linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .scan_objects = ubifs_shrink_scan,
  53        .count_objects = ubifs_shrink_count,
  54        .seeks = DEFAULT_SEEKS,
  55};
  56
  57/**
  58 * validate_inode - validate inode.
  59 * @c: UBIFS file-system description object
  60 * @inode: the inode to validate
  61 *
  62 * This is a helper function for 'ubifs_iget()' which validates various fields
  63 * of a newly built inode to make sure they contain sane values and prevent
  64 * possible vulnerabilities. Returns zero if the inode is all right and
  65 * a non-zero error code if not.
  66 */
  67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  68{
  69        int err;
  70        const struct ubifs_inode *ui = ubifs_inode(inode);
  71
  72        if (inode->i_size > c->max_inode_sz) {
  73                ubifs_err(c, "inode is too large (%lld)",
  74                          (long long)inode->i_size);
  75                return 1;
  76        }
  77
  78        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  79                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  80                return 2;
  81        }
  82
  83        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  84                return 3;
  85
  86        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  87                return 4;
  88
  89        if (ui->xattr && !S_ISREG(inode->i_mode))
  90                return 5;
  91
  92        if (!ubifs_compr_present(ui->compr_type)) {
  93                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  94                           inode->i_ino, ubifs_compr_name(ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= S_NOCMTIME;
 132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
 133        inode->i_flags |= S_NOATIME;
 134#endif
 135        set_nlink(inode, le32_to_cpu(ino->nlink));
 136        i_uid_write(inode, le32_to_cpu(ino->uid));
 137        i_gid_write(inode, le32_to_cpu(ino->gid));
 138        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 139        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 140        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 141        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 142        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 143        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 144        inode->i_mode = le32_to_cpu(ino->mode);
 145        inode->i_size = le64_to_cpu(ino->size);
 146
 147        ui->data_len    = le32_to_cpu(ino->data_len);
 148        ui->flags       = le32_to_cpu(ino->flags);
 149        ui->compr_type  = le16_to_cpu(ino->compr_type);
 150        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 151        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 152        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 153        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 154        ui->synced_i_size = ui->ui_size = inode->i_size;
 155
 156        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 157
 158        err = validate_inode(c, inode);
 159        if (err)
 160                goto out_invalid;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                inode->i_link = ui->data;
 202                break;
 203        case S_IFBLK:
 204        case S_IFCHR:
 205        {
 206                dev_t rdev;
 207                union ubifs_dev_desc *dev;
 208
 209                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 210                if (!ui->data) {
 211                        err = -ENOMEM;
 212                        goto out_ino;
 213                }
 214
 215                dev = (union ubifs_dev_desc *)ino->data;
 216                if (ui->data_len == sizeof(dev->new))
 217                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 218                else if (ui->data_len == sizeof(dev->huge))
 219                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 220                else {
 221                        err = 13;
 222                        goto out_invalid;
 223                }
 224                memcpy(ui->data, ino->data, ui->data_len);
 225                inode->i_op = &ubifs_file_inode_operations;
 226                init_special_inode(inode, inode->i_mode, rdev);
 227                break;
 228        }
 229        case S_IFSOCK:
 230        case S_IFIFO:
 231                inode->i_op = &ubifs_file_inode_operations;
 232                init_special_inode(inode, inode->i_mode, 0);
 233                if (ui->data_len != 0) {
 234                        err = 14;
 235                        goto out_invalid;
 236                }
 237                break;
 238        default:
 239                err = 15;
 240                goto out_invalid;
 241        }
 242
 243        kfree(ino);
 244        ubifs_set_inode_flags(inode);
 245        unlock_new_inode(inode);
 246        return inode;
 247
 248out_invalid:
 249        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 250        ubifs_dump_node(c, ino);
 251        ubifs_dump_inode(c, inode);
 252        err = -EINVAL;
 253out_ino:
 254        kfree(ino);
 255out:
 256        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 257        iget_failed(inode);
 258        return ERR_PTR(err);
 259}
 260
 261static struct inode *ubifs_alloc_inode(struct super_block *sb)
 262{
 263        struct ubifs_inode *ui;
 264
 265        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 266        if (!ui)
 267                return NULL;
 268
 269        memset((void *)ui + sizeof(struct inode), 0,
 270               sizeof(struct ubifs_inode) - sizeof(struct inode));
 271        mutex_init(&ui->ui_mutex);
 272        spin_lock_init(&ui->ui_lock);
 273        return &ui->vfs_inode;
 274};
 275
 276static void ubifs_i_callback(struct rcu_head *head)
 277{
 278        struct inode *inode = container_of(head, struct inode, i_rcu);
 279        struct ubifs_inode *ui = ubifs_inode(inode);
 280        kmem_cache_free(ubifs_inode_slab, ui);
 281}
 282
 283static void ubifs_destroy_inode(struct inode *inode)
 284{
 285        struct ubifs_inode *ui = ubifs_inode(inode);
 286
 287        kfree(ui->data);
 288        call_rcu(&inode->i_rcu, ubifs_i_callback);
 289}
 290
 291/*
 292 * Note, Linux write-back code calls this without 'i_mutex'.
