linux/fs/proc/task_mmu.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/vmacache.h>
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/page_idle.h>
  17#include <linux/shmem_fs.h>
  18
  19#include <asm/elf.h>
  20#include <asm/uaccess.h>
  21#include <asm/tlbflush.h>
  22#include "internal.h"
  23
  24void task_mem(struct seq_file *m, struct mm_struct *mm)
  25{
  26        unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
  27        unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  28
  29        anon = get_mm_counter(mm, MM_ANONPAGES);
  30        file = get_mm_counter(mm, MM_FILEPAGES);
  31        shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  32
  33        /*
  34         * Note: to minimize their overhead, mm maintains hiwater_vm and
  35         * hiwater_rss only when about to *lower* total_vm or rss.  Any
  36         * collector of these hiwater stats must therefore get total_vm
  37         * and rss too, which will usually be the higher.  Barriers? not
  38         * worth the effort, such snapshots can always be inconsistent.
  39         */
  40        hiwater_vm = total_vm = mm->total_vm;
  41        if (hiwater_vm < mm->hiwater_vm)
  42                hiwater_vm = mm->hiwater_vm;
  43        hiwater_rss = total_rss = anon + file + shmem;
  44        if (hiwater_rss < mm->hiwater_rss)
  45                hiwater_rss = mm->hiwater_rss;
  46
  47        text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  48        lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  49        swap = get_mm_counter(mm, MM_SWAPENTS);
  50        ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  51        pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  52        seq_printf(m,
  53                "VmPeak:\t%8lu kB\n"
  54                "VmSize:\t%8lu kB\n"
  55                "VmLck:\t%8lu kB\n"
  56                "VmPin:\t%8lu kB\n"
  57                "VmHWM:\t%8lu kB\n"
  58                "VmRSS:\t%8lu kB\n"
  59                "RssAnon:\t%8lu kB\n"
  60                "RssFile:\t%8lu kB\n"
  61                "RssShmem:\t%8lu kB\n"
  62                "VmData:\t%8lu kB\n"
  63                "VmStk:\t%8lu kB\n"
  64                "VmExe:\t%8lu kB\n"
  65                "VmLib:\t%8lu kB\n"
  66                "VmPTE:\t%8lu kB\n"
  67                "VmPMD:\t%8lu kB\n"
  68                "VmSwap:\t%8lu kB\n",
  69                hiwater_vm << (PAGE_SHIFT-10),
  70                total_vm << (PAGE_SHIFT-10),
  71                mm->locked_vm << (PAGE_SHIFT-10),
  72                mm->pinned_vm << (PAGE_SHIFT-10),
  73                hiwater_rss << (PAGE_SHIFT-10),
  74                total_rss << (PAGE_SHIFT-10),
  75                anon << (PAGE_SHIFT-10),
  76                file << (PAGE_SHIFT-10),
  77                shmem << (PAGE_SHIFT-10),
  78                mm->data_vm << (PAGE_SHIFT-10),
  79                mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  80                ptes >> 10,
  81                pmds >> 10,
  82                swap << (PAGE_SHIFT-10));
  83        hugetlb_report_usage(m, mm);
  84}
  85
  86unsigned long task_vsize(struct mm_struct *mm)
  87{
  88        return PAGE_SIZE * mm->total_vm;
  89}
  90
  91unsigned long task_statm(struct mm_struct *mm,
  92                         unsigned long *shared, unsigned long *text,
  93                         unsigned long *data, unsigned long *resident)
  94{
  95        *shared = get_mm_counter(mm, MM_FILEPAGES) +
  96                        get_mm_counter(mm, MM_SHMEMPAGES);
  97        *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  98                                                                >> PAGE_SHIFT;
  99        *data = mm->data_vm + mm->stack_vm;
 100        *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 101        return mm->total_vm;
 102}
 103
 104#ifdef CONFIG_NUMA
 105/*
 106 * Save get_task_policy() for show_numa_map().
 107 */
 108static void hold_task_mempolicy(struct proc_maps_private *priv)
 109{
 110        struct task_struct *task = priv->task;
 111
 112        task_lock(task);
 113        priv->task_mempolicy = get_task_policy(task);
 114        mpol_get(priv->task_mempolicy);
 115        task_unlock(task);
 116}
 117static void release_task_mempolicy(struct proc_maps_private *priv)
 118{
 119        mpol_put(priv->task_mempolicy);
 120}
 121#else
 122static void hold_task_mempolicy(struct proc_maps_private *priv)
 123{
 124}
 125static void release_task_mempolicy(struct proc_maps_private *priv)
 126{
 127}
 128#endif
 129
 130static void vma_stop(struct proc_maps_private *priv)
 131{
 132        struct mm_struct *mm = priv->mm;
 133
 134        release_task_mempolicy(priv);
 135        up_read(&mm->mmap_sem);
 136        mmput(mm);
 137}
 138
 139static struct vm_area_struct *
 140m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
 141{
 142        if (vma == priv->tail_vma)
 143                return NULL;
 144        return vma->vm_next ?: priv->tail_vma;
 145}
 146
 147static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
 148{
 149        if (m->count < m->size) /* vma is copied successfully */
 150                m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
 151}
 152
 153static void *m_start(struct seq_file *m, loff_t *ppos)
 154{
 155        struct proc_maps_private *priv = m->private;
 156        unsigned long last_addr = m->version;
 157        struct mm_struct *mm;
 158        struct vm_area_struct *vma;
 159        unsigned int pos = *ppos;
 160
 161        /* See m_cache_vma(). Zero at the start or after lseek. */
 162        if (last_addr == -1UL)
 163                return NULL;
 164
 165        priv->task = get_proc_task(priv->inode);
 166        if (!priv->task)
 167                return ERR_PTR(-ESRCH);
 168
 169        mm = priv->mm;
 170        if (!mm || !atomic_inc_not_zero(&mm->mm_users))
 171                return NULL;
 172
 173        down_read(&mm->mmap_sem);
 174        hold_task_mempolicy(priv);
 175        priv->tail_vma = get_gate_vma(mm);
 176
 177        if (last_addr) {
 178                vma = find_vma(mm, last_addr);
 179                if (vma && (vma = m_next_vma(priv, vma)))
 180                        return vma;
 181        }
 182
 183        m->version = 0;
 184        if (pos < mm->map_count) {
 185                for (vma = mm->mmap; pos; pos--) {
 186                        m->version = vma->vm_start;
 187                        vma = vma->vm_next;
 188                }
 189                return vma;
 190        }
 191
 192        /* we do not bother to update m->version in this case */
 193        if (pos == mm->map_count && priv->tail_vma)
 194                return priv->tail_vma;
 195
 196        vma_stop(priv);
 197        return NULL;
 198}
 199
 200static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 201{
 202        struct proc_maps_private *priv = m->private;
 203        struct vm_area_struct *next;
 204
 205        (*pos)++;
 206        next = m_next_vma(priv, v);
 207        if (!next)
 208                vma_stop(priv);
 209        return next;
 210}
 211
 212static void m_stop(struct seq_file *m, void *v)
 213{
 214        struct proc_maps_private *priv = m->private;
 215
 216        if (!IS_ERR_OR_NULL(v))
 217                vma_stop(priv);
 218        if (priv->task) {
 219                put_task_struct(priv->task);
 220                priv->task = NULL;
 221        }
 222}
 223
 224static int proc_maps_open(struct inode *inode, struct file *file,
 225                        const struct seq_operations *ops, int psize)
 226{
 227        struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 228
 229        if (!priv)
 230                return -ENOMEM;
 231
 232        priv->inode = inode;
 233        priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 234        if (IS_ERR(priv->mm)) {
 235                int err = PTR_ERR(priv->mm);
 236
 237                seq_release_private(inode, file);
 238                return err;
 239        }
 240
 241        return 0;
 242}
 243
 244static int proc_map_release(struct inode *inode, struct file *file)
 245{
 246        struct seq_file *seq = file->private_data;
 247        struct proc_maps_private *priv = seq->private;
 248
 249        if (priv->mm)
 250                mmdrop(priv->mm);
 251
 252        return seq_release_private(inode, file);
 253}
 254
 255static int do_maps_open(struct inode *inode, struct file *file,
 256                        const struct seq_operations *ops)
 257{
 258        return proc_maps_open(inode, file, ops,
 259                                sizeof(struct proc_maps_private));
 260}
 261
 262/*
 263 * Indicate if the VMA is a stack for the given task; for
 264 * /proc/PID/maps that is the stack of the main task.
