linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * journal.c
   5 *
   6 * Defines functions of journalling api
   7 *
   8 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2 of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public
  21 * License along with this program; if not, write to the
  22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  23 * Boston, MA 021110-1307, USA.
  24 */
  25
  26#include <linux/fs.h>
  27#include <linux/types.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/kthread.h>
  31#include <linux/time.h>
  32#include <linux/random.h>
  33#include <linux/delay.h>
  34
  35#include <cluster/masklog.h>
  36
  37#include "ocfs2.h"
  38
  39#include "alloc.h"
  40#include "blockcheck.h"
  41#include "dir.h"
  42#include "dlmglue.h"
  43#include "extent_map.h"
  44#include "heartbeat.h"
  45#include "inode.h"
  46#include "journal.h"
  47#include "localalloc.h"
  48#include "slot_map.h"
  49#include "super.h"
  50#include "sysfile.h"
  51#include "uptodate.h"
  52#include "quota.h"
  53#include "file.h"
  54#include "namei.h"
  55
  56#include "buffer_head_io.h"
  57#include "ocfs2_trace.h"
  58
  59DEFINE_SPINLOCK(trans_inc_lock);
  60
  61#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  62
  63static int ocfs2_force_read_journal(struct inode *inode);
  64static int ocfs2_recover_node(struct ocfs2_super *osb,
  65                              int node_num, int slot_num);
  66static int __ocfs2_recovery_thread(void *arg);
  67static int ocfs2_commit_cache(struct ocfs2_super *osb);
  68static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  69static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  70                                      int dirty, int replayed);
  71static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  72                                 int slot_num);
  73static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  74                                 int slot,
  75                                 enum ocfs2_orphan_reco_type orphan_reco_type);
  76static int ocfs2_commit_thread(void *arg);
  77static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  78                                            int slot_num,
  79                                            struct ocfs2_dinode *la_dinode,
  80                                            struct ocfs2_dinode *tl_dinode,
  81                                            struct ocfs2_quota_recovery *qrec,
  82                                            enum ocfs2_orphan_reco_type orphan_reco_type);
  83
  84static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  85{
  86        return __ocfs2_wait_on_mount(osb, 0);
  87}
  88
  89static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  90{
  91        return __ocfs2_wait_on_mount(osb, 1);
  92}
  93
  94/*
  95 * This replay_map is to track online/offline slots, so we could recover
  96 * offline slots during recovery and mount
  97 */
  98
  99enum ocfs2_replay_state {
 100        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
 101        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
 102        REPLAY_DONE             /* Replay was already queued */
 103};
 104
 105struct ocfs2_replay_map {
 106        unsigned int rm_slots;
 107        enum ocfs2_replay_state rm_state;
 108        unsigned char rm_replay_slots[0];
 109};
 110
 111static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
 112{
 113        if (!osb->replay_map)
 114                return;
 115
 116        /* If we've already queued the replay, we don't have any more to do */
 117        if (osb->replay_map->rm_state == REPLAY_DONE)
 118                return;
 119
 120        osb->replay_map->rm_state = state;
 121}
 122
 123int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 124{
 125        struct ocfs2_replay_map *replay_map;
 126        int i, node_num;
 127
 128        /* If replay map is already set, we don't do it again */
 129        if (osb->replay_map)
 130                return 0;
 131
 132        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 133                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 134
 135        if (!replay_map) {
 136                mlog_errno(-ENOMEM);
 137                return -ENOMEM;
 138        }
 139
 140        spin_lock(&osb->osb_lock);
 141
 142        replay_map->rm_slots = osb->max_slots;
 143        replay_map->rm_state = REPLAY_UNNEEDED;
 144
 145        /* set rm_replay_slots for offline slot(s) */
 146        for (i = 0; i < replay_map->rm_slots; i++) {
 147                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 148                        replay_map->rm_replay_slots[i] = 1;
 149        }
 150
 151        osb->replay_map = replay_map;
 152        spin_unlock(&osb->osb_lock);
 153        return 0;
 154}
 155
 156static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 157                enum ocfs2_orphan_reco_type orphan_reco_type)
 158{
 159        struct ocfs2_replay_map *replay_map = osb->replay_map;
 160        int i;
 161
 162        if (!replay_map)
 163                return;
 164
 165        if (replay_map->rm_state != REPLAY_NEEDED)
 166                return;
 167
 168        for (i = 0; i < replay_map->rm_slots; i++)
 169                if (replay_map->rm_replay_slots[i])
 170                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 171                                                        NULL, NULL,
 172                                                        orphan_reco_type);
 173        replay_map->rm_state = REPLAY_DONE;
 174}
 175
 176static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 177{
 178        struct ocfs2_replay_map *replay_map = osb->replay_map;
 179
 180        if (!osb->replay_map)
 181                return;
 182
 183        kfree(replay_map);
 184        osb->replay_map = NULL;
 185}
 186
 187int ocfs2_recovery_init(struct ocfs2_super *osb)
 188{
 189        struct ocfs2_recovery_map *rm;
 190
 191        mutex_init(&osb->recovery_lock);
 192        osb->disable_recovery = 0;
 193        osb->recovery_thread_task = NULL;
 194        init_waitqueue_head(&osb->recovery_event);
 195
 196        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 197                     osb->max_slots * sizeof(unsigned int),
 198                     GFP_KERNEL);
 199        if (!rm) {
 200                mlog_errno(-ENOMEM);
 201                return -ENOMEM;
 202        }
 203
 204        rm->rm_entries = (unsigned int *)((char *)rm +
 205                                          sizeof(struct ocfs2_recovery_map));
 206        osb->recovery_map = rm;
 207
 208        return 0;
 209}
 210
 211/* we can't grab the goofy sem lock from inside wait_event, so we use
 212 * memory barriers to make sure that we'll see the null task before
 213 * being woken up */
 214static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 215{
 216        mb();
 217        return osb->recovery_thread_task != NULL;
 218}
 219
 220void ocfs2_recovery_exit(struct ocfs2_super *osb)
 221{
 222        struct ocfs2_recovery_map *rm;
 223
 224        /* disable any new recovery threads and wait for any currently
 225         * running ones to exit. Do this before setting the vol_state. */
 226        mutex_lock(&osb->recovery_lock);
 227        osb->disable_recovery = 1;
 228        mutex_unlock(&osb->recovery_lock);
 229        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 230
 231        /* At this point, we know that no more recovery threads can be
 232         * launched, so wait for any recovery completion work to
 233         * complete. */
 234        flush_workqueue(osb->ocfs2_wq);
 235
 236        /*
 237         * Now that recovery is shut down, and the osb is about to be
 238         * freed,  the osb_lock is not taken here.
