linux/fs/super.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/export.h>
  24#include <linux/slab.h>
  25#include <linux/blkdev.h>
  26#include <linux/mount.h>
  27#include <linux/security.h>
  28#include <linux/writeback.h>            /* for the emergency remount stuff */
  29#include <linux/idr.h>
  30#include <linux/mutex.h>
  31#include <linux/backing-dev.h>
  32#include <linux/rculist_bl.h>
  33#include <linux/cleancache.h>
  34#include <linux/fsnotify.h>
  35#include <linux/lockdep.h>
  36#include "internal.h"
  37
  38
  39static LIST_HEAD(super_blocks);
  40static DEFINE_SPINLOCK(sb_lock);
  41
  42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  43        "sb_writers",
  44        "sb_pagefaults",
  45        "sb_internal",
  46};
  47
  48/*
  49 * One thing we have to be careful of with a per-sb shrinker is that we don't
  50 * drop the last active reference to the superblock from within the shrinker.
  51 * If that happens we could trigger unregistering the shrinker from within the
  52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  53 * take a passive reference to the superblock to avoid this from occurring.
  54 */
  55static unsigned long super_cache_scan(struct shrinker *shrink,
  56                                      struct shrink_control *sc)
  57{
  58        struct super_block *sb;
  59        long    fs_objects = 0;
  60        long    total_objects;
  61        long    freed = 0;
  62        long    dentries;
  63        long    inodes;
  64
  65        sb = container_of(shrink, struct super_block, s_shrink);
  66
  67        /*
  68         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  69         * to recurse into the FS that called us in clear_inode() and friends..
  70         */
  71        if (!(sc->gfp_mask & __GFP_FS))
  72                return SHRINK_STOP;
  73
  74        if (!trylock_super(sb))
  75                return SHRINK_STOP;
  76
  77        if (sb->s_op->nr_cached_objects)
  78                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  79
  80        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  81        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  82        total_objects = dentries + inodes + fs_objects + 1;
  83        if (!total_objects)
  84                total_objects = 1;
  85
  86        /* proportion the scan between the caches */
  87        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  88        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  89        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  90
  91        /*
  92         * prune the dcache first as the icache is pinned by it, then
  93         * prune the icache, followed by the filesystem specific caches
  94         *
  95         * Ensure that we always scan at least one object - memcg kmem
  96         * accounting uses this to fully empty the caches.
  97         */
  98        sc->nr_to_scan = dentries + 1;
  99        freed = prune_dcache_sb(sb, sc);
 100        sc->nr_to_scan = inodes + 1;
 101        freed += prune_icache_sb(sb, sc);
 102
 103        if (fs_objects) {
 104                sc->nr_to_scan = fs_objects + 1;
 105                freed += sb->s_op->free_cached_objects(sb, sc);
 106        }
 107
 108        up_read(&sb->s_umount);
 109        return freed;
 110}
 111
 112static unsigned long super_cache_count(struct shrinker *shrink,
 113                                       struct shrink_control *sc)
 114{
 115        struct super_block *sb;
 116        long    total_objects = 0;
 117
 118        sb = container_of(shrink, struct super_block, s_shrink);
 119
 120        /*
 121         * Don't call trylock_super as it is a potential
 122         * scalability bottleneck. The counts could get updated
 123         * between super_cache_count and super_cache_scan anyway.
 124         * Call to super_cache_count with shrinker_rwsem held
 125         * ensures the safety of call to list_lru_shrink_count() and
 126         * s_op->nr_cached_objects().
 127         */
 128        if (sb->s_op && sb->s_op->nr_cached_objects)
 129                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 130
 131        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 132        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 133
 134        total_objects = vfs_pressure_ratio(total_objects);
 135        return total_objects;
 136}
 137
 138static void destroy_super_work(struct work_struct *work)
 139{
 140        struct super_block *s = container_of(work, struct super_block,
 141                                                        destroy_work);
 142        int i;
 143
 144        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 145                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 146        kfree(s);
 147}
 148
 149static void destroy_super_rcu(struct rcu_head *head)
 150{
 151        struct super_block *s = container_of(head, struct super_block, rcu);
 152        INIT_WORK(&s->destroy_work, destroy_super_work);
 153        schedule_work(&s->destroy_work);
 154}
 155
 156/**
 157 *      destroy_super   -       frees a superblock
 158 *      @s: superblock to free
 159 *
 160 *      Frees a superblock.
 161 */
 162static void destroy_super(struct super_block *s)
 163{
 164        list_lru_destroy(&s->s_dentry_lru);
 165        list_lru_destroy(&s->s_inode_lru);
 166        security_sb_free(s);
 167        WARN_ON(!list_empty(&s->s_mounts));
 168        kfree(s->s_subtype);
 169        kfree(s->s_options);
 170        call_rcu(&s->rcu, destroy_super_rcu);
 171}
 172
 173/**
 174 *      alloc_super     -       create new superblock
 175 *      @type:  filesystem type superblock should belong to
 176 *      @flags: the mount flags
 177 *
 178 *      Allocates and initializes a new &struct super_block.  alloc_super()
 179 *      returns a pointer new superblock or %NULL if allocation had failed.