 265 */
 266static int is_stack(struct proc_maps_private *priv,
 267                    struct vm_area_struct *vma, int is_pid)
 268{
 269        int stack = 0;
 270
 271        if (is_pid) {
 272                stack = vma->vm_start <= vma->vm_mm->start_stack &&
 273                        vma->vm_end >= vma->vm_mm->start_stack;
 274        } else {
 275                struct inode *inode = priv->inode;
 276                struct task_struct *task;
 277
 278                rcu_read_lock();
 279                task = pid_task(proc_pid(inode), PIDTYPE_PID);
 280                if (task)
 281                        stack = vma_is_stack_for_task(vma, task);
 282                rcu_read_unlock();
 283        }
 284        return stack;
 285}
 286
 287static void
 288show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 289{
 290        struct mm_struct *mm = vma->vm_mm;
 291        struct file *file = vma->vm_file;
 292        struct proc_maps_private *priv = m->private;
 293        vm_flags_t flags = vma->vm_flags;
 294        unsigned long ino = 0;
 295        unsigned long long pgoff = 0;
 296        unsigned long start, end;
 297        dev_t dev = 0;
 298        const char *name = NULL;
 299
 300        if (file) {
 301                struct inode *inode = file_inode(vma->vm_file);
 302                dev = inode->i_sb->s_dev;
 303                ino = inode->i_ino;
 304                pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 305        }
 306
 307        /* We don't show the stack guard page in /proc/maps */
 308        start = vma->vm_start;
 309        if (stack_guard_page_start(vma, start))
 310                start += PAGE_SIZE;
 311        end = vma->vm_end;
 312        if (stack_guard_page_end(vma, end))
 313                end -= PAGE_SIZE;
 314
 315        seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 316        seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 317                        start,
 318                        end,
 319                        flags & VM_READ ? 'r' : '-',
 320                        flags & VM_WRITE ? 'w' : '-',
 321                        flags & VM_EXEC ? 'x' : '-',
 322                        flags & VM_MAYSHARE ? 's' : 'p',
 323                        pgoff,
 324                        MAJOR(dev), MINOR(dev), ino);
 325
 326        /*
 327         * Print the dentry name for named mappings, and a
 328         * special [heap] marker for the heap:
 329         */
 330        if (file) {
 331                seq_pad(m, ' ');
 332                seq_file_path(m, file, "\n");
 333                goto done;
 334        }
 335
 336        if (vma->vm_ops && vma->vm_ops->name) {
 337                name = vma->vm_ops->name(vma);
 338                if (name)
 339                        goto done;
 340        }
 341
 342        name = arch_vma_name(vma);
 343        if (!name) {
 344                if (!mm) {
 345                        name = "[vdso]";
 346                        goto done;
 347                }
 348
 349                if (vma->vm_start <= mm->brk &&
 350                    vma->vm_end >= mm->start_brk) {
 351                        name = "[heap]";
 352                        goto done;
 353                }
 354
 355                if (is_stack(priv, vma, is_pid))
 356                        name = "[stack]";
 357        }
 358
 359done:
 360        if (name) {
 361                seq_pad(m, ' ');
 362                seq_puts(m, name);
 363        }
 364        seq_putc(m, '\n');
 365}
 366
 367static int show_map(struct seq_file *m, void *v, int is_pid)
 368{
 369        show_map_vma(m, v, is_pid);
 370        m_cache_vma(m, v);
 371        return 0;
 372}
 373
 374static int show_pid_map(struct seq_file *m, void *v)
 375{
 376        return show_map(m, v, 1);
 377}
 378
 379static int show_tid_map(struct seq_file *m, void *v)
 380{
 381        return show_map(m, v, 0);
 382}
 383
 384static const struct seq_operations proc_pid_maps_op = {
 385        .start  = m_start,
 386        .next   = m_next,
 387        .stop   = m_stop,
 388        .show   = show_pid_map
 389};
 390
 391static const struct seq_operations proc_tid_maps_op = {
 392        .start  = m_start,
 393        .next   = m_next,
 394        .stop   = m_stop,
 395        .show   = show_tid_map
 396};
 397
 398static int pid_maps_open(struct inode *inode, struct file *file)
 399{
 400        return do_maps_open(inode, file, &proc_pid_maps_op);
 401}
 402
 403static int tid_maps_open(struct inode *inode, struct file *file)
 404{
 405        return do_maps_open(inode, file, &proc_tid_maps_op);
 406}
 407
 408const struct file_operations proc_pid_maps_operations = {
 409        .open           = pid_maps_open,
 410        .read           = seq_read,
 411        .llseek         = seq_lseek,
 412        .release        = proc_map_release,
 413};
 414
 415const struct file_operations proc_tid_maps_operations = {
 416        .open           = tid_maps_open,
 417        .read           = seq_read,
 418        .llseek         = seq_lseek,
 419        .release        = proc_map_release,
 420};
 421
 422/*
 423 * Proportional Set Size(PSS): my share of RSS.
 424 *
 425 * PSS of a process is the count of pages it has in memory, where each
 426 * page is divided by the number of processes sharing it.  So if a
 427 * process has 1000 pages all to itself, and 1000 shared with one other
 428 * process, its PSS will be 1500.
 429 *
 430 * To keep (accumulated) division errors low, we adopt a 64bit
 431 * fixed-point pss counter to minimize division errors. So (pss >>
 432 * PSS_SHIFT) would be the real byte count.
 433 *
 434 * A shift of 12 before division means (assuming 4K page size):
 435 *      - 1M 3-user-pages add up to 8KB errors;
 436 *      - supports mapcount up to 2^24, or 16M;
 437 *      - supports PSS up to 2^52 bytes, or 4PB.