 239         */
 240        rm = osb->recovery_map;
 241        /* XXX: Should we bug if there are dirty entries? */
 242
 243        kfree(rm);
 244}
 245
 246static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 247                                     unsigned int node_num)
 248{
 249        int i;
 250        struct ocfs2_recovery_map *rm = osb->recovery_map;
 251
 252        assert_spin_locked(&osb->osb_lock);
 253
 254        for (i = 0; i < rm->rm_used; i++) {
 255                if (rm->rm_entries[i] == node_num)
 256                        return 1;
 257        }
 258
 259        return 0;
 260}
 261
 262/* Behaves like test-and-set.  Returns the previous value */
 263static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 264                                  unsigned int node_num)
 265{
 266        struct ocfs2_recovery_map *rm = osb->recovery_map;
 267
 268        spin_lock(&osb->osb_lock);
 269        if (__ocfs2_recovery_map_test(osb, node_num)) {
 270                spin_unlock(&osb->osb_lock);
 271                return 1;
 272        }
 273
 274        /* XXX: Can this be exploited? Not from o2dlm... */
 275        BUG_ON(rm->rm_used >= osb->max_slots);
 276
 277        rm->rm_entries[rm->rm_used] = node_num;
 278        rm->rm_used++;
 279        spin_unlock(&osb->osb_lock);
 280
 281        return 0;
 282}
 283
 284static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 285                                     unsigned int node_num)
 286{
 287        int i;
 288        struct ocfs2_recovery_map *rm = osb->recovery_map;
 289
 290        spin_lock(&osb->osb_lock);
 291
 292        for (i = 0; i < rm->rm_used; i++) {
 293                if (rm->rm_entries[i] == node_num)
 294                        break;
 295        }
 296
 297        if (i < rm->rm_used) {
 298                /* XXX: be careful with the pointer math */
 299                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 300                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 301                rm->rm_used--;
 302        }
 303
 304        spin_unlock(&osb->osb_lock);
 305}
 306
 307static int ocfs2_commit_cache(struct ocfs2_super *osb)
 308{
 309        int status = 0;
 310        unsigned int flushed;
 311        struct ocfs2_journal *journal = NULL;
 312
 313        journal = osb->journal;
 314
 315        /* Flush all pending commits and checkpoint the journal. */
 316        down_write(&journal->j_trans_barrier);
 317
 318        flushed = atomic_read(&journal->j_num_trans);
 319        trace_ocfs2_commit_cache_begin(flushed);
 320        if (flushed == 0) {
 321                up_write(&journal->j_trans_barrier);
 322                goto finally;
 323        }
 324
 325        jbd2_journal_lock_updates(journal->j_journal);
 326        status = jbd2_journal_flush(journal->j_journal);
 327        jbd2_journal_unlock_updates(journal->j_journal);
 328        if (status < 0) {
 329                up_write(&journal->j_trans_barrier);
 330                mlog_errno(status);
 331                goto finally;
 332        }
 333
 334        ocfs2_inc_trans_id(journal);
 335
 336        flushed = atomic_read(&journal->j_num_trans);
 337        atomic_set(&journal->j_num_trans, 0);
 338        up_write(&journal->j_trans_barrier);
 339
 340        trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 341
 342        ocfs2_wake_downconvert_thread(osb);
 343        wake_up(&journal->j_checkpointed);
 344finally:
 345        return status;
 346}
 347
 348handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 349{
 350        journal_t *journal = osb->journal->j_journal;
 351        handle_t *handle;
 352
 353        BUG_ON(!osb || !osb->journal->j_journal);
 354
 355        if (ocfs2_is_hard_readonly(osb))
 356                return ERR_PTR(-EROFS);
 357
 358        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 359        BUG_ON(max_buffs <= 0);
 360
 361        /* Nested transaction? Just return the handle... */
 362        if (journal_current_handle())
 363                return jbd2_journal_start(journal, max_buffs);
 364
 365        sb_start_intwrite(osb->sb);
 366
 367        down_read(&osb->journal->j_trans_barrier);
 368
 369        handle = jbd2_journal_start(journal, max_buffs);
 370        if (IS_ERR(handle)) {
 371                up_read(&osb->journal->j_trans_barrier);
 372                sb_end_intwrite(osb->sb);
 373
 374                mlog_errno(PTR_ERR(handle));
 375
 376                if (is_journal_aborted(journal)) {
 377                        ocfs2_abort(osb->sb, "Detected aborted journal\n");
 378                        handle = ERR_PTR(-EROFS);
 379                }
 380        } else {
 381                if (!ocfs2_mount_local(osb))
 382                        atomic_inc(&(osb->journal->j_num_trans));
 383        }
 384
 385        return handle;
 386}
 387
 388int ocfs2_commit_trans(struct ocfs2_super *osb,
 389                       handle_t *handle)
 390{
 391        int ret, nested;
 392        struct ocfs2_journal *journal = osb->journal;
 393
 394        BUG_ON(!handle);
 395
 396        nested = handle->h_ref > 1;
 397        ret = jbd2_journal_stop(handle);
 398        if (ret < 0)
 399                mlog_errno(ret);
 400
 401        if (!nested) {
 402                up_read(&journal->j_trans_barrier);
 403                sb_end_intwrite(osb->sb);
 404        }
 405
 406        return ret;
 407}
 408
 409/*
 410 * 'nblocks' is what you want to add to the current transaction.
 411 *
 412 * This might call jbd2_journal_restart() which will commit dirty buffers
 413 * and then restart the transaction. Before calling
 414 * ocfs2_extend_trans(), any changed blocks should have been
 415 * dirtied. After calling it, all blocks which need to be changed must
 416 * go through another set of journal_access/journal_dirty calls.
 417 *
 418 * WARNING: This will not release any semaphores or disk locks taken
 419 * during the transaction, so make sure they were taken *before*
 420 * start_trans or we'll have ordering deadlocks.
 421 *
 422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 423 * good because transaction ids haven't yet been recorded on the
 424 * cluster locks associated with this handle.
 425 */
 426int ocfs2_extend_trans(handle_t *handle, int nblocks)
 427{
 428        int status, old_nblocks;
 429
 430        BUG_ON(!handle);
 431        BUG_ON(nblocks < 0);
 432
 433        if (!nblocks)
 434                return 0;
 435
 436        old_nblocks = handle->h_buffer_credits;
 437
 438        trace_ocfs2_extend_trans(old_nblocks, nblocks);
 439
 440#ifdef CONFIG_OCFS2_DEBUG_FS
 441        status = 1;
 442#else
 443        status = jbd2_journal_extend(handle, nblocks);
 444        if (status < 0) {
 445                mlog_errno(status);
 446                goto bail;
 447        }
 448#endif
 449
 450        if (status > 0) {
 451                trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 452                status = jbd2_journal_restart(handle,
 453                                              old_nblocks + nblocks);
 454                if (status < 0) {
 455                        mlog_errno(status);
 456                        goto bail;
 457                }
 458        }
 459
 460        status = 0;
 461bail:
 462        return status;
 463}
 464
 465/*
 466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 467 * If that fails, restart the transaction & regain write access for the
 468 * buffer head which is used for metadata modifications.
 469 * Taken from Ext4: extend_or_restart_transaction()
 470 */
 471int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 472{
 473        int status, old_nblks;
 474
 475        BUG_ON(!handle);
 476
 477        old_nblks = handle->h_buffer_credits;
 478        trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 479
 480        if (old_nblks < thresh)
 481                return 0;
 482
 483        status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
 484        if (status < 0) {
 485                mlog_errno(status);
 486                goto bail;
 487        }
 488
 489        if (status > 0) {
 490                status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 491                if (status < 0)
 492                        mlog_errno(status);
 493        }
 494
 495bail:
 496        return status;
 497}
 498
 499
 500struct ocfs2_triggers {
 501        struct jbd2_buffer_trigger_type ot_triggers;
 502        int                             ot_offset;
 503};
 504
 505static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 506{
 507        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 508}
 509
 510static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 511                                 struct buffer_head *bh,
 512                                 void *data, size_t size)
 513{
 514        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 515
 516        /*
 517         * We aren't guaranteed to have the superblock here, so we
 518         * must unconditionally compute the ecc data.
 519         * __ocfs2_journal_access() will only set the triggers if
 520         * metaecc is enabled.
 521         */
 522        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 523}
 524
 525/*
 526 * Quota blocks have their own trigger because the struct ocfs2_block_check
 527 * offset depends on the blocksize.
 528 */
 529static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 530                                 struct buffer_head *bh,
 531                                 void *data, size_t size)
 532{
 533        struct ocfs2_disk_dqtrailer *dqt =
 534                ocfs2_block_dqtrailer(size, data);
 535
 536        /*
 537         * We aren't guaranteed to have the superblock here, so we
 538         * must unconditionally compute the ecc data.
 539         * __ocfs2_journal_access() will only set the triggers if
 540         * metaecc is enabled.
 541         */
 542        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 543}
 544
 545/*
 546 * Directory blocks also have their own trigger because the
 547 * struct ocfs2_block_check offset depends on the blocksize.
 548 */
 549static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 550                                 struct buffer_head *bh,
 551                                 void *data, size_t size)
 552{
 553        struct ocfs2_dir_block_trailer *trailer =
 554                ocfs2_dir_trailer_from_size(size, data);
 555
 556        /*
 557         * We aren't guaranteed to have the superblock here, so we
 558         * must unconditionally compute the ecc data.
 559         * __ocfs2_journal_access() will only set the triggers if
 560         * metaecc is enabled.