 293 */
 294static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 295{
 296        int err = 0;
 297        struct ubifs_info *c = inode->i_sb->s_fs_info;
 298        struct ubifs_inode *ui = ubifs_inode(inode);
 299
 300        ubifs_assert(!ui->xattr);
 301        if (is_bad_inode(inode))
 302                return 0;
 303
 304        mutex_lock(&ui->ui_mutex);
 305        /*
 306         * Due to races between write-back forced by budgeting
 307         * (see 'sync_some_inodes()') and background write-back, the inode may
 308         * have already been synchronized, do not do this again. This might
 309         * also happen if it was synchronized in an VFS operation, e.g.
 310         * 'ubifs_link()'.
 311         */
 312        if (!ui->dirty) {
 313                mutex_unlock(&ui->ui_mutex);
 314                return 0;
 315        }
 316
 317        /*
 318         * As an optimization, do not write orphan inodes to the media just
 319         * because this is not needed.
 320         */
 321        dbg_gen("inode %lu, mode %#x, nlink %u",
 322                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 323        if (inode->i_nlink) {
 324                err = ubifs_jnl_write_inode(c, inode);
 325                if (err)
 326                        ubifs_err(c, "can't write inode %lu, error %d",
 327                                  inode->i_ino, err);
 328                else
 329                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 330        }
 331
 332        ui->dirty = 0;
 333        mutex_unlock(&ui->ui_mutex);
 334        ubifs_release_dirty_inode_budget(c, ui);
 335        return err;
 336}
 337
 338static void ubifs_evict_inode(struct inode *inode)
 339{
 340        int err;
 341        struct ubifs_info *c = inode->i_sb->s_fs_info;
 342        struct ubifs_inode *ui = ubifs_inode(inode);
 343
 344        if (ui->xattr)
 345                /*
 346                 * Extended attribute inode deletions are fully handled in
 347                 * 'ubifs_removexattr()'. These inodes are special and have
 348                 * limited usage, so there is nothing to do here.
 349                 */
 350                goto out;
 351
 352        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 353        ubifs_assert(!atomic_read(&inode->i_count));
 354
 355        truncate_inode_pages_final(&inode->i_data);
 356
 357        if (inode->i_nlink)
 358                goto done;
 359
 360        if (is_bad_inode(inode))
 361                goto out;
 362
 363        ui->ui_size = inode->i_size = 0;
 364        err = ubifs_jnl_delete_inode(c, inode);
 365        if (err)
 366                /*
 367                 * Worst case we have a lost orphan inode wasting space, so a
 368                 * simple error message is OK here.
 369                 */
 370                ubifs_err(c, "can't delete inode %lu, error %d",
 371                          inode->i_ino, err);
 372
 373out:
 374        if (ui->dirty)
 375                ubifs_release_dirty_inode_budget(c, ui);
 376        else {
 377                /* We've deleted something - clean the "no space" flags */
 378                c->bi.nospace = c->bi.nospace_rp = 0;
 379                smp_wmb();
 380        }
 381done:
 382        clear_inode(inode);
 383}
 384
 385static void ubifs_dirty_inode(struct inode *inode, int flags)
 386{
 387        struct ubifs_inode *ui = ubifs_inode(inode);
 388
 389        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 390        if (!ui->dirty) {
 391                ui->dirty = 1;
 392                dbg_gen("inode %lu",  inode->i_ino);
 393        }
 394}
 395
 396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 397{
 398        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 399        unsigned long long free;
 400        __le32 *uuid = (__le32 *)c->uuid;
 401
 402        free = ubifs_get_free_space(c);
 403        dbg_gen("free space %lld bytes (%lld blocks)",
 404                free, free >> UBIFS_BLOCK_SHIFT);
 405
 406        buf->f_type = UBIFS_SUPER_MAGIC;
 407        buf->f_bsize = UBIFS_BLOCK_SIZE;
 408        buf->f_blocks = c->block_cnt;
 409        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 410        if (free > c->report_rp_size)
 411                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 412        else
 413                buf->f_bavail = 0;
 414        buf->f_files = 0;
 415        buf->f_ffree = 0;
 416        buf->f_namelen = UBIFS_MAX_NLEN;
 417        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 418        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 419        ubifs_assert(buf->f_bfree <= c->block_cnt);
 420        return 0;
 421}
 422
 423static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 424{
 425        struct ubifs_info *c = root->d_sb->s_fs_info;
 426
 427        if (c->mount_opts.unmount_mode == 2)