 438 */
 439#define PSS_SHIFT 12
 440
 441#ifdef CONFIG_PROC_PAGE_MONITOR
 442struct mem_size_stats {
 443        unsigned long resident;
 444        unsigned long shared_clean;
 445        unsigned long shared_dirty;
 446        unsigned long private_clean;
 447        unsigned long private_dirty;
 448        unsigned long referenced;
 449        unsigned long anonymous;
 450        unsigned long anonymous_thp;
 451        unsigned long swap;
 452        unsigned long shared_hugetlb;
 453        unsigned long private_hugetlb;
 454        u64 pss;
 455        u64 swap_pss;
 456        bool check_shmem_swap;
 457};
 458
 459static void smaps_account(struct mem_size_stats *mss, struct page *page,
 460                bool compound, bool young, bool dirty)
 461{
 462        int i, nr = compound ? 1 << compound_order(page) : 1;
 463        unsigned long size = nr * PAGE_SIZE;
 464
 465        if (PageAnon(page))
 466                mss->anonymous += size;
 467
 468        mss->resident += size;
 469        /* Accumulate the size in pages that have been accessed. */
 470        if (young || page_is_young(page) || PageReferenced(page))
 471                mss->referenced += size;
 472
 473        /*
 474         * page_count(page) == 1 guarantees the page is mapped exactly once.
 475         * If any subpage of the compound page mapped with PTE it would elevate
 476         * page_count().
 477         */
 478        if (page_count(page) == 1) {
 479                if (dirty || PageDirty(page))
 480                        mss->private_dirty += size;
 481                else
 482                        mss->private_clean += size;
 483                mss->pss += (u64)size << PSS_SHIFT;
 484                return;
 485        }
 486
 487        for (i = 0; i < nr; i++, page++) {
 488                int mapcount = page_mapcount(page);
 489
 490                if (mapcount >= 2) {
 491                        if (dirty || PageDirty(page))
 492                                mss->shared_dirty += PAGE_SIZE;
 493                        else
 494                                mss->shared_clean += PAGE_SIZE;
 495                        mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
 496                } else {
 497                        if (dirty || PageDirty(page))
 498                                mss->private_dirty += PAGE_SIZE;
 499                        else
 500                                mss->private_clean += PAGE_SIZE;
 501                        mss->pss += PAGE_SIZE << PSS_SHIFT;
 502                }
 503        }
 504}
 505
 506#ifdef CONFIG_SHMEM
 507static int smaps_pte_hole(unsigned long addr, unsigned long end,
 508                struct mm_walk *walk)
 509{
 510        struct mem_size_stats *mss = walk->private;
 511
 512        mss->swap += shmem_partial_swap_usage(
 513                        walk->vma->vm_file->f_mapping, addr, end);
 514
 515        return 0;
 516}
 517#endif
 518
 519static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 520                struct mm_walk *walk)
 521{
 522        struct mem_size_stats *mss = walk->private;
 523        struct vm_area_struct *vma = walk->vma;
 524        struct page *page = NULL;
 525
 526        if (pte_present(*pte)) {
 527                page = vm_normal_page(vma, addr, *pte);
 528        } else if (is_swap_pte(*pte)) {
 529                swp_entry_t swpent = pte_to_swp_entry(*pte);
 530
 531                if (!non_swap_entry(swpent)) {
 532                        int mapcount;
 533
 534                        mss->swap += PAGE_SIZE;
 535                        mapcount = swp_swapcount(swpent);
 536                        if (mapcount >= 2) {
 537                                u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 538
 539                                do_div(pss_delta, mapcount);
 540                                mss->swap_pss += pss_delta;
 541                        } else {
 542                                mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 543                        }
 544                } else if (is_migration_entry(swpent))
 545                        page = migration_entry_to_page(swpent);
 546        } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 547                                                        && pte_none(*pte))) {
 548                page = find_get_entry(vma->vm_file->f_mapping,
 549                                                linear_page_index(vma, addr));
 550                if (!page)
 551                        return;
 552
 553                if (radix_tree_exceptional_entry(page))
 554                        mss->swap += PAGE_SIZE;
 555                else
 556                        put_page(page);
 557
 558                return;
 559        }
 560
 561        if (!page)
 562                return;
 563
 564        smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
 565}
 566
 567#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 568static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 569                struct mm_walk *walk)
 570{
 571        struct mem_size_stats *mss = walk->private;
 572        struct vm_area_struct *vma = walk->vma;
 573        struct page *page;
 574
 575        /* FOLL_DUMP will return -EFAULT on huge zero page */
 576        page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 577        if (IS_ERR_OR_NULL(page))
 578                return;
 579        mss->anonymous_thp += HPAGE_PMD_SIZE;
 580        smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
 581}
 582#else
 583static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 584                struct mm_walk *walk)
 585{
 586}
 587#endif
 588
 589static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 590                           struct mm_walk *walk)
 591{
 592        struct vm_area_struct *vma = walk->vma;
 593        pte_t *pte;
 594        spinlock_t *ptl;
 595
 596        ptl = pmd_trans_huge_lock(pmd, vma);
 597        if (ptl) {
 598                smaps_pmd_entry(pmd, addr, walk);
 599                spin_unlock(ptl);
 600                return 0;
 601        }
 602
 603        if (pmd_trans_unstable(pmd))
 604                return 0;
 605        /*
 606         * The mmap_sem held all the way back in m_start() is what
 607         * keeps khugepaged out of here and from collapsing things
 608         * in here.
 609         */
 610        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 611        for (; addr != end; pte++, addr += PAGE_SIZE)
 612                smaps_pte_entry(pte, addr, walk);
 613        pte_unmap_unlock(pte - 1, ptl);
 614        cond_resched();
 615        return 0;
 616}
 617
 618static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 619{
 620        /*
 621         * Don't forget to update Documentation/ on changes.
 622         */
 623        static const char mnemonics[BITS_PER_LONG][2] = {
 624                /*
 625                 * In case if we meet a flag we don't know about.