 561         */
 562        ocfs2_block_check_compute(data, size, &trailer->db_check);
 563}
 564
 565static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 566                                struct buffer_head *bh)
 567{
 568        mlog(ML_ERROR,
 569             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 570             "bh->b_blocknr = %llu\n",
 571             (unsigned long)bh,
 572             (unsigned long long)bh->b_blocknr);
 573
 574        ocfs2_error(bh->b_bdev->bd_super,
 575                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 576}
 577
 578static struct ocfs2_triggers di_triggers = {
 579        .ot_triggers = {
 580                .t_frozen = ocfs2_frozen_trigger,
 581                .t_abort = ocfs2_abort_trigger,
 582        },
 583        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 584};
 585
 586static struct ocfs2_triggers eb_triggers = {
 587        .ot_triggers = {
 588                .t_frozen = ocfs2_frozen_trigger,
 589                .t_abort = ocfs2_abort_trigger,
 590        },
 591        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 592};
 593
 594static struct ocfs2_triggers rb_triggers = {
 595        .ot_triggers = {
 596                .t_frozen = ocfs2_frozen_trigger,
 597                .t_abort = ocfs2_abort_trigger,
 598        },
 599        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 600};
 601
 602static struct ocfs2_triggers gd_triggers = {
 603        .ot_triggers = {
 604                .t_frozen = ocfs2_frozen_trigger,
 605                .t_abort = ocfs2_abort_trigger,
 606        },
 607        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 608};
 609
 610static struct ocfs2_triggers db_triggers = {
 611        .ot_triggers = {
 612                .t_frozen = ocfs2_db_frozen_trigger,
 613                .t_abort = ocfs2_abort_trigger,
 614        },
 615};
 616
 617static struct ocfs2_triggers xb_triggers = {
 618        .ot_triggers = {
 619                .t_frozen = ocfs2_frozen_trigger,
 620                .t_abort = ocfs2_abort_trigger,
 621        },
 622        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 623};
 624
 625static struct ocfs2_triggers dq_triggers = {
 626        .ot_triggers = {
 627                .t_frozen = ocfs2_dq_frozen_trigger,
 628                .t_abort = ocfs2_abort_trigger,
 629        },
 630};
 631
 632static struct ocfs2_triggers dr_triggers = {
 633        .ot_triggers = {
 634                .t_frozen = ocfs2_frozen_trigger,
 635                .t_abort = ocfs2_abort_trigger,
 636        },
 637        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 638};
 639
 640static struct ocfs2_triggers dl_triggers = {
 641        .ot_triggers = {
 642                .t_frozen = ocfs2_frozen_trigger,
 643                .t_abort = ocfs2_abort_trigger,
 644        },
 645        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 646};
 647
 648static int __ocfs2_journal_access(handle_t *handle,
 649                                  struct ocfs2_caching_info *ci,
 650                                  struct buffer_head *bh,
 651                                  struct ocfs2_triggers *triggers,
 652                                  int type)
 653{
 654        int status;
 655        struct ocfs2_super *osb =
 656                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 657
 658        BUG_ON(!ci || !ci->ci_ops);
 659        BUG_ON(!handle);
 660        BUG_ON(!bh);
 661
 662        trace_ocfs2_journal_access(
 663                (unsigned long long)ocfs2_metadata_cache_owner(ci),
 664                (unsigned long long)bh->b_blocknr, type, bh->b_size);
 665
 666        /* we can safely remove this assertion after testing. */
 667        if (!buffer_uptodate(bh)) {
 668                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 669                mlog(ML_ERROR, "b_blocknr=%llu\n",
 670                     (unsigned long long)bh->b_blocknr);
 671
 672                lock_buffer(bh);
 673                /*
 674                 * A previous attempt to write this buffer head failed.
 675                 * Nothing we can do but to retry the write and hope for
 676                 * the best.
 677                 */
 678                if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 679                        clear_buffer_write_io_error(bh);
 680                        set_buffer_uptodate(bh);
 681                }
 682
 683                if (!buffer_uptodate(bh)) {
 684                        unlock_buffer(bh);
 685                        return -EIO;
 686                }
 687                unlock_buffer(bh);
 688        }
 689
 690        /* Set the current transaction information on the ci so
 691         * that the locking code knows whether it can drop it's locks
 692         * on this ci or not. We're protected from the commit
 693         * thread updating the current transaction id until
 694         * ocfs2_commit_trans() because ocfs2_start_trans() took
 695         * j_trans_barrier for us. */
 696        ocfs2_set_ci_lock_trans(osb->journal, ci);
 697
 698        ocfs2_metadata_cache_io_lock(ci);
 699        switch (type) {
 700        case OCFS2_JOURNAL_ACCESS_CREATE:
 701        case OCFS2_JOURNAL_ACCESS_WRITE:
 702                status = jbd2_journal_get_write_access(handle, bh);
 703                break;
 704
 705        case OCFS2_JOURNAL_ACCESS_UNDO:
 706                status = jbd2_journal_get_undo_access(handle, bh);
 707                break;
 708
 709        default:
 710                status = -EINVAL;
 711                mlog(ML_ERROR, "Unknown access type!\n");
 712        }
 713        if (!status && ocfs2_meta_ecc(osb) && triggers)
 714                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 715        ocfs2_metadata_cache_io_unlock(ci);
 716
 717        if (status < 0)
 718                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 719                     status, type);
 720
 721        return status;
 722}
 723
 724int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 725                            struct buffer_head *bh, int type)
 726{
 727        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 728}
 729
 730int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 731                            struct buffer_head *bh, int type)
 732{
 733        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 734}
 735
 736int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 737                            struct buffer_head *bh, int type)
 738{
 739        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 740                                      type);
 741}
 742
 743int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 744                            struct buffer_head *bh, int type)
 745{
 746        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 747}
 748
 749int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 750                            struct buffer_head *bh, int type)
 751{
 752        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 753}
 754
 755int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 756                            struct buffer_head *bh, int type)
 757{
 758        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 759}
 760
 761int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 762                            struct buffer_head *bh, int type)
 763{
 764        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 765}
 766
 767int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 768                            struct buffer_head *bh, int type)
 769{
 770        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 771}
 772
 773int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 774                            struct buffer_head *bh, int type)
 775{
 776        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 777}
 778
 779int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 780                         struct buffer_head *bh, int type)
 781{
 782        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 783}
 784
 785void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 786{
 787        int status;
 788
 789        trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 790
 791        status = jbd2_journal_dirty_metadata(handle, bh);
 792        if (status) {
 793                mlog_errno(status);
 794                if (!is_handle_aborted(handle)) {
 795                        journal_t *journal = handle->h_transaction->t_journal;
 796                        struct super_block *sb = bh->b_bdev->bd_super;
 797
 798                        mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 799                                        "Aborting transaction and journal.\n");
 800                        handle->h_err = status;
 801                        jbd2_journal_abort_handle(handle);
 802                        jbd2_journal_abort(journal, status);
 803                        ocfs2_abort(sb, "Journal already aborted.\n");
 804                }
 805        }
 806}
 807
 808#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 809
 810void ocfs2_set_journal_params(struct ocfs2_super *osb)
 811{
 812        journal_t *journal = osb->journal->j_journal;
 813        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 814
 815        if (osb->osb_commit_interval)
 816                commit_interval = osb->osb_commit_interval;
 817
 818        write_lock(&journal->j_state_lock);
 819        journal->j_commit_interval = commit_interval;
 820        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 821                journal->j_flags |= JBD2_BARRIER;
 822        else
 823                journal->j_flags &= ~JBD2_BARRIER;
 824        write_unlock(&journal->j_state_lock);
 825}
 826
 827int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 828{
 829        int status = -1;
 830        struct inode *inode = NULL; /* the journal inode */
 831        journal_t *j_journal = NULL;
 832        struct ocfs2_dinode *di = NULL;
 833        struct buffer_head *bh = NULL;
 834        struct ocfs2_super *osb;
 835        int inode_lock = 0;
 836
 837        BUG_ON(!journal);
 838
 839        osb = journal->j_osb;
 840
 841        /* already have the inode for our journal */
 842        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 843                                            osb->slot_num);
 844        if (inode == NULL) {
 845                status = -EACCES;
 846                mlog_errno(status);
 847                goto done;
 848        }
 849        if (is_bad_inode(inode)) {
 850                mlog(ML_ERROR, "access error (bad inode)\n");
 851                iput(inode);
 852                inode = NULL;
 853                status = -EACCES;
 854                goto done;
 855        }
 856
 857        SET_INODE_JOURNAL(inode);
 858        OCFS2_I(inode)->ip_open_count++;
 859
 860        /* Skip recovery waits here - journal inode metadata never
 861         * changes in a live cluster so it can be considered an
 862         * exception to the rule. */
 863        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 864        if (status < 0) {
 865                if (status != -ERESTARTSYS)
 866                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 867                goto done;
 868        }
 869
 870        inode_lock = 1;
 871        di = (struct ocfs2_dinode *)bh->b_data;
 872
 873        if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 874                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 875                     i_size_read(inode));
 876                status = -EINVAL;
 877                goto done;
 878        }
 879
 880        trace_ocfs2_journal_init(i_size_read(inode),
 881                                 (unsigned long long)inode->i_blocks,
 882                                 OCFS2_I(inode)->ip_clusters);
 883
 884        /* call the kernels journal init function now */
 885        j_journal = jbd2_journal_init_inode(inode);
 886        if (j_journal == NULL) {
 887                mlog(ML_ERROR, "Linux journal layer error\n");
 888                status = -EINVAL;
 889                goto done;
 890        }
 891
 892        trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
 893
 894        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 895                  OCFS2_JOURNAL_DIRTY_FL);
 896
 897        journal->j_journal = j_journal;
 898        journal->j_inode = inode;
 899        journal->j_bh = bh;
 900
 901        ocfs2_set_journal_params(osb);
 902
 903        journal->j_state = OCFS2_JOURNAL_LOADED;
 904
 905        status = 0;
 906done:
 907        if (status < 0) {
 908                if (inode_lock)
 909                        ocfs2_inode_unlock(inode, 1);
 910                brelse(bh);
 911                if (inode) {
 912                        OCFS2_I(inode)->ip_open_count--;
 913                        iput(inode);
 914                }
 915        }
 916
 917        return status;
 918}
 919
 920static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 921{
 922        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 923}
 924
 925static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 926{
 927        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 928}
 929
 930static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 931                                      int dirty, int replayed)
 932{
 933        int status;
 934        unsigned int flags;
 935        struct ocfs2_journal *journal = osb->journal;
 936        struct buffer_head *bh = journal->j_bh;
 937        struct ocfs2_dinode *fe;
 938
 939        fe = (struct ocfs2_dinode *)bh->b_data;
 940
 941        /* The journal bh on the osb always comes from ocfs2_journal_init()
 942         * and was validated there inside ocfs2_inode_lock_full().  It's a
 943         * code bug if we mess it up. */
 944        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 945
 946        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 947        if (dirty)
 948                flags |= OCFS2_JOURNAL_DIRTY_FL;
 949        else
 950                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 951        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 952
 953        if (replayed)
 954                ocfs2_bump_recovery_generation(fe);
 955
 956        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 957        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 958        if (status < 0)
 959                mlog_errno(status);
 960
 961        return status;
 962}
 963
 964/*
 965 * If the journal has been kmalloc'd it needs to be freed after this
 966 * call.
