdown()
1874 *
1875 * finalize per log I/O setup at lmLogShutdown()
1876 */
1877static void lbmLogShutdown(struct jfs_log * log)
1878{
1879        struct lbuf *lbuf;
1880
1881        jfs_info("lbmLogShutdown: log:0x%p", log);
1882
1883        lbuf = log->lbuf_free;
1884        while (lbuf) {
1885                struct lbuf *next = lbuf->l_freelist;
1886                __free_page(lbuf->l_page);
1887                kfree(lbuf);
1888                lbuf = next;
1889        }
1890}
1891
1892
1893/*
1894 *      lbmAllocate()
1895 *
1896 * allocate an empty log buffer
1897 */
1898static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1899{
1900        struct lbuf *bp;
1901        unsigned long flags;
1902
1903        /*
1904         * recycle from log buffer freelist if any
1905         */
1906        LCACHE_LOCK(flags);
1907        LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1908        log->lbuf_free = bp->l_freelist;
1909        LCACHE_UNLOCK(flags);
1910
1911        bp->l_flag = 0;
1912
1913        bp->l_wqnext = NULL;
1914        bp->l_freelist = NULL;
1915
1916        bp->l_pn = pn;
1917        bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1918        bp->l_ceor = 0;
1919
1920        return bp;
1921}
1922
1923
1924/*
1925 *      lbmFree()
1926 *
1927 * release a log buffer to freelist
1928 */
1929static void lbmFree(struct lbuf * bp)
1930{
1931        unsigned long flags;
1932
1933        LCACHE_LOCK(flags);
1934
1935        lbmfree(bp);
1936
1937        LCACHE_UNLOCK(flags);
1938}
1939
1940static void lbmfree(struct lbuf * bp)
1941{
1942        struct jfs_log *log = bp->l_log;
1943
1944        assert(bp->l_wqnext == NULL);
1945
1946        /*
1947         * return the buffer to head of freelist
1948         */
1949        bp->l_freelist = log->lbuf_free;
1950        log->lbuf_free = bp;
1951
1952        wake_up(&log->free_wait);
1953        return;
1954}
1955
1956
1957/*
1958 * NAME:        lbmRedrive
1959 *
1960 * FUNCTION:    add a log buffer to the log redrive list
1961 *
1962 * PARAMETER:
1963 *      bp      - log buffer
1964 *
1965 * NOTES:
1966 *      Takes log_redrive_lock.
1967 */
1968static inline void lbmRedrive(struct lbuf *bp)
1969{
1970        unsigned long flags;
1971
1972        spin_lock_irqsave(&log_redrive_lock, flags);
1973        bp->l_redrive_next = log_redrive_list;
1974        log_redrive_list = bp;
1975        spin_unlock_irqrestore(&log_redrive_lock, flags);
1976
1977        wake_up_process(jfsIOthread);
1978}
1979
1980
1981/*
1982 *      lbmRead()
1983 */
1984static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1985{
1986        struct bio *bio;
1987        struct lbuf *bp;
1988
1989        /*
1990         * allocate a log buffer
1991         */
1992        *bpp = bp = lbmAllocate(log, pn);
1993        jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1994
1995        bp->l_flag |= lbmREAD;
1996
1997        bio = bio_alloc(GFP_NOFS, 1);
1998
1999        bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2000        bio->bi_bdev = log->bdev;
2001
2002        bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
2003        BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
2004
2005        bio->bi_end_io = lbmIODone;
2006        bio->bi_private = bp;
2007        /*check if journaling to disk has been disabled*/
2008        if (log->no_integrity) {
2009                bio->bi_iter.bi_size = 0;
2010                lbmIODone(bio);
2011        } else {
2012                submit_bio(READ_SYNC, bio);
2013        }
2014
2015        wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2016
2017        return 0;
2018}
2019
2020
2021/*
2022 *      lbmWrite()
2023 *
2024 * buffer at head of pageout queue stays after completion of
2025 * partial-page pageout and redriven by explicit initiation of
2026 * pageout by caller until full-page pageout is completed and
2027 * released.
