linux/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include "ubifs.h"
  36
  37static DEFINE_SPINLOCK(dbg_lock);
  38
  39static const char *get_key_fmt(int fmt)
  40{
  41        switch (fmt) {
  42        case UBIFS_SIMPLE_KEY_FMT:
  43                return "simple";
  44        default:
  45                return "unknown/invalid format";
  46        }
  47}
  48
  49static const char *get_key_hash(int hash)
  50{
  51        switch (hash) {
  52        case UBIFS_KEY_HASH_R5:
  53                return "R5";
  54        case UBIFS_KEY_HASH_TEST:
  55                return "test";
  56        default:
  57                return "unknown/invalid name hash";
  58        }
  59}
  60
  61static const char *get_key_type(int type)
  62{
  63        switch (type) {
  64        case UBIFS_INO_KEY:
  65                return "inode";
  66        case UBIFS_DENT_KEY:
  67                return "direntry";
  68        case UBIFS_XENT_KEY:
  69                return "xentry";
  70        case UBIFS_DATA_KEY:
  71                return "data";
  72        case UBIFS_TRUN_KEY:
  73                return "truncate";
  74        default:
  75                return "unknown/invalid key";
  76        }
  77}
  78
  79static const char *get_dent_type(int type)
  80{
  81        switch (type) {
  82        case UBIFS_ITYPE_REG:
  83                return "file";
  84        case UBIFS_ITYPE_DIR:
  85                return "dir";
  86        case UBIFS_ITYPE_LNK:
  87                return "symlink";
  88        case UBIFS_ITYPE_BLK:
  89                return "blkdev";
  90        case UBIFS_ITYPE_CHR:
  91                return "char dev";
  92        case UBIFS_ITYPE_FIFO:
  93                return "fifo";
  94        case UBIFS_ITYPE_SOCK:
  95                return "socket";
  96        default:
  97                return "unknown/invalid type";
  98        }
  99}
 100
 101const char *dbg_snprintf_key(const struct ubifs_info *c,
 102                             const union ubifs_key *key, char *buffer, int len)
 103{
 104        char *p = buffer;
 105        int type = key_type(c, key);
 106
 107        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 108                switch (type) {
 109                case UBIFS_INO_KEY:
 110                        len -= snprintf(p, len, "(%lu, %s)",
 111                                        (unsigned long)key_inum(c, key),
 112                                        get_key_type(type));
 113                        break;
 114                case UBIFS_DENT_KEY:
 115                case UBIFS_XENT_KEY:
 116                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 117                                        (unsigned long)key_inum(c, key),
 118                                        get_key_type(type), key_hash(c, key));
 119                        break;
 120                case UBIFS_DATA_KEY:
 121                        len -= snprintf(p, len, "(%lu, %s, %u)",
 122                                        (unsigned long)key_inum(c, key),
 123                                        get_key_type(type), key_block(c, key));
 124                        break;
 125                case UBIFS_TRUN_KEY:
 126                        len -= snprintf(p, len, "(%lu, %s)",
 127                                        (unsigned long)key_inum(c, key),
 128                                        get_key_type(type));
 129                        break;
 130                default:
 131                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 132                                        key->u32[0], key->u32[1]);
 133                }
 134        } else
 135                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 136        ubifs_assert(len > 0);
 137        return p;
 138}
 139
 140const char *dbg_ntype(int type)
 141{
 142        switch (type) {
 143        case UBIFS_PAD_NODE:
 144                return "padding node";
 145        case UBIFS_SB_NODE:
 146                return "superblock node";
 147        case UBIFS_MST_NODE:
 148                return "master node";
 149        case UBIFS_REF_NODE:
 150                return "reference node";
 151        case UBIFS_INO_NODE:
 152                return "inode node";
 153        case UBIFS_DENT_NODE:
 154                return "direntry node";
 155        case UBIFS_XENT_NODE:
 156                return "xentry node";
 157        case UBIFS_DATA_NODE:
 158                return "data node";
 159        case UBIFS_TRUN_NODE:
 160                return "truncate node";
 161        case UBIFS_IDX_NODE:
 162                return "indexing node";
 163        case UBIFS_CS_NODE:
 164                return "commit start node";
 165        case UBIFS_ORPH_NODE:
 166                return "orphan node";
 167        default:
 168                return "unknown node";
 169        }
 170}
 171
 172static const char *dbg_gtype(int type)
 173{
 174        switch (type) {
 175        case UBIFS_NO_NODE_GROUP:
 176                return "no node group";
 177        case UBIFS_IN_NODE_GROUP:
 178                return "in node group";
 179        case UBIFS_LAST_OF_NODE_GROUP:
 180                return "last of node group";
 181        default:
 182                return "unknown";
 183        }
 184}
 185
 186const char *dbg_cstate(int cmt_state)
 187{
 188        switch (cmt_state) {
 189        case COMMIT_RESTING:
 190                return "commit resting";
 191        case COMMIT_BACKGROUND:
 192                return "background commit requested";
 193        case COMMIT_REQUIRED:
 194                return "commit required";
 195        case COMMIT_RUNNING_BACKGROUND:
 196                return "BACKGROUND commit running";
 197        case COMMIT_RUNNING_REQUIRED:
 198                return "commit running and required";
 199        case COMMIT_BROKEN:
 200                return "broken commit";
 201        default:
 202                return "unknown commit state";
 203        }
 204}
 205
 206const char *dbg_jhead(int jhead)
 207{
 208        switch (jhead) {
 209        case GCHD:
 210                return "0 (GC)";
 211        case BASEHD:
 212                return "1 (base)";
 213        case DATAHD:
 214                return "2 (data)";
 215        default:
 216                return "unknown journal head";
 217        }
 218}
 219
 220static void dump_ch(const struct ubifs_ch *ch)
 221{
 222        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 223        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 224        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 225               dbg_ntype(ch->node_type));
 226        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 227               dbg_gtype(ch->group_type));
 228        pr_err("\tsqnum          %llu\n",
 229               (unsigned long long)le64_to_cpu(ch->sqnum));
 230        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 231}
 232
 233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 234{
 235        const struct ubifs_inode *ui = ubifs_inode(inode);
 236        struct qstr nm = { .name = NULL };
 237        union ubifs_key key;
 238        struct ubifs_dent_node *dent, *pdent = NULL;
 239        int count = 2;
 240
 241        pr_err("Dump in-memory inode:");
 242        pr_err("\tinode          %lu\n", inode->i_ino);
 243        pr_err("\tsize           %llu\n",
 244               (unsigned long long)i_size_read(inode));
 245        pr_err("\tnlink          %u\n", inode->i_nlink);
 246        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 247        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 248        pr_err("\tatime          %u.%u\n",
 249               (unsigned int)inode->i_atime.tv_sec,
 250               (unsigned int)inode->i_atime.tv_nsec);
 251        pr_err("\tmtime          %u.%u\n",
 252               (unsigned int)inode->i_mtime.tv_sec,
 253               (unsigned int)inode->i_mtime.tv_nsec);
 254        pr_err("\tctime          %u.%u\n",
 255               (unsigned int)inode->i_ctime.tv_sec,
 256               (unsigned int)inode->i_ctime.tv_nsec);
 257        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 258        pr_err("\txattr_size     %u\n", ui->xattr_size);
 259        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 260        pr_err("\txattr_names    %u\n", ui->xattr_names);
 261        pr_err("\tdirty          %u\n", ui->dirty);
 262        pr_err("\txattr          %u\n", ui->xattr);
 263        pr_err("\tbulk_read      %u\n", ui->xattr);
 264        pr_err("\tsynced_i_size  %llu\n",
 265               (unsigned long long)ui->synced_i_size);
 266        pr_err("\tui_size        %llu\n",
 267               (unsigned long long)ui->ui_size);
 268        pr_err("\tflags          %d\n", ui->flags);
 269        pr_err("\tcompr_type     %d\n", ui->compr_type);
 270        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 271        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 272        pr_err("\tdata_len       %d\n", ui->data_len);
 273
 274        if (!S_ISDIR(inode->i_mode))
 275                return;
 276
 277        pr_err("List of directory entries:\n");
 278        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 279
 280        lowest_dent_key(c, &key, inode->i_ino);
 281        while (1) {
 282                dent = ubifs_tnc_next_ent(c, &key, &nm);
 283                if (IS_ERR(dent)) {
 284                        if (PTR_ERR(dent) != -ENOENT)
 285                                pr_err("error %ld\n", PTR_ERR(dent));
 286                        break;
 287                }
 288
 289                pr_err("\t%d: %s (%s)\n",
 290                       count++, dent->name, get_dent_type(dent->type));
 291
 292                nm.name = dent->name;
 293                nm.len = le16_to_cpu(dent->nlen);
 294                kfree(pdent);
 295                pdent = dent;
 296                key_read(c, &dent->key, &key);
 297        }
 298        kfree(pdent);
 299}
 300
 301void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 302{
 303        int i, n;
 304        union ubifs_key key;
 305        const struct ubifs_ch *ch = node;
 306        char key_buf[DBG_KEY_BUF_LEN];
 307
 308        /* If the magic is incorrect, just hexdump the first bytes */
 309        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 310                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 311                print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 312                               (void *)node, UBIFS_CH_SZ, 1);
 313                return;
 314        }
 315
 316        spin_lock(&dbg_lock);
 317        dump_ch(node);
 318
 319        switch (ch->node_type) {
 320        case UBIFS_PAD_NODE:
 321        {
 322                const struct ubifs_pad_node *pad = node;
 323
 324                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 325                break;
 326        }
 327        case UBIFS_SB_NODE:
 328        {
 329                const struct ubifs_sb_node *sup = node;
 330                unsigned int sup_flags = le32_to_cpu(sup->flags);
 331
 332                pr_err("\tkey_hash       %d (%s)\n",
 333                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 334                pr_err("\tkey_fmt        %d (%s)\n",
 335                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 336                pr_err("\tflags          %#x\n", sup_flags);
 337                pr_err("\tbig_lpt        %u\n",
 338                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 339                pr_err("\tspace_fixup    %u\n",
 340                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 341                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 342                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 343                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 344                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 345                pr_err("\tmax_bud_bytes  %llu\n",
 346                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 347                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 348                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 349                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 350                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 351                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 352                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 353                pr_err("\tdefault_compr  %u\n",
 354                       (int)le16_to_cpu(sup->default_compr));
 355                pr_err("\trp_size        %llu\n",
 356                       (unsigned long long)le64_to_cpu(sup->rp_size));
 357                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 358                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 359                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 360                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 361                pr_err("\tUUID           %pUB\n", sup->uuid);
 362                break;
 363        }
 364        case UBIFS_MST_NODE:
 365        {
 366                const struct ubifs_mst_node *mst = node;
 367
 368                pr_err("\thighest_inum   %llu\n",
 369                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 370                pr_err("\tcommit number  %llu\n",
 371                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 372                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 373                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 374                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 375                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 376                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 377                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 378                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 379                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 380                pr_err("\tindex_size     %llu\n",
 381                       (unsigned long long)le64_to_cpu(mst->index_size));
 382                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 383                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 384                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 385                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 386                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 387                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 388                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 389                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 390                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 391                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 392                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 393                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 394                pr_err("\ttotal_free     %llu\n",