 967 */
 968void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 969{
 970        struct ocfs2_journal *journal = NULL;
 971        int status = 0;
 972        struct inode *inode = NULL;
 973        int num_running_trans = 0;
 974
 975        BUG_ON(!osb);
 976
 977        journal = osb->journal;
 978        if (!journal)
 979                goto done;
 980
 981        inode = journal->j_inode;
 982
 983        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 984                goto done;
 985
 986        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 987        if (!igrab(inode))
 988                BUG();
 989
 990        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 991        trace_ocfs2_journal_shutdown(num_running_trans);
 992
 993        /* Do a commit_cache here. It will flush our journal, *and*
 994         * release any locks that are still held.
 995         * set the SHUTDOWN flag and release the trans lock.
 996         * the commit thread will take the trans lock for us below. */
 997        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 998
 999        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1000         * drop the trans_lock (which we want to hold until we
1001         * completely destroy the journal. */
1002        if (osb->commit_task) {
1003                /* Wait for the commit thread */
1004                trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1005                kthread_stop(osb->commit_task);
1006                osb->commit_task = NULL;
1007        }
1008
1009        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1010
1011        if (ocfs2_mount_local(osb)) {
1012                jbd2_journal_lock_updates(journal->j_journal);
1013                status = jbd2_journal_flush(journal->j_journal);
1014                jbd2_journal_unlock_updates(journal->j_journal);
1015                if (status < 0)
1016                        mlog_errno(status);
1017        }
1018
1019        if (status == 0) {
1020                /*
1021                 * Do not toggle if flush was unsuccessful otherwise
1022                 * will leave dirty metadata in a "clean" journal
1023                 */
1024                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1025                if (status < 0)
1026                        mlog_errno(status);
1027        }
1028
1029        /* Shutdown the kernel journal system */
1030        jbd2_journal_destroy(journal->j_journal);
1031        journal->j_journal = NULL;
1032
1033        OCFS2_I(inode)->ip_open_count--;
1034
1035        /* unlock our journal */
1036        ocfs2_inode_unlock(inode, 1);
1037
1038        brelse(journal->j_bh);
1039        journal->j_bh = NULL;
1040
1041        journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043//      up_write(&journal->j_trans_barrier);
1044done:
1045        iput(inode);
1046}
1047
1048static void ocfs2_clear_journal_error(struct super_block *sb,
1049                                      journal_t *journal,
1050                                      int slot)
1051{
1052        int olderr;
1053
1054        olderr = jbd2_journal_errno(journal);
1055        if (olderr) {
1056                mlog(ML_ERROR, "File system error %d recorded in "
1057                     "journal %u.\n", olderr, slot);
1058                mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059                     sb->s_id);
1060
1061                jbd2_journal_ack_err(journal);
1062                jbd2_journal_clear_err(journal);
1063        }
1064}
1065
1066int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067{
1068        int status = 0;
1069        struct ocfs2_super *osb;
1070
1071        BUG_ON(!journal);
1072
1073        osb = journal->j_osb;
1074
1075        status = jbd2_journal_load(journal->j_journal);
1076        if (status < 0) {
1077                mlog(ML_ERROR, "Failed to load journal!\n");
1078                goto done;
1079        }
1080
1081        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1084        if (status < 0) {
1085                mlog_errno(status);
1086                goto done;
1087        }
1088
1089        /* Launch the commit thread */
1090        if (!local) {
1091                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1092                                "ocfs2cmt-%s", osb->uuid_str);
1093                if (IS_ERR(osb->commit_task)) {
1094                        status = PTR_ERR(osb->commit_task);
1095                        osb->commit_task = NULL;
1096                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1097                             "error=%d", status);
1098                        goto done;
1099                }
1100        } else
1101                osb->commit_task = NULL;
1102
1103done:
1104        return status;
1105}
1106
1107
1108/* 'full' flag tells us whether we clear out all blocks or if we just
1109 * mark the journal clean */
1110int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1111{
1112        int status;
1113
1114        BUG_ON(!journal);
1115
1116        status = jbd2_journal_wipe(journal->j_journal, full);
1117        if (status < 0) {
1118                mlog_errno(status);
1119                goto bail;
1120        }
1121
1122        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1123        if (status < 0)
1124                mlog_errno(status);
1125
1126bail:
1127        return status;
1128}
1129
1130static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1131{
1132        int empty;
1133        struct ocfs2_recovery_map *rm = osb->recovery_map;
1134
1135        spin_lock(&osb->osb_lock);
1136        empty = (rm->rm_used == 0);
1137        spin_unlock(&osb->osb_lock);
1138
1139        return empty;
1140}
1141
1142void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1143{
1144        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1145}
1146
1147/*
1148 * JBD Might read a cached version of another nodes journal file. We
1149 * don't want this as this file changes often and we get no
1150 * notification on those changes. The only way to be sure that we've
1151 * got the most up to date version of those blocks then is to force
1152 * read them off disk. Just searching through the buffer cache won't
1153 * work as there may be pages backing this file which are still marked
1154 * up to date. We know things can't change on this file underneath us
1155 * as we have the lock by now :)
1156 */
1157static int ocfs2_force_read_journal(struct inode *inode)
1158{
1159        int status = 0;
1160        int i;
1161        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1162#define CONCURRENT_JOURNAL_FILL 32ULL
1163        struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1164
1165        memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1166
1167        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1168        v_blkno = 0;
1169        while (v_blkno < num_blocks) {
1170                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1171                                                     &p_blkno, &p_blocks, NULL);
1172                if (status < 0) {
1173                        mlog_errno(status);
1174                        goto bail;
1175                }
1176
1177                if (p_blocks > CONCURRENT_JOURNAL_FILL)
1178                        p_blocks = CONCURRENT_JOURNAL_FILL;
1179
1180                /* We are reading journal data which should not
1181                 * be put in the uptodate cache */
1182                status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1183                                                p_blkno, p_blocks, bhs);
1184                if (status < 0) {
1185                        mlog_errno(status);
1186                        goto bail;
1187                }
1188
1189                for(i = 0; i < p_blocks; i++) {
1190                        brelse(bhs[i]);
1191                        bhs[i] = NULL;
1192                }
1193
1194                v_blkno += p_blocks;
1195        }
1196
1197bail:
1198        for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1199                brelse(bhs[i]);
1200        return status;
1201}
1202
1203struct ocfs2_la_recovery_item {
1204        struct list_head        lri_list;
1205        int                     lri_slot;
1206        struct ocfs2_dinode     *lri_la_dinode;
1207        struct ocfs2_dinode     *lri_tl_dinode;
1208        struct ocfs2_quota_recovery *lri_qrec;
1209        enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1210};
1211
1212/* Does the second half of the recovery process. By this point, the
1213 * node is marked clean and can actually be considered recovered,
1214 * hence it's no longer in the recovery map, but there's still some
1215 * cleanup we can do which shouldn't happen within the recovery thread
1216 * as locking in that context becomes very difficult if we are to take
1217 * recovering nodes into account.
1218 *
1219 * NOTE: This function can and will sleep on recovery of other nodes
1220 * during cluster locking, just like any other ocfs2 process.
