linux/fs/nfs/file.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/file.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  Changes Copyright (C) 1994 by Florian La Roche
   7 *   - Do not copy data too often around in the kernel.
   8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
   9 *   - Put in a better version of read look-ahead buffering. Original idea
  10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
  11 *
  12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
  13 *
  14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
  15 *
  16 *  nfs regular file handling functions
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/kernel.h>
  22#include <linux/errno.h>
  23#include <linux/fcntl.h>
  24#include <linux/stat.h>
  25#include <linux/nfs_fs.h>
  26#include <linux/nfs_mount.h>
  27#include <linux/mm.h>
  28#include <linux/pagemap.h>
  29#include <linux/gfp.h>
  30#include <linux/swap.h>
  31
  32#include <asm/uaccess.h>
  33
  34#include "delegation.h"
  35#include "internal.h"
  36#include "iostat.h"
  37#include "fscache.h"
  38#include "pnfs.h"
  39
  40#include "nfstrace.h"
  41
  42#define NFSDBG_FACILITY         NFSDBG_FILE
  43
  44static const struct vm_operations_struct nfs_file_vm_ops;
  45
  46/* Hack for future NFS swap support */
  47#ifndef IS_SWAPFILE
  48# define IS_SWAPFILE(inode)     (0)
  49#endif
  50
  51int nfs_check_flags(int flags)
  52{
  53        if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
  54                return -EINVAL;
  55
  56        return 0;
  57}
  58EXPORT_SYMBOL_GPL(nfs_check_flags);
  59
  60/*
  61 * Open file
  62 */
  63static int
  64nfs_file_open(struct inode *inode, struct file *filp)
  65{
  66        int res;
  67
  68        dprintk("NFS: open file(%pD2)\n", filp);
  69
  70        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
  71        res = nfs_check_flags(filp->f_flags);
  72        if (res)
  73                return res;
  74
  75        res = nfs_open(inode, filp);
  76        return res;
  77}
  78
  79int
  80nfs_file_release(struct inode *inode, struct file *filp)
  81{
  82        dprintk("NFS: release(%pD2)\n", filp);
  83
  84        nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
  85        nfs_file_clear_open_context(filp);
  86        return 0;
  87}
  88EXPORT_SYMBOL_GPL(nfs_file_release);
  89
  90/**
  91 * nfs_revalidate_size - Revalidate the file size
  92 * @inode - pointer to inode struct
  93 * @file - pointer to struct file
  94 *
  95 * Revalidates the file length. This is basically a wrapper around
  96 * nfs_revalidate_inode() that takes into account the fact that we may
  97 * have cached writes (in which case we don't care about the server's
  98 * idea of what the file length is), or O_DIRECT (in which case we
  99 * shouldn't trust the cache).
 100 */
 101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
 102{
 103        struct nfs_server *server = NFS_SERVER(inode);
 104        struct nfs_inode *nfsi = NFS_I(inode);
 105
 106        if (nfs_have_delegated_attributes(inode))
 107                goto out_noreval;
 108
 109        if (filp->f_flags & O_DIRECT)
 110                goto force_reval;
 111        if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
 112                goto force_reval;
 113        if (nfs_attribute_timeout(inode))
 114                goto force_reval;
 115out_noreval:
 116        return 0;
 117force_reval:
 118        return __nfs_revalidate_inode(server, inode);
 119}
 120
 121loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
 122{
 123        dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
 124                        filp, offset, whence);
 125
 126        /*
 127         * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
 128         * the cached file length
 129         */
 130        if (whence != SEEK_SET && whence != SEEK_CUR) {
 131                struct inode *inode = filp->f_mapping->host;
 132
 133                int retval = nfs_revalidate_file_size(inode, filp);
 134                if (retval < 0)
 135                        return (loff_t)retval;
 136        }
 137
 138        return generic_file_llseek(filp, offset, whence);
 139}
 140EXPORT_SYMBOL_GPL(nfs_file_llseek);
 141
 142/*
 143 * Flush all dirty pages, and check for write errors.