 180 */
 181static struct super_block *alloc_super(struct file_system_type *type, int flags)
 182{
 183        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 184        static const struct super_operations default_op;
 185        int i;
 186
 187        if (!s)
 188                return NULL;
 189
 190        INIT_LIST_HEAD(&s->s_mounts);
 191
 192        if (security_sb_alloc(s))
 193                goto fail;
 194
 195        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 196                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 197                                        sb_writers_name[i],
 198                                        &type->s_writers_key[i]))
 199                        goto fail;
 200        }
 201        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 202        s->s_bdi = &noop_backing_dev_info;
 203        s->s_flags = flags;
 204        INIT_HLIST_NODE(&s->s_instances);
 205        INIT_HLIST_BL_HEAD(&s->s_anon);
 206        mutex_init(&s->s_sync_lock);
 207        INIT_LIST_HEAD(&s->s_inodes);
 208        spin_lock_init(&s->s_inode_list_lock);
 209
 210        if (list_lru_init_memcg(&s->s_dentry_lru))
 211                goto fail;
 212        if (list_lru_init_memcg(&s->s_inode_lru))
 213                goto fail;
 214
 215        init_rwsem(&s->s_umount);
 216        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 217        /*
 218         * sget() can have s_umount recursion.
 219         *
 220         * When it cannot find a suitable sb, it allocates a new
 221         * one (this one), and tries again to find a suitable old
 222         * one.
 223         *
 224         * In case that succeeds, it will acquire the s_umount
 225         * lock of the old one. Since these are clearly distrinct
 226         * locks, and this object isn't exposed yet, there's no
 227         * risk of deadlocks.
 228         *
 229         * Annotate this by putting this lock in a different
 230         * subclass.
 231         */
 232        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 233        s->s_count = 1;
 234        atomic_set(&s->s_active, 1);
 235        mutex_init(&s->s_vfs_rename_mutex);
 236        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 237        mutex_init(&s->s_dquot.dqio_mutex);
 238        mutex_init(&s->s_dquot.dqonoff_mutex);
 239        s->s_maxbytes = MAX_NON_LFS;
 240        s->s_op = &default_op;
 241        s->s_time_gran = 1000000000;
 242        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 243
 244        s->s_shrink.seeks = DEFAULT_SEEKS;
 245        s->s_shrink.scan_objects = super_cache_scan;
 246        s->s_shrink.count_objects = super_cache_count;
 247        s->s_shrink.batch = 1024;
 248        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 249        return s;
 250
 251fail:
 252        destroy_super(s);
 253        return NULL;
 254}
 255
 256/* Superblock refcounting  */
 257
 258/*
 259 * Drop a superblock's refcount.  The caller must hold sb_lock.
 260 */
 261static void __put_super(struct super_block *sb)
 262{
 263        if (!--sb->s_count) {
 264                list_del_init(&sb->s_list);
 265                destroy_super(sb);
 266        }
 267}
 268
 269/**
 270 *      put_super       -       drop a temporary reference to superblock
 271 *      @sb: superblock in question
 272 *
 273 *      Drops a temporary reference, frees superblock if there's no
 274 *      references left.
 275 */
 276static void put_super(struct super_block *sb)
 277{
 278        spin_lock(&sb_lock);
 279        __put_super(sb);
 280        spin_unlock(&sb_lock);
 281}
 282
 283
 284/**
 285 *      deactivate_locked_super -       drop an active reference to superblock
 286 *      @s: superblock to deactivate
 287 *
 288 *      Drops an active reference to superblock, converting it into a temprory
 289 *      one if there is no other active references left.  In that case we
 290 *      tell fs driver to shut it down and drop the temporary reference we
 291 *      had just acquired.
 292 *
 293 *      Caller holds exclusive lock on superblock; that lock is released.
 294 */
 295void deactivate_locked_super(struct super_block *s)
 296{
 297        struct file_system_type *fs = s->s_type;
 298        if (atomic_dec_and_test(&s->s_active)) {
 299                cleancache_invalidate_fs(s);
 300                unregister_shrinker(&s->s_shrink);
 301                fs->kill_sb(s);
 302
 303                /*
 304                 * Since list_lru_destroy() may sleep, we cannot call it from
 305                 * put_super(), where we hold the sb_lock. Therefore we destroy
 306                 * the lru lists right now.
 307                 */
 308                list_lru_destroy(&s->s_dentry_lru);
 309                list_lru_destroy(&s->s_inode_lru);
 310
 311                put_filesystem(fs);
 312                put_super(s);
 313        } else {
 314                up_write(&s->s_umount);
 315        }
 316}
 317
 318EXPORT_SYMBOL(deactivate_locked_super);
 319
 320/**
 321 *      deactivate_super        -       drop an active reference to superblock
 322 *      @s: superblock to deactivate
 323 *
 324 *      Variant of deactivate_locked_super(), except that superblock is *not*
 325 *      locked by caller.  If we are going to drop the final active reference,
 326 *      lock will be acquired prior to that.
 327 */
 328void deactivate_super(struct super_block *s)
 329{
 330        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 331                down_write(&s->s_umount);
 332                deactivate_locked_super(s);
 333        }
 334}
 335
 336EXPORT_SYMBOL(deactivate_super);
 337
 338/**
 339 *      grab_super - acquire an active reference
 340 *      @s: reference we are trying to make active
 341 *
 342 *      Tries to acquire an active reference.  grab_super() is used when we
 343 *      had just found a superblock in super_blocks or fs_type->fs_supers
 344 *      and want to turn it into a full-blown active reference.  grab_super()
 345 *      is called with sb_lock held and drops it.  Returns 1 in case of
 346 *      success, 0 if we had failed (superblock contents was already dead or
 347 *      dying when grab_super() had been called).  Note that this is only
 348 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 349 *      of their type), so increment of ->s_count is OK here.
