linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/export.h>
  13#include <linux/capability.h>
  14#include <linux/mnt_namespace.h>
  15#include <linux/user_namespace.h>
  16#include <linux/namei.h>
  17#include <linux/security.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>         /* init_rootfs */
  20#include <linux/fs_struct.h>    /* get_fs_root et.al. */
  21#include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
  22#include <linux/uaccess.h>
  23#include <linux/proc_ns.h>
  24#include <linux/magic.h>
  25#include <linux/bootmem.h>
  26#include <linux/task_work.h>
  27#include "pnode.h"
  28#include "internal.h"
  29
  30static unsigned int m_hash_mask __read_mostly;
  31static unsigned int m_hash_shift __read_mostly;
  32static unsigned int mp_hash_mask __read_mostly;
  33static unsigned int mp_hash_shift __read_mostly;
  34
  35static __initdata unsigned long mhash_entries;
  36static int __init set_mhash_entries(char *str)
  37{
  38        if (!str)
  39                return 0;
  40        mhash_entries = simple_strtoul(str, &str, 0);
  41        return 1;
  42}
  43__setup("mhash_entries=", set_mhash_entries);
  44
  45static __initdata unsigned long mphash_entries;
  46static int __init set_mphash_entries(char *str)
  47{
  48        if (!str)
  49                return 0;
  50        mphash_entries = simple_strtoul(str, &str, 0);
  51        return 1;
  52}
  53__setup("mphash_entries=", set_mphash_entries);
  54
  55static u64 event;
  56static DEFINE_IDA(mnt_id_ida);
  57static DEFINE_IDA(mnt_group_ida);
  58static DEFINE_SPINLOCK(mnt_id_lock);
  59static int mnt_id_start = 0;
  60static int mnt_group_start = 1;
  61
  62static struct hlist_head *mount_hashtable __read_mostly;
  63static struct hlist_head *mountpoint_hashtable __read_mostly;
  64static struct kmem_cache *mnt_cache __read_mostly;
  65static DECLARE_RWSEM(namespace_sem);
  66
  67/* /sys/fs */
  68struct kobject *fs_kobj;
  69EXPORT_SYMBOL_GPL(fs_kobj);
  70
  71/*
  72 * vfsmount lock may be taken for read to prevent changes to the
  73 * vfsmount hash, ie. during mountpoint lookups or walking back
  74 * up the tree.
  75 *
  76 * It should be taken for write in all cases where the vfsmount
  77 * tree or hash is modified or when a vfsmount structure is modified.
  78 */
  79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  80
  81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  82{
  83        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  84        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  85        tmp = tmp + (tmp >> m_hash_shift);
  86        return &mount_hashtable[tmp & m_hash_mask];
  87}
  88
  89static inline struct hlist_head *mp_hash(struct dentry *dentry)
  90{
  91        unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  92        tmp = tmp + (tmp >> mp_hash_shift);
  93        return &mountpoint_hashtable[tmp & mp_hash_mask];
  94}
  95
  96/*
  97 * allocation is serialized by namespace_sem, but we need the spinlock to
  98 * serialize with freeing.
  99 */
 100static int mnt_alloc_id(struct mount *mnt)
 101{
 102        int res;
 103
 104retry:
 105        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
 106        spin_lock(&mnt_id_lock);
 107        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
 108        if (!res)
 109                mnt_id_start = mnt->mnt_id + 1;
 110        spin_unlock(&mnt_id_lock);
 111        if (res == -EAGAIN)
 112                goto retry;
 113
 114        return res;
 115}
 116
 117static void mnt_free_id(struct mount *mnt)
 118{
 119        int id = mnt->mnt_id;
 120        spin_lock(&mnt_id_lock);
 121        ida_remove(&mnt_id_ida, id);
 122        if (mnt_id_start > id)
 123                mnt_id_start = id;
 124        spin_unlock(&mnt_id_lock);
 125}
 126
 127/*
 128 * Allocate a new peer group ID
 129 *
 130 * mnt_group_ida is protected by namespace_sem
 131 */
 132static int mnt_alloc_group_id(struct mount *mnt)
 133{
 134        int res;
 135
 136        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 137                return -ENOMEM;
 138
 139        res = ida_get_new_above(&mnt_group_ida,
 140                                mnt_group_start,
 141                                &mnt->mnt_group_id);
 142        if (!res)
 143                mnt_group_start = mnt->mnt_group_id + 1;
 144
 145        return res;
 146}
 147
 148/*
 149 * Release a peer group ID
 150 */
 151void mnt_release_group_id(struct mount *mnt)
 152{
 153        int id = mnt->mnt_group_id;
 154        ida_remove(&mnt_group_ida, id);
 155        if (mnt_group_start > id)
 156                mnt_group_start = id;
 157        mnt->mnt_group_id = 0;
 158}
 159
 160/*
 161 * vfsmount lock must be held for read
 162 */
 163static inline void mnt_add_count(struct mount *mnt, int n)
 164{
 165#ifdef CONFIG_SMP
 166        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 167#else
 168        preempt_disable();
 169        mnt->mnt_count += n;
 170        preempt_enable();
 171#endif
 172}
 173
 174/*
 175 * vfsmount lock must be held for write
 176 */
 177unsigned int mnt_get_count(struct mount *mnt)
 178{
 179#ifdef CONFIG_SMP
 180        unsigned int count = 0;
 181        int cpu;
 182
 183        for_each_possible_cpu(cpu) {
 184                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 185        }
 186
 187        return count;
 188#else
 189        return mnt->mnt_count;
 190#endif
 191}
 192
 193static void drop_mountpoint(struct fs_pin *p)
 194{
 195        struct mount *m = container_of(p, struct mount, mnt_umount);
 196        dput(m->mnt_ex_mountpoint);
 197        pin_remove(p);
 198        mntput(&m->mnt);
 199}
 200
 201static struct mount *alloc_vfsmnt(const char *name)
 202{
 203        struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 204        if (mnt) {
 205                int err;
 206
 207                err = mnt_alloc_id(mnt);
 208                if (err)
 209                        goto out_free_cache;
 210
 211                if (name) {
 212                        mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 213                        if (!mnt->mnt_devname)
 214                                goto out_free_id;
 215                }
 216
 217#ifdef CONFIG_SMP
 218                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 219                if (!mnt->mnt_pcp)
 220                        goto out_free_devname;
 221
 222                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 223#else
 224                mnt->mnt_count = 1;
 225                mnt->mnt_writers = 0;
 226#endif
 227
 228                INIT_HLIST_NODE(&mnt->mnt_hash);
 229                INIT_LIST_HEAD(&mnt->mnt_child);
 230                INIT_LIST_HEAD(&mnt->mnt_mounts);
 231                INIT_LIST_HEAD(&mnt->mnt_list);
 232                INIT_LIST_HEAD(&mnt->mnt_expire);
 233                INIT_LIST_HEAD(&mnt->mnt_share);
 234                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 235                INIT_LIST_HEAD(&mnt->mnt_slave);
 236                INIT_HLIST_NODE(&mnt->mnt_mp_list);
 237#ifdef CONFIG_FSNOTIFY
 238                INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
 239#endif
 240                init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
 241        }
 242        return mnt;
 243
 244#ifdef CONFIG_SMP
 245out_free_devname:
 246        kfree_const(mnt->mnt_devname);
 247#endif
 248out_free_id:
 249        mnt_free_id(mnt);
 250out_free_cache:
 251        kmem_cache_free(mnt_cache, mnt);
 252        return NULL;
 253}
 254
 255/*
 256 * Most r/o checks on a fs are for operations that take
 257 * discrete amounts of time, like a write() or unlink().
 258 * We must keep track of when those operations start
 259 * (for permission checks) and when they end, so that
 260 * we can determine when writes are able to occur to
 261 * a filesystem.
 262 */
 263/*
 264 * __mnt_is_readonly: check whether a mount is read-only
 265 * @mnt: the mount to check for its write status
 266 *
 267 * This shouldn't be used directly ouside of the VFS.
 268 * It does not guarantee that the filesystem will stay
 269 * r/w, just that it is right *now*.  This can not and
 270 * should not be used in place of IS_RDONLY(inode).
 271 * mnt_want/drop_write() will _keep_ the filesystem
 272 * r/w.
 273 */
 274int __mnt_is_readonly(struct vfsmount *mnt)
 275{
 276        if (mnt->mnt_flags & MNT_READONLY)
 277                return 1;
 278        if (mnt->mnt_sb->s_flags & MS_RDONLY)
 279                return 1;
 280        return 0;
 281}
 282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 283
 284static inline void mnt_inc_writers(struct mount *mnt)
 285{
 286#ifdef CONFIG_SMP
 287        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 288#else
 289        mnt->mnt_writers++;
 290#endif
 291}
 292
 293static inline void mnt_dec_writers(struct mount *mnt)
 294{
 295#ifdef CONFIG_SMP
 296        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 297#else
 298        mnt->mnt_writers--;
 299#endif
 300}
 301
 302static unsigned int mnt_get_writers(struct mount *mnt)
 303{
 304#ifdef CONFIG_SMP
 305        unsigned int count = 0;
 306        int cpu;
 307
 308        for_each_possible_cpu(cpu) {
 309                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 310        }
 311
 312        return count;
 313#else
 314        return mnt->mnt_writers;
 315#endif
 316}
 317
 318static int mnt_is_readonly(struct vfsmount *mnt)
 319{
 320        if (mnt->mnt_sb->s_readonly_remount)
 321                return 1;
 322        /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 323        smp_rmb();
 324        return __mnt_is_readonly(mnt);
 325}
 326
 327/*
 328 * Most r/o & frozen checks on a fs are for operations that take discrete
 329 * amounts of time, like a write() or unlink().  We must keep track of when
 330 * those operations start (for permission checks) and when they end, so that we
 331 * can determine when writes are able to occur to a filesystem.
 332 */
 333/**
 334 * __mnt_want_write - get write access to a mount without freeze protection
 335 * @m: the mount on which to take a write
 336 *
 337 * This tells the low-level filesystem that a write is about to be performed to
 338 * it, and makes sure that writes are allowed (mnt it read-write) before
 339 * returning success. This operation does not protect against filesystem being
 340 * frozen. When the write operation is finished, __mnt_drop_write() must be
 341 * called. This is effectively a refcount.
 342 */
 343int __mnt_want_write(struct vfsmount *m)
 344{
 345        struct mount *mnt = real_mount(m);
 346        int ret = 0;
 347
 348        preempt_disable();
 349        mnt_inc_writers(mnt);
 350        /*
 351         * The store to mnt_inc_writers must be visible before we pass
 352         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 353         * incremented count after it has set MNT_WRITE_HOLD.
 354         */
 355        smp_mb();
 356        while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 357                cpu_relax();
 358        /*
 359         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 360         * be set to match its requirements. So we must not load that until
 361         * MNT_WRITE_HOLD is cleared.
 362         */
 363        smp_rmb();
 364        if (mnt_is_readonly(m)) {
 365                mnt_dec_writers(mnt);
 366                ret = -EROFS;
 367        }
 368        preempt_enable();
 369
 370        return ret;
 371}
 372
 373/**
 374 * mnt_want_write - get write access to a mount
 375 * @m: the mount on which to take a write
 376 *
 377 * This tells the low-level filesystem that a write is about to be performed to
 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
 379 * is not frozen) before returning success.  When the write operation is
 380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 381 */
 382int mnt_want_write(struct vfsmount *m)
 383{
 384        int ret;
 385
 386        sb_start_write(m->mnt_sb);
 387        ret = __mnt_want_write(m);
 388        if (ret)
 389                sb_end_write(m->mnt_sb);
 390        return ret;
 391}
 392EXPORT_SYMBOL_GPL(mnt_want_write);
 393
 394/**
 395 * mnt_clone_write - get write access to a mount
 396 * @mnt: the mount on which to take a write
 397 *
 398 * This is effectively like mnt_want_write, except
 399 * it must only be used to take an extra write reference
 400 * on a mountpoint that we already know has a write reference
 401 * on it. This allows some optimisation.
 402 *
 403 * After finished, mnt_drop_write must be called as usual to
 404 * drop the reference.