 144 */
 145static int
 146nfs_file_flush(struct file *file, fl_owner_t id)
 147{
 148        struct inode    *inode = file_inode(file);
 149
 150        dprintk("NFS: flush(%pD2)\n", file);
 151
 152        nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
 153        if ((file->f_mode & FMODE_WRITE) == 0)
 154                return 0;
 155
 156        /* Flush writes to the server and return any errors */
 157        return vfs_fsync(file, 0);
 158}
 159
 160ssize_t
 161nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 162{
 163        struct inode *inode = file_inode(iocb->ki_filp);
 164        ssize_t result;
 165
 166        if (iocb->ki_flags & IOCB_DIRECT)
 167                return nfs_file_direct_read(iocb, to, iocb->ki_pos);
 168
 169        dprintk("NFS: read(%pD2, %zu@%lu)\n",
 170                iocb->ki_filp,
 171                iov_iter_count(to), (unsigned long) iocb->ki_pos);
 172
 173        result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
 174        if (!result) {
 175                result = generic_file_read_iter(iocb, to);
 176                if (result > 0)
 177                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
 178        }
 179        return result;
 180}
 181EXPORT_SYMBOL_GPL(nfs_file_read);
 182
 183ssize_t
 184nfs_file_splice_read(struct file *filp, loff_t *ppos,
 185                     struct pipe_inode_info *pipe, size_t count,
 186                     unsigned int flags)
 187{
 188        struct inode *inode = file_inode(filp);
 189        ssize_t res;
 190
 191        dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
 192                filp, (unsigned long) count, (unsigned long long) *ppos);
 193
 194        res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
 195        if (!res) {
 196                res = generic_file_splice_read(filp, ppos, pipe, count, flags);
 197                if (res > 0)
 198                        nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
 199        }
 200        return res;
 201}
 202EXPORT_SYMBOL_GPL(nfs_file_splice_read);
 203
 204int
 205nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
 206{
 207        struct inode *inode = file_inode(file);
 208        int     status;
 209
 210        dprintk("NFS: mmap(%pD2)\n", file);
 211
 212        /* Note: generic_file_mmap() returns ENOSYS on nommu systems
 213         *       so we call that before revalidating the mapping
 214         */
 215        status = generic_file_mmap(file, vma);
 216        if (!status) {
 217                vma->vm_ops = &nfs_file_vm_ops;
 218                status = nfs_revalidate_mapping(inode, file->f_mapping);
 219        }
 220        return status;
 221}
 222EXPORT_SYMBOL_GPL(nfs_file_mmap);
 223
 224/*
 225 * Flush any dirty pages for this process, and check for write errors.
 226 * The return status from this call provides a reliable indication of
 227 * whether any write errors occurred for this process.
 228 *
 229 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
 230 * disk, but it retrieves and clears ctx->error after synching, despite
 231 * the two being set at the same time in nfs_context_set_write_error().
 232 * This is because the former is used to notify the _next_ call to
 233 * nfs_file_write() that a write error occurred, and hence cause it to
 234 * fall back to doing a synchronous write.
 235 */
 236static int
 237nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
 238{
 239        struct nfs_open_context *ctx = nfs_file_open_context(file);
 240        struct inode *inode = file_inode(file);
 241        int have_error, do_resend, status;
 242        int ret = 0;
 243
 244        dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 245
 246        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 247        do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 248        have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 249        status = nfs_commit_inode(inode, FLUSH_SYNC);
 250        have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
 251        if (have_error) {
 252                ret = xchg(&ctx->error, 0);
 253                if (ret)
 254                        goto out;
 255        }
 256        if (status < 0) {
 257                ret = status;
 258                goto out;
 259        }
 260        do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
 261        if (do_resend)
 262                ret = -EAGAIN;
 263out:
 264        return ret;
 265}
 266
 267int
 268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
 269{
 270        int ret;
 271        struct inode *inode = file_inode(file);
 272
 273        trace_nfs_fsync_enter(inode);
 274
 275        inode_dio_wait(inode);
 276        do {
 277                ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 278                if (ret != 0)
 279                        break;
 280                inode_lock(inode);
 281                ret = nfs_file_fsync_commit(file, start, end, datasync);
 282                if (!ret)
 283                        ret = pnfs_sync_inode(inode, !!datasync);
 284                inode_unlock(inode);
 285                /*
 286                 * If nfs_file_fsync_commit detected a server reboot, then
 287                 * resend all dirty pages that might have been covered by
 288                 * the NFS_CONTEXT_RESEND_WRITES flag
 289                 */
 290                start = 0;
 291                end = LLONG_MAX;
 292        } while (ret == -EAGAIN);
 293
 294        trace_nfs_fsync_exit(inode, ret);
 295        return ret;
 296}
 297EXPORT_SYMBOL_GPL(nfs_file_fsync);
 298
 299/*
 300 * Decide whether a read/modify/write cycle may be more efficient
 301 * then a modify/write/read cycle when writing to a page in the
 302 * page cache.