 626                 */
 627                [0 ... (BITS_PER_LONG-1)] = "??",
 628
 629                [ilog2(VM_READ)]        = "rd",
 630                [ilog2(VM_WRITE)]       = "wr",
 631                [ilog2(VM_EXEC)]        = "ex",
 632                [ilog2(VM_SHARED)]      = "sh",
 633                [ilog2(VM_MAYREAD)]     = "mr",
 634                [ilog2(VM_MAYWRITE)]    = "mw",
 635                [ilog2(VM_MAYEXEC)]     = "me",
 636                [ilog2(VM_MAYSHARE)]    = "ms",
 637                [ilog2(VM_GROWSDOWN)]   = "gd",
 638                [ilog2(VM_PFNMAP)]      = "pf",
 639                [ilog2(VM_DENYWRITE)]   = "dw",
 640#ifdef CONFIG_X86_INTEL_MPX
 641                [ilog2(VM_MPX)]         = "mp",
 642#endif
 643                [ilog2(VM_LOCKED)]      = "lo",
 644                [ilog2(VM_IO)]          = "io",
 645                [ilog2(VM_SEQ_READ)]    = "sr",
 646                [ilog2(VM_RAND_READ)]   = "rr",
 647                [ilog2(VM_DONTCOPY)]    = "dc",
 648                [ilog2(VM_DONTEXPAND)]  = "de",
 649                [ilog2(VM_ACCOUNT)]     = "ac",
 650                [ilog2(VM_NORESERVE)]   = "nr",
 651                [ilog2(VM_HUGETLB)]     = "ht",
 652                [ilog2(VM_ARCH_1)]      = "ar",
 653                [ilog2(VM_DONTDUMP)]    = "dd",
 654#ifdef CONFIG_MEM_SOFT_DIRTY
 655                [ilog2(VM_SOFTDIRTY)]   = "sd",
 656#endif
 657                [ilog2(VM_MIXEDMAP)]    = "mm",
 658                [ilog2(VM_HUGEPAGE)]    = "hg",
 659                [ilog2(VM_NOHUGEPAGE)]  = "nh",
 660                [ilog2(VM_MERGEABLE)]   = "mg",
 661                [ilog2(VM_UFFD_MISSING)]= "um",
 662                [ilog2(VM_UFFD_WP)]     = "uw",
 663#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 664                /* These come out via ProtectionKey: */
 665                [ilog2(VM_PKEY_BIT0)]   = "",
 666                [ilog2(VM_PKEY_BIT1)]   = "",
 667                [ilog2(VM_PKEY_BIT2)]   = "",
 668                [ilog2(VM_PKEY_BIT3)]   = "",
 669#endif
 670        };
 671        size_t i;
 672
 673        seq_puts(m, "VmFlags: ");
 674        for (i = 0; i < BITS_PER_LONG; i++) {
 675                if (!mnemonics[i][0])
 676                        continue;
 677                if (vma->vm_flags & (1UL << i)) {
 678                        seq_printf(m, "%c%c ",
 679                                   mnemonics[i][0], mnemonics[i][1]);
 680                }
 681        }
 682        seq_putc(m, '\n');
 683}
 684
 685#ifdef CONFIG_HUGETLB_PAGE
 686static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 687                                 unsigned long addr, unsigned long end,
 688                                 struct mm_walk *walk)
 689{
 690        struct mem_size_stats *mss = walk->private;
 691        struct vm_area_struct *vma = walk->vma;
 692        struct page *page = NULL;
 693
 694        if (pte_present(*pte)) {
 695                page = vm_normal_page(vma, addr, *pte);
 696        } else if (is_swap_pte(*pte)) {
 697                swp_entry_t swpent = pte_to_swp_entry(*pte);
 698
 699                if (is_migration_entry(swpent))
 700                        page = migration_entry_to_page(swpent);
 701        }
 702        if (page) {
 703                int mapcount = page_mapcount(page);
 704
 705                if (mapcount >= 2)
 706                        mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 707                else
 708                        mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 709        }
 710        return 0;
 711}
 712#endif /* HUGETLB_PAGE */
 713
 714void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
 715{
 716}
 717
 718static int show_smap(struct seq_file *m, void *v, int is_pid)
 719{
 720        struct vm_area_struct *vma = v;
 721        struct mem_size_stats mss;
 722        struct mm_walk smaps_walk = {
 723                .pmd_entry = smaps_pte_range,
 724#ifdef CONFIG_HUGETLB_PAGE
 725                .hugetlb_entry = smaps_hugetlb_range,
 726#endif
 727                .mm = vma->vm_mm,
 728                .private = &mss,
 729        };
 730
 731        memset(&mss, 0, sizeof mss);
 732
 733#ifdef CONFIG_SHMEM
 734        if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 735                /*
 736                 * For shared or readonly shmem mappings we know that all
 737                 * swapped out pages belong to the shmem object, and we can
 738                 * obtain the swap value much more efficiently. For private
 739                 * writable mappings, we might have COW pages that are
 740                 * not affected by the parent swapped out pages of the shmem
 741                 * object, so we have to distinguish them during the page walk.
 742                 * Unless we know that the shmem object (or the part mapped by
 743                 * our VMA) has no swapped out pages at all.
 744                 */
 745                unsigned long shmem_swapped = shmem_swap_usage(vma);
 746
 747                if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 748                                        !(vma->vm_flags & VM_WRITE)) {
 749                        mss.swap = shmem_swapped;
 750                } else {
 751                        mss.check_shmem_swap = true;
 752                        smaps_walk.pte_hole = smaps_pte_hole;
 753                }
 754        }
 755#endif
 756
 757        /* mmap_sem is held in m_start */
 758        walk_page_vma(vma, &smaps_walk);
 759
 760        show_map_vma(m, vma, is_pid);
 761
 762        seq_printf(m,
 763                   "Size:           %8lu kB\n"
 764                   "Rss:            %8lu kB\n"
 765                   "Pss:            %8lu kB\n"
 766                   "Shared_Clean:   %8lu kB\n"
 767                   "Shared_Dirty:   %8lu kB\n"
 768                   "Private_Clean:  %8lu kB\n"
 769                   "Private_Dirty:  %8lu kB\n"
 770                   "Referenced:     %8lu kB\n"
 771                   "Anonymous:      %8lu kB\n"
 772                   "AnonHugePages:  %8lu kB\n"
 773                   "Shared_Hugetlb: %8lu kB\n"
 774                   "Private_Hugetlb: %7lu kB\n"
 775                   "Swap:           %8lu kB\n"
 776                   "SwapPss:        %8lu kB\n"
 777                   "KernelPageSize: %8lu kB\n"
 778                   "MMUPageSize:    %8lu kB\n"
 779                   "Locked:         %8lu kB\n",
 780                   (vma->vm_end - vma->vm_start) >> 10,
 781                   mss.resident >> 10,
 782                   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 783                   mss.shared_clean  >> 10,
 784                   mss.shared_dirty  >> 10,
 785                   mss.private_clean >> 10,
 786                   mss.private_dirty >> 10,
 787                   mss.referenced >> 10,
 788                   mss.anonymous >> 10,
 789                   mss.anonymous_thp >> 10,
 790                   mss.shared_hugetlb >> 10,
 791                   mss.private_hugetlb >> 10,
 792                   mss.swap >> 10,
 793                   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
 794                   vma_kernel_pagesize(vma) >> 10,
 795                   vma_mmu_pagesize(vma) >> 10,
 796                   (vma->vm_flags & VM_LOCKED) ?