 405 */
 406int mnt_clone_write(struct vfsmount *mnt)
 407{
 408        /* superblock may be r/o */
 409        if (__mnt_is_readonly(mnt))
 410                return -EROFS;
 411        preempt_disable();
 412        mnt_inc_writers(real_mount(mnt));
 413        preempt_enable();
 414        return 0;
 415}
 416EXPORT_SYMBOL_GPL(mnt_clone_write);
 417
 418/**
 419 * __mnt_want_write_file - get write access to a file's mount
 420 * @file: the file who's mount on which to take a write
 421 *
 422 * This is like __mnt_want_write, but it takes a file and can
 423 * do some optimisations if the file is open for write already
 424 */
 425int __mnt_want_write_file(struct file *file)
 426{
 427        if (!(file->f_mode & FMODE_WRITER))
 428                return __mnt_want_write(file->f_path.mnt);
 429        else
 430                return mnt_clone_write(file->f_path.mnt);
 431}
 432
 433/**
 434 * mnt_want_write_file - get write access to a file's mount
 435 * @file: the file who's mount on which to take a write
 436 *
 437 * This is like mnt_want_write, but it takes a file and can
 438 * do some optimisations if the file is open for write already
 439 */
 440int mnt_want_write_file(struct file *file)
 441{
 442        int ret;
 443
 444        sb_start_write(file->f_path.mnt->mnt_sb);
 445        ret = __mnt_want_write_file(file);
 446        if (ret)
 447                sb_end_write(file->f_path.mnt->mnt_sb);
 448        return ret;
 449}
 450EXPORT_SYMBOL_GPL(mnt_want_write_file);
 451
 452/**
 453 * __mnt_drop_write - give up write access to a mount
 454 * @mnt: the mount on which to give up write access
 455 *
 456 * Tells the low-level filesystem that we are done
 457 * performing writes to it.  Must be matched with
 458 * __mnt_want_write() call above.
 459 */
 460void __mnt_drop_write(struct vfsmount *mnt)
 461{
 462        preempt_disable();
 463        mnt_dec_writers(real_mount(mnt));
 464        preempt_enable();
 465}
 466
 467/**
 468 * mnt_drop_write - give up write access to a mount
 469 * @mnt: the mount on which to give up write access
 470 *
 471 * Tells the low-level filesystem that we are done performing writes to it and
 472 * also allows filesystem to be frozen again.  Must be matched with
 473 * mnt_want_write() call above.
 474 */
 475void mnt_drop_write(struct vfsmount *mnt)
 476{
 477        __mnt_drop_write(mnt);
 478        sb_end_write(mnt->mnt_sb);
 479}
 480EXPORT_SYMBOL_GPL(mnt_drop_write);
 481
 482void __mnt_drop_write_file(struct file *file)
 483{
 484        __mnt_drop_write(file->f_path.mnt);
 485}
 486
 487void mnt_drop_write_file(struct file *file)
 488{
 489        mnt_drop_write(file->f_path.mnt);
 490}
 491EXPORT_SYMBOL(mnt_drop_write_file);
 492
 493static int mnt_make_readonly(struct mount *mnt)
 494{
 495        int ret = 0;
 496
 497        lock_mount_hash();
 498        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 499        /*
 500         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 501         * should be visible before we do.
 502         */
 503        smp_mb();
 504
 505        /*
 506         * With writers on hold, if this value is zero, then there are
 507         * definitely no active writers (although held writers may subsequently
 508         * increment the count, they'll have to wait, and decrement it after
 509         * seeing MNT_READONLY).
 510         *
 511         * It is OK to have counter incremented on one CPU and decremented on
 512         * another: the sum will add up correctly. The danger would be when we
 513         * sum up each counter, if we read a counter before it is incremented,
 514         * but then read another CPU's count which it has been subsequently
 515         * decremented from -- we would see more decrements than we should.
 516         * MNT_WRITE_HOLD protects against this scenario, because
 517         * mnt_want_write first increments count, then smp_mb, then spins on
 518         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 519         * we're counting up here.
 520         */
 521        if (mnt_get_writers(mnt) > 0)
 522                ret = -EBUSY;
 523        else
 524                mnt->mnt.mnt_flags |= MNT_READONLY;
 525        /*
 526         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 527         * that become unheld will see MNT_READONLY.
 528         */
 529        smp_wmb();
 530        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 531        unlock_mount_hash();
 532        return ret;
 533}
 534
 535static void __mnt_unmake_readonly(struct mount *mnt)
 536{
 537        lock_mount_hash();
 538        mnt->mnt.mnt_flags &= ~MNT_READONLY;
 539        unlock_mount_hash();
 540}
 541
 542int sb_prepare_remount_readonly(struct super_block *sb)
 543{
 544        struct mount *mnt;
 545        int err = 0;
 546
 547        /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 548        if (atomic_long_read(&sb->s_remove_count))
 549                return -EBUSY;
 550
 551        lock_mount_hash();
 552        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 553                if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 554                        mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 555                        smp_mb();
 556                        if (mnt_get_writers(mnt) > 0) {
 557                                err = -EBUSY;
 558                                break;
 559                        }
 560                }
 561        }
 562        if (!err && atomic_long_read(&sb->s_remove_count))
 563                err = -EBUSY;
 564
 565        if (!err) {
 566                sb->s_readonly_remount = 1;
 567                smp_wmb();
 568        }
 569        list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 570                if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 571                        mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 572        }
 573        unlock_mount_hash();
 574
 575        return err;
 576}
 577
 578static void free_vfsmnt(struct mount *mnt)
 579{
 580        kfree_const(mnt->mnt_devname);
 581#ifdef CONFIG_SMP
 582        free_percpu(mnt->mnt_pcp);
 583#endif
 584        kmem_cache_free(mnt_cache, mnt);
 585}
 586
 587static void delayed_free_vfsmnt(struct rcu_head *head)
 588{
 589        free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 590}
 591
 592/* call under rcu_read_lock */
 593int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 594{
 595        struct mount *mnt;
 596        if (read_seqretry(&mount_lock, seq))
 597                return 1;
 598        if (bastard == NULL)
 599                return 0;
 600        mnt = real_mount(bastard);
 601        mnt_add_count(mnt, 1);
 602        if (likely(!read_seqretry(&mount_lock, seq)))
 603                return 0;
 604        if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 605                mnt_add_count(mnt, -1);
 606                return 1;
 607        }
 608        return -1;
 609}
 610
 611/* call under rcu_read_lock */
 612bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 613{
 614        int res = __legitimize_mnt(bastard, seq);
 615        if (likely(!res))
 616                return true;
 617        if (unlikely(res < 0)) {
 618                rcu_read_unlock();
 619                mntput(bastard);
 620                rcu_read_lock();
 621        }
 622        return false;
 623}
 624
 625/*
 626 * find the first mount at @dentry on vfsmount @mnt.
 627 * call under rcu_read_lock()
 628 */
 629struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 630{
 631        struct hlist_head *head = m_hash(mnt, dentry);
 632        struct mount *p;
 633
 634        hlist_for_each_entry_rcu(p, head, mnt_hash)
 635                if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 636                        return p;
 637        return NULL;
 638}
 639
 640/*
 641 * find the last mount at @dentry on vfsmount @mnt.
 642 * mount_lock must be held.
 643 */
 644struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
 645{
 646        struct mount *p, *res = NULL;
 647        p = __lookup_mnt(mnt, dentry);
 648        if (!p)
 649                goto out;
 650        if (!(p->mnt.mnt_flags & MNT_UMOUNT))
 651                res = p;
 652        hlist_for_each_entry_continue(p, mnt_hash) {
 653                if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
 654                        break;
 655                if (!(p->mnt.mnt_flags & MNT_UMOUNT))
 656                        res = p;
 657        }
 658out:
 659        return res;
 660}
 661
 662/*
 663 * lookup_mnt - Return the first child mount mounted at path
 664 *
 665 * "First" means first mounted chronologically.  If you create the
 666 * following mounts:
 667 *
 668 * mount /dev/sda1 /mnt
 669 * mount /dev/sda2 /mnt
 670 * mount /dev/sda3 /mnt
 671 *
 672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
 673 * return successively the root dentry and vfsmount of /dev/sda1, then
 674 * /dev/sda2, then /dev/sda3, then NULL.
 675 *
 676 * lookup_mnt takes a reference to the found vfsmount.
 677 */
 678struct vfsmount *lookup_mnt(struct path *path)
 679{
 680        struct mount *child_mnt;
 681        struct vfsmount *m;
 682        unsigned seq;
 683
 684        rcu_read_lock();
 685        do {
 686                seq = read_seqbegin(&mount_lock);
 687                child_mnt = __lookup_mnt(path->mnt, path->dentry);
 688                m = child_mnt ? &child_mnt->mnt : NULL;
 689        } while (!legitimize_mnt(m, seq));
 690        rcu_read_unlock();
 691        return m;
 692}
 693
 694/*
 695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 696 *                         current mount namespace.
 697 *
 698 * The common case is dentries are not mountpoints at all and that
 699 * test is handled inline.  For the slow case when we are actually
 700 * dealing with a mountpoint of some kind, walk through all of the
 701 * mounts in the current mount namespace and test to see if the dentry
 702 * is a mountpoint.
 703 *
 704 * The mount_hashtable is not usable in the context because we
 705 * need to identify all mounts that may be in the current mount
 706 * namespace not just a mount that happens to have some specified
 707 * parent mount.
 708 */
 709bool __is_local_mountpoint(struct dentry *dentry)
 710{
 711        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 712        struct mount *mnt;
 713        bool is_covered = false;
 714
 715        if (!d_mountpoint(dentry))
 716                goto out;
 717
 718        down_read(&namespace_sem);
 719        list_for_each_entry(mnt, &ns->list, mnt_list) {
 720                is_covered = (mnt->mnt_mountpoint == dentry);
 721                if (is_covered)
 722                        break;
 723        }
 724        up_read(&namespace_sem);
 725out:
 726        return is_covered;
 727}
 728
 729static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 730{
 731        struct hlist_head *chain = mp_hash(dentry);
 732        struct mountpoint *mp;
 733
 734        hlist_for_each_entry(mp, chain, m_hash) {
 735                if (mp->m_dentry == dentry) {
 736                        /* might be worth a WARN_ON() */
 737                        if (d_unlinked(dentry))
 738                                return ERR_PTR(-ENOENT);
 739                        mp->m_count++;
 740                        return mp;
 741                }
 742        }
 743        return NULL;
 744}
 745
 746static struct mountpoint *new_mountpoint(struct dentry *dentry)
 747{
 748        struct hlist_head *chain = mp_hash(dentry);
 749        struct mountpoint *mp;
 750        int ret;
 751
 752        mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 753        if (!mp)
 754                return ERR_PTR(-ENOMEM);
 755
 756        ret = d_set_mounted(dentry);
 757        if (ret) {
 758                kfree(mp);
 759                return ERR_PTR(ret);
 760        }
 761
 762        mp->m_dentry = dentry;
 763        mp->m_count = 1;
 764        hlist_add_head(&mp->m_hash, chain);
 765        INIT_HLIST_HEAD(&mp->m_list);
 766        return mp;
 767}
 768
 769static void put_mountpoint(struct mountpoint *mp)
 770{
 771        if (!--mp->m_count) {
 772                struct dentry *dentry = mp->m_dentry;
 773                BUG_ON(!hlist_empty(&mp->m_list));
 774                spin_lock(&dentry->d_lock);
 775                dentry->d_flags &= ~DCACHE_MOUNTED;
 776                spin_unlock(&dentry->d_lock);
 777                hlist_del(&mp->m_hash);
 778                kfree(mp);
 779        }
 780}
 781
 782static inline int check_mnt(struct mount *mnt)
 783{
 784        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 785}
 786
 787/*
 788 * vfsmount lock must be held for write
 789 */
 790static void touch_mnt_namespace(struct mnt_namespace *ns)
 791{
 792        if (ns) {
 793                ns->event = ++event;
 794                wake_up_interruptible(&ns->poll);
 795        }
 796}
 797
 798/*
 799 * vfsmount lock must be held for write
 800 */
 801static void __touch_mnt_namespace(struct mnt_namespace *ns)
 802{
 803        if (ns && ns->event != event) {
 804                ns->event = event;
 805                wake_up_interruptible(&ns->poll);
 806        }
 807}
 808
 809/*
 810 * vfsmount lock must be held for write
 811 */
 812static void unhash_mnt(struct mount *mnt)
 813{
 814        mnt->mnt_parent = mnt;
 815        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 816        list_del_init(&mnt->mnt_child);
 817        hlist_del_init_rcu(&mnt->mnt_hash);
 818        hlist_del_init(&mnt->mnt_mp_list);
 819        put_mountpoint(mnt->mnt_mp);
 820        mnt->mnt_mp = NULL;
 821}
 822
 823/*
 824 * vfsmount lock must be held for write
 825 */
 826static void detach_mnt(struct mount *mnt, struct path *old_path)
 827{
 828        old_path->dentry = mnt->mnt_mountpoint;
 829        old_path->mnt = &mnt->mnt_parent->mnt;
 830        unhash_mnt(mnt);
 831}
 832
 833/*
 834 * vfsmount lock must be held for write
 835 */
 836static void umount_mnt(struct mount *mnt)
 837{
 838        /* old mountpoint will be dropped when we can do that */
 839        mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
 840        unhash_mnt(mnt);
 841}
 842
 843/*
 844 * vfsmount lock must be held for write
 845 */
 846void mnt_set_mountpoint(struct mount *mnt,
 847                        struct mountpoint *mp,
 848                        struct mount *child_mnt)
 849{
 850        mp->m_count++;
 851        mnt_add_count(mnt, 1);  /* essentially, that's mntget */
 852        child_mnt->mnt_mountpoint = dget(mp->m_dentry);
 853        child_mnt->mnt_parent = mnt;
 854        child_mnt->mnt_mp = mp;
 855        hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 856}
 857
 858/*