 303 *
 304 * The modify/write/read cycle may occur if a page is read before
 305 * being completely filled by the writer.  In this situation, the
 306 * page must be completely written to stable storage on the server
 307 * before it can be refilled by reading in the page from the server.
 308 * This can lead to expensive, small, FILE_SYNC mode writes being
 309 * done.
 310 *
 311 * It may be more efficient to read the page first if the file is
 312 * open for reading in addition to writing, the page is not marked
 313 * as Uptodate, it is not dirty or waiting to be committed,
 314 * indicating that it was previously allocated and then modified,
 315 * that there were valid bytes of data in that range of the file,
 316 * and that the new data won't completely replace the old data in
 317 * that range of the file.
 318 */
 319static int nfs_want_read_modify_write(struct file *file, struct page *page,
 320                        loff_t pos, unsigned len)
 321{
 322        unsigned int pglen = nfs_page_length(page);
 323        unsigned int offset = pos & (PAGE_SIZE - 1);
 324        unsigned int end = offset + len;
 325
 326        if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
 327                if (!PageUptodate(page))
 328                        return 1;
 329                return 0;
 330        }
 331
 332        if ((file->f_mode & FMODE_READ) &&      /* open for read? */
 333            !PageUptodate(page) &&              /* Uptodate? */
 334            !PagePrivate(page) &&               /* i/o request already? */
 335            pglen &&                            /* valid bytes of file? */
 336            (end < pglen || offset))            /* replace all valid bytes? */
 337                return 1;
 338        return 0;
 339}
 340
 341/*
 342 * This does the "real" work of the write. We must allocate and lock the
 343 * page to be sent back to the generic routine, which then copies the
 344 * data from user space.
 345 *
 346 * If the writer ends up delaying the write, the writer needs to
 347 * increment the page use counts until he is done with the page.
 348 */
 349static int nfs_write_begin(struct file *file, struct address_space *mapping,
 350                        loff_t pos, unsigned len, unsigned flags,
 351                        struct page **pagep, void **fsdata)
 352{
 353        int ret;
 354        pgoff_t index = pos >> PAGE_SHIFT;
 355        struct page *page;
 356        int once_thru = 0;
 357
 358        dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
 359                file, mapping->host->i_ino, len, (long long) pos);
 360
 361start:
 362        /*
 363         * Prevent starvation issues if someone is doing a consistency
 364         * sync-to-disk
 365         */
 366        ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
 367                                 nfs_wait_bit_killable, TASK_KILLABLE);
 368        if (ret)
 369                return ret;
 370        /*
 371         * Wait for O_DIRECT to complete
 372         */
 373        inode_dio_wait(mapping->host);
 374
 375        page = grab_cache_page_write_begin(mapping, index, flags);
 376        if (!page)
 377                return -ENOMEM;
 378        *pagep = page;
 379
 380        ret = nfs_flush_incompatible(file, page);
 381        if (ret) {
 382                unlock_page(page);
 383                put_page(page);
 384        } else if (!once_thru &&
 385                   nfs_want_read_modify_write(file, page, pos, len)) {
 386                once_thru = 1;
 387                ret = nfs_readpage(file, page);
 388                put_page(page);
 389                if (!ret)
 390                        goto start;
 391        }
 392        return ret;
 393}
 394
 395static int nfs_write_end(struct file *file, struct address_space *mapping,
 396                        loff_t pos, unsigned len, unsigned copied,
 397                        struct page *page, void *fsdata)
 398{
 399        unsigned offset = pos & (PAGE_SIZE - 1);
 400        struct nfs_open_context *ctx = nfs_file_open_context(file);
 401        int status;
 402
 403        dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
 404                file, mapping->host->i_ino, len, (long long) pos);
 405
 406        /*
 407         * Zero any uninitialised parts of the page, and then mark the page
 408         * as up to date if it turns out that we're extending the file.