1221 */
1222void ocfs2_complete_recovery(struct work_struct *work)
1223{
1224        int ret = 0;
1225        struct ocfs2_journal *journal =
1226                container_of(work, struct ocfs2_journal, j_recovery_work);
1227        struct ocfs2_super *osb = journal->j_osb;
1228        struct ocfs2_dinode *la_dinode, *tl_dinode;
1229        struct ocfs2_la_recovery_item *item, *n;
1230        struct ocfs2_quota_recovery *qrec;
1231        enum ocfs2_orphan_reco_type orphan_reco_type;
1232        LIST_HEAD(tmp_la_list);
1233
1234        trace_ocfs2_complete_recovery(
1235                (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1236
1237        spin_lock(&journal->j_lock);
1238        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1239        spin_unlock(&journal->j_lock);
1240
1241        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1242                list_del_init(&item->lri_list);
1243
1244                ocfs2_wait_on_quotas(osb);
1245
1246                la_dinode = item->lri_la_dinode;
1247                tl_dinode = item->lri_tl_dinode;
1248                qrec = item->lri_qrec;
1249                orphan_reco_type = item->lri_orphan_reco_type;
1250
1251                trace_ocfs2_complete_recovery_slot(item->lri_slot,
1252                        la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1253                        tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1254                        qrec);
1255
1256                if (la_dinode) {
1257                        ret = ocfs2_complete_local_alloc_recovery(osb,
1258                                                                  la_dinode);
1259                        if (ret < 0)
1260                                mlog_errno(ret);
1261
1262                        kfree(la_dinode);
1263                }
1264
1265                if (tl_dinode) {
1266                        ret = ocfs2_complete_truncate_log_recovery(osb,
1267                                                                   tl_dinode);
1268                        if (ret < 0)
1269                                mlog_errno(ret);
1270
1271                        kfree(tl_dinode);
1272                }
1273
1274                ret = ocfs2_recover_orphans(osb, item->lri_slot,
1275                                orphan_reco_type);
1276                if (ret < 0)
1277                        mlog_errno(ret);
1278
1279                if (qrec) {
1280                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1281                                                          item->lri_slot);
1282                        if (ret < 0)
1283                                mlog_errno(ret);
1284                        /* Recovery info is already freed now */
1285                }
1286
1287                kfree(item);
1288        }
1289
1290        trace_ocfs2_complete_recovery_end(ret);
1291}
1292
1293/* NOTE: This function always eats your references to la_dinode and
1294 * tl_dinode, either manually on error, or by passing them to
1295 * ocfs2_complete_recovery */
1296static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1297                                            int slot_num,
1298                                            struct ocfs2_dinode *la_dinode,
1299                                            struct ocfs2_dinode *tl_dinode,
1300                                            struct ocfs2_quota_recovery *qrec,
1301                                            enum ocfs2_orphan_reco_type orphan_reco_type)
1302{
1303        struct ocfs2_la_recovery_item *item;
1304
1305        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1306        if (!item) {
1307                /* Though we wish to avoid it, we are in fact safe in
1308                 * skipping local alloc cleanup as fsck.ocfs2 is more
1309                 * than capable of reclaiming unused space. */
1310                kfree(la_dinode);
1311                kfree(tl_dinode);
1312
1313                if (qrec)
1314                        ocfs2_free_quota_recovery(qrec);
1315
1316                mlog_errno(-ENOMEM);
1317                return;
1318        }
1319
1320        INIT_LIST_HEAD(&item->lri_list);
1321        item->lri_la_dinode = la_dinode;
1322        item->lri_slot = slot_num;
1323        item->lri_tl_dinode = tl_dinode;
1324        item->lri_qrec = qrec;
1325        item->lri_orphan_reco_type = orphan_reco_type;
1326
1327        spin_lock(&journal->j_lock);
1328        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1329        queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1330        spin_unlock(&journal->j_lock);
1331}
1332
1333/* Called by the mount code to queue recovery the last part of
1334 * recovery for it's own and offline slot(s). */
1335void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1336{
1337        struct ocfs2_journal *journal = osb->journal;
1338
1339        if (ocfs2_is_hard_readonly(osb))
1340                return;
1341
1342        /* No need to queue up our truncate_log as regular cleanup will catch
1343         * that */
1344        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1345                                        osb->local_alloc_copy, NULL, NULL,
1346                                        ORPHAN_NEED_TRUNCATE);
1347        ocfs2_schedule_truncate_log_flush(osb, 0);
1348
1349        osb->local_alloc_copy = NULL;
1350        osb->dirty = 0;
1351
1352        /* queue to recover orphan slots for all offline slots */
1353        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1354        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1355        ocfs2_free_replay_slots(osb);
1356}
1357
1358void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1359{
1360        if (osb->quota_rec) {
1361                ocfs2_queue_recovery_completion(osb->journal,
1362                                                osb->slot_num,
1363                                                NULL,
1364                                                NULL,
1365                                                osb->quota_rec,
1366                                                ORPHAN_NEED_TRUNCATE);
1367                osb->quota_rec = NULL;
1368        }
1369}
1370
1371static int __ocfs2_recovery_thread(void *arg)
1372{
1373        int status, node_num, slot_num;
1374        struct ocfs2_super *osb = arg;
1375        struct ocfs2_recovery_map *rm = osb->recovery_map;
1376        int *rm_quota = NULL;
1377        int rm_quota_used = 0, i;
1378        struct ocfs2_quota_recovery *qrec;
1379
1380        status = ocfs2_wait_on_mount(osb);
1381        if (status < 0) {
1382                goto bail;
1383        }
1384
1385        rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1386        if (!rm_quota) {
1387                status = -ENOMEM;
1388                goto bail;
1389        }
1390restart:
1391        status = ocfs2_super_lock(osb, 1);
1392        if (status < 0) {
1393                mlog_errno(status);
1394                goto bail;
1395        }
1396
1397        status = ocfs2_compute_replay_slots(osb);
1398        if (status < 0)
1399                mlog_errno(status);
1400
1401        /* queue recovery for our own slot */
1402        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1403                                        NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1404
1405        spin_lock(&osb->osb_lock);
1406        while (rm->rm_used) {
1407                /* It's always safe to remove entry zero, as we won't
1408                 * clear it until ocfs2_recover_node() has succeeded. */
1409                node_num = rm->rm_entries[0];
1410                spin_unlock(&osb->osb_lock);
1411                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1412                trace_ocfs2_recovery_thread_node(node_num, slot_num);
1413                if (slot_num == -ENOENT) {
1414                        status = 0;
1415                        goto skip_recovery;
1416                }
1417
1418                /* It is a bit subtle with quota recovery. We cannot do it
1419                 * immediately because we have to obtain cluster locks from
1420                 * quota files and we also don't want to just skip it because
1421                 * then quota usage would be out of sync until some node takes
1422                 * the slot. So we remember which nodes need quota recovery
1423                 * and when everything else is done, we recover quotas. */
1424                for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1425                if (i == rm_quota_used)
1426                        rm_quota[rm_quota_used++] = slot_num;
1427
1428                status = ocfs2_recover_node(osb, node_num, slot_num);
1429skip_recovery:
1430                if (!status) {
1431                        ocfs2_recovery_map_clear(osb, node_num);
1432                } else {
1433                        mlog(ML_ERROR,
1434                             "Error %d recovering node %d on device (%u,%u)!\n",
1435                             status, node_num,
1436                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1437                        mlog(ML_ERROR, "Volume requires unmount.\n");
1438                }
1439
1440                spin_lock(&osb->osb_lock);
1441        }
1442        spin_unlock(&osb->osb_lock);
1443        trace_ocfs2_recovery_thread_end(status);
1444
1445        /* Refresh all journal recovery generations from disk */
1446        status = ocfs2_check_journals_nolocks(osb);
1447        status = (status == -EROFS) ? 0 : status;
1448        if (status < 0)
1449                mlog_errno(status);
1450
1451        /* Now it is right time to recover quotas... We have to do this under
1452         * superblock lock so that no one can start using the slot (and crash)
1453         * before we recover it */
1454        for (i = 0; i < rm_quota_used; i++) {
1455                qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1456                if (IS_ERR(qrec)) {
1457                        status = PTR_ERR(qrec);
1458                        mlog_errno(status);
1459                        continue;
1460                }
1461                ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1462                                                NULL, NULL, qrec,
1463                                                ORPHAN_NEED_TRUNCATE);
1464        }
1465
1466        ocfs2_super_unlock(osb, 1);
1467
1468        /* queue recovery for offline slots */
1469        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1470
1471bail:
1472        mutex_lock(&osb->recovery_lock);
1473        if (!status && !ocfs2_recovery_completed(osb)) {
1474                mutex_unlock(&osb->recovery_lock);
1475                goto restart;
1476        }
1477
1478        ocfs2_free_replay_slots(osb);
1479        osb->recovery_thread_task = NULL;
1480        mb(); /* sync with ocfs2_recovery_thread_running */
1481        wake_up(&osb->recovery_event);
1482
1483        mutex_unlock(&osb->recovery_lock);
1484
1485        kfree(rm_quota);
1486
1487        /* no one is callint kthread_stop() for us so the kthread() api
1488         * requires that we call do_exit().  And it isn't exported, but
1489         * complete_and_exit() seems to be a minimal wrapper around it. */
1490        complete_and_exit(NULL, status);
1491}
1492
1493void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1494{
1495        mutex_lock(&osb->recovery_lock);
1496
1497        trace_ocfs2_recovery_thread(node_num, osb->node_num,
1498                osb->disable_recovery, osb->recovery_thread_task,
1499                osb->disable_recovery ?