 859 * vfsmount lock must be held for write
 860 */
 861static void attach_mnt(struct mount *mnt,
 862                        struct mount *parent,
 863                        struct mountpoint *mp)
 864{
 865        mnt_set_mountpoint(parent, mp, mnt);
 866        hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
 867        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 868}
 869
 870static void attach_shadowed(struct mount *mnt,
 871                        struct mount *parent,
 872                        struct mount *shadows)
 873{
 874        if (shadows) {
 875                hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
 876                list_add(&mnt->mnt_child, &shadows->mnt_child);
 877        } else {
 878                hlist_add_head_rcu(&mnt->mnt_hash,
 879                                m_hash(&parent->mnt, mnt->mnt_mountpoint));
 880                list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 881        }
 882}
 883
 884/*
 885 * vfsmount lock must be held for write
 886 */
 887static void commit_tree(struct mount *mnt, struct mount *shadows)
 888{
 889        struct mount *parent = mnt->mnt_parent;
 890        struct mount *m;
 891        LIST_HEAD(head);
 892        struct mnt_namespace *n = parent->mnt_ns;
 893
 894        BUG_ON(parent == mnt);
 895
 896        list_add_tail(&head, &mnt->mnt_list);
 897        list_for_each_entry(m, &head, mnt_list)
 898                m->mnt_ns = n;
 899
 900        list_splice(&head, n->list.prev);
 901
 902        attach_shadowed(mnt, parent, shadows);
 903        touch_mnt_namespace(n);
 904}
 905
 906static struct mount *next_mnt(struct mount *p, struct mount *root)
 907{
 908        struct list_head *next = p->mnt_mounts.next;
 909        if (next == &p->mnt_mounts) {
 910                while (1) {
 911                        if (p == root)
 912                                return NULL;
 913                        next = p->mnt_child.next;
 914                        if (next != &p->mnt_parent->mnt_mounts)
 915                                break;
 916                        p = p->mnt_parent;
 917                }
 918        }
 919        return list_entry(next, struct mount, mnt_child);
 920}
 921
 922static struct mount *skip_mnt_tree(struct mount *p)
 923{
 924        struct list_head *prev = p->mnt_mounts.prev;
 925        while (prev != &p->mnt_mounts) {
 926                p = list_entry(prev, struct mount, mnt_child);
 927                prev = p->mnt_mounts.prev;
 928        }
 929        return p;
 930}
 931
 932struct vfsmount *
 933vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 934{
 935        struct mount *mnt;
 936        struct dentry *root;
 937
 938        if (!type)
 939                return ERR_PTR(-ENODEV);
 940
 941        mnt = alloc_vfsmnt(name);
 942        if (!mnt)
 943                return ERR_PTR(-ENOMEM);
 944
 945        if (flags & MS_KERNMOUNT)
 946                mnt->mnt.mnt_flags = MNT_INTERNAL;
 947
 948        root = mount_fs(type, flags, name, data);
 949        if (IS_ERR(root)) {
 950                mnt_free_id(mnt);
 951                free_vfsmnt(mnt);
 952                return ERR_CAST(root);
 953        }
 954
 955        mnt->mnt.mnt_root = root;
 956        mnt->mnt.mnt_sb = root->d_sb;
 957        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 958        mnt->mnt_parent = mnt;
 959        lock_mount_hash();
 960        list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
 961        unlock_mount_hash();
 962        return &mnt->mnt;
 963}
 964EXPORT_SYMBOL_GPL(vfs_kern_mount);
 965
 966static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 967                                        int flag)
 968{
 969        struct super_block *sb = old->mnt.mnt_sb;
 970        struct mount *mnt;
 971        int err;
 972
 973        mnt = alloc_vfsmnt(old->mnt_devname);
 974        if (!mnt)
 975                return ERR_PTR(-ENOMEM);
 976
 977        if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
 978                mnt->mnt_group_id = 0; /* not a peer of original */
 979        else
 980                mnt->mnt_group_id = old->mnt_group_id;
 981
 982        if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 983                err = mnt_alloc_group_id(mnt);
 984                if (err)
 985                        goto out_free;
 986        }
 987
 988        mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
 989        /* Don't allow unprivileged users to change mount flags */
 990        if (flag & CL_UNPRIVILEGED) {
 991                mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
 992
 993                if (mnt->mnt.mnt_flags & MNT_READONLY)
 994                        mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
 995
 996                if (mnt->mnt.mnt_flags & MNT_NODEV)
 997                        mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
 998
 999                if (mnt->mnt.mnt_flags & MNT_NOSUID)
1000                        mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1001
1002                if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1003                        mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1004        }
1005
1006        /* Don't allow unprivileged users to reveal what is under a mount */
1007        if ((flag & CL_UNPRIVILEGED) &&
1008            (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1009                mnt->mnt.mnt_flags |= MNT_LOCKED;
1010
1011        atomic_inc(&sb->s_active);
1012        mnt->mnt.mnt_sb = sb;
1013        mnt->mnt.mnt_root = dget(root);
1014        mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015        mnt->mnt_parent = mnt;
1016        lock_mount_hash();
1017        list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1018        unlock_mount_hash();
1019
1020        if ((flag & CL_SLAVE) ||
1021            ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1022                list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1023                mnt->mnt_master = old;
1024                CLEAR_MNT_SHARED(mnt);
1025        } else if (!(flag & CL_PRIVATE)) {
1026                if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1027                        list_add(&mnt->mnt_share, &old->mnt_share);
1028                if (IS_MNT_SLAVE(old))
1029                        list_add(&mnt->mnt_slave, &old->mnt_slave);
1030                mnt->mnt_master = old->mnt_master;
1031        }
1032        if (flag & CL_MAKE_SHARED)
1033                set_mnt_shared(mnt);
1034
1035        /* stick the duplicate mount on the same expiry list
1036         * as the original if that was on one */
1037        if (flag & CL_EXPIRE) {
1038                if (!list_empty(&old->mnt_expire))
1039                        list_add(&mnt->mnt_expire, &old->mnt_expire);
1040        }
1041
1042        return mnt;
1043
1044 out_free:
1045        mnt_free_id(mnt);
1046        free_vfsmnt(mnt);
1047        return ERR_PTR(err);
1048}
1049
1050static void cleanup_mnt(struct mount *mnt)
1051{
1052        /*
1053         * This probably indicates that somebody messed
1054         * up a mnt_want/drop_write() pair.  If this
1055         * happens, the filesystem was probably unable
1056         * to make r/w->r/o transitions.
1057         */
1058        /*
1059         * The locking used to deal with mnt_count decrement provides barriers,
1060         * so mnt_get_writers() below is safe.
1061         */
1062        WARN_ON(mnt_get_writers(mnt));
1063        if (unlikely(mnt->mnt_pins.first))
1064                mnt_pin_kill(mnt);
1065        fsnotify_vfsmount_delete(&mnt->mnt);
1066        dput(mnt->mnt.mnt_root);
1067        deactivate_super(mnt->mnt.mnt_sb);
1068        mnt_free_id(mnt);
1069        call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1070}
1071
1072static void __cleanup_mnt(struct rcu_head *head)
1073{
1074        cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1075}
1076
1077static LLIST_HEAD(delayed_mntput_list);
1078static void delayed_mntput(struct work_struct *unused)
1079{
1080        struct llist_node *node = llist_del_all(&delayed_mntput_list);
1081        struct llist_node *next;
1082
1083        for (; node; node = next) {
1084                next = llist_next(node);
1085                cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1086        }
1087}
1088static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1089
1090static void mntput_no_expire(struct mount *mnt)
1091{
1092        rcu_read_lock();
1093        mnt_add_count(mnt, -1);
1094        if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1095                rcu_read_unlock();
1096                return;
1097        }
1098        lock_mount_hash();
1099        if (mnt_get_count(mnt)) {
1100                rcu_read_unlock();
1101                unlock_mount_hash();
1102                return;
1103        }
1104        if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1105                rcu_read_unlock();
1106                unlock_mount_hash();
1107                return;
1108        }
1109        mnt->mnt.mnt_flags |= MNT_DOOMED;
1110        rcu_read_unlock();
1111
1112        list_del(&mnt->mnt_instance);
1113
1114        if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1115                struct mount *p, *tmp;
1116                list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1117                        umount_mnt(p);
1118                }
1119        }
1120        unlock_mount_hash();
1121
1122        if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1123                struct task_struct *task = current;
1124                if (likely(!(task->flags & PF_KTHREAD))) {
1125                        init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1126                        if (!task_work_add(task, &mnt->mnt_rcu, true))
1127                                return;
1128                }
1129                if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1130                        schedule_delayed_work(&delayed_mntput_work, 1);
1131                return;
1132        }
1133        cleanup_mnt(mnt);
1134}
1135
1136void mntput(struct vfsmount *mnt)
1137{
1138        if (mnt) {
1139                struct mount *m = real_mount(mnt);
1140                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1141                if (unlikely(m->mnt_expiry_mark))
1142                        m->mnt_expiry_mark = 0;
1143                mntput_no_expire(m);
1144        }
1145}
1146EXPORT_SYMBOL(mntput);
1147
1148struct vfsmount *mntget(struct vfsmount *mnt)
1149{
1150        if (mnt)
1151                mnt_add_count(real_mount(mnt), 1);
1152        return mnt;
1153}
1154EXPORT_SYMBOL(mntget);
1155
1156struct vfsmount *mnt_clone_internal(struct path *path)
1157{
1158        struct mount *p;
1159        p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1160        if (IS_ERR(p))
1161                return ERR_CAST(p);
1162        p->mnt.mnt_flags |= MNT_INTERNAL;
1163        return &p->mnt;
1164}
1165
1166static inline void mangle(struct seq_file *m, const char *s)
1167{
1168        seq_escape(m, s, " \t\n\\");
1169}
1170
1171/*
1172 * Simple .show_options callback for filesystems which don't want to
1173 * implement more complex mount option showing.
1174 *
1175 * See also save_mount_options().
1176 */
1177int generic_show_options(struct seq_file *m, struct dentry *root)
1178{
1179        const char *options;
1180
1181        rcu_read_lock();
1182        options = rcu_dereference(root->d_sb->s_options);
1183
1184        if (options != NULL && options[0]) {
1185                seq_putc(m, ',');
1186                mangle(m, options);
1187        }
1188        rcu_read_unlock();
1189
1190        return 0;
1191}
1192EXPORT_SYMBOL(generic_show_options);
1193
1194/*
1195 * If filesystem uses generic_show_options(), this function should be
1196 * called from the fill_super() callback.
1197 *
1198 * The .remount_fs callback usually needs to be handled in a special
1199 * way, to make sure, that previous options are not overwritten if the
1200 * remount fails.
1201 *
1202 * Also note, that if the filesystem's .remount_fs function doesn't
1203 * reset all options to their default value, but changes only newly
1204 * given options, then the displayed options will not reflect reality
1205 * any more.
1206 */
1207void save_mount_options(struct super_block *sb, char *options)
1208{
1209        BUG_ON(sb->s_options);
1210        rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1211}
1212EXPORT_SYMBOL(save_mount_options);
1213
1214void replace_mount_options(struct super_block *sb, char *options)
1215{
1216        char *old = sb->s_options;
1217        rcu_assign_pointer(sb->s_options, options);
1218        if (old) {
1219                synchronize_rcu();
1220                kfree(old);
1221        }
1222}
1223EXPORT_SYMBOL(replace_mount_options);
1224
1225#ifdef CONFIG_PROC_FS
1226/* iterator; we want it to have access to namespace_sem, thus here... */
1227static void *m_start(struct seq_file *m, loff_t *pos)
1228{
1229        struct proc_mounts *p = m->private;
1230
1231        down_read(&namespace_sem);
1232        if (p->cached_event == p->ns->event) {
1233                void *v = p->cached_mount;
1234                if (*pos == p->cached_index)
1235                        return v;
1236                if (*pos == p->cached_index + 1) {
1237                        v = seq_list_next(v, &p->ns->list, &p->cached_index);
1238                        return p->cached_mount = v;
1239                }
1240        }
1241
1242        p->cached_event = p->ns->event;
1243        p->cached_mount = seq_list_start(&p->ns->list, *pos);
1244        p->cached_index = *pos;
1245        return p->cached_mount;
1246}
1247
1248static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1249{
1250        struct proc_mounts *p = m->private;
1251
1252        p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1253        p->cached_index = *pos;
1254        return p->cached_mount;
1255}
1256
1257static void m_stop(struct seq_file *m, void *v)
1258{
1259        up_read(&namespace_sem);
1260}
1261
1262static int m_show(struct seq_file *m, void *v)
1263{
1264        struct proc_mounts *p = m->private;
1265        struct mount *r = list_entry(v, struct mount, mnt_list);
1266        return p->show(m, &r->mnt);
1267}
1268
1269const struct seq_operations mounts_op = {
1270        .start  = m_start,
1271        .next   = m_next,
1272        .stop   = m_stop,
1273        .show   = m_show,
1274};
1275#endif  /* CONFIG_PROC_FS */
1276
1277/**
1278 * may_umount_tree - check if a mount tree is busy
1279 * @mnt: root of mount tree
1280 *
1281 * This is called to check if a tree of mounts has any
1282 * open files, pwds, chroots or sub mounts that are
1283 * busy.