 350 */
 351static int grab_super(struct super_block *s) __releases(sb_lock)
 352{
 353        s->s_count++;
 354        spin_unlock(&sb_lock);
 355        down_write(&s->s_umount);
 356        if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
 357                put_super(s);
 358                return 1;
 359        }
 360        up_write(&s->s_umount);
 361        put_super(s);
 362        return 0;
 363}
 364
 365/*
 366 *      trylock_super - try to grab ->s_umount shared
 367 *      @sb: reference we are trying to grab
 368 *
 369 *      Try to prevent fs shutdown.  This is used in places where we
 370 *      cannot take an active reference but we need to ensure that the
 371 *      filesystem is not shut down while we are working on it. It returns
 372 *      false if we cannot acquire s_umount or if we lose the race and
 373 *      filesystem already got into shutdown, and returns true with the s_umount
 374 *      lock held in read mode in case of success. On successful return,
 375 *      the caller must drop the s_umount lock when done.
 376 *
 377 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 378 *      The reason why it's safe is that we are OK with doing trylock instead
 379 *      of down_read().  There's a couple of places that are OK with that, but
 380 *      it's very much not a general-purpose interface.
 381 */
 382bool trylock_super(struct super_block *sb)
 383{
 384        if (down_read_trylock(&sb->s_umount)) {
 385                if (!hlist_unhashed(&sb->s_instances) &&
 386                    sb->s_root && (sb->s_flags & MS_BORN))
 387                        return true;
 388                up_read(&sb->s_umount);
 389        }
 390
 391        return false;
 392}
 393
 394/**
 395 *      generic_shutdown_super  -       common helper for ->kill_sb()
 396 *      @sb: superblock to kill
 397 *
 398 *      generic_shutdown_super() does all fs-independent work on superblock
 399 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 400 *      that need destruction out of superblock, call generic_shutdown_super()
 401 *      and release aforementioned objects.  Note: dentries and inodes _are_
 402 *      taken care of and do not need specific handling.
 403 *
 404 *      Upon calling this function, the filesystem may no longer alter or
 405 *      rearrange the set of dentries belonging to this super_block, nor may it
 406 *      change the attachments of dentries to inodes.
 407 */
 408void generic_shutdown_super(struct super_block *sb)
 409{
 410        const struct super_operations *sop = sb->s_op;
 411
 412        if (sb->s_root) {
 413                shrink_dcache_for_umount(sb);
 414                sync_filesystem(sb);
 415                sb->s_flags &= ~MS_ACTIVE;
 416
 417                fsnotify_unmount_inodes(sb);
 418                cgroup_writeback_umount();
 419
 420                evict_inodes(sb);
 421
 422                if (sb->s_dio_done_wq) {
 423                        destroy_workqueue(sb->s_dio_done_wq);
 424                        sb->s_dio_done_wq = NULL;
 425                }
 426
 427                if (sop->put_super)
 428                        sop->put_super(sb);
 429
 430                if (!list_empty(&sb->s_inodes)) {
 431                        printk("VFS: Busy inodes after unmount of %s. "
 432                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 433                           sb->s_id);
 434                }
 435        }
 436        spin_lock(&sb_lock);
 437        /* should be initialized for __put_super_and_need_restart() */
 438        hlist_del_init(&sb->s_instances);
 439        spin_unlock(&sb_lock);
 440        up_write(&sb->s_umount);
 441}
 442
 443EXPORT_SYMBOL(generic_shutdown_super);
 444
 445/**
 446 *      sget    -       find or create a superblock
 447 *      @type:  filesystem type superblock should belong to
 448 *      @test:  comparison callback
 449 *      @set:   setup callback
 450 *      @flags: mount flags
 451 *      @data:  argument to each of them
 452 */
 453struct super_block *sget(struct file_system_type *type,
 454                        int (*test)(struct super_block *,void *),
 455                        int (*set)(struct super_block *,void *),
 456                        int flags,
 457                        void *data)
 458{
 459        struct super_block *s = NULL;
 460        struct super_block *old;
 461        int err;
 462
 463retry:
 464        spin_lock(&sb_lock);
 465        if (test) {
 466                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 467                        if (!test(old, data))
 468                                continue;
 469                        if (!grab_super(old))
 470                                goto retry;
 471                        if (s) {
 472                                up_write(&s->s_umount);
 473                                destroy_super(s);
 474                                s = NULL;
 475                        }
 476                        return old;
 477                }
 478        }
 479        if (!s) {
 480                spin_unlock(&sb_lock);
 481                s = alloc_super(type, flags);
 482                if (!s)
 483                        return ERR_PTR(-ENOMEM);
 484                goto retry;
 485        }
 486                
 487        err = set(s, data);
 488        if (err) {
 489                spin_unlock(&sb_lock);
 490                up_write(&s->s_umount);
 491                destroy_super(s);
 492                return ERR_PTR(err);
 493        }
 494        s->s_type = type;
 495        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 496        list_add_tail(&s->s_list, &super_blocks);
 497        hlist_add_head(&s->s_instances, &type->fs_supers);
 498        spin_unlock(&sb_lock);
 499        get_filesystem(type);
 500        register_shrinker(&s->s_shrink);
 501        return s;
 502}
 503
 504EXPORT_SYMBOL(sget);
 505
 506void drop_super(struct super_block *sb)
 507{
 508        up_read(&sb->s_umount);
 509        put_super(sb);
 510}
 511
 512EXPORT_SYMBOL(drop_super);
 513
 514/**
 515 *      iterate_supers - call function for all active superblocks
 516 *      @f: function to call
 517 *      @arg: argument to pass to it
 518 *
 519 *      Scans the superblock list and calls given function, passing it
 520 *      locked superblock and given argument.