 428                seq_puts(s, ",fast_unmount");
 429        else if (c->mount_opts.unmount_mode == 1)
 430                seq_puts(s, ",norm_unmount");
 431
 432        if (c->mount_opts.bulk_read == 2)
 433                seq_puts(s, ",bulk_read");
 434        else if (c->mount_opts.bulk_read == 1)
 435                seq_puts(s, ",no_bulk_read");
 436
 437        if (c->mount_opts.chk_data_crc == 2)
 438                seq_puts(s, ",chk_data_crc");
 439        else if (c->mount_opts.chk_data_crc == 1)
 440                seq_puts(s, ",no_chk_data_crc");
 441
 442        if (c->mount_opts.override_compr) {
 443                seq_printf(s, ",compr=%s",
 444                           ubifs_compr_name(c->mount_opts.compr_type));
 445        }
 446
 447        return 0;
 448}
 449
 450static int ubifs_sync_fs(struct super_block *sb, int wait)
 451{
 452        int i, err;
 453        struct ubifs_info *c = sb->s_fs_info;
 454
 455        /*
 456         * Zero @wait is just an advisory thing to help the file system shove
 457         * lots of data into the queues, and there will be the second
 458         * '->sync_fs()' call, with non-zero @wait.
 459         */
 460        if (!wait)
 461                return 0;
 462
 463        /*
 464         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 465         * do this if it waits for an already running commit.
 466         */
 467        for (i = 0; i < c->jhead_cnt; i++) {
 468                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 469                if (err)
 470                        return err;
 471        }
 472
 473        /*
 474         * Strictly speaking, it is not necessary to commit the journal here,
 475         * synchronizing write-buffers would be enough. But committing makes
 476         * UBIFS free space predictions much more accurate, so we want to let
 477         * the user be able to get more accurate results of 'statfs()' after
 478         * they synchronize the file system.
 479         */
 480        err = ubifs_run_commit(c);
 481        if (err)
 482                return err;
 483
 484        return ubi_sync(c->vi.ubi_num);
 485}
 486
 487/**
 488 * init_constants_early - initialize UBIFS constants.
 489 * @c: UBIFS file-system description object
 490 *
 491 * This function initialize UBIFS constants which do not need the superblock to
 492 * be read. It also checks that the UBI volume satisfies basic UBIFS
 493 * requirements. Returns zero in case of success and a negative error code in
 494 * case of failure.
 495 */
 496static int init_constants_early(struct ubifs_info *c)
 497{
 498        if (c->vi.corrupted) {
 499                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 500                c->ro_media = 1;
 501        }
 502
 503        if (c->di.ro_mode) {
 504                ubifs_msg(c, "read-only UBI device");
 505                c->ro_media = 1;
 506        }
 507
 508        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 509                ubifs_msg(c, "static UBI volume - read-only mode");
 510                c->ro_media = 1;
 511        }
 512
 513        c->leb_cnt = c->vi.size;
 514        c->leb_size = c->vi.usable_leb_size;
 515        c->leb_start = c->di.leb_start;
 516        c->half_leb_size = c->leb_size / 2;
 517        c->min_io_size = c->di.min_io_size;
 518        c->min_io_shift = fls(c->min_io_size) - 1;
 519        c->max_write_size = c->di.max_write_size;
 520        c->max_write_shift = fls(c->max_write_size) - 1;
 521
 522        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 523                ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
 524                          c->leb_size, UBIFS_MIN_LEB_SZ);
 525                return -EINVAL;
 526        }
 527
 528        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 529                ubifs_err(c, "too few LEBs (%d), min. is %d",
 530                          c->leb_cnt, UBIFS_MIN_LEB_CNT);
 531                return -EINVAL;
 532        }
 533
 534        if (!is_power_of_2(c->min_io_size)) {
 535                ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
 536                return -EINVAL;
 537        }
 538
 539        /*
 540         * Maximum write size has to be greater or equivalent to min. I/O
 541         * size, and be multiple of min. I/O size.
 542         */
 543        if (c->max_write_size < c->min_io_size ||
 544            c->max_write_size % c->min_io_size ||
 545            !is_power_of_2(c->max_write_size)) {
 546                ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
 547                          c->max_write_size, c->min_io_size);
 548                return -EINVAL;
 549        }
 550
 551        /*
 552         * UBIFS aligns all node to 8-byte boundary, so to make function in
 553         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 554         * less than 8.