1284 */
1285int may_umount_tree(struct vfsmount *m)
1286{
1287        struct mount *mnt = real_mount(m);
1288        int actual_refs = 0;
1289        int minimum_refs = 0;
1290        struct mount *p;
1291        BUG_ON(!m);
1292
1293        /* write lock needed for mnt_get_count */
1294        lock_mount_hash();
1295        for (p = mnt; p; p = next_mnt(p, mnt)) {
1296                actual_refs += mnt_get_count(p);
1297                minimum_refs += 2;
1298        }
1299        unlock_mount_hash();
1300
1301        if (actual_refs > minimum_refs)
1302                return 0;
1303
1304        return 1;
1305}
1306
1307EXPORT_SYMBOL(may_umount_tree);
1308
1309/**
1310 * may_umount - check if a mount point is busy
1311 * @mnt: root of mount
1312 *
1313 * This is called to check if a mount point has any
1314 * open files, pwds, chroots or sub mounts. If the
1315 * mount has sub mounts this will return busy
1316 * regardless of whether the sub mounts are busy.
1317 *
1318 * Doesn't take quota and stuff into account. IOW, in some cases it will
1319 * give false negatives. The main reason why it's here is that we need
1320 * a non-destructive way to look for easily umountable filesystems.
1321 */
1322int may_umount(struct vfsmount *mnt)
1323{
1324        int ret = 1;
1325        down_read(&namespace_sem);
1326        lock_mount_hash();
1327        if (propagate_mount_busy(real_mount(mnt), 2))
1328                ret = 0;
1329        unlock_mount_hash();
1330        up_read(&namespace_sem);
1331        return ret;
1332}
1333
1334EXPORT_SYMBOL(may_umount);
1335
1336static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1337
1338static void namespace_unlock(void)
1339{
1340        struct hlist_head head;
1341
1342        hlist_move_list(&unmounted, &head);
1343
1344        up_write(&namespace_sem);
1345
1346        if (likely(hlist_empty(&head)))
1347                return;
1348
1349        synchronize_rcu();
1350
1351        group_pin_kill(&head);
1352}
1353
1354static inline void namespace_lock(void)
1355{
1356        down_write(&namespace_sem);
1357}
1358
1359enum umount_tree_flags {
1360        UMOUNT_SYNC = 1,
1361        UMOUNT_PROPAGATE = 2,
1362        UMOUNT_CONNECTED = 4,
1363};
1364
1365static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1366{
1367        /* Leaving mounts connected is only valid for lazy umounts */
1368        if (how & UMOUNT_SYNC)
1369                return true;
1370
1371        /* A mount without a parent has nothing to be connected to */
1372        if (!mnt_has_parent(mnt))
1373                return true;
1374
1375        /* Because the reference counting rules change when mounts are
1376         * unmounted and connected, umounted mounts may not be
1377         * connected to mounted mounts.
1378         */
1379        if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1380                return true;
1381
1382        /* Has it been requested that the mount remain connected? */
1383        if (how & UMOUNT_CONNECTED)
1384                return false;
1385
1386        /* Is the mount locked such that it needs to remain connected? */
1387        if (IS_MNT_LOCKED(mnt))
1388                return false;
1389
1390        /* By default disconnect the mount */
1391        return true;
1392}
1393
1394/*
1395 * mount_lock must be held
1396 * namespace_sem must be held for write
1397 */
1398static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1399{
1400        LIST_HEAD(tmp_list);
1401        struct mount *p;
1402
1403        if (how & UMOUNT_PROPAGATE)
1404                propagate_mount_unlock(mnt);
1405
1406        /* Gather the mounts to umount */
1407        for (p = mnt; p; p = next_mnt(p, mnt)) {
1408                p->mnt.mnt_flags |= MNT_UMOUNT;
1409                list_move(&p->mnt_list, &tmp_list);
1410        }
1411
1412        /* Hide the mounts from mnt_mounts */
1413        list_for_each_entry(p, &tmp_list, mnt_list) {
1414                list_del_init(&p->mnt_child);
1415        }
1416
1417        /* Add propogated mounts to the tmp_list */
1418        if (how & UMOUNT_PROPAGATE)
1419                propagate_umount(&tmp_list);
1420
1421        while (!list_empty(&tmp_list)) {
1422                bool disconnect;
1423                p = list_first_entry(&tmp_list, struct mount, mnt_list);
1424                list_del_init(&p->mnt_expire);
1425                list_del_init(&p->mnt_list);
1426                __touch_mnt_namespace(p->mnt_ns);
1427                p->mnt_ns = NULL;
1428                if (how & UMOUNT_SYNC)
1429                        p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1430
1431                disconnect = disconnect_mount(p, how);
1432
1433                pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434                                 disconnect ? &unmounted : NULL);
1435                if (mnt_has_parent(p)) {
1436                        mnt_add_count(p->mnt_parent, -1);
1437                        if (!disconnect) {
1438                                /* Don't forget about p */
1439                                list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440                        } else {
1441                                umount_mnt(p);
1442                        }
1443                }
1444                change_mnt_propagation(p, MS_PRIVATE);
1445        }
1446}
1447
1448static void shrink_submounts(struct mount *mnt);
1449
1450static int do_umount(struct mount *mnt, int flags)
1451{
1452        struct super_block *sb = mnt->mnt.mnt_sb;
1453        int retval;
1454
1455        retval = security_sb_umount(&mnt->mnt, flags);
1456        if (retval)
1457                return retval;
1458
1459        /*
1460         * Allow userspace to request a mountpoint be expired rather than
1461         * unmounting unconditionally. Unmount only happens if:
1462         *  (1) the mark is already set (the mark is cleared by mntput())
1463         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1464         */
1465        if (flags & MNT_EXPIRE) {
1466                if (&mnt->mnt == current->fs->root.mnt ||
1467                    flags & (MNT_FORCE | MNT_DETACH))
1468                        return -EINVAL;
1469
1470                /*
1471                 * probably don't strictly need the lock here if we examined
1472                 * all race cases, but it's a slowpath.
1473                 */
1474                lock_mount_hash();
1475                if (mnt_get_count(mnt) != 2) {
1476                        unlock_mount_hash();
1477                        return -EBUSY;
1478                }
1479                unlock_mount_hash();
1480
1481                if (!xchg(&mnt->mnt_expiry_mark, 1))
1482                        return -EAGAIN;
1483        }
1484
1485        /*
1486         * If we may have to abort operations to get out of this
1487         * mount, and they will themselves hold resources we must
1488         * allow the fs to do things. In the Unix tradition of
1489         * 'Gee thats tricky lets do it in userspace' the umount_begin
1490         * might fail to complete on the first run through as other tasks
1491         * must return, and the like. Thats for the mount program to worry
1492         * about for the moment.
1493         */
1494
1495        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1496                sb->s_op->umount_begin(sb);
1497        }
1498
1499        /*
1500         * No sense to grab the lock for this test, but test itself looks
1501         * somewhat bogus. Suggestions for better replacement?
1502         * Ho-hum... In principle, we might treat that as umount + switch
1503         * to rootfs. GC would eventually take care of the old vfsmount.
1504         * Actually it makes sense, especially if rootfs would contain a
1505         * /reboot - static binary that would close all descriptors and
1506         * call reboot(9). Then init(8) could umount root and exec /reboot.
1507         */
1508        if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1509                /*
1510                 * Special case for "unmounting" root ...
1511                 * we just try to remount it readonly.
1512                 */
1513                if (!capable(CAP_SYS_ADMIN))
1514                        return -EPERM;
1515                down_write(&sb->s_umount);
1516                if (!(sb->s_flags & MS_RDONLY))
1517                        retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1518                up_write(&sb->s_umount);
1519                return retval;
1520        }
1521
1522        namespace_lock();
1523        lock_mount_hash();
1524        event++;
1525
1526        if (flags & MNT_DETACH) {
1527                if (!list_empty(&mnt->mnt_list))
1528                        umount_tree(mnt, UMOUNT_PROPAGATE);
1529                retval = 0;
1530        } else {
1531                shrink_submounts(mnt);
1532                retval = -EBUSY;
1533                if (!propagate_mount_busy(mnt, 2)) {
1534                        if (!list_empty(&mnt->mnt_list))
1535                                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1536                        retval = 0;
1537                }
1538        }
1539        unlock_mount_hash();
1540        namespace_unlock();
1541        return retval;
1542}
1543
1544/*
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1546 *
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1550 * leaking them.
1551 *
1552 * The caller may hold dentry->d_inode->i_mutex.
1553 */
1554void __detach_mounts(struct dentry *dentry)
1555{
1556        struct mountpoint *mp;
1557        struct mount *mnt;
1558
1559        namespace_lock();
1560        mp = lookup_mountpoint(dentry);
1561        if (IS_ERR_OR_NULL(mp))
1562                goto out_unlock;
1563
1564        lock_mount_hash();
1565        while (!hlist_empty(&mp->m_list)) {
1566                mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1567                if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1568                        hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1569                        umount_mnt(mnt);
1570                }
1571                else umount_tree(mnt, UMOUNT_CONNECTED);
1572        }
1573        unlock_mount_hash();
1574        put_mountpoint(mp);
1575out_unlock:
1576        namespace_unlock();
1577}
1578
1579/* 
1580 * Is the caller allowed to modify his namespace?
1581 */
1582static inline bool may_mount(void)
1583{
1584        return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1585}
1586
1587static inline bool may_mandlock(void)
1588{
1589#ifndef CONFIG_MANDATORY_FILE_LOCKING
1590        return false;
1591#endif
1592        return capable(CAP_SYS_ADMIN);
1593}
1594
1595/*
1596 * Now umount can handle mount points as well as block devices.
1597 * This is important for filesystems which use unnamed block devices.
1598 *
1599 * We now support a flag for forced unmount like the other 'big iron'
1600 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1601 */
1602
1603SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1604{
1605        struct path path;
1606        struct mount *mnt;
1607        int retval;
1608        int lookup_flags = 0;
1609
1610        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1611                return -EINVAL;
1612
1613        if (!may_mount())
1614                return -EPERM;
1615
1616        if (!(flags & UMOUNT_NOFOLLOW))
1617                lookup_flags |= LOOKUP_FOLLOW;
1618
1619        retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1620        if (retval)
1621                goto out;
1622        mnt = real_mount(path.mnt);
1623        retval = -EINVAL;
1624        if (path.dentry != path.mnt->mnt_root)
1625                goto dput_and_out;
1626        if (!check_mnt(mnt))
1627                goto dput_and_out;
1628        if (mnt->mnt.mnt_flags & MNT_LOCKED)
1629                goto dput_and_out;
1630        retval = -EPERM;
1631        if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1632                goto dput_and_out;
1633
1634        retval = do_umount(mnt, flags);
1635dput_and_out:
1636        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1637        dput(path.dentry);
1638        mntput_no_expire(mnt);
1639out:
1640        return retval;
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1644
1645/*
1646 *      The 2.0 compatible umount. No flags.
1647 */
1648SYSCALL_DEFINE1(oldumount, char __user *, name)
1649{
1650        return sys_umount(name, 0);
1651}
1652
1653#endif
1654
1655static bool is_mnt_ns_file(struct dentry *dentry)
1656{
1657        /* Is this a proxy for a mount namespace? */
1658        return dentry->d_op == &ns_dentry_operations &&
1659               dentry->d_fsdata == &mntns_operations;
1660}
1661
1662struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1663{
1664        return container_of(ns, struct mnt_namespace, ns);
1665}
1666
1667static bool mnt_ns_loop(struct dentry *dentry)
1668{
1669        /* Could bind mounting the mount namespace inode cause a
1670         * mount namespace loop?