 409         */
 410        if (!PageUptodate(page)) {
 411                unsigned pglen = nfs_page_length(page);
 412                unsigned end = offset + len;
 413
 414                if (pglen == 0) {
 415                        zero_user_segments(page, 0, offset,
 416                                        end, PAGE_SIZE);
 417                        SetPageUptodate(page);
 418                } else if (end >= pglen) {
 419                        zero_user_segment(page, end, PAGE_SIZE);
 420                        if (offset == 0)
 421                                SetPageUptodate(page);
 422                } else
 423                        zero_user_segment(page, pglen, PAGE_SIZE);
 424        }
 425
 426        status = nfs_updatepage(file, page, offset, copied);
 427
 428        unlock_page(page);
 429        put_page(page);
 430
 431        if (status < 0)
 432                return status;
 433        NFS_I(mapping->host)->write_io += copied;
 434
 435        if (nfs_ctx_key_to_expire(ctx)) {
 436                status = nfs_wb_all(mapping->host);
 437                if (status < 0)
 438                        return status;
 439        }
 440
 441        return copied;
 442}
 443
 444/*
 445 * Partially or wholly invalidate a page
 446 * - Release the private state associated with a page if undergoing complete
 447 *   page invalidation
 448 * - Called if either PG_private or PG_fscache is set on the page
 449 * - Caller holds page lock
 450 */
 451static void nfs_invalidate_page(struct page *page, unsigned int offset,
 452                                unsigned int length)
 453{
 454        dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
 455                 page, offset, length);
 456
 457        if (offset != 0 || length < PAGE_SIZE)
 458                return;
 459        /* Cancel any unstarted writes on this page */
 460        nfs_wb_page_cancel(page_file_mapping(page)->host, page);
 461
 462        nfs_fscache_invalidate_page(page, page->mapping->host);
 463}
 464
 465/*
 466 * Attempt to release the private state associated with a page
 467 * - Called if either PG_private or PG_fscache is set on the page
 468 * - Caller holds page lock
 469 * - Return true (may release page) or false (may not)
 470 */
 471static int nfs_release_page(struct page *page, gfp_t gfp)
 472{
 473        struct address_space *mapping = page->mapping;
 474
 475        dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
 476
 477        /* Always try to initiate a 'commit' if relevant, but only
 478         * wait for it if the caller allows blocking.  Even then,
 479         * only wait 1 second and only if the 'bdi' is not congested.
 480         * Waiting indefinitely can cause deadlocks when the NFS
 481         * server is on this machine, when a new TCP connection is
 482         * needed and in other rare cases.  There is no particular
 483         * need to wait extensively here.  A short wait has the
 484         * benefit that someone else can worry about the freezer.
 485         */
 486        if (mapping) {
 487                struct nfs_server *nfss = NFS_SERVER(mapping->host);
 488                nfs_commit_inode(mapping->host, 0);
 489                if (gfpflags_allow_blocking(gfp) &&
 490                    !bdi_write_congested(&nfss->backing_dev_info)) {
 491                        wait_on_page_bit_killable_timeout(page, PG_private,
 492                                                          HZ);
 493                        if (PagePrivate(page))
 494                                set_bdi_congested(&nfss->backing_dev_info,
 495                                                  BLK_RW_ASYNC);
 496                }
 497        }
 498        /* If PagePrivate() is set, then the page is not freeable */
 499        if (PagePrivate(page))
 500                return 0;
 501        return nfs_fscache_release_page(page, gfp);
 502}
 503
 504static void nfs_check_dirty_writeback(struct page *page,
 505                                bool *dirty, bool *writeback)
 506{
 507        struct nfs_inode *nfsi;
 508        struct address_space *mapping = page_file_mapping(page);
 509
 510        if (!mapping || PageSwapCache(page))
 511                return;
 512
 513        /*
 514         * Check if an unstable page is currently being committed and
 515         * if so, have the VM treat it as if the page is under writeback
 516         * so it will not block due to pages that will shortly be freeable.