 555         */
 556        if (c->min_io_size < 8) {
 557                c->min_io_size = 8;
 558                c->min_io_shift = 3;
 559                if (c->max_write_size < c->min_io_size) {
 560                        c->max_write_size = c->min_io_size;
 561                        c->max_write_shift = c->min_io_shift;
 562                }
 563        }
 564
 565        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 566        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 567
 568        /*
 569         * Initialize node length ranges which are mostly needed for node
 570         * length validation.
 571         */
 572        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 573        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 574        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 575        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 576        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 577        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 578
 579        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 580        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 581        c->ranges[UBIFS_ORPH_NODE].min_len =
 582                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 583        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 584        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 585        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 586        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 587        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 588        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 589        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 590        /*
 591         * Minimum indexing node size is amended later when superblock is
 592         * read and the key length is known.
 593         */
 594        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 595        /*
 596         * Maximum indexing node size is amended later when superblock is
 597         * read and the fanout is known.
 598         */
 599        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 600
 601        /*
 602         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 603         * about these values.
 604         */
 605        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 606        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 607
 608        /*
 609         * Calculate how many bytes would be wasted at the end of LEB if it was
 610         * fully filled with data nodes of maximum size. This is used in
 611         * calculations when reporting free space.
 612         */
 613        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 614
 615        /* Buffer size for bulk-reads */
 616        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 617        if (c->max_bu_buf_len > c->leb_size)
 618                c->max_bu_buf_len = c->leb_size;
 619        return 0;
 620}
 621
 622/**
 623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 624 * @c: UBIFS file-system description object
 625 * @lnum: LEB the write-buffer was synchronized to
 626 * @free: how many free bytes left in this LEB
 627 * @pad: how many bytes were padded
 628 *
 629 * This is a callback function which is called by the I/O unit when the
 630 * write-buffer is synchronized. We need this to correctly maintain space
 631 * accounting in bud logical eraseblocks. This function returns zero in case of
 632 * success and a negative error code in case of failure.
 633 *
 634 * This function actually belongs to the journal, but we keep it here because
 635 * we want to keep it static.
 636 */
 637static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 638{
 639        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 640}
 641
 642/*
 643 * init_constants_sb - initialize UBIFS constants.
 644 * @c: UBIFS file-system description object
 645 *
 646 * This is a helper function which initializes various UBIFS constants after
 647 * the superblock has been read. It also checks various UBIFS parameters and
 648 * makes sure they are all right. Returns zero in case of success and a
 649 * negative error code in case of failure.
 650 */
 651static int init_constants_sb(struct ubifs_info *c)
 652{
 653        int tmp, err;
 654        long long tmp64;
 655
 656        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 657        c->max_znode_sz = sizeof(struct ubifs_znode) +
 658                                c->fanout * sizeof(struct ubifs_zbranch);
 659
 660        tmp = ubifs_idx_node_sz(c, 1);
 661        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 662        c->min_idx_node_sz = ALIGN(tmp, 8);
 663
 664        tmp = ubifs_idx_node_sz(c, c->fanout);
 665        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 666        c->max_idx_node_sz = ALIGN(tmp, 8);
 667
 668        /* Make sure LEB size is large enough to fit full commit */
 669        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 670        tmp = ALIGN(tmp, c->min_io_size);
 671        if (tmp > c->leb_size) {
 672                ubifs_err(c, "too small LEB size %d, at least %d needed",
 673                          c->leb_size, tmp);
 674                return -EINVAL;
 675        }
 676
 677        /*
 678         * Make sure that the log is large enough to fit reference nodes for
 679         * all buds plus one reserved LEB.
 680         */
 681        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 682        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 683        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 684        tmp /= c->leb_size;
 685        tmp += 1;
 686        if (c->log_lebs < tmp) {
 687                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 688                          c->log_lebs, tmp);
 689                return -EINVAL;
 690        }
 691
 692        /*
 693         * When budgeting we assume worst-case scenarios when the pages are not
 694         * be compressed and direntries are of the maximum size.
 695         *
 696         * Note, data, which may be stored in inodes is budgeted separately, so
 697         * it is not included into 'c->bi.inode_budget'.
 698         */
 699        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 700        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 701        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 702
 703        /*
 704         * When the amount of flash space used by buds becomes
 705         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 706         * The writers are unblocked when the commit is finished. To avoid
 707         * writers to be blocked UBIFS initiates background commit in advance,
 708         * when number of bud bytes becomes above the limit defined below.