1671         */
1672        struct mnt_namespace *mnt_ns;
1673        if (!is_mnt_ns_file(dentry))
1674                return false;
1675
1676        mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1677        return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1678}
1679
1680struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1681                                        int flag)
1682{
1683        struct mount *res, *p, *q, *r, *parent;
1684
1685        if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1686                return ERR_PTR(-EINVAL);
1687
1688        if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1689                return ERR_PTR(-EINVAL);
1690
1691        res = q = clone_mnt(mnt, dentry, flag);
1692        if (IS_ERR(q))
1693                return q;
1694
1695        q->mnt_mountpoint = mnt->mnt_mountpoint;
1696
1697        p = mnt;
1698        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1699                struct mount *s;
1700                if (!is_subdir(r->mnt_mountpoint, dentry))
1701                        continue;
1702
1703                for (s = r; s; s = next_mnt(s, r)) {
1704                        struct mount *t = NULL;
1705                        if (!(flag & CL_COPY_UNBINDABLE) &&
1706                            IS_MNT_UNBINDABLE(s)) {
1707                                s = skip_mnt_tree(s);
1708                                continue;
1709                        }
1710                        if (!(flag & CL_COPY_MNT_NS_FILE) &&
1711                            is_mnt_ns_file(s->mnt.mnt_root)) {
1712                                s = skip_mnt_tree(s);
1713                                continue;
1714                        }
1715                        while (p != s->mnt_parent) {
1716                                p = p->mnt_parent;
1717                                q = q->mnt_parent;
1718                        }
1719                        p = s;
1720                        parent = q;
1721                        q = clone_mnt(p, p->mnt.mnt_root, flag);
1722                        if (IS_ERR(q))
1723                                goto out;
1724                        lock_mount_hash();
1725                        list_add_tail(&q->mnt_list, &res->mnt_list);
1726                        mnt_set_mountpoint(parent, p->mnt_mp, q);
1727                        if (!list_empty(&parent->mnt_mounts)) {
1728                                t = list_last_entry(&parent->mnt_mounts,
1729                                        struct mount, mnt_child);
1730                                if (t->mnt_mp != p->mnt_mp)
1731                                        t = NULL;
1732                        }
1733                        attach_shadowed(q, parent, t);
1734                        unlock_mount_hash();
1735                }
1736        }
1737        return res;
1738out:
1739        if (res) {
1740                lock_mount_hash();
1741                umount_tree(res, UMOUNT_SYNC);
1742                unlock_mount_hash();
1743        }
1744        return q;
1745}
1746
1747/* Caller should check returned pointer for errors */
1748
1749struct vfsmount *collect_mounts(struct path *path)
1750{
1751        struct mount *tree;
1752        namespace_lock();
1753        if (!check_mnt(real_mount(path->mnt)))
1754                tree = ERR_PTR(-EINVAL);
1755        else
1756                tree = copy_tree(real_mount(path->mnt), path->dentry,
1757                                 CL_COPY_ALL | CL_PRIVATE);
1758        namespace_unlock();
1759        if (IS_ERR(tree))
1760                return ERR_CAST(tree);
1761        return &tree->mnt;
1762}
1763
1764void drop_collected_mounts(struct vfsmount *mnt)
1765{
1766        namespace_lock();
1767        lock_mount_hash();
1768        umount_tree(real_mount(mnt), UMOUNT_SYNC);
1769        unlock_mount_hash();
1770        namespace_unlock();
1771}
1772
1773/**
1774 * clone_private_mount - create a private clone of a path
1775 *
1776 * This creates a new vfsmount, which will be the clone of @path.  The new will
1777 * not be attached anywhere in the namespace and will be private (i.e. changes
1778 * to the originating mount won't be propagated into this).
1779 *
1780 * Release with mntput().
1781 */
1782struct vfsmount *clone_private_mount(struct path *path)
1783{
1784        struct mount *old_mnt = real_mount(path->mnt);
1785        struct mount *new_mnt;
1786
1787        if (IS_MNT_UNBINDABLE(old_mnt))
1788                return ERR_PTR(-EINVAL);
1789
1790        down_read(&namespace_sem);
1791        new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1792        up_read(&namespace_sem);
1793        if (IS_ERR(new_mnt))
1794                return ERR_CAST(new_mnt);
1795
1796        return &new_mnt->mnt;
1797}
1798EXPORT_SYMBOL_GPL(clone_private_mount);
1799
1800int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1801                   struct vfsmount *root)
1802{
1803        struct mount *mnt;
1804        int res = f(root, arg);
1805        if (res)
1806                return res;
1807        list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1808                res = f(&mnt->mnt, arg);
1809                if (res)
1810                        return res;
1811        }
1812        return 0;
1813}
1814
1815static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1816{
1817        struct mount *p;
1818
1819        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1820                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1821                        mnt_release_group_id(p);
1822        }
1823}
1824
1825static int invent_group_ids(struct mount *mnt, bool recurse)
1826{
1827        struct mount *p;
1828
1829        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1830                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1831                        int err = mnt_alloc_group_id(p);
1832                        if (err) {
1833                                cleanup_group_ids(mnt, p);
1834                                return err;
1835                        }
1836                }
1837        }
1838
1839        return 0;
1840}
1841
1842/*
1843 *  @source_mnt : mount tree to be attached
1844 *  @nd         : place the mount tree @source_mnt is attached
1845 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1846 *                 store the parent mount and mountpoint dentry.
1847 *                 (done when source_mnt is moved)
1848 *
1849 *  NOTE: in the table below explains the semantics when a source mount
1850 *  of a given type is attached to a destination mount of a given type.
1851 * ---------------------------------------------------------------------------
1852 * |         BIND MOUNT OPERATION                                            |
1853 * |**************************************************************************
1854 * | source-->| shared        |       private  |       slave    | unbindable |
1855 * | dest     |               |                |                |            |
1856 * |   |      |               |                |                |            |
1857 * |   v      |               |                |                |            |
1858 * |**************************************************************************
1859 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1860 * |          |               |                |                |            |
1861 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1862 * ***************************************************************************
1863 * A bind operation clones the source mount and mounts the clone on the
1864 * destination mount.
1865 *
1866 * (++)  the cloned mount is propagated to all the mounts in the propagation
1867 *       tree of the destination mount and the cloned mount is added to
1868 *       the peer group of the source mount.
1869 * (+)   the cloned mount is created under the destination mount and is marked
1870 *       as shared. The cloned mount is added to the peer group of the source
1871 *       mount.
1872 * (+++) the mount is propagated to all the mounts in the propagation tree
1873 *       of the destination mount and the cloned mount is made slave
1874 *       of the same master as that of the source mount. The cloned mount
1875 *       is marked as 'shared and slave'.
1876 * (*)   the cloned mount is made a slave of the same master as that of the
1877 *       source mount.
1878 *
1879 * ---------------------------------------------------------------------------
1880 * |                    MOVE MOUNT OPERATION                                 |
1881 * |**************************************************************************
1882 * | source-->| shared        |       private  |       slave    | unbindable |
1883 * | dest     |               |                |                |            |
1884 * |   |      |               |                |                |            |
1885 * |   v      |               |                |                |            |
1886 * |**************************************************************************
1887 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1888 * |          |               |                |                |            |
1889 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1890 * ***************************************************************************
1891 *
1892 * (+)  the mount is moved to the destination. And is then propagated to
1893 *      all the mounts in the propagation tree of the destination mount.
1894 * (+*)  the mount is moved to the destination.
1895 * (+++)  the mount is moved to the destination and is then propagated to
1896 *      all the mounts belonging to the destination mount's propagation tree.
1897 *      the mount is marked as 'shared and slave'.
1898 * (*)  the mount continues to be a slave at the new location.
1899 *
1900 * if the source mount is a tree, the operations explained above is
1901 * applied to each mount in the tree.
1902 * Must be called without spinlocks held, since this function can sleep
1903 * in allocations.
1904 */
1905static int attach_recursive_mnt(struct mount *source_mnt,
1906                        struct mount *dest_mnt,
1907                        struct mountpoint *dest_mp,
1908                        struct path *parent_path)
1909{
1910        HLIST_HEAD(tree_list);
1911        struct mount *child, *p;
1912        struct hlist_node *n;
1913        int err;
1914
1915        if (IS_MNT_SHARED(dest_mnt)) {
1916                err = invent_group_ids(source_mnt, true);
1917                if (err)
1918                        goto out;
1919                err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1920                lock_mount_hash();
1921                if (err)
1922                        goto out_cleanup_ids;
1923                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1924                        set_mnt_shared(p);
1925        } else {
1926                lock_mount_hash();
1927        }
1928        if (parent_path) {
1929                detach_mnt(source_mnt, parent_path);
1930                attach_mnt(source_mnt, dest_mnt, dest_mp);
1931                touch_mnt_namespace(source_mnt->mnt_ns);
1932        } else {
1933                mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1934                commit_tree(source_mnt, NULL);
1935        }
1936
1937        hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1938                struct mount *q;
1939                hlist_del_init(&child->mnt_hash);
1940                q = __lookup_mnt_last(&child->mnt_parent->mnt,
1941                                      child->mnt_mountpoint);
1942                commit_tree(child, q);
1943        }
1944        unlock_mount_hash();
1945
1946        return 0;
1947
1948 out_cleanup_ids:
1949        while (!hlist_empty(&tree_list)) {
1950                child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1951                umount_tree(child, UMOUNT_SYNC);
1952        }
1953        unlock_mount_hash();
1954        cleanup_group_ids(source_mnt, NULL);
1955 out:
1956        return err;
1957}
1958
1959static struct mountpoint *lock_mount(struct path *path)
1960{
1961        struct vfsmount *mnt;
1962        struct dentry *dentry = path->dentry;
1963retry:
1964        inode_lock(dentry->d_inode);
1965        if (unlikely(cant_mount(dentry))) {
1966                inode_unlock(dentry->d_inode);
1967                return ERR_PTR(-ENOENT);
1968        }
1969        namespace_lock();
1970        mnt = lookup_mnt(path);
1971        if (likely(!mnt)) {
1972                struct mountpoint *mp = lookup_mountpoint(dentry);
1973                if (!mp)
1974                        mp = new_mountpoint(dentry);
1975                if (IS_ERR(mp)) {
1976                        namespace_unlock();
1977                        inode_unlock(dentry->d_inode);
1978                        return mp;
1979                }
1980                return mp;
1981        }
1982        namespace_unlock();
1983        inode_unlock(path->dentry->d_inode);
1984        path_put(path);
1985        path->mnt = mnt;
1986        dentry = path->dentry = dget(mnt->mnt_root);
1987        goto retry;
1988}
1989
1990static void unlock_mount(struct mountpoint *where)
1991{
1992        struct dentry *dentry = where->m_dentry;
1993        put_mountpoint(where);
1994        namespace_unlock();
1995        inode_unlock(dentry->d_inode);
1996}
1997
1998static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1999{
2000        if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2001                return -EINVAL;
2002
2003        if (d_is_dir(mp->m_dentry) !=
2004              d_is_dir(mnt->mnt.mnt_root))
2005                return -ENOTDIR;
2006
2007        return attach_recursive_mnt(mnt, p, mp, NULL);
2008}
2009
2010/*
2011 * Sanity check the flags to change_mnt_propagation.
2012 */
2013
2014static int flags_to_propagation_type(int flags)
2015{
2016        int type = flags & ~(MS_REC | MS_SILENT);
2017
2018        /* Fail if any non-propagation flags are set */
2019        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2020                return 0;
2021        /* Only one propagation flag should be set */
2022        if (!is_power_of_2(type))
2023                return 0;
2024        return type;
2025}
2026
2027/*
2028 * recursively change the type of the mountpoint.
2029 */
2030static int do_change_type(struct path *path, int flag)
2031{
2032        struct mount *m;
2033        struct mount *mnt = real_mount(path->mnt);
2034        int recurse = flag & MS_REC;
2035        int type;
2036        int err = 0;
2037
2038        if (path->dentry != path->mnt->mnt_root)
2039                return -EINVAL;
2040
2041        type = flags_to_propagation_type(flag);
2042        if (!type)
2043                return -EINVAL;
2044
2045        namespace_lock();
2046        if (type == MS_SHARED) {
2047                err = invent_group_ids(mnt, recurse);
2048                if (err)
2049                        goto out_unlock;
2050        }
2051
2052        lock_mount_hash();
2053        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2054                change_mnt_propagation(m, type);
2055        unlock_mount_hash();
2056
2057 out_unlock:
2058        namespace_unlock();
2059        return err;
2060}
2061
2062static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2063{
2064        struct mount *child;
2065        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2066                if (!is_subdir(child->mnt_mountpoint, dentry))
2067                        continue;
2068
2069                if (child->mnt.mnt_flags & MNT_LOCKED)
2070                        return true;
2071        }
2072        return false;
2073}
2074
2075/*
2076 * do loopback mount.