1500                -1 : ocfs2_recovery_map_set(osb, node_num));
1501
1502        if (osb->disable_recovery)
1503                goto out;
1504
1505        if (osb->recovery_thread_task)
1506                goto out;
1507
1508        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1509                        "ocfs2rec-%s", osb->uuid_str);
1510        if (IS_ERR(osb->recovery_thread_task)) {
1511                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1512                osb->recovery_thread_task = NULL;
1513        }
1514
1515out:
1516        mutex_unlock(&osb->recovery_lock);
1517        wake_up(&osb->recovery_event);
1518}
1519
1520static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1521                                    int slot_num,
1522                                    struct buffer_head **bh,
1523                                    struct inode **ret_inode)
1524{
1525        int status = -EACCES;
1526        struct inode *inode = NULL;
1527
1528        BUG_ON(slot_num >= osb->max_slots);
1529
1530        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1531                                            slot_num);
1532        if (!inode || is_bad_inode(inode)) {
1533                mlog_errno(status);
1534                goto bail;
1535        }
1536        SET_INODE_JOURNAL(inode);
1537
1538        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1539        if (status < 0) {
1540                mlog_errno(status);
1541                goto bail;
1542        }
1543
1544        status = 0;
1545
1546bail:
1547        if (inode) {
1548                if (status || !ret_inode)
1549                        iput(inode);
1550                else
1551                        *ret_inode = inode;
1552        }
1553        return status;
1554}
1555
1556/* Does the actual journal replay and marks the journal inode as
1557 * clean. Will only replay if the journal inode is marked dirty. */
1558static int ocfs2_replay_journal(struct ocfs2_super *osb,
1559                                int node_num,
1560                                int slot_num)
1561{
1562        int status;
1563        int got_lock = 0;
1564        unsigned int flags;
1565        struct inode *inode = NULL;
1566        struct ocfs2_dinode *fe;
1567        journal_t *journal = NULL;
1568        struct buffer_head *bh = NULL;
1569        u32 slot_reco_gen;
1570
1571        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1572        if (status) {
1573                mlog_errno(status);
1574                goto done;
1575        }
1576
1577        fe = (struct ocfs2_dinode *)bh->b_data;
1578        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1579        brelse(bh);
1580        bh = NULL;
1581
1582        /*
1583         * As the fs recovery is asynchronous, there is a small chance that
1584         * another node mounted (and recovered) the slot before the recovery
1585         * thread could get the lock. To handle that, we dirty read the journal
1586         * inode for that slot to get the recovery generation. If it is
1587         * different than what we expected, the slot has been recovered.
1588         * If not, it needs recovery.
1589         */
1590        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1591                trace_ocfs2_replay_journal_recovered(slot_num,
1592                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1593                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1594                status = -EBUSY;
1595                goto done;
1596        }
1597
1598        /* Continue with recovery as the journal has not yet been recovered */
1599
1600        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1601        if (status < 0) {
1602                trace_ocfs2_replay_journal_lock_err(status);
1603                if (status != -ERESTARTSYS)
1604                        mlog(ML_ERROR, "Could not lock journal!\n");
1605                goto done;
1606        }
1607        got_lock = 1;
1608
1609        fe = (struct ocfs2_dinode *) bh->b_data;
1610
1611        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1612        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1613
1614        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1615                trace_ocfs2_replay_journal_skip(node_num);
1616                /* Refresh recovery generation for the slot */
1617                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1618                goto done;
1619        }
1620
1621        /* we need to run complete recovery for offline orphan slots */
1622        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1623
1624        printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1625               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1626               MINOR(osb->sb->s_dev));
1627
1628        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1629
1630        status = ocfs2_force_read_journal(inode);
1631        if (status < 0) {
1632                mlog_errno(status);
1633                goto done;
1634        }
1635
1636        journal = jbd2_journal_init_inode(inode);
1637        if (journal == NULL) {
1638                mlog(ML_ERROR, "Linux journal layer error\n");
1639                status = -EIO;
1640                goto done;
1641        }
1642
1643        status = jbd2_journal_load(journal);
1644        if (status < 0) {
1645                mlog_errno(status);
1646                if (!igrab(inode))
1647                        BUG();
1648                jbd2_journal_destroy(journal);
1649                goto done;
1650        }
1651
1652        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1653
1654        /* wipe the journal */
1655        jbd2_journal_lock_updates(journal);
1656        status = jbd2_journal_flush(journal);
1657        jbd2_journal_unlock_updates(journal);
1658        if (status < 0)
1659                mlog_errno(status);
1660
1661        /* This will mark the node clean */
1662        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1663        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1664        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1665
1666        /* Increment recovery generation to indicate successful recovery */
1667        ocfs2_bump_recovery_generation(fe);
1668        osb->slot_recovery_generations[slot_num] =
1669                                        ocfs2_get_recovery_generation(fe);
1670
1671        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1672        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1673        if (status < 0)
1674                mlog_errno(status);
1675
1676        if (!igrab(inode))
1677                BUG();
1678
1679        jbd2_journal_destroy(journal);
1680
1681        printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1682               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1683               MINOR(osb->sb->s_dev));
1684done:
1685        /* drop the lock on this nodes journal */
1686        if (got_lock)
1687                ocfs2_inode_unlock(inode, 1);
1688
1689        iput(inode);
1690        brelse(bh);
1691
1692        return status;
1693}
1694
1695/*
1696 * Do the most important parts of node recovery:
1697 *  - Replay it's journal
1698 *  - Stamp a clean local allocator file
1699 *  - Stamp a clean truncate log
1700 *  - Mark the node clean
1701 *
1702 * If this function completes without error, a node in OCFS2 can be
1703 * said to have been safely recovered. As a result, failure during the
1704 * second part of a nodes recovery process (local alloc recovery) is
1705 * far less concerning.