 797                        (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 798
 799        arch_show_smap(m, vma);
 800        show_smap_vma_flags(m, vma);
 801        m_cache_vma(m, vma);
 802        return 0;
 803}
 804
 805static int show_pid_smap(struct seq_file *m, void *v)
 806{
 807        return show_smap(m, v, 1);
 808}
 809
 810static int show_tid_smap(struct seq_file *m, void *v)
 811{
 812        return show_smap(m, v, 0);
 813}
 814
 815static const struct seq_operations proc_pid_smaps_op = {
 816        .start  = m_start,
 817        .next   = m_next,
 818        .stop   = m_stop,
 819        .show   = show_pid_smap
 820};
 821
 822static const struct seq_operations proc_tid_smaps_op = {
 823        .start  = m_start,
 824        .next   = m_next,
 825        .stop   = m_stop,
 826        .show   = show_tid_smap
 827};
 828
 829static int pid_smaps_open(struct inode *inode, struct file *file)
 830{
 831        return do_maps_open(inode, file, &proc_pid_smaps_op);
 832}
 833
 834static int tid_smaps_open(struct inode *inode, struct file *file)
 835{
 836        return do_maps_open(inode, file, &proc_tid_smaps_op);
 837}
 838
 839const struct file_operations proc_pid_smaps_operations = {
 840        .open           = pid_smaps_open,
 841        .read           = seq_read,
 842        .llseek         = seq_lseek,
 843        .release        = proc_map_release,
 844};
 845
 846const struct file_operations proc_tid_smaps_operations = {
 847        .open           = tid_smaps_open,
 848        .read           = seq_read,
 849        .llseek         = seq_lseek,
 850        .release        = proc_map_release,
 851};
 852
 853enum clear_refs_types {
 854        CLEAR_REFS_ALL = 1,
 855        CLEAR_REFS_ANON,
 856        CLEAR_REFS_MAPPED,
 857        CLEAR_REFS_SOFT_DIRTY,
 858        CLEAR_REFS_MM_HIWATER_RSS,
 859        CLEAR_REFS_LAST,
 860};
 861
 862struct clear_refs_private {
 863        enum clear_refs_types type;
 864};
 865
 866#ifdef CONFIG_MEM_SOFT_DIRTY
 867static inline void clear_soft_dirty(struct vm_area_struct *vma,
 868                unsigned long addr, pte_t *pte)
 869{
 870        /*
 871         * The soft-dirty tracker uses #PF-s to catch writes
 872         * to pages, so write-protect the pte as well. See the
 873         * Documentation/vm/soft-dirty.txt for full description
 874         * of how soft-dirty works.
 875         */
 876        pte_t ptent = *pte;
 877
 878        if (pte_present(ptent)) {
 879                ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
 880                ptent = pte_wrprotect(ptent);
 881                ptent = pte_clear_soft_dirty(ptent);
 882                ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
 883        } else if (is_swap_pte(ptent)) {
 884                ptent = pte_swp_clear_soft_dirty(ptent);
 885                set_pte_at(vma->vm_mm, addr, pte, ptent);
 886        }
 887}
 888#else
 889static inline void clear_soft_dirty(struct vm_area_struct *vma,
 890                unsigned long addr, pte_t *pte)
 891{
 892}
 893#endif
 894
 895#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
 896static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 897                unsigned long addr, pmd_t *pmdp)
 898{
 899        pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
 900
 901        pmd = pmd_wrprotect(pmd);
 902        pmd = pmd_clear_soft_dirty(pmd);
 903
 904        set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
 905}
 906#else
 907static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
 908                unsigned long addr, pmd_t *pmdp)
 909{
 910}
 911#endif
 912
 913static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 914                                unsigned long end, struct mm_walk *walk)
 915{
 916        struct clear_refs_private *cp = walk->private;
 917        struct vm_area_struct *vma = walk->vma;
 918        pte_t *pte, ptent;
 919        spinlock_t *ptl;
 920        struct page *page;
 921
 922        ptl = pmd_trans_huge_lock(pmd, vma);
 923        if (ptl) {
 924                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 925                        clear_soft_dirty_pmd(vma, addr, pmd);
 926                        goto out;
 927                }
 928
 929                page = pmd_page(*pmd);
 930
 931                /* Clear accessed and referenced bits. */
 932                pmdp_test_and_clear_young(vma, addr, pmd);
 933                test_and_clear_page_young(page);
 934                ClearPageReferenced(page);
 935out:
 936                spin_unlock(ptl);
 937                return 0;
 938        }
 939
 940        if (pmd_trans_unstable(pmd))
 941                return 0;
 942
 943        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 944        for (; addr != end; pte++, addr += PAGE_SIZE) {
 945                ptent = *pte;
 946
 947                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 948                        clear_soft_dirty(vma, addr, pte);
 949                        continue;
 950                }
 951
 952                if (!pte_present(ptent))
 953                        continue;
 954
 955                page = vm_normal_page(vma, addr, ptent);
 956                if (!page)
 957                        continue;
 958
 959                /* Clear accessed and referenced bits. */
 960                ptep_test_and_clear_young(vma, addr, pte);
 961                test_and_clear_page_young(page);
 962                ClearPageReferenced(page);
 963        }
 964        pte_unmap_unlock(pte - 1, ptl);
 965        cond_resched();
 966        return 0;
 967}
 968
 969static int clear_refs_test_walk(unsigned long start, unsigned long end,
 970                                struct mm_walk *walk)
 971{
 972        struct clear_refs_private *cp = walk->private;
 973        struct vm_area_struct *vma = walk->vma;
 974
 975        if (vma->vm_flags & VM_PFNMAP)
 976                return 1;
 977
 978        /*
 979         * Writing 1 to /proc/pid/clear_refs affects all pages.
 980         * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
 981         * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
 982         * Writing 4 to /proc/pid/clear_refs affects all pages.
 983         */
 984        if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
 985                return 1;
 986        if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
 987                return 1;
 988        return 0;
 989}
 990
 991static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 992                                size_t count, loff_t *ppos)
 993{
 994        struct task_struct *task;
 995        char buffer[PROC_NUMBUF];
 996        struct mm_struct *mm;
 997        struct vm_area_struct *vma;
 998        enum clear_refs_types type;
 999        int itype;
1000        int rv;
1001
1002        memset(buffer, 0, sizeof(buffer));
1003        if (count > sizeof(buffer) - 1)
1004                count = sizeof(buffer) - 1;
1005        if (copy_from_user(buffer, buf, count))
1006                return -EFAULT;
1007        rv = kstrtoint(strstrip(buffer), 10, &itype);
1008        if (rv < 0)
1009                return rv;
1010        type = (enum clear_refs_types)itype;
1011        if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1012                return -EINVAL;
1013
1014        task = get_proc_task(file_inode(file));
1015        if (!task)
1016                return -ESRCH;
1017        mm = get_task_mm(task);
1018        if (mm) {
1019                struct clear_refs_private cp = {
1020                        .type = type,
1021                };
1022                struct mm_walk clear_refs_walk = {
1023                        .pmd_entry = clear_refs_pte_range,
1024                        .test_walk = clear_refs_test_walk,
1025                        .mm = mm,
1026                        .private = &cp,
1027                };
1028
1029                if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1030                        /*
1031                         * Writing 5 to /proc/pid/clear_refs resets the peak
1032                         * resident set size to this mm's current rss value.