2077 */
2078static int do_loopback(struct path *path, const char *old_name,
2079                                int recurse)
2080{
2081        struct path old_path;
2082        struct mount *mnt = NULL, *old, *parent;
2083        struct mountpoint *mp;
2084        int err;
2085        if (!old_name || !*old_name)
2086                return -EINVAL;
2087        err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2088        if (err)
2089                return err;
2090
2091        err = -EINVAL;
2092        if (mnt_ns_loop(old_path.dentry))
2093                goto out; 
2094
2095        mp = lock_mount(path);
2096        err = PTR_ERR(mp);
2097        if (IS_ERR(mp))
2098                goto out;
2099
2100        old = real_mount(old_path.mnt);
2101        parent = real_mount(path->mnt);
2102
2103        err = -EINVAL;
2104        if (IS_MNT_UNBINDABLE(old))
2105                goto out2;
2106
2107        if (!check_mnt(parent))
2108                goto out2;
2109
2110        if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2111                goto out2;
2112
2113        if (!recurse && has_locked_children(old, old_path.dentry))
2114                goto out2;
2115
2116        if (recurse)
2117                mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2118        else
2119                mnt = clone_mnt(old, old_path.dentry, 0);
2120
2121        if (IS_ERR(mnt)) {
2122                err = PTR_ERR(mnt);
2123                goto out2;
2124        }
2125
2126        mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2127
2128        err = graft_tree(mnt, parent, mp);
2129        if (err) {
2130                lock_mount_hash();
2131                umount_tree(mnt, UMOUNT_SYNC);
2132                unlock_mount_hash();
2133        }
2134out2:
2135        unlock_mount(mp);
2136out:
2137        path_put(&old_path);
2138        return err;
2139}
2140
2141static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2142{
2143        int error = 0;
2144        int readonly_request = 0;
2145
2146        if (ms_flags & MS_RDONLY)
2147                readonly_request = 1;
2148        if (readonly_request == __mnt_is_readonly(mnt))
2149                return 0;
2150
2151        if (readonly_request)
2152                error = mnt_make_readonly(real_mount(mnt));
2153        else
2154                __mnt_unmake_readonly(real_mount(mnt));
2155        return error;
2156}
2157
2158/*
2159 * change filesystem flags. dir should be a physical root of filesystem.
2160 * If you've mounted a non-root directory somewhere and want to do remount
2161 * on it - tough luck.
2162 */
2163static int do_remount(struct path *path, int flags, int mnt_flags,
2164                      void *data)
2165{
2166        int err;
2167        struct super_block *sb = path->mnt->mnt_sb;
2168        struct mount *mnt = real_mount(path->mnt);
2169
2170        if (!check_mnt(mnt))
2171                return -EINVAL;
2172
2173        if (path->dentry != path->mnt->mnt_root)
2174                return -EINVAL;
2175
2176        /* Don't allow changing of locked mnt flags.
2177         *
2178         * No locks need to be held here while testing the various
2179         * MNT_LOCK flags because those flags can never be cleared
2180         * once they are set.
2181         */
2182        if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2183            !(mnt_flags & MNT_READONLY)) {
2184                return -EPERM;
2185        }
2186        if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2187            !(mnt_flags & MNT_NODEV)) {
2188                /* Was the nodev implicitly added in mount? */
2189                if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2190                    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2191                        mnt_flags |= MNT_NODEV;
2192                } else {
2193                        return -EPERM;
2194                }
2195        }
2196        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2197            !(mnt_flags & MNT_NOSUID)) {
2198                return -EPERM;
2199        }
2200        if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2201            !(mnt_flags & MNT_NOEXEC)) {
2202                return -EPERM;
2203        }
2204        if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2205            ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2206                return -EPERM;
2207        }
2208
2209        err = security_sb_remount(sb, data);
2210        if (err)
2211                return err;
2212
2213        down_write(&sb->s_umount);
2214        if (flags & MS_BIND)
2215                err = change_mount_flags(path->mnt, flags);
2216        else if (!capable(CAP_SYS_ADMIN))
2217                err = -EPERM;
2218        else
2219                err = do_remount_sb(sb, flags, data, 0);
2220        if (!err) {
2221                lock_mount_hash();
2222                mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2223                mnt->mnt.mnt_flags = mnt_flags;
2224                touch_mnt_namespace(mnt->mnt_ns);
2225                unlock_mount_hash();
2226        }
2227        up_write(&sb->s_umount);
2228        return err;
2229}
2230
2231static inline int tree_contains_unbindable(struct mount *mnt)
2232{
2233        struct mount *p;
2234        for (p = mnt; p; p = next_mnt(p, mnt)) {
2235                if (IS_MNT_UNBINDABLE(p))
2236                        return 1;
2237        }
2238        return 0;
2239}
2240
2241static int do_move_mount(struct path *path, const char *old_name)
2242{
2243        struct path old_path, parent_path;
2244        struct mount *p;
2245        struct mount *old;
2246        struct mountpoint *mp;
2247        int err;
2248        if (!old_name || !*old_name)
2249                return -EINVAL;
2250        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2251        if (err)
2252                return err;
2253
2254        mp = lock_mount(path);
2255        err = PTR_ERR(mp);
2256        if (IS_ERR(mp))
2257                goto out;
2258
2259        old = real_mount(old_path.mnt);
2260        p = real_mount(path->mnt);
2261
2262        err = -EINVAL;
2263        if (!check_mnt(p) || !check_mnt(old))
2264                goto out1;
2265
2266        if (old->mnt.mnt_flags & MNT_LOCKED)
2267                goto out1;
2268
2269        err = -EINVAL;
2270        if (old_path.dentry != old_path.mnt->mnt_root)
2271                goto out1;
2272
2273        if (!mnt_has_parent(old))
2274                goto out1;
2275
2276        if (d_is_dir(path->dentry) !=
2277              d_is_dir(old_path.dentry))
2278                goto out1;
2279        /*
2280         * Don't move a mount residing in a shared parent.
2281         */
2282        if (IS_MNT_SHARED(old->mnt_parent))
2283                goto out1;
2284        /*
2285         * Don't move a mount tree containing unbindable mounts to a destination
2286         * mount which is shared.
2287         */
2288        if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2289                goto out1;
2290        err = -ELOOP;
2291        for (; mnt_has_parent(p); p = p->mnt_parent)
2292                if (p == old)
2293                        goto out1;
2294
2295        err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2296        if (err)
2297                goto out1;
2298
2299        /* if the mount is moved, it should no longer be expire
2300         * automatically */
2301        list_del_init(&old->mnt_expire);
2302out1:
2303        unlock_mount(mp);
2304out:
2305        if (!err)
2306                path_put(&parent_path);
2307        path_put(&old_path);
2308        return err;
2309}
2310
2311static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2312{
2313        int err;
2314        const char *subtype = strchr(fstype, '.');
2315        if (subtype) {
2316                subtype++;
2317                err = -EINVAL;
2318                if (!subtype[0])
2319                        goto err;
2320        } else
2321                subtype = "";
2322
2323        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2324        err = -ENOMEM;
2325        if (!mnt->mnt_sb->s_subtype)
2326                goto err;
2327        return mnt;
2328
2329 err:
2330        mntput(mnt);
2331        return ERR_PTR(err);
2332}
2333
2334/*
2335 * add a mount into a namespace's mount tree
2336 */
2337static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2338{
2339        struct mountpoint *mp;
2340        struct mount *parent;
2341        int err;
2342
2343        mnt_flags &= ~MNT_INTERNAL_FLAGS;
2344
2345        mp = lock_mount(path);
2346        if (IS_ERR(mp))
2347                return PTR_ERR(mp);
2348
2349        parent = real_mount(path->mnt);
2350        err = -EINVAL;
2351        if (unlikely(!check_mnt(parent))) {
2352                /* that's acceptable only for automounts done in private ns */
2353                if (!(mnt_flags & MNT_SHRINKABLE))
2354                        goto unlock;
2355                /* ... and for those we'd better have mountpoint still alive */
2356                if (!parent->mnt_ns)
2357                        goto unlock;
2358        }
2359
2360        /* Refuse the same filesystem on the same mount point */
2361        err = -EBUSY;
2362        if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2363            path->mnt->mnt_root == path->dentry)
2364                goto unlock;
2365
2366        err = -EINVAL;
2367        if (d_is_symlink(newmnt->mnt.mnt_root))
2368                goto unlock;
2369
2370        newmnt->mnt.mnt_flags = mnt_flags;
2371        err = graft_tree(newmnt, parent, mp);
2372
2373unlock:
2374        unlock_mount(mp);
2375        return err;
2376}
2377
2378static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2379
2380/*
2381 * create a new mount for userspace and request it to be added into the
2382 * namespace's tree
2383 */
2384static int do_new_mount(struct path *path, const char *fstype, int flags,
2385                        int mnt_flags, const char *name, void *data)
2386{
2387        struct file_system_type *type;
2388        struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2389        struct vfsmount *mnt;
2390        int err;
2391
2392        if (!fstype)
2393                return -EINVAL;
2394
2395        type = get_fs_type(fstype);
2396        if (!type)
2397                return -ENODEV;
2398
2399        if (user_ns != &init_user_ns) {
2400                if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2401                        put_filesystem(type);
2402                        return -EPERM;
2403                }
2404                /* Only in special cases allow devices from mounts
2405                 * created outside the initial user namespace.
2406                 */
2407                if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2408                        flags |= MS_NODEV;
2409                        mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2410                }
2411                if (type->fs_flags & FS_USERNS_VISIBLE) {
2412                        if (!fs_fully_visible(type, &mnt_flags))
2413                                return -EPERM;
2414                }
2415        }
2416
2417        mnt = vfs_kern_mount(type, flags, name, data);
2418        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2419            !mnt->mnt_sb->s_subtype)
2420                mnt = fs_set_subtype(mnt, fstype);
2421
2422        put_filesystem(type);
2423        if (IS_ERR(mnt))
2424                return PTR_ERR(mnt);
2425
2426        err = do_add_mount(real_mount(mnt), path, mnt_flags);
2427        if (err)
2428                mntput(mnt);
2429        return err;
2430}
2431
2432int finish_automount(struct vfsmount *m, struct path *path)
2433{
2434        struct mount *mnt = real_mount(m);
2435        int err;
2436        /* The new mount record should have at least 2 refs to prevent it being
2437         * expired before we get a chance to add it
2438         */
2439        BUG_ON(mnt_get_count(mnt) < 2);
2440
2441        if (m->mnt_sb == path->mnt->mnt_sb &&
2442            m->mnt_root == path->dentry) {
2443                err = -ELOOP;
2444                goto fail;
2445        }
2446
2447        err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2448        if (!err)
2449                return 0;
2450fail:
2451        /* remove m from any expiration list it may be on */
2452        if (!list_empty(&mnt->mnt_expire)) {
2453                namespace_lock();
2454                list_del_init(&mnt->mnt_expire);
2455                namespace_unlock();
2456        }
2457        mntput(m);
2458        mntput(m);
2459        return err;
2460}
2461
2462/**
2463 * mnt_set_expiry - Put a mount on an expiration list
2464 * @mnt: The mount to list.
2465 * @expiry_list: The list to add the mount to.
2466 */
2467void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2468{
2469        namespace_lock();
2470
2471        list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2472
2473        namespace_unlock();
2474}
2475EXPORT_SYMBOL(mnt_set_expiry);
2476
2477/*
2478 * process a list of expirable mountpoints with the intent of discarding any
2479 * mountpoints that aren't in use and haven't been touched since last we came
2480 * here
2481 */
2482void mark_mounts_for_expiry(struct list_head *mounts)
2483{
2484        struct mount *mnt, *next;
2485        LIST_HEAD(graveyard);
2486
2487        if (list_empty(mounts))
2488                return;
2489
2490        namespace_lock();
2491        lock_mount_hash();
2492
2493        /* extract from the expiration list every vfsmount that matches the
2494         * following criteria:
2495         * - only referenced by its parent vfsmount
2496         * - still marked for expiry (marked on the last call here; marks are
2497         *   cleared by mntput())
2498         */
2499        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2500                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2501                        propagate_mount_busy(mnt, 1))
2502                        continue;
2503                list_move(&mnt->mnt_expire, &graveyard);
2504        }
2505        while (!list_empty(&graveyard)) {
2506                mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2507                touch_mnt_namespace(mnt->mnt_ns);
2508                umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2509        }
2510        unlock_mount_hash();
2511        namespace_unlock();
2512}
2513
2514EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2515
2516/*
2517 * Ripoff of 'select_parent()'
2518 *
2519 * search the list of submounts for a given mountpoint, and move any
2520 * shrinkable submounts to the 'graveyard' list.