 395                       (unsigned long long)le64_to_cpu(mst->total_free));
 396                pr_err("\ttotal_dirty    %llu\n",
 397                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 398                pr_err("\ttotal_used     %llu\n",
 399                       (unsigned long long)le64_to_cpu(mst->total_used));
 400                pr_err("\ttotal_dead     %llu\n",
 401                       (unsigned long long)le64_to_cpu(mst->total_dead));
 402                pr_err("\ttotal_dark     %llu\n",
 403                       (unsigned long long)le64_to_cpu(mst->total_dark));
 404                break;
 405        }
 406        case UBIFS_REF_NODE:
 407        {
 408                const struct ubifs_ref_node *ref = node;
 409
 410                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 411                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 412                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 413                break;
 414        }
 415        case UBIFS_INO_NODE:
 416        {
 417                const struct ubifs_ino_node *ino = node;
 418
 419                key_read(c, &ino->key, &key);
 420                pr_err("\tkey            %s\n",
 421                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 422                pr_err("\tcreat_sqnum    %llu\n",
 423                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 424                pr_err("\tsize           %llu\n",
 425                       (unsigned long long)le64_to_cpu(ino->size));
 426                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 427                pr_err("\tatime          %lld.%u\n",
 428                       (long long)le64_to_cpu(ino->atime_sec),
 429                       le32_to_cpu(ino->atime_nsec));
 430                pr_err("\tmtime          %lld.%u\n",
 431                       (long long)le64_to_cpu(ino->mtime_sec),
 432                       le32_to_cpu(ino->mtime_nsec));
 433                pr_err("\tctime          %lld.%u\n",
 434                       (long long)le64_to_cpu(ino->ctime_sec),
 435                       le32_to_cpu(ino->ctime_nsec));
 436                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 437                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 438                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 439                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 440                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 441                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 442                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 443                pr_err("\tcompr_type     %#x\n",
 444                       (int)le16_to_cpu(ino->compr_type));
 445                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 446                break;
 447        }
 448        case UBIFS_DENT_NODE:
 449        case UBIFS_XENT_NODE:
 450        {
 451                const struct ubifs_dent_node *dent = node;
 452                int nlen = le16_to_cpu(dent->nlen);
 453
 454                key_read(c, &dent->key, &key);
 455                pr_err("\tkey            %s\n",
 456                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 457                pr_err("\tinum           %llu\n",
 458                       (unsigned long long)le64_to_cpu(dent->inum));
 459                pr_err("\ttype           %d\n", (int)dent->type);
 460                pr_err("\tnlen           %d\n", nlen);
 461                pr_err("\tname           ");
 462
 463                if (nlen > UBIFS_MAX_NLEN)
 464                        pr_err("(bad name length, not printing, bad or corrupted node)");
 465                else {
 466                        for (i = 0; i < nlen && dent->name[i]; i++)
 467                                pr_cont("%c", dent->name[i]);
 468                }
 469                pr_cont("\n");
 470
 471                break;
 472        }
 473        case UBIFS_DATA_NODE:
 474        {
 475                const struct ubifs_data_node *dn = node;
 476                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 477
 478                key_read(c, &dn->key, &key);
 479                pr_err("\tkey            %s\n",
 480                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 481                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 482                pr_err("\tcompr_typ      %d\n",
 483                       (int)le16_to_cpu(dn->compr_type));
 484                pr_err("\tdata size      %d\n", dlen);
 485                pr_err("\tdata:\n");
 486                print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 487                               (void *)&dn->data, dlen, 0);
 488                break;
 489        }
 490        case UBIFS_TRUN_NODE:
 491        {
 492                const struct ubifs_trun_node *trun = node;
 493
 494                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 495                pr_err("\told_size       %llu\n",
 496                       (unsigned long long)le64_to_cpu(trun->old_size));
 497                pr_err("\tnew_size       %llu\n",
 498                       (unsigned long long)le64_to_cpu(trun->new_size));
 499                break;
 500        }
 501        case UBIFS_IDX_NODE:
 502        {
 503                const struct ubifs_idx_node *idx = node;
 504
 505                n = le16_to_cpu(idx->child_cnt);
 506                pr_err("\tchild_cnt      %d\n", n);
 507                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 508                pr_err("\tBranches:\n");
 509
 510                for (i = 0; i < n && i < c->fanout - 1; i++) {
 511                        const struct ubifs_branch *br;
 512
 513                        br = ubifs_idx_branch(c, idx, i);
 514                        key_read(c, &br->key, &key);
 515                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 516                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 517                               le32_to_cpu(br->len),
 518                               dbg_snprintf_key(c, &key, key_buf,
 519                                                DBG_KEY_BUF_LEN));
 520                }
 521                break;
 522        }
 523        case UBIFS_CS_NODE:
 524                break;
 525        case UBIFS_ORPH_NODE:
 526        {
 527                const struct ubifs_orph_node *orph = node;
 528
 529                pr_err("\tcommit number  %llu\n",
 530                       (unsigned long long)
 531                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 532                pr_err("\tlast node flag %llu\n",
 533                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 534                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 535                pr_err("\t%d orphan inode numbers:\n", n);
 536                for (i = 0; i < n; i++)
 537                        pr_err("\t  ino %llu\n",
 538                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 539                break;
 540        }
 541        default:
 542                pr_err("node type %d was not recognized\n",
 543                       (int)ch->node_type);
 544        }
 545        spin_unlock(&dbg_lock);
 546}
 547
 548void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 549{
 550        spin_lock(&dbg_lock);
 551        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 552               req->new_ino, req->dirtied_ino);
 553        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 554               req->new_ino_d, req->dirtied_ino_d);
 555        pr_err("\tnew_page    %d, dirtied_page %d\n",
 556               req->new_page, req->dirtied_page);
 557        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 558               req->new_dent, req->mod_dent);
 559        pr_err("\tidx_growth  %d\n", req->idx_growth);
 560        pr_err("\tdata_growth %d dd_growth     %d\n",
 561               req->data_growth, req->dd_growth);
 562        spin_unlock(&dbg_lock);
 563}
 564
 565void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 566{
 567        spin_lock(&dbg_lock);
 568        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 569               current->pid, lst->empty_lebs, lst->idx_lebs);
 570        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 571               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 572        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 573               lst->total_used, lst->total_dark, lst->total_dead);
 574        spin_unlock(&dbg_lock);
 575}
 576
 577void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 578{
 579        int i;
 580        struct rb_node *rb;
 581        struct ubifs_bud *bud;
 582        struct ubifs_gced_idx_leb *idx_gc;
 583        long long available, outstanding, free;
 584
 585        spin_lock(&c->space_lock);
 586        spin_lock(&dbg_lock);
 587        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 588               current->pid, bi->data_growth + bi->dd_growth,
 589               bi->data_growth + bi->dd_growth + bi->idx_growth);
 590        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 591               bi->data_growth, bi->dd_growth, bi->idx_growth);
 592        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 593               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 594        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 595               bi->page_budget, bi->inode_budget, bi->dent_budget);
 596        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 597        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 598               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 599
 600        if (bi != &c->bi)
 601                /*
 602                 * If we are dumping saved budgeting data, do not print
 603                 * additional information which is about the current state, not
 604                 * the old one which corresponded to the saved budgeting data.
 605                 */
 606                goto out_unlock;
 607
 608        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 609               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 610        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 611               atomic_long_read(&c->dirty_pg_cnt),
 612               atomic_long_read(&c->dirty_zn_cnt),
 613               atomic_long_read(&c->clean_zn_cnt));
 614        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 615
 616        /* If we are in R/O mode, journal heads do not exist */
 617        if (c->jheads)
 618                for (i = 0; i < c->jhead_cnt; i++)
 619                        pr_err("\tjhead %s\t LEB %d\n",
 620                               dbg_jhead(c->jheads[i].wbuf.jhead),
 621                               c->jheads[i].wbuf.lnum);
 622        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 623                bud = rb_entry(rb, struct ubifs_bud, rb);
 624                pr_err("\tbud LEB %d\n", bud->lnum);
 625        }
 626        list_for_each_entry(bud, &c->old_buds, list)
 627                pr_err("\told bud LEB %d\n", bud->lnum);
 628        list_for_each_entry(idx_gc, &c->idx_gc, list)
 629                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 630                       idx_gc->lnum, idx_gc->unmap);
 631        pr_err("\tcommit state %d\n", c->cmt_state);
 632
 633        /* Print budgeting predictions */
 634        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 635        outstanding = c->bi.data_growth + c->bi.dd_growth;
 636        free = ubifs_get_free_space_nolock(c);
 637        pr_err("Budgeting predictions:\n");
 638        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 639               available, outstanding, free);
 640out_unlock:
 641        spin_unlock(&dbg_lock);
 642        spin_unlock(&c->space_lock);
 643}
 644
 645void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 646{
 647        int i, spc, dark = 0, dead = 0;
 648        struct rb_node *rb;
 649        struct ubifs_bud *bud;
 650
 651        spc = lp->free + lp->dirty;
 652        if (spc < c->dead_wm)
 653                dead = spc;
 654        else
 655                dark = ubifs_calc_dark(c, spc);
 656
 657        if (lp->flags & LPROPS_INDEX)
 658                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 659                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 660                       lp->flags);
 661        else
 662                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 663                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 664                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 665
 666        if (lp->flags & LPROPS_TAKEN) {
 667                if (lp->flags & LPROPS_INDEX)
 668                        pr_cont("index, taken");
 669                else
 670                        pr_cont("taken");
 671        } else {
 672                const char *s;
 673
 674                if (lp->flags & LPROPS_INDEX) {
 675                        switch (lp->flags & LPROPS_CAT_MASK) {
 676                        case LPROPS_DIRTY_IDX:
 677                                s = "dirty index";
 678                                break;
 679                        case LPROPS_FRDI_IDX:
 680                                s = "freeable index";
 681                                break;
 682                        default:
 683                                s = "index";
 684                        }
 685                } else {
 686                        switch (lp->flags & LPROPS_CAT_MASK) {
 687                        case LPROPS_UNCAT:
 688                                s = "not categorized";
 689                                break;
 690                        case LPROPS_DIRTY:
 691                                s = "dirty";
 692                                break;
 693                        case LPROPS_FREE:
 694                                s = "free";
 695                                break;
 696                        case LPROPS_EMPTY:
 697                                s = "empty";
 698                                break;
 699                        case LPROPS_FREEABLE:
 700                                s = "freeable";
 701                                break;
 702                        default:
 703                                s = NULL;
 704                                break;
 705                        }
 706                }
 707                pr_cont("%s", s);
 708        }
 709
 710        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 711                bud = rb_entry(rb, struct ubifs_bud, rb);
 712                if (bud->lnum == lp->lnum) {
 713                        int head = 0;
 714                        for (i = 0; i < c->jhead_cnt; i++) {
 715                                /*
 716                                 * Note, if we are in R/O mode or in the middle
 717                                 * of mounting/re-mounting, the write-buffers do
 718                                 * not exist.