 521 */
 522void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 523{
 524        struct super_block *sb, *p = NULL;
 525
 526        spin_lock(&sb_lock);
 527        list_for_each_entry(sb, &super_blocks, s_list) {
 528                if (hlist_unhashed(&sb->s_instances))
 529                        continue;
 530                sb->s_count++;
 531                spin_unlock(&sb_lock);
 532
 533                down_read(&sb->s_umount);
 534                if (sb->s_root && (sb->s_flags & MS_BORN))
 535                        f(sb, arg);
 536                up_read(&sb->s_umount);
 537
 538                spin_lock(&sb_lock);
 539                if (p)
 540                        __put_super(p);
 541                p = sb;
 542        }
 543        if (p)
 544                __put_super(p);
 545        spin_unlock(&sb_lock);
 546}
 547
 548/**
 549 *      iterate_supers_type - call function for superblocks of given type
 550 *      @type: fs type
 551 *      @f: function to call
 552 *      @arg: argument to pass to it
 553 *
 554 *      Scans the superblock list and calls given function, passing it
 555 *      locked superblock and given argument.
 556 */
 557void iterate_supers_type(struct file_system_type *type,
 558        void (*f)(struct super_block *, void *), void *arg)
 559{
 560        struct super_block *sb, *p = NULL;
 561
 562        spin_lock(&sb_lock);
 563        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 564                sb->s_count++;
 565                spin_unlock(&sb_lock);
 566
 567                down_read(&sb->s_umount);
 568                if (sb->s_root && (sb->s_flags & MS_BORN))
 569                        f(sb, arg);
 570                up_read(&sb->s_umount);
 571
 572                spin_lock(&sb_lock);
 573                if (p)
 574                        __put_super(p);
 575                p = sb;
 576        }
 577        if (p)
 578                __put_super(p);
 579        spin_unlock(&sb_lock);
 580}
 581
 582EXPORT_SYMBOL(iterate_supers_type);
 583
 584/**
 585 *      get_super - get the superblock of a device
 586 *      @bdev: device to get the superblock for
 587 *      
 588 *      Scans the superblock list and finds the superblock of the file system
 589 *      mounted on the device given. %NULL is returned if no match is found.
 590 */
 591
 592struct super_block *get_super(struct block_device *bdev)
 593{
 594        struct super_block *sb;
 595
 596        if (!bdev)
 597                return NULL;
 598
 599        spin_lock(&sb_lock);
 600rescan:
 601        list_for_each_entry(sb, &super_blocks, s_list) {
 602                if (hlist_unhashed(&sb->s_instances))
 603                        continue;
 604                if (sb->s_bdev == bdev) {
 605                        sb->s_count++;
 606                        spin_unlock(&sb_lock);
 607                        down_read(&sb->s_umount);
 608                        /* still alive? */
 609                        if (sb->s_root && (sb->s_flags & MS_BORN))
 610                                return sb;
 611                        up_read(&sb->s_umount);
 612                        /* nope, got unmounted */
 613                        spin_lock(&sb_lock);
 614                        __put_super(sb);
 615                        goto rescan;
 616                }
 617        }
 618        spin_unlock(&sb_lock);
 619        return NULL;
 620}
 621
 622EXPORT_SYMBOL(get_super);
 623
 624/**
 625 *      get_super_thawed - get thawed superblock of a device
 626 *      @bdev: device to get the superblock for
 627 *
 628 *      Scans the superblock list and finds the superblock of the file system
 629 *      mounted on the device. The superblock is returned once it is thawed
 630 *      (or immediately if it was not frozen). %NULL is returned if no match
 631 *      is found.
 632 */
 633struct super_block *get_super_thawed(struct block_device *bdev)
 634{
 635        while (1) {
 636                struct super_block *s = get_super(bdev);
 637                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 638                        return s;
 639                up_read(&s->s_umount);
 640                wait_event(s->s_writers.wait_unfrozen,
 641                           s->s_writers.frozen == SB_UNFROZEN);
 642                put_super(s);
 643        }
 644}
 645EXPORT_SYMBOL(get_super_thawed);
 646
 647/**
 648 * get_active_super - get an active reference to the superblock of a device
 649 * @bdev: device to get the superblock for
 650 *
 651 * Scans the superblock list and finds the superblock of the file system
 652 * mounted on the device given.  Returns the superblock with an active
 653 * reference or %NULL if none was found.