2028 *
2029 * device driver i/o done redrives pageout of new buffer at
2030 * head of pageout queue when current buffer at head of pageout
2031 * queue is released at the completion of its full-page pageout.
2032 *
2033 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2034 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2035 */
2036static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2037                     int cant_block)
2038{
2039        struct lbuf *tail;
2040        unsigned long flags;
2041
2042        jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2043
2044        /* map the logical block address to physical block address */
2045        bp->l_blkno =
2046            log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2047
2048        LCACHE_LOCK(flags);             /* disable+lock */
2049
2050        /*
2051         * initialize buffer for device driver
2052         */
2053        bp->l_flag = flag;
2054
2055        /*
2056         *      insert bp at tail of write queue associated with log
2057         *
2058         * (request is either for bp already/currently at head of queue
2059         * or new bp to be inserted at tail)
2060         */
2061        tail = log->wqueue;
2062
2063        /* is buffer not already on write queue ? */
2064        if (bp->l_wqnext == NULL) {
2065                /* insert at tail of wqueue */
2066                if (tail == NULL) {
2067                        log->wqueue = bp;
2068                        bp->l_wqnext = bp;
2069                } else {
2070                        log->wqueue = bp;
2071                        bp->l_wqnext = tail->l_wqnext;
2072                        tail->l_wqnext = bp;
2073                }
2074
2075                tail = bp;
2076        }
2077
2078        /* is buffer at head of wqueue and for write ? */
2079        if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2080                LCACHE_UNLOCK(flags);   /* unlock+enable */
2081                return;
2082        }
2083
2084        LCACHE_UNLOCK(flags);   /* unlock+enable */
2085
2086        if (cant_block)
2087                lbmRedrive(bp);
2088        else if (flag & lbmSYNC)
2089                lbmStartIO(bp);
2090        else {
2091                LOGGC_UNLOCK(log);
2092                lbmStartIO(bp);
2093                LOGGC_LOCK(log);
2094        }
2095}
2096
2097
2098/*
2099 *      lbmDirectWrite()
2100 *
2101 * initiate pageout bypassing write queue for sidestream
2102 * (e.g., log superblock) write;
2103 */
2104static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2105{
2106        jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2107                 bp, flag, bp->l_pn);
2108
2109        /*
2110         * initialize buffer for device driver
2111         */
2112        bp->l_flag = flag | lbmDIRECT;
2113
2114        /* map the logical block address to physical block address */
2115        bp->l_blkno =
2116            log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2117
2118        /*
2119         *      initiate pageout of the page
2120         */
2121        lbmStartIO(bp);
2122}
2123
2124
2125/*
2126 * NAME:        lbmStartIO()
2127 *
2128 * FUNCTION:    Interface to DD strategy routine
2129 *
2130 * RETURN:      none
2131 *
2132 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2133 */
2134static void lbmStartIO(struct lbuf * bp)
2135{
2136        struct bio *bio;
2137        struct jfs_log *log = bp->l_log;
2138
2139        jfs_info("lbmStartIO\n");
2140
2141        bio = bio_alloc(GFP_NOFS, 1);
2142        bio->bi_iter.bi_sector = bp->l_blkno << (log->l2bsize - 9);
2143        bio->bi_bdev = log->bdev;
2144
2145        bio_add_page(bio, bp->l_page, LOGPSIZE, bp->l_offset);
2146        BUG_ON(bio->bi_iter.bi_size != LOGPSIZE);
2147
2148        bio->bi_end_io = lbmIODone;
2149        bio->bi_private = bp;
2150
2151        /* check if journaling to disk has been disabled */
2152        if (log->no_integrity) {
2153                bio->bi_iter.bi_size = 0;
2154                lbmIODone(bio);
2155        } else {
2156                submit_bio(WRITE_SYNC, bio);
2157                INCREMENT(lmStat.submitted);
2158        }
2159}
2160
2161
2162/*
2163 *      lbmIOWait()
2164 */
2165static int lbmIOWait(struct lbuf * bp, int flag)
2166{