2521 */
2522static int select_submounts(struct mount *parent, struct list_head *graveyard)
2523{
2524        struct mount *this_parent = parent;
2525        struct list_head *next;
2526        int found = 0;
2527
2528repeat:
2529        next = this_parent->mnt_mounts.next;
2530resume:
2531        while (next != &this_parent->mnt_mounts) {
2532                struct list_head *tmp = next;
2533                struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2534
2535                next = tmp->next;
2536                if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2537                        continue;
2538                /*
2539                 * Descend a level if the d_mounts list is non-empty.
2540                 */
2541                if (!list_empty(&mnt->mnt_mounts)) {
2542                        this_parent = mnt;
2543                        goto repeat;
2544                }
2545
2546                if (!propagate_mount_busy(mnt, 1)) {
2547                        list_move_tail(&mnt->mnt_expire, graveyard);
2548                        found++;
2549                }
2550        }
2551        /*
2552         * All done at this level ... ascend and resume the search
2553         */
2554        if (this_parent != parent) {
2555                next = this_parent->mnt_child.next;
2556                this_parent = this_parent->mnt_parent;
2557                goto resume;
2558        }
2559        return found;
2560}
2561
2562/*
2563 * process a list of expirable mountpoints with the intent of discarding any
2564 * submounts of a specific parent mountpoint
2565 *
2566 * mount_lock must be held for write
2567 */
2568static void shrink_submounts(struct mount *mnt)
2569{
2570        LIST_HEAD(graveyard);
2571        struct mount *m;
2572
2573        /* extract submounts of 'mountpoint' from the expiration list */
2574        while (select_submounts(mnt, &graveyard)) {
2575                while (!list_empty(&graveyard)) {
2576                        m = list_first_entry(&graveyard, struct mount,
2577                                                mnt_expire);
2578                        touch_mnt_namespace(m->mnt_ns);
2579                        umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2580                }
2581        }
2582}
2583
2584/*
2585 * Some copy_from_user() implementations do not return the exact number of
2586 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2587 * Note that this function differs from copy_from_user() in that it will oops
2588 * on bad values of `to', rather than returning a short copy.
2589 */
2590static long exact_copy_from_user(void *to, const void __user * from,
2591                                 unsigned long n)
2592{
2593        char *t = to;
2594        const char __user *f = from;
2595        char c;
2596
2597        if (!access_ok(VERIFY_READ, from, n))
2598                return n;
2599
2600        while (n) {
2601                if (__get_user(c, f)) {
2602                        memset(t, 0, n);
2603                        break;
2604                }
2605                *t++ = c;
2606                f++;
2607                n--;
2608        }
2609        return n;
2610}
2611
2612void *copy_mount_options(const void __user * data)
2613{
2614        int i;
2615        unsigned long size;
2616        char *copy;
2617
2618        if (!data)
2619                return NULL;
2620
2621        copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2622        if (!copy)
2623                return ERR_PTR(-ENOMEM);
2624
2625        /* We only care that *some* data at the address the user
2626         * gave us is valid.  Just in case, we'll zero
2627         * the remainder of the page.
2628         */
2629        /* copy_from_user cannot cross TASK_SIZE ! */
2630        size = TASK_SIZE - (unsigned long)data;
2631        if (size > PAGE_SIZE)
2632                size = PAGE_SIZE;
2633
2634        i = size - exact_copy_from_user(copy, data, size);
2635        if (!i) {
2636                kfree(copy);
2637                return ERR_PTR(-EFAULT);
2638        }
2639        if (i != PAGE_SIZE)
2640                memset(copy + i, 0, PAGE_SIZE - i);
2641        return copy;
2642}
2643
2644char *copy_mount_string(const void __user *data)
2645{
2646        return data ? strndup_user(data, PAGE_SIZE) : NULL;
2647}
2648
2649/*
2650 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2651 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2652 *
2653 * data is a (void *) that can point to any structure up to
2654 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2655 * information (or be NULL).
2656 *
2657 * Pre-0.97 versions of mount() didn't have a flags word.
2658 * When the flags word was introduced its top half was required
2659 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2660 * Therefore, if this magic number is present, it carries no information
2661 * and must be discarded.
2662 */
2663long do_mount(const char *dev_name, const char __user *dir_name,
2664                const char *type_page, unsigned long flags, void *data_page)
2665{
2666        struct path path;
2667        int retval = 0;
2668        int mnt_flags = 0;
2669
2670        /* Discard magic */
2671        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2672                flags &= ~MS_MGC_MSK;
2673
2674        /* Basic sanity checks */
2675        if (data_page)
2676                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2677
2678        /* ... and get the mountpoint */
2679        retval = user_path(dir_name, &path);
2680        if (retval)
2681                return retval;
2682
2683        retval = security_sb_mount(dev_name, &path,
2684                                   type_page, flags, data_page);
2685        if (!retval && !may_mount())
2686                retval = -EPERM;
2687        if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2688                retval = -EPERM;
2689        if (retval)
2690                goto dput_out;
2691
2692        /* Default to relatime unless overriden */
2693        if (!(flags & MS_NOATIME))
2694                mnt_flags |= MNT_RELATIME;
2695
2696        /* Separate the per-mountpoint flags */
2697        if (flags & MS_NOSUID)
2698                mnt_flags |= MNT_NOSUID;
2699        if (flags & MS_NODEV)
2700                mnt_flags |= MNT_NODEV;
2701        if (flags & MS_NOEXEC)
2702                mnt_flags |= MNT_NOEXEC;
2703        if (flags & MS_NOATIME)
2704                mnt_flags |= MNT_NOATIME;
2705        if (flags & MS_NODIRATIME)
2706                mnt_flags |= MNT_NODIRATIME;
2707        if (flags & MS_STRICTATIME)
2708                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2709        if (flags & MS_RDONLY)
2710                mnt_flags |= MNT_READONLY;
2711
2712        /* The default atime for remount is preservation */
2713        if ((flags & MS_REMOUNT) &&
2714            ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2715                       MS_STRICTATIME)) == 0)) {
2716                mnt_flags &= ~MNT_ATIME_MASK;
2717                mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2718        }
2719
2720        flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2721                   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2722                   MS_STRICTATIME);
2723
2724        if (flags & MS_REMOUNT)
2725                retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2726                                    data_page);
2727        else if (flags & MS_BIND)
2728                retval = do_loopback(&path, dev_name, flags & MS_REC);
2729        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2730                retval = do_change_type(&path, flags);
2731        else if (flags & MS_MOVE)
2732                retval = do_move_mount(&path, dev_name);
2733        else
2734                retval = do_new_mount(&path, type_page, flags, mnt_flags,
2735                                      dev_name, data_page);
2736dput_out:
2737        path_put(&path);
2738        return retval;
2739}
2740
2741static void free_mnt_ns(struct mnt_namespace *ns)
2742{
2743        ns_free_inum(&ns->ns);
2744        put_user_ns(ns->user_ns);
2745        kfree(ns);
2746}
2747
2748/*
2749 * Assign a sequence number so we can detect when we attempt to bind
2750 * mount a reference to an older mount namespace into the current
2751 * mount namespace, preventing reference counting loops.  A 64bit
2752 * number incrementing at 10Ghz will take 12,427 years to wrap which
2753 * is effectively never, so we can ignore the possibility.
2754 */
2755static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2756
2757static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2758{
2759        struct mnt_namespace *new_ns;
2760        int ret;
2761
2762        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2763        if (!new_ns)
2764                return ERR_PTR(-ENOMEM);
2765        ret = ns_alloc_inum(&new_ns->ns);
2766        if (ret) {
2767                kfree(new_ns);
2768                return ERR_PTR(ret);
2769        }
2770        new_ns->ns.ops = &mntns_operations;
2771        new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2772        atomic_set(&new_ns->count, 1);
2773        new_ns->root = NULL;
2774        INIT_LIST_HEAD(&new_ns->list);
2775        init_waitqueue_head(&new_ns->poll);
2776        new_ns->event = 0;
2777        new_ns->user_ns = get_user_ns(user_ns);
2778        return new_ns;
2779}
2780
2781struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2782                struct user_namespace *user_ns, struct fs_struct *new_fs)
2783{
2784        struct mnt_namespace *new_ns;
2785        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2786        struct mount *p, *q;
2787        struct mount *old;
2788        struct mount *new;
2789        int copy_flags;
2790
2791        BUG_ON(!ns);
2792
2793        if (likely(!(flags & CLONE_NEWNS))) {
2794                get_mnt_ns(ns);
2795                return ns;
2796        }
2797
2798        old = ns->root;
2799
2800        new_ns = alloc_mnt_ns(user_ns);
2801        if (IS_ERR(new_ns))
2802                return new_ns;
2803
2804        namespace_lock();
2805        /* First pass: copy the tree topology */
2806        copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2807        if (user_ns != ns->user_ns)
2808                copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2809        new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2810        if (IS_ERR(new)) {
2811                namespace_unlock();
2812                free_mnt_ns(new_ns);
2813                return ERR_CAST(new);
2814        }
2815        new_ns->root = new;
2816        list_add_tail(&new_ns->list, &new->mnt_list);
2817
2818        /*
2819         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2820         * as belonging to new namespace.  We have already acquired a private
2821         * fs_struct, so tsk->fs->lock is not needed.
2822         */
2823        p = old;
2824        q = new;
2825        while (p) {
2826                q->mnt_ns = new_ns;
2827                if (new_fs) {
2828                        if (&p->mnt == new_fs->root.mnt) {
2829                                new_fs->root.mnt = mntget(&q->mnt);
2830                                rootmnt = &p->mnt;
2831                        }
2832                        if (&p->mnt == new_fs->pwd.mnt) {
2833                                new_fs->pwd.mnt = mntget(&q->mnt);
2834                                pwdmnt = &p->mnt;
2835                        }
2836                }
2837                p = next_mnt(p, old);
2838                q = next_mnt(q, new);
2839                if (!q)
2840                        break;
2841                while (p->mnt.mnt_root != q->mnt.mnt_root)
2842                        p = next_mnt(p, old);
2843        }
2844        namespace_unlock();
2845
2846        if (rootmnt)
2847                mntput(rootmnt);
2848        if (pwdmnt)
2849                mntput(pwdmnt);
2850
2851        return new_ns;
2852}
2853
2854/**
2855 * create_mnt_ns - creates a private namespace and adds a root filesystem
2856 * @mnt: pointer to the new root filesystem mountpoint
2857 */
2858static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2859{
2860        struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2861        if (!IS_ERR(new_ns)) {
2862                struct mount *mnt = real_mount(m);
2863                mnt->mnt_ns = new_ns;
2864                new_ns->root = mnt;
2865                list_add(&mnt->mnt_list, &new_ns->list);
2866        } else {
2867                mntput(m);
2868        }
2869        return new_ns;
2870}
2871
2872struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2873{
2874        struct mnt_namespace *ns;
2875        struct super_block *s;
2876        struct path path;
2877        int err;
2878
2879        ns = create_mnt_ns(mnt);
2880        if (IS_ERR(ns))
2881                return ERR_CAST(ns);
2882
2883        err = vfs_path_lookup(mnt->mnt_root, mnt,
2884                        name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2885
2886        put_mnt_ns(ns);
2887
2888        if (err)
2889                return ERR_PTR(err);
2890
2891        /* trade a vfsmount reference for active sb one */
2892        s = path.mnt->mnt_sb;
2893        atomic_inc(&s->s_active);
2894        mntput(path.mnt);
2895        /* lock the sucker */
2896        down_write(&s->s_umount);
2897        /* ... and return the root of (sub)tree on it */
2898        return path.dentry;
2899}
2900EXPORT_SYMBOL(mount_subtree);
2901
2902SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2903                char __user *, type, unsigned long, flags, void __user *, data)
2904{
2905        int ret;
2906        char *kernel_type;
2907        char *kernel_dev;
2908        void *options;
2909
2910        kernel_type = copy_mount_string(type);
2911        ret = PTR_ERR(kernel_type);
2912        if (IS_ERR(kernel_type))
2913                goto out_type;
2914
2915        kernel_dev = copy_mount_string(dev_name);
2916        ret = PTR_ERR(kernel_dev);
2917        if (IS_ERR(kernel_dev))
2918                goto out_dev;
2919
2920        options = copy_mount_options(data);
2921        ret = PTR_ERR(options);
2922        if (IS_ERR(options))
2923                goto out_data;
2924
2925        ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2926
2927        kfree(options);
2928out_data:
2929        kfree(kernel_dev);
2930out_dev:
2931        kfree(kernel_type);
2932out_type:
2933        return ret;
2934}
2935
2936/*
2937 * Return true if path is reachable from root
2938 *
2939 * namespace_sem or mount_lock is held
2940 */
2941bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2942                         const struct path *root)
2943{
2944        while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2945                dentry = mnt->mnt_mountpoint;
2946                mnt = mnt->mnt_parent;
2947        }
2948        return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2949}
2950
2951bool path_is_under(struct path *path1, struct path *path2)
2952{
2953        bool res;
2954        read_seqlock_excl(&mount_lock);
2955        res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2956        read_sequnlock_excl(&mount_lock);
2957        return res;
2958}
2959EXPORT_SYMBOL(path_is_under);
2960
2961/*
2962 * pivot_root Semantics:
2963 * Moves the root file system of the current process to the directory put_old,
2964 * makes new_root as the new root file system of the current process, and sets
2965 * root/cwd of all processes which had them on the current root to new_root.