 719                                 */
 720                                if (c->jheads &&
 721                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 722                                        pr_cont(", jhead %s", dbg_jhead(i));
 723                                        head = 1;
 724                                }
 725                        }
 726                        if (!head)
 727                                pr_cont(", bud of jhead %s",
 728                                       dbg_jhead(bud->jhead));
 729                }
 730        }
 731        if (lp->lnum == c->gc_lnum)
 732                pr_cont(", GC LEB");
 733        pr_cont(")\n");
 734}
 735
 736void ubifs_dump_lprops(struct ubifs_info *c)
 737{
 738        int lnum, err;
 739        struct ubifs_lprops lp;
 740        struct ubifs_lp_stats lst;
 741
 742        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 743        ubifs_get_lp_stats(c, &lst);
 744        ubifs_dump_lstats(&lst);
 745
 746        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 747                err = ubifs_read_one_lp(c, lnum, &lp);
 748                if (err) {
 749                        ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 750                        continue;
 751                }
 752
 753                ubifs_dump_lprop(c, &lp);
 754        }
 755        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 756}
 757
 758void ubifs_dump_lpt_info(struct ubifs_info *c)
 759{
 760        int i;
 761
 762        spin_lock(&dbg_lock);
 763        pr_err("(pid %d) dumping LPT information\n", current->pid);
 764        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 765        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 766        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 767        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 768        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 769        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 770        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 771        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 772        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 773        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 774        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 775        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 776        pr_err("\tspace_bits:    %d\n", c->space_bits);
 777        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 778        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 779        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 780        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 781        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 782        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 783        pr_err("\tLPT head is at %d:%d\n",
 784               c->nhead_lnum, c->nhead_offs);
 785        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 786        if (c->big_lpt)
 787                pr_err("\tLPT lsave is at %d:%d\n",
 788                       c->lsave_lnum, c->lsave_offs);
 789        for (i = 0; i < c->lpt_lebs; i++)
 790                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 791                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 792                       c->ltab[i].tgc, c->ltab[i].cmt);
 793        spin_unlock(&dbg_lock);
 794}
 795
 796void ubifs_dump_sleb(const struct ubifs_info *c,
 797                     const struct ubifs_scan_leb *sleb, int offs)
 798{
 799        struct ubifs_scan_node *snod;
 800
 801        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 802               current->pid, sleb->lnum, offs);
 803
 804        list_for_each_entry(snod, &sleb->nodes, list) {
 805                cond_resched();
 806                pr_err("Dumping node at LEB %d:%d len %d\n",
 807                       sleb->lnum, snod->offs, snod->len);
 808                ubifs_dump_node(c, snod->node);
 809        }
 810}
 811
 812void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 813{
 814        struct ubifs_scan_leb *sleb;
 815        struct ubifs_scan_node *snod;
 816        void *buf;
 817
 818        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 819
 820        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 821        if (!buf) {
 822                ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 823                return;
 824        }
 825
 826        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 827        if (IS_ERR(sleb)) {
 828                ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 829                goto out;
 830        }
 831
 832        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 833               sleb->nodes_cnt, sleb->endpt);
 834
 835        list_for_each_entry(snod, &sleb->nodes, list) {
 836                cond_resched();
 837                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 838                       snod->offs, snod->len);
 839                ubifs_dump_node(c, snod->node);
 840        }
 841
 842        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 843        ubifs_scan_destroy(sleb);
 844
 845out:
 846        vfree(buf);
 847        return;
 848}
 849
 850void ubifs_dump_znode(const struct ubifs_info *c,
 851                      const struct ubifs_znode *znode)
 852{
 853        int n;
 854        const struct ubifs_zbranch *zbr;
 855        char key_buf[DBG_KEY_BUF_LEN];
 856
 857        spin_lock(&dbg_lock);
 858        if (znode->parent)
 859                zbr = &znode->parent->zbranch[znode->iip];
 860        else
 861                zbr = &c->zroot;
 862
 863        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 864               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 865               znode->level, znode->child_cnt, znode->flags);
 866
 867        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 868                spin_unlock(&dbg_lock);
 869                return;
 870        }
 871
 872        pr_err("zbranches:\n");
 873        for (n = 0; n < znode->child_cnt; n++) {
 874                zbr = &znode->zbranch[n];
 875                if (znode->level > 0)
 876                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 877                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 878                               dbg_snprintf_key(c, &zbr->key, key_buf,
 879                                                DBG_KEY_BUF_LEN));
 880                else
 881                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 882                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 883                               dbg_snprintf_key(c, &zbr->key, key_buf,
 884                                                DBG_KEY_BUF_LEN));
 885        }
 886        spin_unlock(&dbg_lock);
 887}
 888
 889void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 890{
 891        int i;
 892
 893        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 894               current->pid, cat, heap->cnt);
 895        for (i = 0; i < heap->cnt; i++) {
 896                struct ubifs_lprops *lprops = heap->arr[i];
 897
 898                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 899                       i, lprops->lnum, lprops->hpos, lprops->free,
 900                       lprops->dirty, lprops->flags);
 901        }
 902        pr_err("(pid %d) finish dumping heap\n", current->pid);
 903}
 904
 905void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 906                      struct ubifs_nnode *parent, int iip)
 907{
 908        int i;
 909
 910        pr_err("(pid %d) dumping pnode:\n", current->pid);
 911        pr_err("\taddress %zx parent %zx cnext %zx\n",
 912               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 913        pr_err("\tflags %lu iip %d level %d num %d\n",
 914               pnode->flags, iip, pnode->level, pnode->num);
 915        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 916                struct ubifs_lprops *lp = &pnode->lprops[i];
 917
 918                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 919                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 920        }
 921}
 922
 923void ubifs_dump_tnc(struct ubifs_info *c)
 924{
 925        struct ubifs_znode *znode;
 926        int level;
 927
 928        pr_err("\n");
 929        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 930        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 931        level = znode->level;
 932        pr_err("== Level %d ==\n", level);
 933        while (znode) {
 934                if (level != znode->level) {
 935                        level = znode->level;
 936                        pr_err("== Level %d ==\n", level);
 937                }
 938                ubifs_dump_znode(c, znode);
 939                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 940        }
 941        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 942}
 943
 944static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 945                      void *priv)
 946{
 947        ubifs_dump_znode(c, znode);
 948        return 0;
 949}
 950
 951/**
 952 * ubifs_dump_index - dump the on-flash index.
 953 * @c: UBIFS file-system description object
 954 *
 955 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 956 * which dumps only in-memory znodes and does not read znodes which from flash.
 957 */
 958void ubifs_dump_index(struct ubifs_info *c)
 959{
 960        dbg_walk_index(c, NULL, dump_znode, NULL);
 961}
 962
 963/**
 964 * dbg_save_space_info - save information about flash space.
 965 * @c: UBIFS file-system description object
 966 *
 967 * This function saves information about UBIFS free space, dirty space, etc, in
 968 * order to check it later.
 969 */
 970void dbg_save_space_info(struct ubifs_info *c)
 971{
 972        struct ubifs_debug_info *d = c->dbg;
 973        int freeable_cnt;
 974
 975        spin_lock(&c->space_lock);
 976        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 977        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 978        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 979
 980        /*
 981         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 982         * affects the free space calculations, and UBIFS might not know about
 983         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 984         * only when we read their lprops, and we do this only lazily, upon the
 985         * need. So at any given point of time @c->freeable_cnt might be not
 986         * exactly accurate.
 987         *
 988         * Just one example about the issue we hit when we did not zero
 989         * @c->freeable_cnt.
 990         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 991         *    amount of free space in @d->saved_free
 992         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 993         *    information from flash, where we cache LEBs from various
 994         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 995         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
 996         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
 997         *    -> 'ubifs_add_to_cat()').
 998         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
 999         *    becomes %1.
1000         * 4. We calculate the amount of free space when the re-mount is
1001         *    finished in 'dbg_check_space_info()' and it does not match
1002         *    @d->saved_free.
1003         */
1004        freeable_cnt = c->freeable_cnt;
1005        c->freeable_cnt = 0;
1006        d->saved_free = ubifs_get_free_space_nolock(c);
1007        c->freeable_cnt = freeable_cnt;
1008        spin_unlock(&c->space_lock);
1009}
1010
1011/**
1012 * dbg_check_space_info - check flash space information.
1013 * @c: UBIFS file-system description object
1014 *
1015 * This function compares current flash space information with the information
1016 * which was saved when the 'dbg_save_space_info()' function was called.
1017 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 * changed.
1019 */
1020int dbg_check_space_info(struct ubifs_info *c)
1021{
1022        struct ubifs_debug_info *d = c->dbg;
1023        struct ubifs_lp_stats lst;
1024        long long free;
1025        int freeable_cnt;
1026
1027        spin_lock(&c->space_lock);
1028        freeable_cnt = c->freeable_cnt;
1029        c->freeable_cnt = 0;
1030        free = ubifs_get_free_space_nolock(c);
1031        c->freeable_cnt = freeable_cnt;
1032        spin_unlock(&c->space_lock);
1033
1034        if (free != d->saved_free) {
1035                ubifs_err(c, "free space changed from %lld to %lld",
1036                          d->saved_free, free);
1037                goto out;
1038        }
1039
1040        return 0;
1041
1042out:
1043        ubifs_msg(c, "saved lprops statistics dump");
1044        ubifs_dump_lstats(&d->saved_lst);
1045        ubifs_msg(c, "saved budgeting info dump");
1046        ubifs_dump_budg(c, &d->saved_bi);
1047        ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048        ubifs_msg(c, "current lprops statistics dump");
1049        ubifs_get_lp_stats(c, &lst);
1050        ubifs_dump_lstats(&lst);
1051        ubifs_msg(c, "current budgeting info dump");
1052        ubifs_dump_budg(c, &c->bi);
1053        dump_stack();
1054        return -EINVAL;
1055}
1056
1057/**
1058 * dbg_check_synced_i_size - check synchronized inode size.
1059 * @c: UBIFS file-system description object
1060 * @inode: inode to check
1061 *
1062 * If inode is clean, synchronized inode size has to be equivalent to current
1063 * inode size. This function has to be called only for locked inodes (@i_mutex
1064 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 * %-EINVAL if not.
1066 */
1067int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068{
1069        int err = 0;
1070        struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072        if (!dbg_is_chk_gen(c))
1073                return 0;
1074        if (!S_ISREG(inode->i_mode))
1075                return 0;
1076
1077        mutex_lock(&ui->ui_mutex);
1078        spin_lock(&ui->ui_lock);
1079        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080                ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081                          ui->ui_size, ui->synced_i_size);
1082                ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083                          inode->i_mode, i_size_read(inode));
1084                dump_stack();
1085                err = -EINVAL;
1086        }
1087        spin_unlock(&ui->ui_lock);
1088        mutex_unlock(&ui->ui_mutex);
1089        return err;
1090}
1091
1092/*
1093 * dbg_check_dir - check directory inode size and link count.
1094 * @c: UBIFS file-system description object
1095 * @dir: the directory to calculate size for
1096 * @size: the result is returned here
1097 *
1098 * This function makes sure that directory size and link count are correct.
1099 * Returns zero in case of success and a negative error code in case of
1100 * failure.
1101 *
1102 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103 * calling this function.
1104 */
1105int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106{
1107        unsigned int nlink = 2;
1108        union ubifs_key key;
1109        struct ubifs_dent_node *dent, *pdent = NULL;
1110        struct qstr nm = { .name = NULL };
1111        loff_t size = UBIFS_INO_NODE_SZ;
1112
1113        if (!dbg_is_chk_gen(c))
1114                return 0;
1115
1116        if (!S_ISDIR(dir->i_mode))
1117                return 0;
1118
1119        lowest_dent_key(c, &key, dir->i_ino);
1120        while (1) {
1121                int err;
1122
1123                dent = ubifs_tnc_next_ent(c, &key, &nm);
1124                if (IS_ERR(dent)) {
1125                        err = PTR_ERR(dent);
1126                        if (err == -ENOENT)
1127                                break;
1128                        return err;
1129                }
1130
1131                nm.name = dent->name;
1132                nm.len = le16_to_cpu(dent->nlen);
1133                size += CALC_DENT_SIZE(nm.len);
1134                if (dent->type == UBIFS_ITYPE_DIR)
1135                        nlink += 1;
1136                kfree(pdent);
1137                pdent = dent;
1138                key_read(c, &dent->key, &key);
1139        }
1140        kfree(pdent);
1141
1142        if (i_size_read(dir) != size) {
1143                ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1144                          dir->i_ino, (unsigned long long)i_size_read(dir),
1145                          (unsigned long long)size);
1146                ubifs_dump_inode(c, dir);
1147                dump_stack();
1148                return -EINVAL;
1149        }
1150        if (dir->i_nlink != nlink) {
1151                ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1152                          dir->i_ino, dir->i_nlink, nlink);
1153                ubifs_dump_inode(c, dir);
1154                dump_stack();
1155                return -EINVAL;
1156        }
1157
1158        return 0;
1159}
1160
1161/**
1162 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1163 * @c: UBIFS file-system description object
1164 * @zbr1: first zbranch
1165 * @zbr2: following zbranch
1166 *
1167 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1168 * names of the direntries/xentries which are referred by the keys. This
1169 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1170 * sure the name of direntry/xentry referred by @zbr1 is less than
1171 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1172 * and a negative error code in case of failure.