2167        unsigned long flags;
2168        int rc = 0;
2169
2170        jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2171
2172        LCACHE_LOCK(flags);             /* disable+lock */
2173
2174        LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2175
2176        rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2177
2178        if (flag & lbmFREE)
2179                lbmfree(bp);
2180
2181        LCACHE_UNLOCK(flags);   /* unlock+enable */
2182
2183        jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2184        return rc;
2185}
2186
2187/*
2188 *      lbmIODone()
2189 *
2190 * executed at INTIODONE level
2191 */
2192static void lbmIODone(struct bio *bio)
2193{
2194        struct lbuf *bp = bio->bi_private;
2195        struct lbuf *nextbp, *tail;
2196        struct jfs_log *log;
2197        unsigned long flags;
2198
2199        /*
2200         * get back jfs buffer bound to the i/o buffer
2201         */
2202        jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2203
2204        LCACHE_LOCK(flags);             /* disable+lock */
2205
2206        bp->l_flag |= lbmDONE;
2207
2208        if (bio->bi_error) {
2209                bp->l_flag |= lbmERROR;
2210
2211                jfs_err("lbmIODone: I/O error in JFS log");
2212        }
2213
2214        bio_put(bio);
2215
2216        /*
2217         *      pagein completion
2218         */
2219        if (bp->l_flag & lbmREAD) {
2220                bp->l_flag &= ~lbmREAD;
2221
2222                LCACHE_UNLOCK(flags);   /* unlock+enable */
2223
2224                /* wakeup I/O initiator */
2225                LCACHE_WAKEUP(&bp->l_ioevent);
2226
2227                return;
2228        }
2229
2230        /*
2231         *      pageout completion
2232         *
2233         * the bp at the head of write queue has completed pageout.
2234         *
2235         * if single-commit/full-page pageout, remove the current buffer
2236         * from head of pageout queue, and redrive pageout with
2237         * the new buffer at head of pageout queue;
2238         * otherwise, the partial-page pageout buffer stays at
2239         * the head of pageout queue to be redriven for pageout
2240         * by lmGroupCommit() until full-page pageout is completed.
2241         */
2242        bp->l_flag &= ~lbmWRITE;
2243        INCREMENT(lmStat.pagedone);
2244
2245        /* update committed lsn */
2246        log = bp->l_log;
2247        log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2248
2249        if (bp->l_flag & lbmDIRECT) {
2250                LCACHE_WAKEUP(&bp->l_ioevent);
2251                LCACHE_UNLOCK(flags);
2252                return;
2253        }
2254
2255        tail = log->wqueue;
2256
2257        /* single element queue */
2258        if (bp == tail) {
2259                /* remove head buffer of full-page pageout
2260                 * from log device write queue
2261                 */
2262                if (bp->l_flag & lbmRELEASE) {
2263                        log->wqueue = NULL;
2264                        bp->l_wqnext = NULL;
2265                }
2266        }
2267        /* multi element queue */
2268        else {
2269                /* remove head buffer of full-page pageout
2270                 * from log device write queue
2271                 */
2272                if (bp->l_flag & lbmRELEASE) {
2273                        nextbp = tail->l_wqnext = bp->l_wqnext;
2274                        bp->l_wqnext = NULL;
2275
2276                        /*
2277                         * redrive pageout of next page at head of write queue:
2278                         * redrive next page without any bound tblk
2279                         * (i.e., page w/o any COMMIT records), or
2280                         * first page of new group commit which has been
2281                         * queued after current page (subsequent pageout
2282                         * is performed synchronously, except page without
2283                         * any COMMITs) by lmGroupCommit() as indicated
2284                         * by lbmWRITE flag;
2285                         */
2286                        if (nextbp->l_flag & lbmWRITE) {
2287                                /*
2288                                 * We can't do the I/O at interrupt time.