2966 *
2967 * Restrictions:
2968 * The new_root and put_old must be directories, and  must not be on the
2969 * same file  system as the current process root. The put_old  must  be
2970 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2971 * pointed to by put_old must yield the same directory as new_root. No other
2972 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2973 *
2974 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2975 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2976 * in this situation.
2977 *
2978 * Notes:
2979 *  - we don't move root/cwd if they are not at the root (reason: if something
2980 *    cared enough to change them, it's probably wrong to force them elsewhere)
2981 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2982 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2983 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2984 *    first.
2985 */
2986SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2987                const char __user *, put_old)
2988{
2989        struct path new, old, parent_path, root_parent, root;
2990        struct mount *new_mnt, *root_mnt, *old_mnt;
2991        struct mountpoint *old_mp, *root_mp;
2992        int error;
2993
2994        if (!may_mount())
2995                return -EPERM;
2996
2997        error = user_path_dir(new_root, &new);
2998        if (error)
2999                goto out0;
3000
3001        error = user_path_dir(put_old, &old);
3002        if (error)
3003                goto out1;
3004
3005        error = security_sb_pivotroot(&old, &new);
3006        if (error)
3007                goto out2;
3008
3009        get_fs_root(current->fs, &root);
3010        old_mp = lock_mount(&old);
3011        error = PTR_ERR(old_mp);
3012        if (IS_ERR(old_mp))
3013                goto out3;
3014
3015        error = -EINVAL;
3016        new_mnt = real_mount(new.mnt);
3017        root_mnt = real_mount(root.mnt);
3018        old_mnt = real_mount(old.mnt);
3019        if (IS_MNT_SHARED(old_mnt) ||
3020                IS_MNT_SHARED(new_mnt->mnt_parent) ||
3021                IS_MNT_SHARED(root_mnt->mnt_parent))
3022                goto out4;
3023        if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3024                goto out4;
3025        if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3026                goto out4;
3027        error = -ENOENT;
3028        if (d_unlinked(new.dentry))
3029                goto out4;
3030        error = -EBUSY;
3031        if (new_mnt == root_mnt || old_mnt == root_mnt)
3032                goto out4; /* loop, on the same file system  */
3033        error = -EINVAL;
3034        if (root.mnt->mnt_root != root.dentry)
3035                goto out4; /* not a mountpoint */
3036        if (!mnt_has_parent(root_mnt))
3037                goto out4; /* not attached */
3038        root_mp = root_mnt->mnt_mp;
3039        if (new.mnt->mnt_root != new.dentry)
3040                goto out4; /* not a mountpoint */
3041        if (!mnt_has_parent(new_mnt))
3042                goto out4; /* not attached */
3043        /* make sure we can reach put_old from new_root */
3044        if (!is_path_reachable(old_mnt, old.dentry, &new))
3045                goto out4;
3046        /* make certain new is below the root */
3047        if (!is_path_reachable(new_mnt, new.dentry, &root))
3048                goto out4;
3049        root_mp->m_count++; /* pin it so it won't go away */
3050        lock_mount_hash();
3051        detach_mnt(new_mnt, &parent_path);
3052        detach_mnt(root_mnt, &root_parent);
3053        if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3054                new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3055                root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3056        }
3057        /* mount old root on put_old */
3058        attach_mnt(root_mnt, old_mnt, old_mp);
3059        /* mount new_root on / */
3060        attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3061        touch_mnt_namespace(current->nsproxy->mnt_ns);
3062        /* A moved mount should not expire automatically */
3063        list_del_init(&new_mnt->mnt_expire);
3064        unlock_mount_hash();
3065        chroot_fs_refs(&root, &new);
3066        put_mountpoint(root_mp);
3067        error = 0;
3068out4:
3069        unlock_mount(old_mp);
3070        if (!error) {
3071                path_put(&root_parent);
3072                path_put(&parent_path);
3073        }
3074out3:
3075        path_put(&root);
3076out2:
3077        path_put(&old);
3078out1:
3079        path_put(&new);
3080out0:
3081        return error;
3082}
3083
3084static void __init init_mount_tree(void)
3085{
3086        struct vfsmount *mnt;
3087        struct mnt_namespace *ns;
3088        struct path root;
3089        struct file_system_type *type;
3090
3091        type = get_fs_type("rootfs");
3092        if (!type)
3093                panic("Can't find rootfs type");
3094        mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3095        put_filesystem(type);
3096        if (IS_ERR(mnt))
3097                panic("Can't create rootfs");
3098
3099        ns = create_mnt_ns(mnt);
3100        if (IS_ERR(ns))
3101                panic("Can't allocate initial namespace");
3102
3103        init_task.nsproxy->mnt_ns = ns;
3104        get_mnt_ns(ns);
3105
3106        root.mnt = mnt;
3107        root.dentry = mnt->mnt_root;
3108        mnt->mnt_flags |= MNT_LOCKED;
3109
3110        set_fs_pwd(current->fs, &root);
3111        set_fs_root(current->fs, &root);
3112}
3113
3114void __init mnt_init(void)
3115{
3116        unsigned u;
3117        int err;
3118
3119        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3120                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3121
3122        mount_hashtable = alloc_large_system_hash("Mount-cache",
3123                                sizeof(struct hlist_head),
3124                                mhash_entries, 19,
3125                                0,
3126                                &m_hash_shift, &m_hash_mask, 0, 0);
3127        mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3128                                sizeof(struct hlist_head),
3129                                mphash_entries, 19,
3130                                0,
3131                                &mp_hash_shift, &mp_hash_mask, 0, 0);
3132
3133        if (!mount_hashtable || !mountpoint_hashtable)
3134                panic("Failed to allocate mount hash table\n");
3135
3136        for (u = 0; u <= m_hash_mask; u++)
3137                INIT_HLIST_HEAD(&mount_hashtable[u]);
3138        for (u = 0; u <= mp_hash_mask; u++)
3139                INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3140
3141        kernfs_init();
3142
3143        err = sysfs_init();
3144        if (err)
3145                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3146                        __func__, err);
3147        fs_kobj = kobject_create_and_add("fs", NULL);
3148        if (!fs_kobj)
3149                printk(KERN_WARNING "%s: kobj create error\n", __func__);
3150        init_rootfs();
3151        init_mount_tree();
3152}
3153
3154void put_mnt_ns(struct mnt_namespace *ns)
3155{
3156        if (!atomic_dec_and_test(&ns->count))
3157                return;
3158        drop_collected_mounts(&ns->root->mnt);
3159        free_mnt_ns(ns);
3160}
3161
3162struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3163{
3164        struct vfsmount *mnt;
3165        mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3166        if (!IS_ERR(mnt)) {
3167                /*
3168                 * it is a longterm mount, don't release mnt until
3169                 * we unmount before file sys is unregistered
3170                */
3171                real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3172        }
3173        return mnt;
3174}
3175EXPORT_SYMBOL_GPL(kern_mount_data);
3176
3177void kern_unmount(struct vfsmount *mnt)
3178{
3179        /* release long term mount so mount point can be released */
3180        if (!IS_ERR_OR_NULL(mnt)) {
3181                real_mount(mnt)->mnt_ns = NULL;
3182                synchronize_rcu();      /* yecchhh... */
3183                mntput(mnt);
3184        }
3185}
3186EXPORT_SYMBOL(kern_unmount);
3187
3188bool our_mnt(struct vfsmount *mnt)
3189{
3190        return check_mnt(real_mount(mnt));
3191}
3192
3193bool current_chrooted(void)
3194{
3195        /* Does the current process have a non-standard root */
3196        struct path ns_root;
3197        struct path fs_root;
3198        bool chrooted;
3199
3200        /* Find the namespace root */
3201        ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3202        ns_root.dentry = ns_root.mnt->mnt_root;
3203        path_get(&ns_root);
3204        while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3205                ;
3206
3207        get_fs_root(current->fs, &fs_root);
3208
3209        chrooted = !path_equal(&fs_root, &ns_root);
3210
3211        path_put(&fs_root);
3212        path_put(&ns_root);
3213
3214        return chrooted;
3215}
3216
3217static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3218{
3219        struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3220        int new_flags = *new_mnt_flags;
3221        struct mount *mnt;
3222        bool visible = false;
3223
3224        if (unlikely(!ns))
3225                return false;
3226
3227        down_read(&namespace_sem);
3228        list_for_each_entry(mnt, &ns->list, mnt_list) {
3229                struct mount *child;
3230                int mnt_flags;
3231
3232                if (mnt->mnt.mnt_sb->s_type != type)
3233                        continue;
3234
3235                /* This mount is not fully visible if it's root directory
3236                 * is not the root directory of the filesystem.
3237                 */
3238                if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3239                        continue;
3240
3241                /* Read the mount flags and filter out flags that
3242                 * may safely be ignored.
3243                 */
3244                mnt_flags = mnt->mnt.mnt_flags;
3245                if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3246                        mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3247
3248                /* Verify the mount flags are equal to or more permissive
3249                 * than the proposed new mount.
3250                 */
3251                if ((mnt_flags & MNT_LOCK_READONLY) &&
3252                    !(new_flags & MNT_READONLY))
3253                        continue;
3254                if ((mnt_flags & MNT_LOCK_NODEV) &&
3255                    !(new_flags & MNT_NODEV))
3256                        continue;
3257                if ((mnt_flags & MNT_LOCK_NOSUID) &&
3258                    !(new_flags & MNT_NOSUID))
3259                        continue;
3260                if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3261                    !(new_flags & MNT_NOEXEC))
3262                        continue;
3263                if ((mnt_flags & MNT_LOCK_ATIME) &&
3264                    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3265                        continue;
3266
3267                /* This mount is not fully visible if there are any
3268                 * locked child mounts that cover anything except for
3269                 * empty directories.
3270                 */
3271                list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3272                        struct inode *inode = child->mnt_mountpoint->d_inode;
3273                        /* Only worry about locked mounts */
3274                        if (!(mnt_flags & MNT_LOCKED))
3275                                continue;
3276                        /* Is the directory permanetly empty? */
3277                        if (!is_empty_dir_inode(inode))
3278                                goto next;
3279                }
3280                /* Preserve the locked attributes */
3281                *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3282                                               MNT_LOCK_NODEV    | \
3283                                               MNT_LOCK_NOSUID   | \
3284                                               MNT_LOCK_NOEXEC   | \
3285                                               MNT_LOCK_ATIME);
3286                visible = true;
3287                goto found;
3288        next:   ;
3289        }
3290found:
3291        up_read(&namespace_sem);
3292        return visible;
3293}
3294
3295static struct ns_common *mntns_get(struct task_struct *task)
3296{
3297        struct ns_common *ns = NULL;
3298        struct nsproxy *nsproxy;
3299
3300        task_lock(task);
3301        nsproxy = task->nsproxy;
3302        if (nsproxy) {
3303                ns = &nsproxy->mnt_ns->ns;
3304                get_mnt_ns(to_mnt_ns(ns));
3305        }
3306        task_unlock(task);
3307
3308        return ns;
3309}
3310
3311static void mntns_put(struct ns_common *ns)
3312{
3313        put_mnt_ns(to_mnt_ns(ns));
3314}
3315
3316static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3317{
3318        struct fs_struct *fs = current->fs;
3319        struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3320        struct path root;
3321
3322        if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3323            !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3324            !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3325                return -EPERM;
3326
3327        if (fs->users != 1)
3328                return -EINVAL;
3329
3330        get_mnt_ns(mnt_ns);
3331        put_mnt_ns(nsproxy->mnt_ns);
3332        nsproxy->mnt_ns = mnt_ns;
3333
3334        /* Find the root */
3335        root.mnt    = &mnt_ns->root->mnt;
3336        root.dentry = mnt_ns->root->mnt.mnt_root;
3337        path_get(&root);
3338        while(d_mountpoint(root.dentry) && follow_down_one(&root))
3339                ;
3340
3341        /* Update the pwd and root */
3342        set_fs_pwd(fs, &root);
3343        set_fs_root(fs, &root);
3344
3345        path_put(&root);
3346        return 0;
3347}
3348
3349const struct proc_ns_operations mntns_operations = {
3350        .name           = "mnt",
3351        .type           = CLONE_NEWNS,
3352        .get            = mntns_get,
3353        .put            = mntns_put,
3354        .install        = mntns_install,
3355};
3356