1706 */
1707static int ocfs2_recover_node(struct ocfs2_super *osb,
1708                              int node_num, int slot_num)
1709{
1710        int status = 0;
1711        struct ocfs2_dinode *la_copy = NULL;
1712        struct ocfs2_dinode *tl_copy = NULL;
1713
1714        trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1715
1716        /* Should not ever be called to recover ourselves -- in that
1717         * case we should've called ocfs2_journal_load instead. */
1718        BUG_ON(osb->node_num == node_num);
1719
1720        status = ocfs2_replay_journal(osb, node_num, slot_num);
1721        if (status < 0) {
1722                if (status == -EBUSY) {
1723                        trace_ocfs2_recover_node_skip(slot_num, node_num);
1724                        status = 0;
1725                        goto done;
1726                }
1727                mlog_errno(status);
1728                goto done;
1729        }
1730
1731        /* Stamp a clean local alloc file AFTER recovering the journal... */
1732        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1733        if (status < 0) {
1734                mlog_errno(status);
1735                goto done;
1736        }
1737
1738        /* An error from begin_truncate_log_recovery is not
1739         * serious enough to warrant halting the rest of
1740         * recovery. */
1741        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1742        if (status < 0)
1743                mlog_errno(status);
1744
1745        /* Likewise, this would be a strange but ultimately not so
1746         * harmful place to get an error... */
1747        status = ocfs2_clear_slot(osb, slot_num);
1748        if (status < 0)
1749                mlog_errno(status);
1750
1751        /* This will kfree the memory pointed to by la_copy and tl_copy */
1752        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1753                                        tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1754
1755        status = 0;
1756done:
1757
1758        return status;
1759}
1760
1761/* Test node liveness by trylocking his journal. If we get the lock,
1762 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1763 * still alive (we couldn't get the lock) and < 0 on error. */
1764static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1765                                 int slot_num)
1766{
1767        int status, flags;
1768        struct inode *inode = NULL;
1769
1770        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1771                                            slot_num);
1772        if (inode == NULL) {
1773                mlog(ML_ERROR, "access error\n");
1774                status = -EACCES;
1775                goto bail;
1776        }
1777        if (is_bad_inode(inode)) {
1778                mlog(ML_ERROR, "access error (bad inode)\n");
1779                iput(inode);
1780                inode = NULL;
1781                status = -EACCES;
1782                goto bail;
1783        }
1784        SET_INODE_JOURNAL(inode);
1785
1786        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1787        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1788        if (status < 0) {
1789                if (status != -EAGAIN)
1790                        mlog_errno(status);
1791                goto bail;
1792        }
1793
1794        ocfs2_inode_unlock(inode, 1);
1795bail:
1796        iput(inode);
1797
1798        return status;
1799}
1800
1801/* Call this underneath ocfs2_super_lock. It also assumes that the
1802 * slot info struct has been updated from disk. */
1803int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1804{
1805        unsigned int node_num;
1806        int status, i;
1807        u32 gen;
1808        struct buffer_head *bh = NULL;
1809        struct ocfs2_dinode *di;
1810
1811        /* This is called with the super block cluster lock, so we
1812         * know that the slot map can't change underneath us. */
1813
1814        for (i = 0; i < osb->max_slots; i++) {
1815                /* Read journal inode to get the recovery generation */
1816                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1817                if (status) {
1818                        mlog_errno(status);
1819                        goto bail;
1820                }
1821                di = (struct ocfs2_dinode *)bh->b_data;
1822                gen = ocfs2_get_recovery_generation(di);
1823                brelse(bh);
1824                bh = NULL;
1825
1826                spin_lock(&osb->osb_lock);
1827                osb->slot_recovery_generations[i] = gen;
1828
1829                trace_ocfs2_mark_dead_nodes(i,
1830                                            osb->slot_recovery_generations[i]);
1831
1832                if (i == osb->slot_num) {
1833                        spin_unlock(&osb->osb_lock);
1834                        continue;
1835                }
1836
1837                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1838                if (status == -ENOENT) {
1839                        spin_unlock(&osb->osb_lock);
1840                        continue;
1841                }
1842
1843                if (__ocfs2_recovery_map_test(osb, node_num)) {
1844                        spin_unlock(&osb->osb_lock);
1845                        continue;
1846                }
1847                spin_unlock(&osb->osb_lock);
1848
1849                /* Ok, we have a slot occupied by another node which
1850                 * is not in the recovery map. We trylock his journal
1851                 * file here to test if he's alive. */
1852                status = ocfs2_trylock_journal(osb, i);
1853                if (!status) {
1854                        /* Since we're called from mount, we know that
1855                         * the recovery thread can't race us on
1856                         * setting / checking the recovery bits. */
1857                        ocfs2_recovery_thread(osb, node_num);
1858                } else if ((status < 0) && (status != -EAGAIN)) {
1859                        mlog_errno(status);
1860                        goto bail;
1861                }
1862        }
1863
1864        status = 0;
1865bail:
1866        return status;
1867}
1868
1869/*
1870 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1871 * randomness to the timeout to minimize multple nodes firing the timer at the
1872 * same time.
1873 */
1874static inline unsigned long ocfs2_orphan_scan_timeout(void)
1875{
1876        unsigned long time;
1877
1878        get_random_bytes(&time, sizeof(time));
1879        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1880        return msecs_to_jiffies(time);
1881}
1882
1883/*
1884 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1885 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1886 * is done to catch any orphans that are left over in orphan directories.
1887 *
1888 * It scans all slots, even ones that are in use. It does so to handle the
1889 * case described below:
1890 *
1891 *   Node 1 has an inode it was using. The dentry went away due to memory
1892 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1893 *   has the open lock.
1894 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1895 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1896 *   open lock, sees that another node has a PR, and does nothing.
1897 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1898 *   open lock, sees the PR still, and does nothing.
1899 *   Basically, we have to trigger an orphan iput on node 1. The only way
1900 *   for this to happen is if node 1 runs node 2's orphan dir.
1901 *
1902 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1903 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1904 * stored in LVB. If the sequence number has changed, it means some other
1905 * node has done the scan.  This node skips the scan and tracks the
1906 * sequence number.  If the sequence number didn't change, it means a scan
1907 * hasn't happened.  The node queues a scan and increments the
1908 * sequence number in the LVB.
1909 */
1910static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1911{
1912        struct ocfs2_orphan_scan *os;
1913        int status, i;
1914        u32 seqno = 0;
1915
1916        os = &osb->osb_orphan_scan;
1917
1918        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1919                goto out;
1920
1921        trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1922                                            atomic_read(&os->os_state));
1923
1924        status = ocfs2_orphan_scan_lock(osb, &seqno);
1925        if (status < 0) {
1926                if (status != -EAGAIN)
1927                        mlog_errno(status);
1928                goto out;
1929        }
1930
1931        /* Do no queue the tasks if the volume is being umounted */
1932        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1933                goto unlock;
1934
1935        if (os->os_seqno != seqno) {
1936                os->os_seqno = seqno;
1937                goto unlock;
1938        }
1939
1940        for (i = 0; i < osb->max_slots; i++)
1941                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1942                                                NULL, ORPHAN_NO_NEED_TRUNCATE);
1943        /*
1944         * We queued a recovery on orphan slots, increment the sequence
1945         * number and update LVB so other node will skip the scan for a while
1946         */
1947        seqno++;
1948        os->os_count++;
1949        os->os_scantime = CURRENT_TIME;
1950unlock:
1951        ocfs2_orphan_scan_unlock(osb, seqno);
1952out:
1953        trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1954                                          atomic_read(&os->os_state));
1955        return;
1956}
1957
1958/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1959static void ocfs2_orphan_scan_work(struct work_struct *work)
1960{
1961        struct ocfs2_orphan_scan *os;
1962        struct ocfs2_super *osb;
1963
1964        os = container_of(work, struct ocfs2_orphan_scan,
1965                          os_orphan_scan_work.work);
1966        osb = os->os_osb;
1967
1968        mutex_lock(&os->os_lock);
1969        ocfs2_queue_orphan_scan(osb);
1970        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1971                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1972                                      ocfs2_orphan_scan_timeout());
1973        mutex_unlock(&os->os_lock);
1974}
1975
1976void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1977{
1978        struct ocfs2_orphan_scan *os;
1979
1980        os = &osb->osb_orphan_scan;
1981        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1982                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1983                mutex_lock(&os->os_lock);
1984                cancel_delayed_work(&os->os_orphan_scan_work);
1985                mutex_unlock(&os->os_lock);
1986        }
1987}
1988
1989void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1990{
1991        struct ocfs2_orphan_scan *os;
1992
1993        os = &osb->osb_orphan_scan;
1994        os->os_osb = osb;
1995        os->os_count = 0;
1996        os->os_seqno = 0;
1997        mutex_init(&os->os_lock);
1998        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1999}
2000
2001void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2002{
2003        struct ocfs2_orphan_scan *os;
2004
2005        os = &osb->osb_orphan_scan;
2006        os->os_scantime = CURRENT_TIME;
2007        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2008                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2009        else {
2010                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2011                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2012                                   ocfs2_orphan_scan_timeout());
2013        }
2014}
2015
2016struct ocfs2_orphan_filldir_priv {
2017        struct dir_context      ctx;
2018        struct inode            *head;
2019        struct ocfs2_super      *osb;
2020        enum ocfs2_orphan_reco_type orphan_reco_type;
2021};
2022
2023static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2024                                int name_len, loff_t pos, u64 ino,
2025                                unsigned type)
2026{
2027        struct ocfs2_orphan_filldir_priv *p =
2028                container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2029        struct inode *iter;
2030
2031        if (name_len == 1 && !strncmp(".", name, 1))
2032                return 0;
2033        if (name_len == 2 && !strncmp("..", name, 2))
2034                return 0;
2035
2036        /* do not include dio entry in case of orphan scan */
2037        if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2038                        (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2039                        OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2040                return 0;
2041
2042        /* Skip bad inodes so that recovery can continue */
2043        iter = ocfs2_iget(p->osb, ino,
2044                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2045        if (IS_ERR(iter))
2046                return 0;
2047
2048        if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2049                        OCFS2_DIO_ORPHAN_PREFIX_LEN))
2050                OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2051
2052        /* Skip inodes which are already added to recover list, since dio may
2053         * happen concurrently with unlink/rename */
2054        if (OCFS2_I(iter)->ip_next_orphan) {
2055                iput(iter);
2056                return 0;
2057        }
2058
2059        trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2060        /* No locking is required for the next_orphan queue as there
2061         * is only ever a single process doing orphan recovery. */
2062        OCFS2_I(iter)->ip_next_orphan = p->head;
2063        p->head = iter;
2064
2065        return 0;
2066}
2067
2068static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2069                               int slot,
2070                               struct inode **head,
2071                               enum ocfs2_orphan_reco_type orphan_reco_type)
2072{
2073        int status;
2074        struct inode *orphan_dir_inode = NULL;
2075        struct ocfs2_orphan_filldir_priv priv = {
2076                .ctx.actor = ocfs2_orphan_filldir,
2077                .osb = osb,
2078                .head = *head,
2079                .orphan_reco_type = orphan_reco_type
2080        };
2081
2082        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2083                                                       ORPHAN_DIR_SYSTEM_INODE,
2084                                                       slot);
2085        if  (!orphan_dir_inode) {
2086                status = -ENOENT;
2087                mlog_errno(status);
2088                return status;
2089        }
2090
2091        inode_lock(orphan_dir_inode);
2092        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2093        if (status < 0) {
2094                mlog_errno(status);
2095                goto out;
2096        }
2097
2098        status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2099        if (status) {
2100                mlog_errno(status);
2101                goto out_cluster;
2102        }
2103
2104        *head = priv.head;
2105
2106out_cluster:
2107        ocfs2_inode_unlock(orphan_dir_inode, 0);
2108out:
2109        inode_unlock(orphan_dir_inode);
2110        iput(orphan_dir_inode);
2111        return status;
2112}
2113
2114static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2115                                              int slot)
2116{
2117        int ret;
2118
2119        spin_lock(&osb->osb_lock);
2120        ret = !osb->osb_orphan_wipes[slot];
2121        spin_unlock(&osb->osb_lock);
2122        return ret;
2123}
2124
2125static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2126                                             int slot)
2127{
2128        spin_lock(&osb->osb_lock);
2129        /* Mark ourselves such that new processes in delete_inode()
2130         * know to quit early. */
2131        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2132        while (osb->osb_orphan_wipes[slot]) {
2133                /* If any processes are already in the middle of an
2134                 * orphan wipe on this dir, then we need to wait for
2135                 * them. */
2136                spin_unlock(&osb->osb_lock);
2137                wait_event_interruptible(osb->osb_wipe_event,
2138                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2139                spin_lock(&osb->osb_lock);
2140        }
2141        spin_unlock(&osb->osb_lock);
2142}
2143
2144static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2145                                              int slot)
2146{
2147        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2148}
2149
2150/*
2151 * Orphan recovery. Each mounted node has it's own orphan dir which we
2152 * must run during recovery. Our strategy here is to build a list of
2153 * the inodes in the orphan dir and iget/iput them. The VFS does
2154 * (most) of the rest of the work.