2289                                 * The jfsIO thread can do it
2290                                 */
2291                                lbmRedrive(nextbp);
2292                        }
2293                }
2294        }
2295
2296        /*
2297         *      synchronous pageout:
2298         *
2299         * buffer has not necessarily been removed from write queue
2300         * (e.g., synchronous write of partial-page with COMMIT):
2301         * leave buffer for i/o initiator to dispose
2302         */
2303        if (bp->l_flag & lbmSYNC) {
2304                LCACHE_UNLOCK(flags);   /* unlock+enable */
2305
2306                /* wakeup I/O initiator */
2307                LCACHE_WAKEUP(&bp->l_ioevent);
2308        }
2309
2310        /*
2311         *      Group Commit pageout:
2312         */
2313        else if (bp->l_flag & lbmGC) {
2314                LCACHE_UNLOCK(flags);
2315                lmPostGC(bp);
2316        }
2317
2318        /*
2319         *      asynchronous pageout:
2320         *
2321         * buffer must have been removed from write queue:
2322         * insert buffer at head of freelist where it can be recycled
2323         */
2324        else {
2325                assert(bp->l_flag & lbmRELEASE);
2326                assert(bp->l_flag & lbmFREE);
2327                lbmfree(bp);
2328
2329                LCACHE_UNLOCK(flags);   /* unlock+enable */
2330        }
2331}
2332
2333int jfsIOWait(void *arg)
2334{
2335        struct lbuf *bp;
2336
2337        do {
2338                spin_lock_irq(&log_redrive_lock);
2339                while ((bp = log_redrive_list)) {
2340                        log_redrive_list = bp->l_redrive_next;
2341                        bp->l_redrive_next = NULL;
2342                        spin_unlock_irq(&log_redrive_lock);
2343                        lbmStartIO(bp);
2344                        spin_lock_irq(&log_redrive_lock);
2345                }
2346
2347                if (freezing(current)) {
2348                        spin_unlock_irq(&log_redrive_lock);
2349                        try_to_freeze();
2350                } else {
2351                        set_current_state(TASK_INTERRUPTIBLE);
2352                        spin_unlock_irq(&log_redrive_lock);
2353                        schedule();
2354                }
2355        } while (!kthread_should_stop());
2356
2357        jfs_info("jfsIOWait being killed!");
2358        return 0;
2359}
2360
2361/*
2362 * NAME:        lmLogFormat()/jfs_logform()
2363 *
2364 * FUNCTION:    format file system log
2365 *
2366 * PARAMETERS:
2367 *      log     - volume log
2368 *      logAddress - start address of log space in FS block
2369 *      logSize - length of log space in FS block;
2370 *
2371 * RETURN:      0       - success
2372 *              -EIO    - i/o error
2373 *
2374 * XXX: We're synchronously writing one page at a time.  This needs to
2375 *      be improved by writing multiple pages at once.