 654 */
 655struct super_block *get_active_super(struct block_device *bdev)
 656{
 657        struct super_block *sb;
 658
 659        if (!bdev)
 660                return NULL;
 661
 662restart:
 663        spin_lock(&sb_lock);
 664        list_for_each_entry(sb, &super_blocks, s_list) {
 665                if (hlist_unhashed(&sb->s_instances))
 666                        continue;
 667                if (sb->s_bdev == bdev) {
 668                        if (!grab_super(sb))
 669                                goto restart;
 670                        up_write(&sb->s_umount);
 671                        return sb;
 672                }
 673        }
 674        spin_unlock(&sb_lock);
 675        return NULL;
 676}
 677 
 678struct super_block *user_get_super(dev_t dev)
 679{
 680        struct super_block *sb;
 681
 682        spin_lock(&sb_lock);
 683rescan:
 684        list_for_each_entry(sb, &super_blocks, s_list) {
 685                if (hlist_unhashed(&sb->s_instances))
 686                        continue;
 687                if (sb->s_dev ==  dev) {
 688                        sb->s_count++;
 689                        spin_unlock(&sb_lock);
 690                        down_read(&sb->s_umount);
 691                        /* still alive? */
 692                        if (sb->s_root && (sb->s_flags & MS_BORN))
 693                                return sb;
 694                        up_read(&sb->s_umount);
 695                        /* nope, got unmounted */
 696                        spin_lock(&sb_lock);
 697                        __put_super(sb);
 698                        goto rescan;
 699                }
 700        }
 701        spin_unlock(&sb_lock);
 702        return NULL;
 703}
 704
 705/**
 706 *      do_remount_sb - asks filesystem to change mount options.
 707 *      @sb:    superblock in question
 708 *      @flags: numeric part of options
 709 *      @data:  the rest of options
 710 *      @force: whether or not to force the change
 711 *
 712 *      Alters the mount options of a mounted file system.
 713 */
 714int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 715{
 716        int retval;
 717        int remount_ro;
 718
 719        if (sb->s_writers.frozen != SB_UNFROZEN)
 720                return -EBUSY;
 721
 722#ifdef CONFIG_BLOCK
 723        if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 724                return -EACCES;
 725#endif
 726
 727        remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 728
 729        if (remount_ro) {
 730                if (!hlist_empty(&sb->s_pins)) {
 731                        up_write(&sb->s_umount);
 732                        group_pin_kill(&sb->s_pins);
 733                        down_write(&sb->s_umount);
 734                        if (!sb->s_root)
 735                                return 0;
 736                        if (sb->s_writers.frozen != SB_UNFROZEN)
 737                                return -EBUSY;
 738                        remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 739                }
 740        }
 741        shrink_dcache_sb(sb);
 742
 743        /* If we are remounting RDONLY and current sb is read/write,
 744           make sure there are no rw files opened */
 745        if (remount_ro) {
 746                if (force) {
 747                        sb->s_readonly_remount = 1;
 748                        smp_wmb();
 749                } else {
 750                        retval = sb_prepare_remount_readonly(sb);
 751                        if (retval)
 752                                return retval;
 753                }
 754        }
 755
 756        if (sb->s_op->remount_fs) {
 757                retval = sb->s_op->remount_fs(sb, &flags, data);
 758                if (retval) {
 759                        if (!force)
 760                                goto cancel_readonly;
 761                        /* If forced remount, go ahead despite any errors */
 762                        WARN(1, "forced remount of a %s fs returned %i\n",
 763                             sb->s_type->name, retval);
 764                }
 765        }
 766        sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 767        /* Needs to be ordered wrt mnt_is_readonly() */
 768        smp_wmb();
 769        sb->s_readonly_remount = 0;
 770
 771        /*
 772         * Some filesystems modify their metadata via some other path than the
 773         * bdev buffer cache (eg. use a private mapping, or directories in
 774         * pagecache, etc). Also file data modifications go via their own
 775         * mappings. So If we try to mount readonly then copy the filesystem
 776         * from bdev, we could get stale data, so invalidate it to give a best
 777         * effort at coherency.
 778         */
 779        if (remount_ro && sb->s_bdev)
 780                invalidate_bdev(sb->s_bdev);
 781        return 0;
 782
 783cancel_readonly:
 784        sb->s_readonly_remount = 0;
 785        return retval;
 786}
 787
 788static void do_emergency_remount(struct work_struct *work)
 789{
 790        struct super_block *sb, *p = NULL;
 791
 792        spin_lock(&sb_lock);
 793        list_for_each_entry(sb, &super_blocks, s_list) {
 794                if (hlist_unhashed(&sb->s_instances))
 795                        continue;
 796                sb->s_count++;
 797                spin_unlock(&sb_lock);
 798                down_write(&sb->s_umount);
 799                if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
 800                    !(sb->s_flags & MS_RDONLY)) {
 801                        /*
 802                         * What lock protects sb->s_flags??
 803                         */
 804                        do_remount_sb(sb, MS_RDONLY, NULL, 1);
 805                }
 806                up_write(&sb->s_umount);
 807                spin_lock(&sb_lock);
 808                if (p)
 809                        __put_super(p);
 810                p = sb;
 811        }
 812        if (p)
 813                __put_super(p);
 814        spin_unlock(&sb_lock);
 815        kfree(work);
 816        printk("Emergency Remount complete\n");
 817}
 818
 819void emergency_remount(void)
 820{
 821        struct work_struct *work;
 822
 823        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 824        if (work) {
 825                INIT_WORK(work, do_emergency_remount);
 826                schedule_work(work);
 827        }
 828}
 829
 830/*
 831 * Unnamed block devices are dummy devices used by virtual
 832 * filesystems which don't use real block-devices.  -- jrs
 833 */
 834
 835static DEFINE_IDA(unnamed_dev_ida);
 836static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 837/* Many userspace utilities consider an FSID of 0 invalid.
 838 * Always return at least 1 from get_anon_bdev.