1173 */
1174static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1175                               struct ubifs_zbranch *zbr2)
1176{
1177        int err, nlen1, nlen2, cmp;
1178        struct ubifs_dent_node *dent1, *dent2;
1179        union ubifs_key key;
1180        char key_buf[DBG_KEY_BUF_LEN];
1181
1182        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1183        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1184        if (!dent1)
1185                return -ENOMEM;
1186        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1187        if (!dent2) {
1188                err = -ENOMEM;
1189                goto out_free;
1190        }
1191
1192        err = ubifs_tnc_read_node(c, zbr1, dent1);
1193        if (err)
1194                goto out_free;
1195        err = ubifs_validate_entry(c, dent1);
1196        if (err)
1197                goto out_free;
1198
1199        err = ubifs_tnc_read_node(c, zbr2, dent2);
1200        if (err)
1201                goto out_free;
1202        err = ubifs_validate_entry(c, dent2);
1203        if (err)
1204                goto out_free;
1205
1206        /* Make sure node keys are the same as in zbranch */
1207        err = 1;
1208        key_read(c, &dent1->key, &key);
1209        if (keys_cmp(c, &zbr1->key, &key)) {
1210                ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1211                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1212                                                       DBG_KEY_BUF_LEN));
1213                ubifs_err(c, "but it should have key %s according to tnc",
1214                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1215                                           DBG_KEY_BUF_LEN));
1216                ubifs_dump_node(c, dent1);
1217                goto out_free;
1218        }
1219
1220        key_read(c, &dent2->key, &key);
1221        if (keys_cmp(c, &zbr2->key, &key)) {
1222                ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1223                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1224                                                       DBG_KEY_BUF_LEN));
1225                ubifs_err(c, "but it should have key %s according to tnc",
1226                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1227                                           DBG_KEY_BUF_LEN));
1228                ubifs_dump_node(c, dent2);
1229                goto out_free;
1230        }
1231
1232        nlen1 = le16_to_cpu(dent1->nlen);
1233        nlen2 = le16_to_cpu(dent2->nlen);
1234
1235        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1236        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1237                err = 0;
1238                goto out_free;
1239        }
1240        if (cmp == 0 && nlen1 == nlen2)
1241                ubifs_err(c, "2 xent/dent nodes with the same name");
1242        else
1243                ubifs_err(c, "bad order of colliding key %s",
1244                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1245
1246        ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1247        ubifs_dump_node(c, dent1);
1248        ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1249        ubifs_dump_node(c, dent2);
1250
1251out_free:
1252        kfree(dent2);
1253        kfree(dent1);
1254        return err;
1255}
1256
1257/**
1258 * dbg_check_znode - check if znode is all right.
1259 * @c: UBIFS file-system description object
1260 * @zbr: zbranch which points to this znode
1261 *
1262 * This function makes sure that znode referred to by @zbr is all right.
1263 * Returns zero if it is, and %-EINVAL if it is not.
1264 */
1265static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1266{
1267        struct ubifs_znode *znode = zbr->znode;
1268        struct ubifs_znode *zp = znode->parent;
1269        int n, err, cmp;
1270
1271        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1272                err = 1;
1273                goto out;
1274        }
1275        if (znode->level < 0) {
1276                err = 2;
1277                goto out;
1278        }
1279        if (znode->iip < 0 || znode->iip >= c->fanout) {
1280                err = 3;
1281                goto out;
1282        }
1283
1284        if (zbr->len == 0)
1285                /* Only dirty zbranch may have no on-flash nodes */
1286                if (!ubifs_zn_dirty(znode)) {
1287                        err = 4;
1288                        goto out;
1289                }
1290
1291        if (ubifs_zn_dirty(znode)) {
1292                /*
1293                 * If znode is dirty, its parent has to be dirty as well. The
1294                 * order of the operation is important, so we have to have
1295                 * memory barriers.
1296                 */
1297                smp_mb();
1298                if (zp && !ubifs_zn_dirty(zp)) {
1299                        /*
1300                         * The dirty flag is atomic and is cleared outside the
1301                         * TNC mutex, so znode's dirty flag may now have
1302                         * been cleared. The child is always cleared before the
1303                         * parent, so we just need to check again.
1304                         */
1305                        smp_mb();
1306                        if (ubifs_zn_dirty(znode)) {
1307                                err = 5;
1308                                goto out;
1309                        }
1310                }
1311        }
1312
1313        if (zp) {
1314                const union ubifs_key *min, *max;
1315
1316                if (znode->level != zp->level - 1) {
1317                        err = 6;
1318                        goto out;
1319                }
1320
1321                /* Make sure the 'parent' pointer in our znode is correct */
1322                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1323                if (!err) {
1324                        /* This zbranch does not exist in the parent */
1325                        err = 7;
1326                        goto out;
1327                }
1328
1329                if (znode->iip >= zp->child_cnt) {
1330                        err = 8;
1331                        goto out;
1332                }
1333
1334                if (znode->iip != n) {
1335                        /* This may happen only in case of collisions */
1336                        if (keys_cmp(c, &zp->zbranch[n].key,
1337                                     &zp->zbranch[znode->iip].key)) {
1338                                err = 9;
1339                                goto out;
1340                        }
1341                        n = znode->iip;
1342                }
1343
1344                /*
1345                 * Make sure that the first key in our znode is greater than or
1346                 * equal to the key in the pointing zbranch.
1347                 */
1348                min = &zbr->key;
1349                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1350                if (cmp == 1) {
1351                        err = 10;
1352                        goto out;
1353                }
1354
1355                if (n + 1 < zp->child_cnt) {
1356                        max = &zp->zbranch[n + 1].key;
1357
1358                        /*
1359                         * Make sure the last key in our znode is less or
1360                         * equivalent than the key in the zbranch which goes
1361                         * after our pointing zbranch.
1362                         */
1363                        cmp = keys_cmp(c, max,
1364                                &znode->zbranch[znode->child_cnt - 1].key);
1365                        if (cmp == -1) {
1366                                err = 11;
1367                                goto out;
1368                        }
1369                }
1370        } else {
1371                /* This may only be root znode */
1372                if (zbr != &c->zroot) {
1373                        err = 12;
1374                        goto out;
1375                }
1376        }
1377
1378        /*
1379         * Make sure that next key is greater or equivalent then the previous
1380         * one.
1381         */
1382        for (n = 1; n < znode->child_cnt; n++) {
1383                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1384                               &znode->zbranch[n].key);
1385                if (cmp > 0) {
1386                        err = 13;
1387                        goto out;
1388                }
1389                if (cmp == 0) {
1390                        /* This can only be keys with colliding hash */
1391                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1392                                err = 14;
1393                                goto out;
1394                        }
1395
1396                        if (znode->level != 0 || c->replaying)
1397                                continue;
1398
1399                        /*
1400                         * Colliding keys should follow binary order of
1401                         * corresponding xentry/dentry names.
1402                         */
1403                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1404                                                  &znode->zbranch[n]);
1405                        if (err < 0)
1406                                return err;
1407                        if (err) {
1408                                err = 15;
1409                                goto out;
1410                        }
1411                }
1412        }
1413
1414        for (n = 0; n < znode->child_cnt; n++) {
1415                if (!znode->zbranch[n].znode &&
1416                    (znode->zbranch[n].lnum == 0 ||
1417                     znode->zbranch[n].len == 0)) {
1418                        err = 16;
1419                        goto out;
1420                }
1421
1422                if (znode->zbranch[n].lnum != 0 &&
1423                    znode->zbranch[n].len == 0) {
1424                        err = 17;
1425                        goto out;
1426                }
1427
1428                if (znode->zbranch[n].lnum == 0 &&
1429                    znode->zbranch[n].len != 0) {
1430                        err = 18;
1431                        goto out;
1432                }
1433
1434                if (znode->zbranch[n].lnum == 0 &&
1435                    znode->zbranch[n].offs != 0) {
1436                        err = 19;
1437                        goto out;
1438                }
1439
1440                if (znode->level != 0 && znode->zbranch[n].znode)
1441                        if (znode->zbranch[n].znode->parent != znode) {
1442                                err = 20;
1443                                goto out;
1444                        }
1445        }
1446
1447        return 0;
1448
1449out:
1450        ubifs_err(c, "failed, error %d", err);
1451        ubifs_msg(c, "dump of the znode");
1452        ubifs_dump_znode(c, znode);
1453        if (zp) {
1454                ubifs_msg(c, "dump of the parent znode");
1455                ubifs_dump_znode(c, zp);
1456        }
1457        dump_stack();
1458        return -EINVAL;
1459}
1460
1461/**
1462 * dbg_check_tnc - check TNC tree.
1463 * @c: UBIFS file-system description object
1464 * @extra: do extra checks that are possible at start commit
1465 *
1466 * This function traverses whole TNC tree and checks every znode. Returns zero
1467 * if everything is all right and %-EINVAL if something is wrong with TNC.
1468 */
1469int dbg_check_tnc(struct ubifs_info *c, int extra)
1470{
1471        struct ubifs_znode *znode;
1472        long clean_cnt = 0, dirty_cnt = 0;
1473        int err, last;
1474
1475        if (!dbg_is_chk_index(c))
1476                return 0;
1477
1478        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1479        if (!c->zroot.znode)
1480                return 0;
1481
1482        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1483        while (1) {
1484                struct ubifs_znode *prev;
1485                struct ubifs_zbranch *zbr;
1486
1487                if (!znode->parent)
1488                        zbr = &c->zroot;
1489                else
1490                        zbr = &znode->parent->zbranch[znode->iip];
1491
1492                err = dbg_check_znode(c, zbr);
1493                if (err)
1494                        return err;
1495
1496                if (extra) {
1497                        if (ubifs_zn_dirty(znode))
1498                                dirty_cnt += 1;
1499                        else
1500                                clean_cnt += 1;
1501                }
1502
1503                prev = znode;
1504                znode = ubifs_tnc_postorder_next(znode);
1505                if (!znode)
1506                        break;
1507
1508                /*
1509                 * If the last key of this znode is equivalent to the first key
1510                 * of the next znode (collision), then check order of the keys.
1511                 */
1512                last = prev->child_cnt - 1;
1513                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1514                    !keys_cmp(c, &prev->zbranch[last].key,
1515                              &znode->zbranch[0].key)) {
1516                        err = dbg_check_key_order(c, &prev->zbranch[last],
1517                                                  &znode->zbranch[0]);
1518                        if (err < 0)
1519                                return err;
1520                        if (err) {
1521                                ubifs_msg(c, "first znode");
1522                                ubifs_dump_znode(c, prev);
1523                                ubifs_msg(c, "second znode");
1524                                ubifs_dump_znode(c, znode);
1525                                return -EINVAL;
1526                        }
1527                }
1528        }
1529
1530        if (extra) {
1531                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1532                        ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1533                                  atomic_long_read(&c->clean_zn_cnt),
1534                                  clean_cnt);
1535                        return -EINVAL;
1536                }
1537                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1538                        ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1539                                  atomic_long_read(&c->dirty_zn_cnt),
1540                                  dirty_cnt);
1541                        return -EINVAL;
1542                }
1543        }
1544
1545        return 0;
1546}
1547
1548/**
1549 * dbg_walk_index - walk the on-flash index.
1550 * @c: UBIFS file-system description object
1551 * @leaf_cb: called for each leaf node
1552 * @znode_cb: called for each indexing node
1553 * @priv: private data which is passed to callbacks
1554 *
1555 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1556 * node and @znode_cb for each indexing node. Returns zero in case of success
1557 * and a negative error code in case of failure.
1558 *
1559 * It would be better if this function removed every znode it pulled to into
1560 * the TNC, so that the behavior more closely matched the non-debugging
1561 * behavior.
1562 */
1563int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1564                   dbg_znode_callback znode_cb, void *priv)
1565{
1566        int err;
1567        struct ubifs_zbranch *zbr;
1568        struct ubifs_znode *znode, *child;
1569
1570        mutex_lock(&c->tnc_mutex);
1571        /* If the root indexing node is not in TNC - pull it */
1572        if (!c->zroot.znode) {
1573                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1574                if (IS_ERR(c->zroot.znode)) {
1575                        err = PTR_ERR(c->zroot.znode);
1576                        c->zroot.znode = NULL;
1577                        goto out_unlock;
1578                }
1579        }
1580
1581        /*
1582         * We are going to traverse the indexing tree in the postorder manner.
1583         * Go down and find the leftmost indexing node where we are going to
1584         * start from.