2376 */
2377int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2378{
2379        int rc = -EIO;
2380        struct jfs_sb_info *sbi;
2381        struct logsuper *logsuper;
2382        struct logpage *lp;
2383        int lspn;               /* log sequence page number */
2384        struct lrd *lrd_ptr;
2385        int npages = 0;
2386        struct lbuf *bp;
2387
2388        jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2389                 (long long)logAddress, logSize);
2390
2391        sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2392
2393        /* allocate a log buffer */
2394        bp = lbmAllocate(log, 1);
2395
2396        npages = logSize >> sbi->l2nbperpage;
2397
2398        /*
2399         *      log space:
2400         *
2401         * page 0 - reserved;
2402         * page 1 - log superblock;
2403         * page 2 - log data page: A SYNC log record is written
2404         *          into this page at logform time;
2405         * pages 3-N - log data page: set to empty log data pages;
2406         */
2407        /*
2408         *      init log superblock: log page 1
2409         */
2410        logsuper = (struct logsuper *) bp->l_ldata;
2411
2412        logsuper->magic = cpu_to_le32(LOGMAGIC);
2413        logsuper->version = cpu_to_le32(LOGVERSION);
2414        logsuper->state = cpu_to_le32(LOGREDONE);
2415        logsuper->flag = cpu_to_le32(sbi->mntflag);     /* ? */
2416        logsuper->size = cpu_to_le32(npages);
2417        logsuper->bsize = cpu_to_le32(sbi->bsize);
2418        logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2419        logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2420
2421        bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2422        bp->l_blkno = logAddress + sbi->nbperpage;
2423        lbmStartIO(bp);
2424        if ((rc = lbmIOWait(bp, 0)))
2425                goto exit;
2426
2427        /*
2428         *      init pages 2 to npages-1 as log data pages:
2429         *
2430         * log page sequence number (lpsn) initialization:
2431         *
2432         * pn:   0     1     2     3                 n-1
2433         *       +-----+-----+=====+=====+===.....===+=====+
2434         * lspn:             N-1   0     1           N-2
2435         *                   <--- N page circular file ---->
2436         *
2437         * the N (= npages-2) data pages of the log is maintained as
2438         * a circular file for the log records;
2439         * lpsn grows by 1 monotonically as each log page is written
2440         * to the circular file of the log;
2441         * and setLogpage() will not reset the page number even if
2442         * the eor is equal to LOGPHDRSIZE. In order for binary search
2443         * still work in find log end process, we have to simulate the
2444         * log wrap situation at the log format time.
2445         * The 1st log page written will have the highest lpsn. Then
2446         * the succeeding log pages will have ascending order of
2447         * the lspn starting from 0, ... (N-2)
2448         */
2449        lp = (struct logpage *) bp->l_ldata;
2450        /*
2451         * initialize 1st log page to be written: lpsn = N - 1,
2452         * write a SYNCPT log record is written to this page
2453         */
2454        lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2455        lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2456
2457        lrd_ptr = (struct lrd *) &lp->data;
2458        lrd_ptr->logtid = 0;
2459        lrd_ptr->backchain = 0;
2460        lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2461        lrd_ptr->length = 0;
2462        lrd_ptr->log.syncpt.sync = 0;
2463
2464        bp->l_blkno += sbi->nbperpage;
2465        bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2466        lbmStartIO(bp);
2467        if ((rc = lbmIOWait(bp, 0)))
2468                goto exit;
2469
2470        /*
2471         *      initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2472         */
2473        for (lspn = 0; lspn < npages - 3; lspn++) {
2474                lp->h.page = lp->t.page = cpu_to_le32(lspn);
2475                lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2476
2477                bp->l_blkno += sbi->nbperpage;
2478                bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2479                lbmStartIO(bp);
2480                if ((rc = lbmIOWait(bp, 0)))
2481                        goto exit;
2482        }
2483
2484        rc = 0;
2485exit:
2486        /*
2487         *      finalize log
2488         */
2489        /* release the buffer */
2490        lbmFree(bp);
2491
2492        return rc;
2493}
2494
2495#ifdef CONFIG_JFS_STATISTICS
2496static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2497{
2498        seq_printf(m,
2499                       "JFS Logmgr stats\n"
2500                       "================\n"
2501                       "commits = %d\n"
2502                       "writes submitted = %d\n"
2503                       "writes completed = %d\n"
2504                       "full pages submitted = %d\n"
2505                       "partial pages submitted = %d\n",
2506                       lmStat.commit,
2507                       lmStat.submitted,
2508                       lmStat.pagedone,
2509                       lmStat.full_page,
2510                       lmStat.partial_page);
2511        return 0;
2512}
2513
2514static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2515{
2516        return single_open(file, jfs_lmstats_proc_show, NULL);
2517}
2518
2519const struct file_operations jfs_lmstats_proc_fops = {
2520        .owner          = THIS_MODULE,
2521        .open           = jfs_lmstats_proc_open,
2522        .read           = seq_read,
2523        .llseek         = seq_lseek,
2524        .release        = single_release,
2525};
2526#endif /* CONFIG_JFS_STATISTICS */
2527