 839 */
 840static int unnamed_dev_start = 1;
 841
 842int get_anon_bdev(dev_t *p)
 843{
 844        int dev;
 845        int error;
 846
 847 retry:
 848        if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 849                return -ENOMEM;
 850        spin_lock(&unnamed_dev_lock);
 851        error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 852        if (!error)
 853                unnamed_dev_start = dev + 1;
 854        spin_unlock(&unnamed_dev_lock);
 855        if (error == -EAGAIN)
 856                /* We raced and lost with another CPU. */
 857                goto retry;
 858        else if (error)
 859                return -EAGAIN;
 860
 861        if (dev >= (1 << MINORBITS)) {
 862                spin_lock(&unnamed_dev_lock);
 863                ida_remove(&unnamed_dev_ida, dev);
 864                if (unnamed_dev_start > dev)
 865                        unnamed_dev_start = dev;
 866                spin_unlock(&unnamed_dev_lock);
 867                return -EMFILE;
 868        }
 869        *p = MKDEV(0, dev & MINORMASK);
 870        return 0;
 871}
 872EXPORT_SYMBOL(get_anon_bdev);
 873
 874void free_anon_bdev(dev_t dev)
 875{
 876        int slot = MINOR(dev);
 877        spin_lock(&unnamed_dev_lock);
 878        ida_remove(&unnamed_dev_ida, slot);
 879        if (slot < unnamed_dev_start)
 880                unnamed_dev_start = slot;
 881        spin_unlock(&unnamed_dev_lock);
 882}
 883EXPORT_SYMBOL(free_anon_bdev);
 884
 885int set_anon_super(struct super_block *s, void *data)
 886{
 887        return get_anon_bdev(&s->s_dev);
 888}
 889
 890EXPORT_SYMBOL(set_anon_super);
 891
 892void kill_anon_super(struct super_block *sb)
 893{
 894        dev_t dev = sb->s_dev;
 895        generic_shutdown_super(sb);
 896        free_anon_bdev(dev);
 897}
 898
 899EXPORT_SYMBOL(kill_anon_super);
 900
 901void kill_litter_super(struct super_block *sb)
 902{
 903        if (sb->s_root)
 904                d_genocide(sb->s_root);
 905        kill_anon_super(sb);
 906}
 907
 908EXPORT_SYMBOL(kill_litter_super);
 909
 910static int ns_test_super(struct super_block *sb, void *data)
 911{
 912        return sb->s_fs_info == data;
 913}
 914
 915static int ns_set_super(struct super_block *sb, void *data)
 916{
 917        sb->s_fs_info = data;
 918        return set_anon_super(sb, NULL);
 919}
 920
 921struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 922        void *data, int (*fill_super)(struct super_block *, void *, int))
 923{
 924        struct super_block *sb;
 925
 926        sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
 927        if (IS_ERR(sb))
 928                return ERR_CAST(sb);
 929
 930        if (!sb->s_root) {
 931                int err;
 932                err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 933                if (err) {
 934                        deactivate_locked_super(sb);
 935                        return ERR_PTR(err);
 936                }
 937
 938                sb->s_flags |= MS_ACTIVE;
 939        }
 940
 941        return dget(sb->s_root);
 942}
 943
 944EXPORT_SYMBOL(mount_ns);
 945
 946#ifdef CONFIG_BLOCK
 947static int set_bdev_super(struct super_block *s, void *data)
 948{
 949        s->s_bdev = data;
 950        s->s_dev = s->s_bdev->bd_dev;
 951
 952        /*
 953         * We set the bdi here to the queue backing, file systems can
 954         * overwrite this in ->fill_super()
 955         */
 956        s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 957        return 0;
 958}
 959
 960static int test_bdev_super(struct super_block *s, void *data)
 961{
 962        return (void *)s->s_bdev == data;
 963}
 964
 965struct dentry *mount_bdev(struct file_system_type *fs_type,
 966        int flags, const char *dev_name, void *data,
 967        int (*fill_super)(struct super_block *, void *, int))
 968{
 969        struct block_device *bdev;
 970        struct super_block *s;
 971        fmode_t mode = FMODE_READ | FMODE_EXCL;
 972        int error = 0;
 973
 974        if (!(flags & MS_RDONLY))
 975                mode |= FMODE_WRITE;
 976
 977        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 978        if (IS_ERR(bdev))
 979                return ERR_CAST(bdev);
 980
 981        /*
 982         * once the super is inserted into the list by sget, s_umount
 983         * will protect the lockfs code from trying to start a snapshot
 984         * while we are mounting
 985         */
 986        mutex_lock(&bdev->bd_fsfreeze_mutex);
 987        if (bdev->bd_fsfreeze_count > 0) {
 988                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 989                error = -EBUSY;
 990                goto error_bdev;
 991        }
 992        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
 993                 bdev);
 994        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 995        if (IS_ERR(s))
 996                goto error_s;
 997
 998        if (s->s_root) {
 999                if ((flags ^ s->s_flags) & MS_RDONLY) {
1000                        deactivate_locked_super(s);
1001                        error = -EBUSY;
1002                        goto error_bdev;
1003                }
1004
1005                /*
1006                 * s_umount nests inside bd_mutex during
1007                 * __invalidate_device().  blkdev_put() acquires
1008                 * bd_mutex and can't be called under s_umount.  Drop
1009                 * s_umount temporarily.  This is safe as we're
1010                 * holding an active reference.