 517         */
 518        nfsi = NFS_I(mapping->host);
 519        if (atomic_read(&nfsi->commit_info.rpcs_out)) {
 520                *writeback = true;
 521                return;
 522        }
 523
 524        /*
 525         * If PagePrivate() is set, then the page is not freeable and as the
 526         * inode is not being committed, it's not going to be cleaned in the
 527         * near future so treat it as dirty
 528         */
 529        if (PagePrivate(page))
 530                *dirty = true;
 531}
 532
 533/*
 534 * Attempt to clear the private state associated with a page when an error
 535 * occurs that requires the cached contents of an inode to be written back or
 536 * destroyed
 537 * - Called if either PG_private or fscache is set on the page
 538 * - Caller holds page lock
 539 * - Return 0 if successful, -error otherwise
 540 */
 541static int nfs_launder_page(struct page *page)
 542{
 543        struct inode *inode = page_file_mapping(page)->host;
 544        struct nfs_inode *nfsi = NFS_I(inode);
 545
 546        dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
 547                inode->i_ino, (long long)page_offset(page));
 548
 549        nfs_fscache_wait_on_page_write(nfsi, page);
 550        return nfs_wb_launder_page(inode, page);
 551}
 552
 553static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
 554                                                sector_t *span)
 555{
 556        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 557
 558        *span = sis->pages;
 559
 560        return rpc_clnt_swap_activate(clnt);
 561}
 562
 563static void nfs_swap_deactivate(struct file *file)
 564{
 565        struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 566
 567        rpc_clnt_swap_deactivate(clnt);
 568}
 569
 570const struct address_space_operations nfs_file_aops = {
 571        .readpage = nfs_readpage,
 572        .readpages = nfs_readpages,
 573        .set_page_dirty = __set_page_dirty_nobuffers,
 574        .writepage = nfs_writepage,
 575        .writepages = nfs_writepages,
 576        .write_begin = nfs_write_begin,
 577        .write_end = nfs_write_end,
 578        .invalidatepage = nfs_invalidate_page,
 579        .releasepage = nfs_release_page,
 580        .direct_IO = nfs_direct_IO,
 581        .migratepage = nfs_migrate_page,
 582        .launder_page = nfs_launder_page,
 583        .is_dirty_writeback = nfs_check_dirty_writeback,
 584        .error_remove_page = generic_error_remove_page,
 585        .swap_activate = nfs_swap_activate,
 586        .swap_deactivate = nfs_swap_deactivate,
 587};
 588
 589/*
 590 * Notification that a PTE pointing to an NFS page is about to be made
 591 * writable, implying that someone is about to modify the page through a
 592 * shared-writable mapping
 593 */
 594static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 595{
 596        struct page *page = vmf->page;
 597        struct file *filp = vma->vm_file;
 598        struct inode *inode = file_inode(filp);
 599        unsigned pagelen;
 600        int ret = VM_FAULT_NOPAGE;
 601        struct address_space *mapping;
 602
 603        dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
 604                filp, filp->f_mapping->host->i_ino,
 605                (long long)page_offset(page));
 606
 607        /* make sure the cache has finished storing the page */
 608        nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 609
 610        wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
 611                        nfs_wait_bit_killable, TASK_KILLABLE);
 612
 613        lock_page(page);
 614        mapping = page_file_mapping(page);
 615        if (mapping != inode->i_mapping)
 616                goto out_unlock;
 617
 618        wait_on_page_writeback(page);
 619
 620        pagelen = nfs_page_length(page);
 621        if (pagelen == 0)
 622                goto out_unlock;
 623
 624        ret = VM_FAULT_LOCKED;
 625        if (nfs_flush_incompatible(filp, page) == 0 &&
 626            nfs_updatepage(filp, page, 0, pagelen) == 0)
 627                goto out;
 628
 629        ret = VM_FAULT_SIGBUS;
 630out_unlock:
 631        unlock_page(page);
 632out:
 633        return ret;
 634}
 635
 636static const struct vm_operations_struct nfs_file_vm_ops = {
 637        .fault = filemap_fault,
 638        .map_pages = filemap_map_pages,
 639        .page_mkwrite = nfs_vm_page_mkwrite,
 640};
 641
 642static int nfs_need_check_write(struct file *filp, struct inode *inode)
 643{
 644        struct nfs_open_context *ctx;
 645
 646        ctx = nfs_file_open_context(filp);
 647        if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