1033                         */
1034                        down_write(&mm->mmap_sem);
1035                        reset_mm_hiwater_rss(mm);
1036                        up_write(&mm->mmap_sem);
1037                        goto out_mm;
1038                }
1039
1040                down_read(&mm->mmap_sem);
1041                if (type == CLEAR_REFS_SOFT_DIRTY) {
1042                        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043                                if (!(vma->vm_flags & VM_SOFTDIRTY))
1044                                        continue;
1045                                up_read(&mm->mmap_sem);
1046                                down_write(&mm->mmap_sem);
1047                                for (vma = mm->mmap; vma; vma = vma->vm_next) {
1048                                        vma->vm_flags &= ~VM_SOFTDIRTY;
1049                                        vma_set_page_prot(vma);
1050                                }
1051                                downgrade_write(&mm->mmap_sem);
1052                                break;
1053                        }
1054                        mmu_notifier_invalidate_range_start(mm, 0, -1);
1055                }
1056                walk_page_range(0, ~0UL, &clear_refs_walk);
1057                if (type == CLEAR_REFS_SOFT_DIRTY)
1058                        mmu_notifier_invalidate_range_end(mm, 0, -1);
1059                flush_tlb_mm(mm);
1060                up_read(&mm->mmap_sem);
1061out_mm:
1062                mmput(mm);
1063        }
1064        put_task_struct(task);
1065
1066        return count;
1067}
1068
1069const struct file_operations proc_clear_refs_operations = {
1070        .write          = clear_refs_write,
1071        .llseek         = noop_llseek,
1072};
1073
1074typedef struct {
1075        u64 pme;
1076} pagemap_entry_t;
1077
1078struct pagemapread {
1079        int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1080        pagemap_entry_t *buffer;
1081        bool show_pfn;
1082};
1083
1084#define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1085#define PAGEMAP_WALK_MASK       (PMD_MASK)
1086
1087#define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1088#define PM_PFRAME_BITS          55
1089#define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1090#define PM_SOFT_DIRTY           BIT_ULL(55)
1091#define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1092#define PM_FILE                 BIT_ULL(61)
1093#define PM_SWAP                 BIT_ULL(62)
1094#define PM_PRESENT              BIT_ULL(63)
1095
1096#define PM_END_OF_BUFFER    1
1097
1098static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1099{
1100        return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1101}
1102
1103static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1104                          struct pagemapread *pm)
1105{
1106        pm->buffer[pm->pos++] = *pme;
1107        if (pm->pos >= pm->len)
1108                return PM_END_OF_BUFFER;
1109        return 0;
1110}
1111
1112static int pagemap_pte_hole(unsigned long start, unsigned long end,
1113                                struct mm_walk *walk)
1114{
1115        struct pagemapread *pm = walk->private;
1116        unsigned long addr = start;
1117        int err = 0;
1118
1119        while (addr < end) {
1120                struct vm_area_struct *vma = find_vma(walk->mm, addr);
1121                pagemap_entry_t pme = make_pme(0, 0);
1122                /* End of address space hole, which we mark as non-present. */
1123                unsigned long hole_end;
1124
1125                if (vma)
1126                        hole_end = min(end, vma->vm_start);
1127                else
1128                        hole_end = end;
1129
1130                for (; addr < hole_end; addr += PAGE_SIZE) {
1131                        err = add_to_pagemap(addr, &pme, pm);
1132                        if (err)
1133                                goto out;
1134                }
1135
1136                if (!vma)
1137                        break;
1138
1139                /* Addresses in the VMA. */
1140                if (vma->vm_flags & VM_SOFTDIRTY)
1141                        pme = make_pme(0, PM_SOFT_DIRTY);
1142                for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1143                        err = add_to_pagemap(addr, &pme, pm);
1144                        if (err)
1145                                goto out;
1146                }
1147        }
1148out:
1149        return err;
1150}
1151
1152static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1153                struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1154{
1155        u64 frame = 0, flags = 0;
1156        struct page *page = NULL;
1157
1158        if (pte_present(pte)) {
1159                if (pm->show_pfn)
1160                        frame = pte_pfn(pte);
1161                flags |= PM_PRESENT;
1162                page = vm_normal_page(vma, addr, pte);
1163                if (pte_soft_dirty(pte))
1164                        flags |= PM_SOFT_DIRTY;
1165        } else if (is_swap_pte(pte)) {
1166                swp_entry_t entry;
1167                if (pte_swp_soft_dirty(pte))
1168                        flags |= PM_SOFT_DIRTY;
1169                entry = pte_to_swp_entry(pte);
1170                frame = swp_type(entry) |
1171                        (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1172                flags |= PM_SWAP;
1173                if (is_migration_entry(entry))
1174                        page = migration_entry_to_page(entry);
1175        }
1176
1177        if (page && !PageAnon(page))
1178                flags |= PM_FILE;
1179        if (page && page_mapcount(page) == 1)
1180                flags |= PM_MMAP_EXCLUSIVE;
1181        if (vma->vm_flags & VM_SOFTDIRTY)
1182                flags |= PM_SOFT_DIRTY;
1183
1184        return make_pme(frame, flags);
1185}
1186
1187static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1188                             struct mm_walk *walk)
1189{
1190        struct vm_area_struct *vma = walk->vma;
1191        struct pagemapread *pm = walk->private;
1192        spinlock_t *ptl;
1193        pte_t *pte, *orig_pte;
1194        int err = 0;
1195
1196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1197        ptl = pmd_trans_huge_lock(pmdp, vma);
1198        if (ptl) {
1199                u64 flags = 0, frame = 0;
1200                pmd_t pmd = *pmdp;
1201
1202                if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1203                        flags |= PM_SOFT_DIRTY;
1204
1205                /*
1206                 * Currently pmd for thp is always present because thp
1207                 * can not be swapped-out, migrated, or HWPOISONed
1208                 * (split in such cases instead.)
1209                 * This if-check is just to prepare for future implementation.
1210                 */
1211                if (pmd_present(pmd)) {
1212                        struct page *page = pmd_page(pmd);
1213
1214                        if (page_mapcount(page) == 1)
1215                                flags |= PM_MMAP_EXCLUSIVE;
1216
1217                        flags |= PM_PRESENT;
1218                        if (pm->show_pfn)
1219                                frame = pmd_pfn(pmd) +
1220                                        ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1221                }
1222
1223                for (; addr != end; addr += PAGE_SIZE) {
1224                        pagemap_entry_t pme = make_pme(frame, flags);
1225
1226                        err = add_to_pagemap(addr, &pme, pm);
1227                        if (err)
1228                                break;
1229                        if (pm->show_pfn && (flags & PM_PRESENT))
1230                                frame++;
1231                }
1232                spin_unlock(ptl);
1233                return err;
1234        }
1235
1236        if (pmd_trans_unstable(pmdp))
1237                return 0;
1238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1239
1240        /*
1241         * We can assume that @vma always points to a valid one and @end never
1242         * goes beyond vma->vm_end.