1585         */
1586        znode = c->zroot.znode;
1587        while (znode->level > 0) {
1588                zbr = &znode->zbranch[0];
1589                child = zbr->znode;
1590                if (!child) {
1591                        child = ubifs_load_znode(c, zbr, znode, 0);
1592                        if (IS_ERR(child)) {
1593                                err = PTR_ERR(child);
1594                                goto out_unlock;
1595                        }
1596                        zbr->znode = child;
1597                }
1598
1599                znode = child;
1600        }
1601
1602        /* Iterate over all indexing nodes */
1603        while (1) {
1604                int idx;
1605
1606                cond_resched();
1607
1608                if (znode_cb) {
1609                        err = znode_cb(c, znode, priv);
1610                        if (err) {
1611                                ubifs_err(c, "znode checking function returned error %d",
1612                                          err);
1613                                ubifs_dump_znode(c, znode);
1614                                goto out_dump;
1615                        }
1616                }
1617                if (leaf_cb && znode->level == 0) {
1618                        for (idx = 0; idx < znode->child_cnt; idx++) {
1619                                zbr = &znode->zbranch[idx];
1620                                err = leaf_cb(c, zbr, priv);
1621                                if (err) {
1622                                        ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1623                                                  err, zbr->lnum, zbr->offs);
1624                                        goto out_dump;
1625                                }
1626                        }
1627                }
1628
1629                if (!znode->parent)
1630                        break;
1631
1632                idx = znode->iip + 1;
1633                znode = znode->parent;
1634                if (idx < znode->child_cnt) {
1635                        /* Switch to the next index in the parent */
1636                        zbr = &znode->zbranch[idx];
1637                        child = zbr->znode;
1638                        if (!child) {
1639                                child = ubifs_load_znode(c, zbr, znode, idx);
1640                                if (IS_ERR(child)) {
1641                                        err = PTR_ERR(child);
1642                                        goto out_unlock;
1643                                }
1644                                zbr->znode = child;
1645                        }
1646                        znode = child;
1647                } else
1648                        /*
1649                         * This is the last child, switch to the parent and
1650                         * continue.
1651                         */
1652                        continue;
1653
1654                /* Go to the lowest leftmost znode in the new sub-tree */
1655                while (znode->level > 0) {
1656                        zbr = &znode->zbranch[0];
1657                        child = zbr->znode;
1658                        if (!child) {
1659                                child = ubifs_load_znode(c, zbr, znode, 0);
1660                                if (IS_ERR(child)) {
1661                                        err = PTR_ERR(child);
1662                                        goto out_unlock;
1663                                }
1664                                zbr->znode = child;
1665                        }
1666                        znode = child;
1667                }
1668        }
1669
1670        mutex_unlock(&c->tnc_mutex);
1671        return 0;
1672
1673out_dump:
1674        if (znode->parent)
1675                zbr = &znode->parent->zbranch[znode->iip];
1676        else
1677                zbr = &c->zroot;
1678        ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1679        ubifs_dump_znode(c, znode);
1680out_unlock:
1681        mutex_unlock(&c->tnc_mutex);
1682        return err;
1683}
1684
1685/**
1686 * add_size - add znode size to partially calculated index size.
1687 * @c: UBIFS file-system description object
1688 * @znode: znode to add size for
1689 * @priv: partially calculated index size
1690 *
1691 * This is a helper function for 'dbg_check_idx_size()' which is called for
1692 * every indexing node and adds its size to the 'long long' variable pointed to
1693 * by @priv.
1694 */
1695static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1696{
1697        long long *idx_size = priv;
1698        int add;
1699
1700        add = ubifs_idx_node_sz(c, znode->child_cnt);
1701        add = ALIGN(add, 8);
1702        *idx_size += add;
1703        return 0;
1704}
1705
1706/**
1707 * dbg_check_idx_size - check index size.
1708 * @c: UBIFS file-system description object
1709 * @idx_size: size to check
1710 *
1711 * This function walks the UBIFS index, calculates its size and checks that the
1712 * size is equivalent to @idx_size. Returns zero in case of success and a
1713 * negative error code in case of failure.
1714 */
1715int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1716{
1717        int err;
1718        long long calc = 0;
1719
1720        if (!dbg_is_chk_index(c))
1721                return 0;
1722
1723        err = dbg_walk_index(c, NULL, add_size, &calc);
1724        if (err) {
1725                ubifs_err(c, "error %d while walking the index", err);
1726                return err;
1727        }
1728
1729        if (calc != idx_size) {
1730                ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1731                          calc, idx_size);
1732                dump_stack();
1733                return -EINVAL;
1734        }
1735
1736        return 0;
1737}
1738
1739/**
1740 * struct fsck_inode - information about an inode used when checking the file-system.
1741 * @rb: link in the RB-tree of inodes
1742 * @inum: inode number
1743 * @mode: inode type, permissions, etc
1744 * @nlink: inode link count
1745 * @xattr_cnt: count of extended attributes
1746 * @references: how many directory/xattr entries refer this inode (calculated
1747 *              while walking the index)
1748 * @calc_cnt: for directory inode count of child directories
1749 * @size: inode size (read from on-flash inode)
1750 * @xattr_sz: summary size of all extended attributes (read from on-flash
1751 *            inode)
1752 * @calc_sz: for directories calculated directory size
1753 * @calc_xcnt: count of extended attributes
1754 * @calc_xsz: calculated summary size of all extended attributes
1755 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1756 *             inode (read from on-flash inode)
1757 * @calc_xnms: calculated sum of lengths of all extended attribute names
1758 */
1759struct fsck_inode {
1760        struct rb_node rb;
1761        ino_t inum;
1762        umode_t mode;
1763        unsigned int nlink;
1764        unsigned int xattr_cnt;
1765        int references;
1766        int calc_cnt;
1767        long long size;
1768        unsigned int xattr_sz;
1769        long long calc_sz;
1770        long long calc_xcnt;
1771        long long calc_xsz;
1772        unsigned int xattr_nms;
1773        long long calc_xnms;
1774};
1775
1776/**
1777 * struct fsck_data - private FS checking information.
1778 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1779 */
1780struct fsck_data {
1781        struct rb_root inodes;
1782};
1783
1784/**
1785 * add_inode - add inode information to RB-tree of inodes.
1786 * @c: UBIFS file-system description object
1787 * @fsckd: FS checking information
1788 * @ino: raw UBIFS inode to add
1789 *
1790 * This is a helper function for 'check_leaf()' which adds information about
1791 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1792 * case of success and a negative error code in case of failure.
1793 */
1794static struct fsck_inode *add_inode(struct ubifs_info *c,
1795                                    struct fsck_data *fsckd,
1796                                    struct ubifs_ino_node *ino)
1797{
1798        struct rb_node **p, *parent = NULL;
1799        struct fsck_inode *fscki;
1800        ino_t inum = key_inum_flash(c, &ino->key);
1801        struct inode *inode;
1802        struct ubifs_inode *ui;
1803
1804        p = &fsckd->inodes.rb_node;
1805        while (*p) {
1806                parent = *p;
1807                fscki = rb_entry(parent, struct fsck_inode, rb);
1808                if (inum < fscki->inum)
1809                        p = &(*p)->rb_left;
1810                else if (inum > fscki->inum)
1811                        p = &(*p)->rb_right;
1812                else
1813                        return fscki;
1814        }
1815
1816        if (inum > c->highest_inum) {
1817                ubifs_err(c, "too high inode number, max. is %lu",
1818                          (unsigned long)c->highest_inum);
1819                return ERR_PTR(-EINVAL);
1820        }
1821
1822        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1823        if (!fscki)
1824                return ERR_PTR(-ENOMEM);
1825
1826        inode = ilookup(c->vfs_sb, inum);
1827
1828        fscki->inum = inum;
1829        /*
1830         * If the inode is present in the VFS inode cache, use it instead of
1831         * the on-flash inode which might be out-of-date. E.g., the size might
1832         * be out-of-date. If we do not do this, the following may happen, for
1833         * example:
1834         *   1. A power cut happens
1835         *   2. We mount the file-system R/O, the replay process fixes up the
1836         *      inode size in the VFS cache, but on on-flash.
1837         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1838         *      size.
1839         */
1840        if (!inode) {
1841                fscki->nlink = le32_to_cpu(ino->nlink);
1842                fscki->size = le64_to_cpu(ino->size);
1843                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1844                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1845                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1846                fscki->mode = le32_to_cpu(ino->mode);
1847        } else {
1848                ui = ubifs_inode(inode);
1849                fscki->nlink = inode->i_nlink;
1850                fscki->size = inode->i_size;
1851                fscki->xattr_cnt = ui->xattr_cnt;
1852                fscki->xattr_sz = ui->xattr_size;
1853                fscki->xattr_nms = ui->xattr_names;
1854                fscki->mode = inode->i_mode;
1855                iput(inode);
1856        }
1857
1858        if (S_ISDIR(fscki->mode)) {
1859                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1860                fscki->calc_cnt = 2;
1861        }
1862
1863        rb_link_node(&fscki->rb, parent, p);
1864        rb_insert_color(&fscki->rb, &fsckd->inodes);
1865
1866        return fscki;
1867}
1868
1869/**
1870 * search_inode - search inode in the RB-tree of inodes.
1871 * @fsckd: FS checking information
1872 * @inum: inode number to search
1873 *
1874 * This is a helper function for 'check_leaf()' which searches inode @inum in
1875 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1876 * the inode was not found.
1877 */
1878static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1879{
1880        struct rb_node *p;
1881        struct fsck_inode *fscki;
1882
1883        p = fsckd->inodes.rb_node;
1884        while (p) {
1885                fscki = rb_entry(p, struct fsck_inode, rb);
1886                if (inum < fscki->inum)
1887                        p = p->rb_left;
1888                else if (inum > fscki->inum)
1889                        p = p->rb_right;
1890                else
1891                        return fscki;
1892        }
1893        return NULL;
1894}
1895
1896/**
1897 * read_add_inode - read inode node and add it to RB-tree of inodes.
1898 * @c: UBIFS file-system description object
1899 * @fsckd: FS checking information
1900 * @inum: inode number to read
1901 *
1902 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1903 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1904 * information pointer in case of success and a negative error code in case of
1905 * failure.
1906 */
1907static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1908                                         struct fsck_data *fsckd, ino_t inum)
1909{
1910        int n, err;
1911        union ubifs_key key;
1912        struct ubifs_znode *znode;
1913        struct ubifs_zbranch *zbr;
1914        struct ubifs_ino_node *ino;
1915        struct fsck_inode *fscki;
1916
1917        fscki = search_inode(fsckd, inum);
1918        if (fscki)
1919                return fscki;
1920
1921        ino_key_init(c, &key, inum);
1922        err = ubifs_lookup_level0(c, &key, &znode, &n);
1923        if (!err) {
1924                ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1925                return ERR_PTR(-ENOENT);
1926        } else if (err < 0) {
1927                ubifs_err(c, "error %d while looking up inode %lu",
1928                          err, (unsigned long)inum);
1929                return ERR_PTR(err);
1930        }
1931
1932        zbr = &znode->zbranch[n];
1933        if (zbr->len < UBIFS_INO_NODE_SZ) {
1934                ubifs_err(c, "bad node %lu node length %d",
1935                          (unsigned long)inum, zbr->len);
1936                return ERR_PTR(-EINVAL);
1937        }
1938
1939        ino = kmalloc(zbr->len, GFP_NOFS);
1940        if (!ino)
1941                return ERR_PTR(-ENOMEM);
1942
1943        err = ubifs_tnc_read_node(c, zbr, ino);
1944        if (err) {
1945                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1946                          zbr->lnum, zbr->offs, err);
1947                kfree(ino);
1948                return ERR_PTR(err);
1949        }
1950
1951        fscki = add_inode(c, fsckd, ino);
1952        kfree(ino);
1953        if (IS_ERR(fscki)) {
1954                ubifs_err(c, "error %ld while adding inode %lu node",
1955                          PTR_ERR(fscki), (unsigned long)inum);
1956                return fscki;
1957        }
1958
1959        return fscki;
1960}
1961
1962/**
1963 * check_leaf - check leaf node.