 648            nfs_ctx_key_to_expire(ctx))
 649                return 1;
 650        return 0;
 651}
 652
 653ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 654{
 655        struct file *file = iocb->ki_filp;
 656        struct inode *inode = file_inode(file);
 657        unsigned long written = 0;
 658        ssize_t result;
 659        size_t count = iov_iter_count(from);
 660
 661        result = nfs_key_timeout_notify(file, inode);
 662        if (result)
 663                return result;
 664
 665        if (iocb->ki_flags & IOCB_DIRECT) {
 666                result = generic_write_checks(iocb, from);
 667                if (result <= 0)
 668                        return result;
 669                return nfs_file_direct_write(iocb, from);
 670        }
 671
 672        dprintk("NFS: write(%pD2, %zu@%Ld)\n",
 673                file, count, (long long) iocb->ki_pos);
 674
 675        result = -EBUSY;
 676        if (IS_SWAPFILE(inode))
 677                goto out_swapfile;
 678        /*
 679         * O_APPEND implies that we must revalidate the file length.
 680         */
 681        if (iocb->ki_flags & IOCB_APPEND) {
 682                result = nfs_revalidate_file_size(inode, file);
 683                if (result)
 684                        goto out;
 685        }
 686
 687        result = count;
 688        if (!count)
 689                goto out;
 690
 691        result = generic_file_write_iter(iocb, from);
 692        if (result > 0)
 693                written = result;
 694
 695        /* Return error values */
 696        if (result >= 0 && nfs_need_check_write(file, inode)) {
 697                int err = vfs_fsync(file, 0);
 698                if (err < 0)
 699                        result = err;
 700        }
 701        if (result > 0)
 702                nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 703out:
 704        return result;
 705
 706out_swapfile:
 707        printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
 708        goto out;
 709}
 710EXPORT_SYMBOL_GPL(nfs_file_write);
 711
 712static int
 713do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 714{
 715        struct inode *inode = filp->f_mapping->host;
 716        int status = 0;
 717        unsigned int saved_type = fl->fl_type;
 718
 719        /* Try local locking first */
 720        posix_test_lock(filp, fl);
 721        if (fl->fl_type != F_UNLCK) {
 722                /* found a conflict */
 723                goto out;
 724        }
 725        fl->fl_type = saved_type;
 726
 727        if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
 728                goto out_noconflict;
 729
 730        if (is_local)
 731                goto out_noconflict;
 732
 733        status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 734out:
 735        return status;
 736out_noconflict:
 737        fl->fl_type = F_UNLCK;
 738        goto out;
 739}
 740
 741static int do_vfs_lock(struct file *file, struct file_lock *fl)
 742{
 743        return locks_lock_file_wait(file, fl);
 744}
 745
 746static int
 747do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 748{
 749        struct inode *inode = filp->f_mapping->host;
 750        struct nfs_lock_context *l_ctx;
 751        int status;
 752
 753        /*
 754         * Flush all pending writes before doing anything
 755         * with locks..
 756         */
 757        vfs_fsync(filp, 0);
 758
 759        l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
 760        if (!IS_ERR(l_ctx)) {
 761                status = nfs_iocounter_wait(l_ctx);
 762                nfs_put_lock_context(l_ctx);
 763                if (status < 0)
 764                        return status;
 765        }
 766
 767        /* NOTE: special case
 768         *      If we're signalled while cleaning up locks on process exit, we
 769         *      still need to complete the unlock.
 770         */
 771        /*
 772         * Use local locking if mounted with "-onolock" or with appropriate
 773         * "-olocal_lock="
 774         */
 775        if (!is_local)
 776                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 777        else
 778                status = do_vfs_lock(filp, fl);
 779        return status;
 780}
 781
 782static int
 783is_time_granular(struct timespec *ts) {
 784        return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
 785}
 786
 787static int
 788do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
 789{
 790        struct inode *inode = filp->f_mapping->host;
 791        int status;
 792
 793        /*
 794         * Flush all pending writes before doing anything
 795         * with locks..