2155 *
2156 * Orphan recovery can happen at any time, not just mount so we have a
2157 * couple of extra considerations.
2158 *
2159 * - We grab as many inodes as we can under the orphan dir lock -
2160 *   doing iget() outside the orphan dir risks getting a reference on
2161 *   an invalid inode.
2162 * - We must be sure not to deadlock with other processes on the
2163 *   system wanting to run delete_inode(). This can happen when they go
2164 *   to lock the orphan dir and the orphan recovery process attempts to
2165 *   iget() inside the orphan dir lock. This can be avoided by
2166 *   advertising our state to ocfs2_delete_inode().
2167 */
2168static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2169                                 int slot,
2170                                 enum ocfs2_orphan_reco_type orphan_reco_type)
2171{
2172        int ret = 0;
2173        struct inode *inode = NULL;
2174        struct inode *iter;
2175        struct ocfs2_inode_info *oi;
2176        struct buffer_head *di_bh = NULL;
2177        struct ocfs2_dinode *di = NULL;
2178
2179        trace_ocfs2_recover_orphans(slot);
2180
2181        ocfs2_mark_recovering_orphan_dir(osb, slot);
2182        ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2183        ocfs2_clear_recovering_orphan_dir(osb, slot);
2184
2185        /* Error here should be noted, but we want to continue with as
2186         * many queued inodes as we've got. */
2187        if (ret)
2188                mlog_errno(ret);
2189
2190        while (inode) {
2191                oi = OCFS2_I(inode);
2192                trace_ocfs2_recover_orphans_iput(
2193                                        (unsigned long long)oi->ip_blkno);
2194
2195                iter = oi->ip_next_orphan;
2196                oi->ip_next_orphan = NULL;
2197
2198                if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2199                        inode_lock(inode);
2200                        ret = ocfs2_rw_lock(inode, 1);
2201                        if (ret < 0) {
2202                                mlog_errno(ret);
2203                                goto unlock_mutex;
2204                        }
2205                        /*
2206                         * We need to take and drop the inode lock to
2207                         * force read inode from disk.
2208                         */
2209                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2210                        if (ret) {
2211                                mlog_errno(ret);
2212                                goto unlock_rw;
2213                        }
2214
2215                        di = (struct ocfs2_dinode *)di_bh->b_data;
2216
2217                        if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2218                                ret = ocfs2_truncate_file(inode, di_bh,
2219                                                i_size_read(inode));
2220                                if (ret < 0) {
2221                                        if (ret != -ENOSPC)
2222                                                mlog_errno(ret);
2223                                        goto unlock_inode;
2224                                }
2225
2226                                ret = ocfs2_del_inode_from_orphan(osb, inode,
2227                                                di_bh, 0, 0);
2228                                if (ret)
2229                                        mlog_errno(ret);
2230                        }
2231unlock_inode:
2232                        ocfs2_inode_unlock(inode, 1);
2233                        brelse(di_bh);
2234                        di_bh = NULL;
2235unlock_rw:
2236                        ocfs2_rw_unlock(inode, 1);
2237unlock_mutex:
2238                        inode_unlock(inode);
2239
2240                        /* clear dio flag in ocfs2_inode_info */
2241                        oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2242                } else {
2243                        spin_lock(&oi->ip_lock);
2244                        /* Set the proper information to get us going into
2245                         * ocfs2_delete_inode. */
2246                        oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2247                        spin_unlock(&oi->ip_lock);
2248                }
2249
2250                iput(inode);
2251                inode = iter;
2252        }
2253
2254        return ret;
2255}
2256
2257static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2258{
2259        /* This check is good because ocfs2 will wait on our recovery
2260         * thread before changing it to something other than MOUNTED
2261         * or DISABLED. */
2262        wait_event(osb->osb_mount_event,
2263                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2264                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2265                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2266
2267        /* If there's an error on mount, then we may never get to the
2268         * MOUNTED flag, but this is set right before
2269         * dismount_volume() so we can trust it. */
2270        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2271                trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2272                mlog(0, "mount error, exiting!\n");
2273                return -EBUSY;
2274        }
2275
2276        return 0;
2277}
2278
2279static int ocfs2_commit_thread(void *arg)
2280{
2281        int status;
2282        struct ocfs2_super *osb = arg;
2283        struct ocfs2_journal *journal = osb->journal;
2284
2285        /* we can trust j_num_trans here because _should_stop() is only set in
2286         * shutdown and nobody other than ourselves should be able to start
2287         * transactions.  committing on shutdown might take a few iterations
2288         * as final transactions put deleted inodes on the list */
2289        while (!(kthread_should_stop() &&
2290                 atomic_read(&journal->j_num_trans) == 0)) {
2291
2292                wait_event_interruptible(osb->checkpoint_event,
2293                                         atomic_read(&journal->j_num_trans)
2294                                         || kthread_should_stop());
2295
2296                status = ocfs2_commit_cache(osb);
2297                if (status < 0) {
2298                        static unsigned long abort_warn_time;
2299
2300                        /* Warn about this once per minute */
2301                        if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2302                                mlog(ML_ERROR, "status = %d, journal is "
2303                                                "already aborted.\n", status);
2304                        /*
2305                         * After ocfs2_commit_cache() fails, j_num_trans has a
2306                         * non-zero value.  Sleep here to avoid a busy-wait
2307                         * loop.
2308                         */
2309                        msleep_interruptible(1000);
2310                }
2311
2312                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2313                        mlog(ML_KTHREAD,
2314                             "commit_thread: %u transactions pending on "
2315                             "shutdown\n",
2316                             atomic_read(&journal->j_num_trans));
2317                }
2318        }
2319
2320        return 0;
2321}
2322
2323/* Reads all the journal inodes without taking any cluster locks. Used
2324 * for hard readonly access to determine whether any journal requires
2325 * recovery. Also used to refresh the recovery generation numbers after
2326 * a journal has been recovered by another node.
2327 */
2328int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2329{
2330        int ret = 0;
2331        unsigned int slot;
2332        struct buffer_head *di_bh = NULL;
2333        struct ocfs2_dinode *di;
2334        int journal_dirty = 0;
2335
2336        for(slot = 0; slot < osb->max_slots; slot++) {
2337                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2338                if (ret) {
2339                        mlog_errno(ret);
2340                        goto out;
2341                }
2342
2343                di = (struct ocfs2_dinode *) di_bh->b_data;
2344
2345                osb->slot_recovery_generations[slot] =
2346                                        ocfs2_get_recovery_generation(di);
2347
2348                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2349                    OCFS2_JOURNAL_DIRTY_FL)
2350                        journal_dirty = 1;
2351
2352                brelse(di_bh);
2353                di_bh = NULL;
2354        }
2355
2356out:
2357        if (journal_dirty)
2358                ret = -EROFS;
2359        return ret;
2360}
2361