1964 * @c: UBIFS file-system description object
1965 * @zbr: zbranch of the leaf node to check
1966 * @priv: FS checking information
1967 *
1968 * This is a helper function for 'dbg_check_filesystem()' which is called for
1969 * every single leaf node while walking the indexing tree. It checks that the
1970 * leaf node referred from the indexing tree exists, has correct CRC, and does
1971 * some other basic validation. This function is also responsible for building
1972 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1973 * calculates reference count, size, etc for each inode in order to later
1974 * compare them to the information stored inside the inodes and detect possible
1975 * inconsistencies. Returns zero in case of success and a negative error code
1976 * in case of failure.
1977 */
1978static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1979                      void *priv)
1980{
1981        ino_t inum;
1982        void *node;
1983        struct ubifs_ch *ch;
1984        int err, type = key_type(c, &zbr->key);
1985        struct fsck_inode *fscki;
1986
1987        if (zbr->len < UBIFS_CH_SZ) {
1988                ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1989                          zbr->len, zbr->lnum, zbr->offs);
1990                return -EINVAL;
1991        }
1992
1993        node = kmalloc(zbr->len, GFP_NOFS);
1994        if (!node)
1995                return -ENOMEM;
1996
1997        err = ubifs_tnc_read_node(c, zbr, node);
1998        if (err) {
1999                ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2000                          zbr->lnum, zbr->offs, err);
2001                goto out_free;
2002        }
2003
2004        /* If this is an inode node, add it to RB-tree of inodes */
2005        if (type == UBIFS_INO_KEY) {
2006                fscki = add_inode(c, priv, node);
2007                if (IS_ERR(fscki)) {
2008                        err = PTR_ERR(fscki);
2009                        ubifs_err(c, "error %d while adding inode node", err);
2010                        goto out_dump;
2011                }
2012                goto out;
2013        }
2014
2015        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2016            type != UBIFS_DATA_KEY) {
2017                ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2018                          type, zbr->lnum, zbr->offs);
2019                err = -EINVAL;
2020                goto out_free;
2021        }
2022
2023        ch = node;
2024        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2025                ubifs_err(c, "too high sequence number, max. is %llu",
2026                          c->max_sqnum);
2027                err = -EINVAL;
2028                goto out_dump;
2029        }
2030
2031        if (type == UBIFS_DATA_KEY) {
2032                long long blk_offs;
2033                struct ubifs_data_node *dn = node;
2034
2035                ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2036
2037                /*
2038                 * Search the inode node this data node belongs to and insert
2039                 * it to the RB-tree of inodes.
2040                 */
2041                inum = key_inum_flash(c, &dn->key);
2042                fscki = read_add_inode(c, priv, inum);
2043                if (IS_ERR(fscki)) {
2044                        err = PTR_ERR(fscki);
2045                        ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2046                                  err, (unsigned long)inum);
2047                        goto out_dump;
2048                }
2049
2050                /* Make sure the data node is within inode size */
2051                blk_offs = key_block_flash(c, &dn->key);
2052                blk_offs <<= UBIFS_BLOCK_SHIFT;
2053                blk_offs += le32_to_cpu(dn->size);
2054                if (blk_offs > fscki->size) {
2055                        ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2056                                  zbr->lnum, zbr->offs, fscki->size);
2057                        err = -EINVAL;
2058                        goto out_dump;
2059                }
2060        } else {
2061                int nlen;
2062                struct ubifs_dent_node *dent = node;
2063                struct fsck_inode *fscki1;
2064
2065                ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2066
2067                err = ubifs_validate_entry(c, dent);
2068                if (err)
2069                        goto out_dump;
2070
2071                /*
2072                 * Search the inode node this entry refers to and the parent
2073                 * inode node and insert them to the RB-tree of inodes.
2074                 */
2075                inum = le64_to_cpu(dent->inum);
2076                fscki = read_add_inode(c, priv, inum);
2077                if (IS_ERR(fscki)) {
2078                        err = PTR_ERR(fscki);
2079                        ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2080                                  err, (unsigned long)inum);
2081                        goto out_dump;
2082                }
2083
2084                /* Count how many direntries or xentries refers this inode */
2085                fscki->references += 1;
2086
2087                inum = key_inum_flash(c, &dent->key);
2088                fscki1 = read_add_inode(c, priv, inum);
2089                if (IS_ERR(fscki1)) {
2090                        err = PTR_ERR(fscki1);
2091                        ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2092                                  err, (unsigned long)inum);
2093                        goto out_dump;
2094                }
2095
2096                nlen = le16_to_cpu(dent->nlen);
2097                if (type == UBIFS_XENT_KEY) {
2098                        fscki1->calc_xcnt += 1;
2099                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2100                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2101                        fscki1->calc_xnms += nlen;
2102                } else {
2103                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2104                        if (dent->type == UBIFS_ITYPE_DIR)
2105                                fscki1->calc_cnt += 1;
2106                }
2107        }
2108
2109out:
2110        kfree(node);
2111        return 0;
2112
2113out_dump:
2114        ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2115        ubifs_dump_node(c, node);
2116out_free:
2117        kfree(node);
2118        return err;
2119}
2120
2121/**
2122 * free_inodes - free RB-tree of inodes.
2123 * @fsckd: FS checking information
2124 */
2125static void free_inodes(struct fsck_data *fsckd)
2126{
2127        struct fsck_inode *fscki, *n;
2128
2129        rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2130                kfree(fscki);
2131}
2132
2133/**
2134 * check_inodes - checks all inodes.
2135 * @c: UBIFS file-system description object
2136 * @fsckd: FS checking information
2137 *
2138 * This is a helper function for 'dbg_check_filesystem()' which walks the
2139 * RB-tree of inodes after the index scan has been finished, and checks that
2140 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2141 * %-EINVAL if not, and a negative error code in case of failure.
2142 */
2143static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2144{
2145        int n, err;
2146        union ubifs_key key;
2147        struct ubifs_znode *znode;
2148        struct ubifs_zbranch *zbr;
2149        struct ubifs_ino_node *ino;
2150        struct fsck_inode *fscki;
2151        struct rb_node *this = rb_first(&fsckd->inodes);
2152
2153        while (this) {
2154                fscki = rb_entry(this, struct fsck_inode, rb);
2155                this = rb_next(this);
2156
2157                if (S_ISDIR(fscki->mode)) {
2158                        /*
2159                         * Directories have to have exactly one reference (they
2160                         * cannot have hardlinks), although root inode is an
2161                         * exception.
2162                         */
2163                        if (fscki->inum != UBIFS_ROOT_INO &&
2164                            fscki->references != 1) {
2165                                ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2166                                          (unsigned long)fscki->inum,
2167                                          fscki->references);
2168                                goto out_dump;
2169                        }
2170                        if (fscki->inum == UBIFS_ROOT_INO &&
2171                            fscki->references != 0) {
2172                                ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2173                                          (unsigned long)fscki->inum,
2174                                          fscki->references);
2175                                goto out_dump;
2176                        }
2177                        if (fscki->calc_sz != fscki->size) {
2178                                ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2179                                          (unsigned long)fscki->inum,
2180                                          fscki->size, fscki->calc_sz);
2181                                goto out_dump;
2182                        }
2183                        if (fscki->calc_cnt != fscki->nlink) {
2184                                ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2185                                          (unsigned long)fscki->inum,
2186                                          fscki->nlink, fscki->calc_cnt);
2187                                goto out_dump;
2188                        }
2189                } else {
2190                        if (fscki->references != fscki->nlink) {
2191                                ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2192                                          (unsigned long)fscki->inum,
2193                                          fscki->nlink, fscki->references);
2194                                goto out_dump;
2195                        }
2196                }
2197                if (fscki->xattr_sz != fscki->calc_xsz) {
2198                        ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2199                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2200                                  fscki->calc_xsz);
2201                        goto out_dump;
2202                }
2203                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2204                        ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2205                                  (unsigned long)fscki->inum,
2206                                  fscki->xattr_cnt, fscki->calc_xcnt);
2207                        goto out_dump;
2208                }
2209                if (fscki->xattr_nms != fscki->calc_xnms) {
2210                        ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2211                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2212                                  fscki->calc_xnms);
2213                        goto out_dump;
2214                }
2215        }
2216
2217        return 0;
2218
2219out_dump:
2220        /* Read the bad inode and dump it */
2221        ino_key_init(c, &key, fscki->inum);
2222        err = ubifs_lookup_level0(c, &key, &znode, &n);
2223        if (!err) {
2224                ubifs_err(c, "inode %lu not found in index",
2225                          (unsigned long)fscki->inum);
2226                return -ENOENT;
2227        } else if (err < 0) {
2228                ubifs_err(c, "error %d while looking up inode %lu",
2229                          err, (unsigned long)fscki->inum);
2230                return err;
2231        }
2232
2233        zbr = &znode->zbranch[n];
2234        ino = kmalloc(zbr->len, GFP_NOFS);
2235        if (!ino)
2236                return -ENOMEM;
2237
2238        err = ubifs_tnc_read_node(c, zbr, ino);
2239        if (err) {
2240                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2241                          zbr->lnum, zbr->offs, err);
2242                kfree(ino);
2243                return err;
2244        }
2245
2246        ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2247                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2248        ubifs_dump_node(c, ino);
2249        kfree(ino);
2250        return -EINVAL;
2251}
2252
2253/**
2254 * dbg_check_filesystem - check the file-system.
2255 * @c: UBIFS file-system description object
2256 *
2257 * This function checks the file system, namely:
2258 * o makes sure that all leaf nodes exist and their CRCs are correct;
2259 * o makes sure inode nlink, size, xattr size/count are correct (for all
2260 *   inodes).
2261 *
2262 * The function reads whole indexing tree and all nodes, so it is pretty
2263 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2264 * not, and a negative error code in case of failure.
2265 */
2266int dbg_check_filesystem(struct ubifs_info *c)
2267{
2268        int err;
2269        struct fsck_data fsckd;
2270
2271        if (!dbg_is_chk_fs(c))
2272                return 0;
2273
2274        fsckd.inodes = RB_ROOT;
2275        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2276        if (err)
2277                goto out_free;
2278
2279        err = check_inodes(c, &fsckd);
2280        if (err)
2281                goto out_free;
2282
2283        free_inodes(&fsckd);
2284        return 0;
2285
2286out_free:
2287        ubifs_err(c, "file-system check failed with error %d", err);
2288        dump_stack();
2289        free_inodes(&fsckd);
2290        return err;
2291}
2292
2293/**
2294 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2295 * @c: UBIFS file-system description object
2296 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2297 *
2298 * This function returns zero if the list of data nodes is sorted correctly,
2299 * and %-EINVAL if not.
2300 */
2301int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2302{
2303        struct list_head *cur;
2304        struct ubifs_scan_node *sa, *sb;
2305
2306        if (!dbg_is_chk_gen(c))
2307                return 0;
2308
2309        for (cur = head->next; cur->next != head; cur = cur->next) {
2310                ino_t inuma, inumb;
2311                uint32_t blka, blkb;
2312
2313                cond_resched();
2314                sa = container_of(cur, struct ubifs_scan_node, list);
2315                sb = container_of(cur->next, struct ubifs_scan_node, list);
2316
2317                if (sa->type != UBIFS_DATA_NODE) {
2318                        ubifs_err(c, "bad node type %d", sa->type);
2319                        ubifs_dump_node(c, sa->node);
2320                        return -EINVAL;
2321                }
2322                if (sb->type != UBIFS_DATA_NODE) {
2323                        ubifs_err(c, "bad node type %d", sb->type);
2324                        ubifs_dump_node(c, sb->node);
2325                        return -EINVAL;
2326                }
2327
2328                inuma = key_inum(c, &sa->key);
2329                inumb = key_inum(c, &sb->key);
2330
2331                if (inuma < inumb)
2332                        continue;
2333                if (inuma > inumb) {
2334                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2335                                  (unsigned long)inuma, (unsigned long)inumb);
2336                        goto error_dump;
2337                }
2338
2339                blka = key_block(c, &sa->key);
2340                blkb = key_block(c, &sb->key);
2341
2342                if (blka > blkb) {
2343                        ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2344                        goto error_dump;
2345                }
2346                if (blka == blkb) {
2347                        ubifs_err(c, "two data nodes for the same block");
2348                        goto error_dump;
2349                }
2350        }
2351
2352        return 0;
2353
2354error_dump:
2355        ubifs_dump_node(c, sa->node);
2356        ubifs_dump_node(c, sb->node);
2357        return -EINVAL;
2358}
2359
2360/**
2361 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2362 * @c: UBIFS file-system description object
2363 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2364 *
2365 * This function returns zero if the list of non-data nodes is sorted correctly,
2366 * and %-EINVAL if not.