1011                 */
1012                up_write(&s->s_umount);
1013                blkdev_put(bdev, mode);
1014                down_write(&s->s_umount);
1015        } else {
1016                s->s_mode = mode;
1017                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1018                sb_set_blocksize(s, block_size(bdev));
1019                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020                if (error) {
1021                        deactivate_locked_super(s);
1022                        goto error;
1023                }
1024
1025                s->s_flags |= MS_ACTIVE;
1026                bdev->bd_super = s;
1027        }
1028
1029        return dget(s->s_root);
1030
1031error_s:
1032        error = PTR_ERR(s);
1033error_bdev:
1034        blkdev_put(bdev, mode);
1035error:
1036        return ERR_PTR(error);
1037}
1038EXPORT_SYMBOL(mount_bdev);
1039
1040void kill_block_super(struct super_block *sb)
1041{
1042        struct block_device *bdev = sb->s_bdev;
1043        fmode_t mode = sb->s_mode;
1044
1045        bdev->bd_super = NULL;
1046        generic_shutdown_super(sb);
1047        sync_blockdev(bdev);
1048        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049        blkdev_put(bdev, mode | FMODE_EXCL);
1050}
1051
1052EXPORT_SYMBOL(kill_block_super);
1053#endif
1054
1055struct dentry *mount_nodev(struct file_system_type *fs_type,
1056        int flags, void *data,
1057        int (*fill_super)(struct super_block *, void *, int))
1058{
1059        int error;
1060        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1061
1062        if (IS_ERR(s))
1063                return ERR_CAST(s);
1064
1065        error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1066        if (error) {
1067                deactivate_locked_super(s);
1068                return ERR_PTR(error);
1069        }
1070        s->s_flags |= MS_ACTIVE;
1071        return dget(s->s_root);
1072}
1073EXPORT_SYMBOL(mount_nodev);
1074
1075static int compare_single(struct super_block *s, void *p)
1076{
1077        return 1;
1078}
1079
1080struct dentry *mount_single(struct file_system_type *fs_type,
1081        int flags, void *data,
1082        int (*fill_super)(struct super_block *, void *, int))
1083{
1084        struct super_block *s;
1085        int error;
1086
1087        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1088        if (IS_ERR(s))
1089                return ERR_CAST(s);
1090        if (!s->s_root) {
1091                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1092                if (error) {
1093                        deactivate_locked_super(s);
1094                        return ERR_PTR(error);
1095                }
1096                s->s_flags |= MS_ACTIVE;
1097        } else {
1098                do_remount_sb(s, flags, data, 0);
1099        }
1100        return dget(s->s_root);
1101}
1102EXPORT_SYMBOL(mount_single);
1103
1104struct dentry *
1105mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1106{
1107        struct dentry *root;
1108        struct super_block *sb;
1109        char *secdata = NULL;
1110        int error = -ENOMEM;
1111
1112        if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1113                secdata = alloc_secdata();
1114                if (!secdata)
1115                        goto out;
1116
1117                error = security_sb_copy_data(data, secdata);
1118                if (error)
1119                        goto out_free_secdata;
1120        }
1121
1122        root = type->mount(type, flags, name, data);
1123        if (IS_ERR(root)) {
1124                error = PTR_ERR(root);
1125                goto out_free_secdata;
1126        }
1127        sb = root->d_sb;
1128        BUG_ON(!sb);
1129        WARN_ON(!sb->s_bdi);
1130        sb->s_flags |= MS_BORN;
1131
1132        error = security_sb_kern_mount(sb, flags, secdata);
1133        if (error)
1134                goto out_sb;
1135
1136        /*
1137         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138         * but s_maxbytes was an unsigned long long for many releases. Throw
1139         * this warning for a little while to try and catch filesystems that
1140         * violate this rule.
1141         */
1142        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143                "negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145        up_write(&sb->s_umount);
1146        free_secdata(secdata);
1147        return root;
1148out_sb:
1149        dput(root);
1150        deactivate_locked_super(sb);
1151out_free_secdata:
1152        free_secdata(secdata);
1153out:
1154        return ERR_PTR(error);
1155}
1156
1157/*
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161void __sb_end_write(struct super_block *sb, int level)
1162{
1163        percpu_up_read(sb->s_writers.rw_sem + level-1);
1164}
1165EXPORT_SYMBOL(__sb_end_write);
1166
1167/*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171int __sb_start_write(struct super_block *sb, int level, bool wait)
1172{
1173        bool force_trylock = false;
1174        int ret = 1;
1175
1176#ifdef CONFIG_LOCKDEP
1177        /*
1178         * We want lockdep to tell us about possible deadlocks with freezing
1179         * but it's it bit tricky to properly instrument it. Getting a freeze
1180         * protection works as getting a read lock but there are subtle
1181         * problems. XFS for example gets freeze protection on internal level
1182         * twice in some cases, which is OK only because we already hold a
1183         * freeze protection also on higher level. Due to these cases we have
1184         * to use wait == F (trylock mode) which must not fail.
1185         */
1186        if (wait) {
1187                int i;
1188
1189                for (i = 0; i < level - 1; i++)
1190                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1191                                force_trylock = true;
1192                                break;
1193                        }
1194        }
1195#endif
1196        if (wait && !force_trylock)
1197                percpu_down_read(sb->s_writers.rw_sem + level-1);
1198        else
1199                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1200
1201        WARN_ON(force_trylock && !ret);
1202        return ret;
1203}
1204EXPORT_SYMBOL(__sb_start_write);
1205
1206/**
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1210 *
1211 * This function waits until there are no writers of given type to given file
1212 * system.