1243         */
1244        orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1245        for (; addr < end; pte++, addr += PAGE_SIZE) {
1246                pagemap_entry_t pme;
1247
1248                pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1249                err = add_to_pagemap(addr, &pme, pm);
1250                if (err)
1251                        break;
1252        }
1253        pte_unmap_unlock(orig_pte, ptl);
1254
1255        cond_resched();
1256
1257        return err;
1258}
1259
1260#ifdef CONFIG_HUGETLB_PAGE
1261/* This function walks within one hugetlb entry in the single call */
1262static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1263                                 unsigned long addr, unsigned long end,
1264                                 struct mm_walk *walk)
1265{
1266        struct pagemapread *pm = walk->private;
1267        struct vm_area_struct *vma = walk->vma;
1268        u64 flags = 0, frame = 0;
1269        int err = 0;
1270        pte_t pte;
1271
1272        if (vma->vm_flags & VM_SOFTDIRTY)
1273                flags |= PM_SOFT_DIRTY;
1274
1275        pte = huge_ptep_get(ptep);
1276        if (pte_present(pte)) {
1277                struct page *page = pte_page(pte);
1278
1279                if (!PageAnon(page))
1280                        flags |= PM_FILE;
1281
1282                if (page_mapcount(page) == 1)
1283                        flags |= PM_MMAP_EXCLUSIVE;
1284
1285                flags |= PM_PRESENT;
1286                if (pm->show_pfn)
1287                        frame = pte_pfn(pte) +
1288                                ((addr & ~hmask) >> PAGE_SHIFT);
1289        }
1290
1291        for (; addr != end; addr += PAGE_SIZE) {
1292                pagemap_entry_t pme = make_pme(frame, flags);
1293
1294                err = add_to_pagemap(addr, &pme, pm);
1295                if (err)
1296                        return err;
1297                if (pm->show_pfn && (flags & PM_PRESENT))
1298                        frame++;
1299        }
1300
1301        cond_resched();
1302
1303        return err;
1304}
1305#endif /* HUGETLB_PAGE */
1306
1307/*
1308 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1309 *
1310 * For each page in the address space, this file contains one 64-bit entry
1311 * consisting of the following:
1312 *
1313 * Bits 0-54  page frame number (PFN) if present
1314 * Bits 0-4   swap type if swapped
1315 * Bits 5-54  swap offset if swapped
1316 * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1317 * Bit  56    page exclusively mapped
1318 * Bits 57-60 zero
1319 * Bit  61    page is file-page or shared-anon
1320 * Bit  62    page swapped
1321 * Bit  63    page present
1322 *
1323 * If the page is not present but in swap, then the PFN contains an
1324 * encoding of the swap file number and the page's offset into the
1325 * swap. Unmapped pages return a null PFN. This allows determining
1326 * precisely which pages are mapped (or in swap) and comparing mapped
1327 * pages between processes.
1328 *
1329 * Efficient users of this interface will use /proc/pid/maps to
1330 * determine which areas of memory are actually mapped and llseek to
1331 * skip over unmapped regions.
1332 */
1333static ssize_t pagemap_read(struct file *file, char __user *buf,
1334                            size_t count, loff_t *ppos)
1335{
1336        struct mm_struct *mm = file->private_data;
1337        struct pagemapread pm;
1338        struct mm_walk pagemap_walk = {};
1339        unsigned long src;
1340        unsigned long svpfn;
1341        unsigned long start_vaddr;
1342        unsigned long end_vaddr;
1343        int ret = 0, copied = 0;
1344
1345        if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1346                goto out;
1347
1348        ret = -EINVAL;
1349        /* file position must be aligned */
1350        if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1351                goto out_mm;
1352
1353        ret = 0;
1354        if (!count)
1355                goto out_mm;
1356
1357        /* do not disclose physical addresses: attack vector */
1358        pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1359
1360        pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1361        pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1362        ret = -ENOMEM;
1363        if (!pm.buffer)
1364                goto out_mm;
1365
1366        pagemap_walk.pmd_entry = pagemap_pmd_range;
1367        pagemap_walk.pte_hole = pagemap_pte_hole;
1368#ifdef CONFIG_HUGETLB_PAGE
1369        pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1370#endif
1371        pagemap_walk.mm = mm;
1372        pagemap_walk.private = &pm;
1373
1374        src = *ppos;
1375        svpfn = src / PM_ENTRY_BYTES;
1376        start_vaddr = svpfn << PAGE_SHIFT;
1377        end_vaddr = mm->task_size;
1378
1379        /* watch out for wraparound */
1380        if (svpfn > mm->task_size >> PAGE_SHIFT)
1381                start_vaddr = end_vaddr;
1382
1383        /*
1384         * The odds are that this will stop walking way
1385         * before end_vaddr, because the length of the
1386         * user buffer is tracked in "pm", and the walk
1387         * will stop when we hit the end of the buffer.
1388         */
1389        ret = 0;
1390        while (count && (start_vaddr < end_vaddr)) {
1391                int len;
1392                unsigned long end;
1393
1394                pm.pos = 0;
1395                end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1396                /* overflow ? */
1397                if (end < start_vaddr || end > end_vaddr)
1398                        end = end_vaddr;
1399                down_read(&mm->mmap_sem);
1400                ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1401                up_read(&mm->mmap_sem);
1402                start_vaddr = end;
1403
1404                len = min(count, PM_ENTRY_BYTES * pm.pos);
1405                if (copy_to_user(buf, pm.buffer, len)) {
1406                        ret = -EFAULT;
1407                        goto out_free;
1408                }
1409                copied += len;
1410                buf += len;
1411                count -= len;
1412        }
1413        *ppos += copied;
1414        if (!ret || ret == PM_END_OF_BUFFER)
1415                ret = copied;
1416
1417out_free:
1418        kfree(pm.buffer);
1419out_mm:
1420        mmput(mm);
1421out:
1422        return ret;
1423}
1424
1425static int pagemap_open(struct inode *inode, struct file *file)
1426{
1427        struct mm_struct *mm;
1428
1429        mm = proc_mem_open(inode, PTRACE_MODE_READ);
1430        if (IS_ERR(mm))
1431                return PTR_ERR(mm);
1432        file->private_data = mm;
1433        return 0;
1434}
1435
1436static int pagemap_release(struct inode *inode, struct file *file)
1437{
1438        struct mm_struct *mm = file->private_data;
1439
1440        if (mm)
1441                mmdrop(mm);
1442        return 0;
1443}
1444
1445const struct file_operations proc_pagemap_operations = {
1446        .llseek         = mem_lseek, /* borrow this */
1447        .read           = pagemap_read,
1448        .open           = pagemap_open,
1449        .release        = pagemap_release,
1450};
1451#endif /* CONFIG_PROC_PAGE_MONITOR */
1452
1453#ifdef CONFIG_NUMA
1454
1455struct numa_maps {
1456        unsigned long pages;
1457        unsigned long anon;
1458        unsigned long active;
1459        unsigned long writeback;
1460        unsigned long mapcount_max;
1461        unsigned long dirty;
1462        unsigned long swapcache;
1463        unsigned long node[MAX_NUMNODES];
1464};
1465
1466struct numa_maps_private {
1467        struct proc_maps_private proc_maps;
1468        struct numa_maps md;
1469};
1470
1471static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1472                        unsigned long nr_pages)
1473{
1474        int count = page_mapcount(page);
1475
1476        md->pages += nr_pages;
1477        if (pte_dirty || PageDirty(page))
1478                md->dirty += nr_pages;
1479
1480        if (PageSwapCache(page))
1481                md->swapcache += nr_pages;
1482
1483        if (PageActive(page) || PageUnevictable(page))
1484                md->active += nr_pages;
1485
1486        if (PageWriteback(page))
1487                md->writeback += nr_pages;
1488
1489        if (PageAnon(page))
1490                md->anon += nr_pages;
1491
1492        if (count > md->mapcount_max)