2367 */
2368int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2369{
2370        struct list_head *cur;
2371        struct ubifs_scan_node *sa, *sb;
2372
2373        if (!dbg_is_chk_gen(c))
2374                return 0;
2375
2376        for (cur = head->next; cur->next != head; cur = cur->next) {
2377                ino_t inuma, inumb;
2378                uint32_t hasha, hashb;
2379
2380                cond_resched();
2381                sa = container_of(cur, struct ubifs_scan_node, list);
2382                sb = container_of(cur->next, struct ubifs_scan_node, list);
2383
2384                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2385                    sa->type != UBIFS_XENT_NODE) {
2386                        ubifs_err(c, "bad node type %d", sa->type);
2387                        ubifs_dump_node(c, sa->node);
2388                        return -EINVAL;
2389                }
2390                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2391                    sa->type != UBIFS_XENT_NODE) {
2392                        ubifs_err(c, "bad node type %d", sb->type);
2393                        ubifs_dump_node(c, sb->node);
2394                        return -EINVAL;
2395                }
2396
2397                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2398                        ubifs_err(c, "non-inode node goes before inode node");
2399                        goto error_dump;
2400                }
2401
2402                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2403                        continue;
2404
2405                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2406                        /* Inode nodes are sorted in descending size order */
2407                        if (sa->len < sb->len) {
2408                                ubifs_err(c, "smaller inode node goes first");
2409                                goto error_dump;
2410                        }
2411                        continue;
2412                }
2413
2414                /*
2415                 * This is either a dentry or xentry, which should be sorted in
2416                 * ascending (parent ino, hash) order.
2417                 */
2418                inuma = key_inum(c, &sa->key);
2419                inumb = key_inum(c, &sb->key);
2420
2421                if (inuma < inumb)
2422                        continue;
2423                if (inuma > inumb) {
2424                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2425                                  (unsigned long)inuma, (unsigned long)inumb);
2426                        goto error_dump;
2427                }
2428
2429                hasha = key_block(c, &sa->key);
2430                hashb = key_block(c, &sb->key);
2431
2432                if (hasha > hashb) {
2433                        ubifs_err(c, "larger hash %u goes before %u",
2434                                  hasha, hashb);
2435                        goto error_dump;
2436                }
2437        }
2438
2439        return 0;
2440
2441error_dump:
2442        ubifs_msg(c, "dumping first node");
2443        ubifs_dump_node(c, sa->node);
2444        ubifs_msg(c, "dumping second node");
2445        ubifs_dump_node(c, sb->node);
2446        return -EINVAL;
2447        return 0;
2448}
2449
2450static inline int chance(unsigned int n, unsigned int out_of)
2451{
2452        return !!((prandom_u32() % out_of) + 1 <= n);
2453
2454}
2455
2456static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2457{
2458        struct ubifs_debug_info *d = c->dbg;
2459
2460        ubifs_assert(dbg_is_tst_rcvry(c));
2461
2462        if (!d->pc_cnt) {
2463                /* First call - decide delay to the power cut */
2464                if (chance(1, 2)) {
2465                        unsigned long delay;
2466
2467                        if (chance(1, 2)) {
2468                                d->pc_delay = 1;
2469                                /* Fail within 1 minute */
2470                                delay = prandom_u32() % 60000;
2471                                d->pc_timeout = jiffies;
2472                                d->pc_timeout += msecs_to_jiffies(delay);
2473                                ubifs_warn(c, "failing after %lums", delay);
2474                        } else {
2475                                d->pc_delay = 2;
2476                                delay = prandom_u32() % 10000;
2477                                /* Fail within 10000 operations */
2478                                d->pc_cnt_max = delay;
2479                                ubifs_warn(c, "failing after %lu calls", delay);
2480                        }
2481                }
2482
2483                d->pc_cnt += 1;
2484        }
2485
2486        /* Determine if failure delay has expired */
2487        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2488                        return 0;
2489        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2490                        return 0;
2491
2492        if (lnum == UBIFS_SB_LNUM) {
2493                if (write && chance(1, 2))
2494                        return 0;
2495                if (chance(19, 20))
2496                        return 0;
2497                ubifs_warn(c, "failing in super block LEB %d", lnum);
2498        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2499                if (chance(19, 20))
2500                        return 0;
2501                ubifs_warn(c, "failing in master LEB %d", lnum);
2502        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2503                if (write && chance(99, 100))
2504                        return 0;
2505                if (chance(399, 400))
2506                        return 0;
2507                ubifs_warn(c, "failing in log LEB %d", lnum);
2508        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2509                if (write && chance(7, 8))
2510                        return 0;
2511                if (chance(19, 20))
2512                        return 0;
2513                ubifs_warn(c, "failing in LPT LEB %d", lnum);
2514        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2515                if (write && chance(1, 2))
2516                        return 0;
2517                if (chance(9, 10))
2518                        return 0;
2519                ubifs_warn(c, "failing in orphan LEB %d", lnum);
2520        } else if (lnum == c->ihead_lnum) {
2521                if (chance(99, 100))
2522                        return 0;
2523                ubifs_warn(c, "failing in index head LEB %d", lnum);
2524        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2525                if (chance(9, 10))
2526                        return 0;
2527                ubifs_warn(c, "failing in GC head LEB %d", lnum);
2528        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2529                   !ubifs_search_bud(c, lnum)) {
2530                if (chance(19, 20))
2531                        return 0;
2532                ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2533        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2534                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2535                if (chance(999, 1000))
2536                        return 0;
2537                ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2538        } else {
2539                if (chance(9999, 10000))
2540                        return 0;
2541                ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2542        }
2543
2544        d->pc_happened = 1;
2545        ubifs_warn(c, "========== Power cut emulated ==========");
2546        dump_stack();
2547        return 1;
2548}
2549
2550static int corrupt_data(const struct ubifs_info *c, const void *buf,
2551                        unsigned int len)
2552{
2553        unsigned int from, to, ffs = chance(1, 2);
2554        unsigned char *p = (void *)buf;
2555
2556        from = prandom_u32() % len;
2557        /* Corruption span max to end of write unit */
2558        to = min(len, ALIGN(from + 1, c->max_write_size));
2559
2560        ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2561                   ffs ? "0xFFs" : "random data");
2562
2563        if (ffs)
2564                memset(p + from, 0xFF, to - from);
2565        else
2566                prandom_bytes(p + from, to - from);
2567
2568        return to;
2569}
2570
2571int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2572                  int offs, int len)
2573{
2574        int err, failing;
2575
2576        if (dbg_is_power_cut(c))
2577                return -EROFS;
2578
2579        failing = power_cut_emulated(c, lnum, 1);
2580        if (failing) {
2581                len = corrupt_data(c, buf, len);
2582                ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2583                           len, lnum, offs);
2584        }
2585        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2586        if (err)
2587                return err;
2588        if (failing)
2589                return -EROFS;
2590        return 0;
2591}
2592
2593int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2594                   int len)
2595{
2596        int err;
2597
2598        if (dbg_is_power_cut(c))
2599                return -EROFS;
2600        if (power_cut_emulated(c, lnum, 1))
2601                return -EROFS;
2602        err = ubi_leb_change(c->ubi, lnum, buf, len);
2603        if (err)
2604                return err;
2605        if (power_cut_emulated(c, lnum, 1))
2606                return -EROFS;
2607        return 0;
2608}
2609
2610int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2611{
2612        int err;
2613
2614        if (dbg_is_power_cut(c))
2615                return -EROFS;
2616        if (power_cut_emulated(c, lnum, 0))
2617                return -EROFS;
2618        err = ubi_leb_unmap(c->ubi, lnum);
2619        if (err)
2620                return err;
2621        if (power_cut_emulated(c, lnum, 0))
2622                return -EROFS;
2623        return 0;
2624}
2625
2626int dbg_leb_map(struct ubifs_info *c, int lnum)
2627{
2628        int err;
2629
2630        if (dbg_is_power_cut(c))
2631                return -EROFS;
2632        if (power_cut_emulated(c, lnum, 0))
2633                return -EROFS;
2634        err = ubi_leb_map(c->ubi, lnum);
2635        if (err)
2636                return err;
2637        if (power_cut_emulated(c, lnum, 0))
2638                return -EROFS;
2639        return 0;
2640}
2641
2642/*
2643 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2644 * contain the stuff specific to particular file-system mounts.
2645 */
2646static struct dentry *dfs_rootdir;
2647
2648static int dfs_file_open(struct inode *inode, struct file *file)
2649{
2650        file->private_data = inode->i_private;
2651        return nonseekable_open(inode, file);
2652}
2653
2654/**
2655 * provide_user_output - provide output to the user reading a debugfs file.
2656 * @val: boolean value for the answer
2657 * @u: the buffer to store the answer at
2658 * @count: size of the buffer
2659 * @ppos: position in the @u output buffer
2660 *
2661 * This is a simple helper function which stores @val boolean value in the user
2662 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2663 * bytes written to @u in case of success and a negative error code in case of
2664 * failure.
2665 */
2666static int provide_user_output(int val, char __user *u, size_t count,
2667                               loff_t *ppos)
2668{
2669        char buf[3];
2670
2671        if (val)
2672                buf[0] = '1';
2673        else
2674                buf[0] = '0';
2675        buf[1] = '\n';
2676        buf[2] = 0x00;
2677
2678        return simple_read_from_buffer(u, count, ppos, buf, 2);
2679}
2680
2681static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2682                             loff_t *ppos)
2683{
2684        struct dentry *dent = file->f_path.dentry;
2685        struct ubifs_info *c = file->private_data;
2686        struct ubifs_debug_info *d = c->dbg;
2687        int val;
2688
2689        if (dent == d->dfs_chk_gen)
2690                val = d->chk_gen;
2691        else if (dent == d->dfs_chk_index)
2692                val = d->chk_index;
2693        else if (dent == d->dfs_chk_orph)
2694                val = d->chk_orph;
2695        else if (dent == d->dfs_chk_lprops)
2696                val = d->chk_lprops;
2697        else if (dent == d->dfs_chk_fs)
2698                val = d->chk_fs;
2699        else if (dent == d->dfs_tst_rcvry)
2700                val = d->tst_rcvry;
2701        else if (dent == d->dfs_ro_error)
2702                val = c->ro_error;
2703        else
2704                return -EINVAL;
2705
2706        return provide_user_output(val, u, count, ppos);
2707}
2708
2709/**
2710 * interpret_user_input - interpret user debugfs file input.
2711 * @u: user-provided buffer with the input
2712 * @count: buffer size
2713 *
2714 * This is a helper function which interpret user input to a boolean UBIFS
2715 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2716 * in case of failure.
2717 */
2718static int interpret_user_input(const char __user *u, size_t count)
2719{
2720        size_t buf_size;
2721        char buf[8];
2722
2723        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2724        if (copy_from_user(buf, u, buf_size))
2725                return -EFAULT;
2726
2727        if (buf[0] == '1')
2728                return 1;
2729        else if (buf[0] == '0')
2730                return 0;
2731
2732        return -EINVAL;
2733}
2734
2735static ssize_t dfs_file_write(struct file *file, const char __user *u,
2736                              size_t count, loff_t *ppos)
2737{
2738        struct ubifs_info *c = file->private_data;
2739        struct ubifs_debug_info *d = c->dbg;
2740        struct dentry *dent = file->f_path.dentry;
2741        int val;
2742
2743        /*
2744         * TODO: this is racy - the file-system might have already been
2745         * unmounted and we'd oops in this case. The plan is to fix it with
2746         * help of 'iterate_supers_type()' which we should have in v3.0: when
2747         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2748         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2749         * superblocks and fine the one with the same UUID, and take the
2750         * locking right.