 796         */
 797        status = nfs_sync_mapping(filp->f_mapping);
 798        if (status != 0)
 799                goto out;
 800
 801        /*
 802         * Use local locking if mounted with "-onolock" or with appropriate
 803         * "-olocal_lock="
 804         */
 805        if (!is_local)
 806                status = NFS_PROTO(inode)->lock(filp, cmd, fl);
 807        else
 808                status = do_vfs_lock(filp, fl);
 809        if (status < 0)
 810                goto out;
 811
 812        /*
 813         * Revalidate the cache if the server has time stamps granular
 814         * enough to detect subsecond changes.  Otherwise, clear the
 815         * cache to prevent missing any changes.
 816         *
 817         * This makes locking act as a cache coherency point.
 818         */
 819        nfs_sync_mapping(filp->f_mapping);
 820        if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
 821                if (is_time_granular(&NFS_SERVER(inode)->time_delta))
 822                        __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 823                else
 824                        nfs_zap_caches(inode);
 825        }
 826out:
 827        return status;
 828}
 829
 830/*
 831 * Lock a (portion of) a file
 832 */
 833int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
 834{
 835        struct inode *inode = filp->f_mapping->host;
 836        int ret = -ENOLCK;
 837        int is_local = 0;
 838
 839        dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
 840                        filp, fl->fl_type, fl->fl_flags,
 841                        (long long)fl->fl_start, (long long)fl->fl_end);
 842
 843        nfs_inc_stats(inode, NFSIOS_VFSLOCK);
 844
 845        /* No mandatory locks over NFS */
 846        if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
 847                goto out_err;
 848
 849        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
 850                is_local = 1;
 851
 852        if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
 853                ret = NFS_PROTO(inode)->lock_check_bounds(fl);
 854                if (ret < 0)
 855                        goto out_err;
 856        }
 857
 858        if (IS_GETLK(cmd))
 859                ret = do_getlk(filp, cmd, fl, is_local);
 860        else if (fl->fl_type == F_UNLCK)
 861                ret = do_unlk(filp, cmd, fl, is_local);
 862        else
 863                ret = do_setlk(filp, cmd, fl, is_local);
 864out_err:
 865        return ret;
 866}
 867EXPORT_SYMBOL_GPL(nfs_lock);
 868
 869/*
 870 * Lock a (portion of) a file
 871 */
 872int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
 873{
 874        struct inode *inode = filp->f_mapping->host;
 875        int is_local = 0;
 876
 877        dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
 878                        filp, fl->fl_type, fl->fl_flags);
 879
 880        if (!(fl->fl_flags & FL_FLOCK))
 881                return -ENOLCK;
 882
 883        /*
 884         * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
 885         * any standard. In principle we might be able to support LOCK_MAND
 886         * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
 887         * NFS code is not set up for it.
 888         */
 889        if (fl->fl_type & LOCK_MAND)
 890                return -EINVAL;
 891
 892        if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
 893                is_local = 1;
 894
 895        /* We're simulating flock() locks using posix locks on the server */
 896        if (fl->fl_type == F_UNLCK)
 897                return do_unlk(filp, cmd, fl, is_local);
 898        return do_setlk(filp, cmd, fl, is_local);
 899}
 900EXPORT_SYMBOL_GPL(nfs_flock);
 901
 902const struct file_operations nfs_file_operations = {
 903        .llseek         = nfs_file_llseek,
 904        .read_iter      = nfs_file_read,
 905        .write_iter     = nfs_file_write,
 906        .mmap           = nfs_file_mmap,
 907        .open           = nfs_file_open,
 908        .flush          = nfs_file_flush,
 909        .release        = nfs_file_release,
 910        .fsync          = nfs_file_fsync,
 911        .lock           = nfs_lock,
 912        .flock          = nfs_flock,
 913        .splice_read    = nfs_file_splice_read,
 914        .splice_write   = iter_file_splice_write,
 915        .check_flags    = nfs_check_flags,
 916        .setlease       = simple_nosetlease,
 917};
 918EXPORT_SYMBOL_GPL(nfs_file_operations);
 919