1493                md->mapcount_max = count;
1494
1495        md->node[page_to_nid(page)] += nr_pages;
1496}
1497
1498static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1499                unsigned long addr)
1500{
1501        struct page *page;
1502        int nid;
1503
1504        if (!pte_present(pte))
1505                return NULL;
1506
1507        page = vm_normal_page(vma, addr, pte);
1508        if (!page)
1509                return NULL;
1510
1511        if (PageReserved(page))
1512                return NULL;
1513
1514        nid = page_to_nid(page);
1515        if (!node_isset(nid, node_states[N_MEMORY]))
1516                return NULL;
1517
1518        return page;
1519}
1520
1521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1522static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1523                                              struct vm_area_struct *vma,
1524                                              unsigned long addr)
1525{
1526        struct page *page;
1527        int nid;
1528
1529        if (!pmd_present(pmd))
1530                return NULL;
1531
1532        page = vm_normal_page_pmd(vma, addr, pmd);
1533        if (!page)
1534                return NULL;
1535
1536        if (PageReserved(page))
1537                return NULL;
1538
1539        nid = page_to_nid(page);
1540        if (!node_isset(nid, node_states[N_MEMORY]))
1541                return NULL;
1542
1543        return page;
1544}
1545#endif
1546
1547static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1548                unsigned long end, struct mm_walk *walk)
1549{
1550        struct numa_maps *md = walk->private;
1551        struct vm_area_struct *vma = walk->vma;
1552        spinlock_t *ptl;
1553        pte_t *orig_pte;
1554        pte_t *pte;
1555
1556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1557        ptl = pmd_trans_huge_lock(pmd, vma);
1558        if (ptl) {
1559                struct page *page;
1560
1561                page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1562                if (page)
1563                        gather_stats(page, md, pmd_dirty(*pmd),
1564                                     HPAGE_PMD_SIZE/PAGE_SIZE);
1565                spin_unlock(ptl);
1566                return 0;
1567        }
1568
1569        if (pmd_trans_unstable(pmd))
1570                return 0;
1571#endif
1572        orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1573        do {
1574                struct page *page = can_gather_numa_stats(*pte, vma, addr);
1575                if (!page)
1576                        continue;
1577                gather_stats(page, md, pte_dirty(*pte), 1);
1578
1579        } while (pte++, addr += PAGE_SIZE, addr != end);
1580        pte_unmap_unlock(orig_pte, ptl);
1581        return 0;
1582}
1583#ifdef CONFIG_HUGETLB_PAGE
1584static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1585                unsigned long addr, unsigned long end, struct mm_walk *walk)
1586{
1587        pte_t huge_pte = huge_ptep_get(pte);
1588        struct numa_maps *md;
1589        struct page *page;
1590
1591        if (!pte_present(huge_pte))
1592                return 0;
1593
1594        page = pte_page(huge_pte);
1595        if (!page)
1596                return 0;
1597
1598        md = walk->private;
1599        gather_stats(page, md, pte_dirty(huge_pte), 1);
1600        return 0;
1601}
1602
1603#else
1604static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1605                unsigned long addr, unsigned long end, struct mm_walk *walk)
1606{
1607        return 0;
1608}
1609#endif
1610
1611/*
1612 * Display pages allocated per node and memory policy via /proc.
1613 */
1614static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1615{
1616        struct numa_maps_private *numa_priv = m->private;
1617        struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1618        struct vm_area_struct *vma = v;
1619        struct numa_maps *md = &numa_priv->md;
1620        struct file *file = vma->vm_file;
1621        struct mm_struct *mm = vma->vm_mm;
1622        struct mm_walk walk = {
1623                .hugetlb_entry = gather_hugetlb_stats,
1624                .pmd_entry = gather_pte_stats,
1625                .private = md,
1626                .mm = mm,
1627        };
1628        struct mempolicy *pol;
1629        char buffer[64];
1630        int nid;
1631
1632        if (!mm)
1633                return 0;
1634
1635        /* Ensure we start with an empty set of numa_maps statistics. */
1636        memset(md, 0, sizeof(*md));
1637
1638        pol = __get_vma_policy(vma, vma->vm_start);
1639        if (pol) {
1640                mpol_to_str(buffer, sizeof(buffer), pol);
1641                mpol_cond_put(pol);
1642        } else {
1643                mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1644        }
1645
1646        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1647
1648        if (file) {
1649                seq_puts(m, " file=");
1650                seq_file_path(m, file, "\n\t= ");
1651        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1652                seq_puts(m, " heap");
1653        } else if (is_stack(proc_priv, vma, is_pid)) {
1654                seq_puts(m, " stack");
1655        }
1656
1657        if (is_vm_hugetlb_page(vma))
1658                seq_puts(m, " huge");
1659
1660        /* mmap_sem is held by m_start */
1661        walk_page_vma(vma, &walk);
1662
1663        if (!md->pages)
1664                goto out;
1665
1666        if (md->anon)
1667                seq_printf(m, " anon=%lu", md->anon);
1668
1669        if (md->dirty)
1670                seq_printf(m, " dirty=%lu", md->dirty);
1671
1672        if (md->pages != md->anon && md->pages != md->dirty)
1673                seq_printf(m, " mapped=%lu", md->pages);
1674
1675        if (md->mapcount_max > 1)
1676                seq_printf(m, " mapmax=%lu", md->mapcount_max);
1677
1678        if (md->swapcache)
1679                seq_printf(m, " swapcache=%lu", md->swapcache);
1680
1681        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1682                seq_printf(m, " active=%lu", md->active);
1683
1684        if (md->writeback)
1685                seq_printf(m, " writeback=%lu", md->writeback);
1686
1687        for_each_node_state(nid, N_MEMORY)
1688                if (md->node[nid])
1689                        seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1690
1691        seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1692out:
1693        seq_putc(m, '\n');
1694        m_cache_vma(m, vma);
1695        return 0;
1696}
1697
1698static int show_pid_numa_map(struct seq_file *m, void *v)
1699{
1700        return show_numa_map(m, v, 1);
1701}
1702
1703static int show_tid_numa_map(struct seq_file *m, void *v)
1704{
1705        return show_numa_map(m, v, 0);
1706}
1707
1708static const struct seq_operations proc_pid_numa_maps_op = {
1709        .start  = m_start,
1710        .next   = m_next,
1711        .stop   = m_stop,
1712        .show   = show_pid_numa_map,
1713};
1714
1715static const struct seq_operations proc_tid_numa_maps_op = {
1716        .start  = m_start,
1717        .next   = m_next,
1718        .stop   = m_stop,
1719        .show   = show_tid_numa_map,
1720};
1721
1722static int numa_maps_open(struct inode *inode, struct file *file,
1723                          const struct seq_operations *ops)
1724{
1725        return proc_maps_open(inode, file, ops,
1726                                sizeof(struct numa_maps_private));
1727}
1728
1729static int pid_numa_maps_open(struct inode *inode, struct file *file)
1730{
1731        return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1732}
1733
1734static int tid_numa_maps_open(struct inode *inode, struct file *file)
1735{
1736        return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1737}
1738
1739const struct file_operations proc_pid_numa_maps_operations = {
1740        .open           = pid_numa_maps_open,
1741        .read           = seq_read,
1742        .llseek         = seq_lseek,
1743        .release        = proc_map_release,
1744};
1745
1746const struct file_operations proc_tid_numa_maps_operations = {
1747        .open           = tid_numa_maps_open,
1748        .read           = seq_read,
1749        .llseek         = seq_lseek,
1750        .release        = proc_map_release,
1751};
1752#endif /* CONFIG_NUMA */
1753