2751         *
2752         * The other way to go suggested by Al Viro is to create a separate
2753         * 'ubifs-debug' file-system instead.
2754         */
2755        if (file->f_path.dentry == d->dfs_dump_lprops) {
2756                ubifs_dump_lprops(c);
2757                return count;
2758        }
2759        if (file->f_path.dentry == d->dfs_dump_budg) {
2760                ubifs_dump_budg(c, &c->bi);
2761                return count;
2762        }
2763        if (file->f_path.dentry == d->dfs_dump_tnc) {
2764                mutex_lock(&c->tnc_mutex);
2765                ubifs_dump_tnc(c);
2766                mutex_unlock(&c->tnc_mutex);
2767                return count;
2768        }
2769
2770        val = interpret_user_input(u, count);
2771        if (val < 0)
2772                return val;
2773
2774        if (dent == d->dfs_chk_gen)
2775                d->chk_gen = val;
2776        else if (dent == d->dfs_chk_index)
2777                d->chk_index = val;
2778        else if (dent == d->dfs_chk_orph)
2779                d->chk_orph = val;
2780        else if (dent == d->dfs_chk_lprops)
2781                d->chk_lprops = val;
2782        else if (dent == d->dfs_chk_fs)
2783                d->chk_fs = val;
2784        else if (dent == d->dfs_tst_rcvry)
2785                d->tst_rcvry = val;
2786        else if (dent == d->dfs_ro_error)
2787                c->ro_error = !!val;
2788        else
2789                return -EINVAL;
2790
2791        return count;
2792}
2793
2794static const struct file_operations dfs_fops = {
2795        .open = dfs_file_open,
2796        .read = dfs_file_read,
2797        .write = dfs_file_write,
2798        .owner = THIS_MODULE,
2799        .llseek = no_llseek,
2800};
2801
2802/**
2803 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2804 * @c: UBIFS file-system description object
2805 *
2806 * This function creates all debugfs files for this instance of UBIFS. Returns
2807 * zero in case of success and a negative error code in case of failure.
2808 *
2809 * Note, the only reason we have not merged this function with the
2810 * 'ubifs_debugging_init()' function is because it is better to initialize
2811 * debugfs interfaces at the very end of the mount process, and remove them at
2812 * the very beginning of the mount process.
2813 */
2814int dbg_debugfs_init_fs(struct ubifs_info *c)
2815{
2816        int err, n;
2817        const char *fname;
2818        struct dentry *dent;
2819        struct ubifs_debug_info *d = c->dbg;
2820
2821        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2822                return 0;
2823
2824        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2825                     c->vi.ubi_num, c->vi.vol_id);
2826        if (n == UBIFS_DFS_DIR_LEN) {
2827                /* The array size is too small */
2828                fname = UBIFS_DFS_DIR_NAME;
2829                dent = ERR_PTR(-EINVAL);
2830                goto out;
2831        }
2832
2833        fname = d->dfs_dir_name;
2834        dent = debugfs_create_dir(fname, dfs_rootdir);
2835        if (IS_ERR_OR_NULL(dent))
2836                goto out;
2837        d->dfs_dir = dent;
2838
2839        fname = "dump_lprops";
2840        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2841        if (IS_ERR_OR_NULL(dent))
2842                goto out_remove;
2843        d->dfs_dump_lprops = dent;
2844
2845        fname = "dump_budg";
2846        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2847        if (IS_ERR_OR_NULL(dent))
2848                goto out_remove;
2849        d->dfs_dump_budg = dent;
2850
2851        fname = "dump_tnc";
2852        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2853        if (IS_ERR_OR_NULL(dent))
2854                goto out_remove;
2855        d->dfs_dump_tnc = dent;
2856
2857        fname = "chk_general";
2858        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2859                                   &dfs_fops);
2860        if (IS_ERR_OR_NULL(dent))
2861                goto out_remove;
2862        d->dfs_chk_gen = dent;
2863
2864        fname = "chk_index";
2865        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2866                                   &dfs_fops);
2867        if (IS_ERR_OR_NULL(dent))
2868                goto out_remove;
2869        d->dfs_chk_index = dent;
2870
2871        fname = "chk_orphans";
2872        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2873                                   &dfs_fops);
2874        if (IS_ERR_OR_NULL(dent))
2875                goto out_remove;
2876        d->dfs_chk_orph = dent;
2877
2878        fname = "chk_lprops";
2879        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2880                                   &dfs_fops);
2881        if (IS_ERR_OR_NULL(dent))
2882                goto out_remove;
2883        d->dfs_chk_lprops = dent;
2884
2885        fname = "chk_fs";
2886        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2887                                   &dfs_fops);
2888        if (IS_ERR_OR_NULL(dent))
2889                goto out_remove;
2890        d->dfs_chk_fs = dent;
2891
2892        fname = "tst_recovery";
2893        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2894                                   &dfs_fops);
2895        if (IS_ERR_OR_NULL(dent))
2896                goto out_remove;
2897        d->dfs_tst_rcvry = dent;
2898
2899        fname = "ro_error";
2900        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901                                   &dfs_fops);
2902        if (IS_ERR_OR_NULL(dent))
2903                goto out_remove;
2904        d->dfs_ro_error = dent;
2905
2906        return 0;
2907
2908out_remove:
2909        debugfs_remove_recursive(d->dfs_dir);
2910out:
2911        err = dent ? PTR_ERR(dent) : -ENODEV;
2912        ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2913                  fname, err);
2914        return err;
2915}
2916
2917/**
2918 * dbg_debugfs_exit_fs - remove all debugfs files.
2919 * @c: UBIFS file-system description object
2920 */
2921void dbg_debugfs_exit_fs(struct ubifs_info *c)
2922{
2923        if (IS_ENABLED(CONFIG_DEBUG_FS))
2924                debugfs_remove_recursive(c->dbg->dfs_dir);
2925}
2926
2927struct ubifs_global_debug_info ubifs_dbg;
2928
2929static struct dentry *dfs_chk_gen;
2930static struct dentry *dfs_chk_index;
2931static struct dentry *dfs_chk_orph;
2932static struct dentry *dfs_chk_lprops;
2933static struct dentry *dfs_chk_fs;
2934static struct dentry *dfs_tst_rcvry;
2935
2936static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2937                                    size_t count, loff_t *ppos)
2938{
2939        struct dentry *dent = file->f_path.dentry;
2940        int val;
2941
2942        if (dent == dfs_chk_gen)
2943                val = ubifs_dbg.chk_gen;
2944        else if (dent == dfs_chk_index)
2945                val = ubifs_dbg.chk_index;
2946        else if (dent == dfs_chk_orph)
2947                val = ubifs_dbg.chk_orph;
2948        else if (dent == dfs_chk_lprops)
2949                val = ubifs_dbg.chk_lprops;
2950        else if (dent == dfs_chk_fs)
2951                val = ubifs_dbg.chk_fs;
2952        else if (dent == dfs_tst_rcvry)
2953                val = ubifs_dbg.tst_rcvry;
2954        else
2955                return -EINVAL;
2956
2957        return provide_user_output(val, u, count, ppos);
2958}
2959
2960static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2961                                     size_t count, loff_t *ppos)
2962{
2963        struct dentry *dent = file->f_path.dentry;
2964        int val;
2965
2966        val = interpret_user_input(u, count);
2967        if (val < 0)
2968                return val;
2969
2970        if (dent == dfs_chk_gen)
2971                ubifs_dbg.chk_gen = val;
2972        else if (dent == dfs_chk_index)
2973                ubifs_dbg.chk_index = val;
2974        else if (dent == dfs_chk_orph)
2975                ubifs_dbg.chk_orph = val;
2976        else if (dent == dfs_chk_lprops)
2977                ubifs_dbg.chk_lprops = val;
2978        else if (dent == dfs_chk_fs)
2979                ubifs_dbg.chk_fs = val;
2980        else if (dent == dfs_tst_rcvry)
2981                ubifs_dbg.tst_rcvry = val;
2982        else
2983                return -EINVAL;
2984
2985        return count;
2986}
2987
2988static const struct file_operations dfs_global_fops = {
2989        .read = dfs_global_file_read,
2990        .write = dfs_global_file_write,
2991        .owner = THIS_MODULE,
2992        .llseek = no_llseek,
2993};
2994
2995/**
2996 * dbg_debugfs_init - initialize debugfs file-system.
2997 *
2998 * UBIFS uses debugfs file-system to expose various debugging knobs to
2999 * user-space. This function creates "ubifs" directory in the debugfs
3000 * file-system. Returns zero in case of success and a negative error code in
3001 * case of failure.
3002 */
3003int dbg_debugfs_init(void)
3004{
3005        int err;
3006        const char *fname;
3007        struct dentry *dent;
3008
3009        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3010                return 0;
3011
3012        fname = "ubifs";
3013        dent = debugfs_create_dir(fname, NULL);
3014        if (IS_ERR_OR_NULL(dent))
3015                goto out;
3016        dfs_rootdir = dent;
3017
3018        fname = "chk_general";
3019        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3020                                   &dfs_global_fops);
3021        if (IS_ERR_OR_NULL(dent))
3022                goto out_remove;
3023        dfs_chk_gen = dent;
3024
3025        fname = "chk_index";
3026        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3027                                   &dfs_global_fops);
3028        if (IS_ERR_OR_NULL(dent))
3029                goto out_remove;
3030        dfs_chk_index = dent;
3031
3032        fname = "chk_orphans";
3033        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3034                                   &dfs_global_fops);
3035        if (IS_ERR_OR_NULL(dent))
3036                goto out_remove;
3037        dfs_chk_orph = dent;
3038
3039        fname = "chk_lprops";
3040        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3041                                   &dfs_global_fops);
3042        if (IS_ERR_OR_NULL(dent))
3043                goto out_remove;
3044        dfs_chk_lprops = dent;
3045
3046        fname = "chk_fs";
3047        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3048                                   &dfs_global_fops);
3049        if (IS_ERR_OR_NULL(dent))
3050                goto out_remove;
3051        dfs_chk_fs = dent;
3052
3053        fname = "tst_recovery";
3054        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3055                                   &dfs_global_fops);
3056        if (IS_ERR_OR_NULL(dent))
3057                goto out_remove;
3058        dfs_tst_rcvry = dent;
3059
3060        return 0;
3061
3062out_remove:
3063        debugfs_remove_recursive(dfs_rootdir);
3064out:
3065        err = dent ? PTR_ERR(dent) : -ENODEV;
3066        pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3067               current->pid, fname, err);
3068        return err;
3069}
3070
3071/**
3072 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3073 */
3074void dbg_debugfs_exit(void)
3075{
3076        if (IS_ENABLED(CONFIG_DEBUG_FS))
3077                debugfs_remove_recursive(dfs_rootdir);
3078}
3079
3080/**
3081 * ubifs_debugging_init - initialize UBIFS debugging.
3082 * @c: UBIFS file-system description object
3083 *
3084 * This function initializes debugging-related data for the file system.
3085 * Returns zero in case of success and a negative error code in case of
3086 * failure.
3087 */
3088int ubifs_debugging_init(struct ubifs_info *c)
3089{
3090        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3091        if (!c->dbg)
3092                return -ENOMEM;
3093
3094        return 0;
3095}
3096
3097/**
3098 * ubifs_debugging_exit - free debugging data.
3099 * @c: UBIFS file-system description object
3100 */
3101void ubifs_debugging_exit(struct ubifs_info *c)
3102{
3103        kfree(c->dbg);
3104}
3105