1213 */
1214static void sb_wait_write(struct super_block *sb, int level)
1215{
1216        percpu_down_write(sb->s_writers.rw_sem + level-1);
1217        /*
1218         * We are going to return to userspace and forget about this lock, the
1219         * ownership goes to the caller of thaw_super() which does unlock.
1220         *
1221         * FIXME: we should do this before return from freeze_super() after we
1222         * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1223         * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1224         * this leads to lockdep false-positives, so currently we do the early
1225         * release right after acquire.
1226         */
1227        percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1228}
1229
1230static void sb_freeze_unlock(struct super_block *sb)
1231{
1232        int level;
1233
1234        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1235                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1236
1237        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1238                percpu_up_write(sb->s_writers.rw_sem + level);
1239}
1240
1241/**
1242 * freeze_super - lock the filesystem and force it into a consistent state
1243 * @sb: the super to lock
1244 *
1245 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1246 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1247 * -EBUSY.
1248 *
1249 * During this function, sb->s_writers.frozen goes through these values:
1250 *
1251 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1252 *
1253 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1254 * writes should be blocked, though page faults are still allowed. We wait for
1255 * all writes to complete and then proceed to the next stage.
1256 *
1257 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1258 * but internal fs threads can still modify the filesystem (although they
1259 * should not dirty new pages or inodes), writeback can run etc. After waiting
1260 * for all running page faults we sync the filesystem which will clean all
1261 * dirty pages and inodes (no new dirty pages or inodes can be created when
1262 * sync is running).
1263 *
1264 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1265 * modification are blocked (e.g. XFS preallocation truncation on inode
1266 * reclaim). This is usually implemented by blocking new transactions for
1267 * filesystems that have them and need this additional guard. After all
1268 * internal writers are finished we call ->freeze_fs() to finish filesystem
1269 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1270 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1271 *
1272 * sb->s_writers.frozen is protected by sb->s_umount.
1273 */
1274int freeze_super(struct super_block *sb)
1275{
1276        int ret;
1277
1278        atomic_inc(&sb->s_active);
1279        down_write(&sb->s_umount);
1280        if (sb->s_writers.frozen != SB_UNFROZEN) {
1281                deactivate_locked_super(sb);
1282                return -EBUSY;
1283        }
1284
1285        if (!(sb->s_flags & MS_BORN)) {
1286                up_write(&sb->s_umount);
1287                return 0;       /* sic - it's "nothing to do" */
1288        }
1289
1290        if (sb->s_flags & MS_RDONLY) {
1291                /* Nothing to do really... */
1292                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1293                up_write(&sb->s_umount);
1294                return 0;
1295        }
1296
1297        sb->s_writers.frozen = SB_FREEZE_WRITE;
1298        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1299        up_write(&sb->s_umount);
1300        sb_wait_write(sb, SB_FREEZE_WRITE);
1301        down_write(&sb->s_umount);
1302
1303        /* Now we go and block page faults... */
1304        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1306
1307        /* All writers are done so after syncing there won't be dirty data */
1308        sync_filesystem(sb);
1309
1310        /* Now wait for internal filesystem counter */
1311        sb->s_writers.frozen = SB_FREEZE_FS;
1312        sb_wait_write(sb, SB_FREEZE_FS);
1313
1314        if (sb->s_op->freeze_fs) {
1315                ret = sb->s_op->freeze_fs(sb);
1316                if (ret) {
1317                        printk(KERN_ERR
1318                                "VFS:Filesystem freeze failed\n");
1319                        sb->s_writers.frozen = SB_UNFROZEN;
1320                        sb_freeze_unlock(sb);
1321                        wake_up(&sb->s_writers.wait_unfrozen);
1322                        deactivate_locked_super(sb);
1323                        return ret;
1324                }
1325        }
1326        /*
1327         * This is just for debugging purposes so that fs can warn if it
1328         * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1329         */
1330        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1331        up_write(&sb->s_umount);
1332        return 0;
1333}
1334EXPORT_SYMBOL(freeze_super);
1335
1336/**
1337 * thaw_super -- unlock filesystem
1338 * @sb: the super to thaw
1339 *
1340 * Unlocks the filesystem and marks it writeable again after freeze_super().
1341 */
1342int thaw_super(struct super_block *sb)
1343{
1344        int error;
1345
1346        down_write(&sb->s_umount);
1347        if (sb->s_writers.frozen == SB_UNFROZEN) {
1348                up_write(&sb->s_umount);
1349                return -EINVAL;
1350        }
1351
1352        if (sb->s_flags & MS_RDONLY) {
1353                sb->s_writers.frozen = SB_UNFROZEN;
1354                goto out;
1355        }
1356
1357        if (sb->s_op->unfreeze_fs) {
1358                error = sb->s_op->unfreeze_fs(sb);
1359                if (error) {
1360                        printk(KERN_ERR
1361                                "VFS:Filesystem thaw failed\n");
1362                        up_write(&sb->s_umount);
1363                        return error;
1364                }
1365        }
1366
1367        sb->s_writers.frozen = SB_UNFROZEN;
1368        sb_freeze_unlock(sb);
1369out:
1370        wake_up(&sb->s_writers.wait_unfrozen);
1371        deactivate_locked_super(sb);
1372        return 0;
1373}
1374EXPORT_SYMBOL(thaw_super);
1375