 709         */
 710        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 711
 712        /*
 713         * Ensure minimum journal size. All the bytes in the journal heads are
 714         * considered to be used, when calculating the current journal usage.
 715         * Consequently, if the journal is too small, UBIFS will treat it as
 716         * always full.
 717         */
 718        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 719        if (c->bg_bud_bytes < tmp64)
 720                c->bg_bud_bytes = tmp64;
 721        if (c->max_bud_bytes < tmp64 + c->leb_size)
 722                c->max_bud_bytes = tmp64 + c->leb_size;
 723
 724        err = ubifs_calc_lpt_geom(c);
 725        if (err)
 726                return err;
 727
 728        /* Initialize effective LEB size used in budgeting calculations */
 729        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 730        return 0;
 731}
 732
 733/*
 734 * init_constants_master - initialize UBIFS constants.
 735 * @c: UBIFS file-system description object
 736 *
 737 * This is a helper function which initializes various UBIFS constants after
 738 * the master node has been read. It also checks various UBIFS parameters and
 739 * makes sure they are all right.
 740 */
 741static void init_constants_master(struct ubifs_info *c)
 742{
 743        long long tmp64;
 744
 745        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 746        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 747
 748        /*
 749         * Calculate total amount of FS blocks. This number is not used
 750         * internally because it does not make much sense for UBIFS, but it is
 751         * necessary to report something for the 'statfs()' call.
 752         *
 753         * Subtract the LEB reserved for GC, the LEB which is reserved for
 754         * deletions, minimum LEBs for the index, and assume only one journal
 755         * head is available.
 756         */
 757        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 758        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 759        tmp64 = ubifs_reported_space(c, tmp64);
 760        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 761}
 762
 763/**
 764 * take_gc_lnum - reserve GC LEB.
 765 * @c: UBIFS file-system description object
 766 *
 767 * This function ensures that the LEB reserved for garbage collection is marked
 768 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 769 * space to zero, because lprops may contain out-of-date information if the
 770 * file-system was un-mounted before it has been committed. This function
 771 * returns zero in case of success and a negative error code in case of
 772 * failure.
 773 */
 774static int take_gc_lnum(struct ubifs_info *c)
 775{
 776        int err;
 777
 778        if (c->gc_lnum == -1) {
 779                ubifs_err(c, "no LEB for GC");
 780                return -EINVAL;
 781        }
 782
 783        /* And we have to tell lprops that this LEB is taken */
 784        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 785                                  LPROPS_TAKEN, 0, 0);
 786        return err;
 787}
 788
 789/**
 790 * alloc_wbufs - allocate write-buffers.
 791 * @c: UBIFS file-system description object
 792 *
 793 * This helper function allocates and initializes UBIFS write-buffers. Returns
 794 * zero in case of success and %-ENOMEM in case of failure.
 795 */
 796static int alloc_wbufs(struct ubifs_info *c)
 797{
 798        int i, err;
 799
 800        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 801                            GFP_KERNEL);
 802        if (!c->jheads)
 803                return -ENOMEM;
 804
 805        /* Initialize journal heads */
 806        for (i = 0; i < c->jhead_cnt; i++) {
 807                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 808                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 809                if (err)
 810                        return err;
 811
 812                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 813                c->jheads[i].wbuf.jhead = i;
 814                c->jheads[i].grouped = 1;
 815        }
 816
 817        /*
 818         * Garbage Collector head does not need to be synchronized by timer.
 819         * Also GC head nodes are not grouped.
 820         */
 821        c->jheads[GCHD].wbuf.no_timer = 1;
 822        c->jheads[GCHD].grouped = 0;
 823
 824        return 0;
 825}
 826
 827/**
 828 * free_wbufs - free write-buffers.
 829 * @c: UBIFS file-system description object
 830 */
 831static void free_wbufs(struct ubifs_info *c)
 832{
 833        int i;
 834
 835        if (c->jheads) {
 836                for (i = 0; i < c->jhead_cnt; i++) {
 837                        kfree(c->jheads[i].wbuf.buf);
 838                        kfree(c->jheads[i].wbuf.inodes);
 839                }
 840                kfree(c->jheads);
 841                c->jheads = NULL;
 842        }
 843}
 844
 845/**
 846 * free_orphans - free orphans.
 847 * @c: UBIFS file-system description object
 848 */
 849static void free_orphans(struct ubifs_info *c)
 850{
 851        struct ubifs_orphan *orph;
 852
 853        while (c->orph_dnext) {
 854                orph = c->orph_dnext;
 855                c->orph_dnext = orph->dnext;
 856                list_del(&orph->list);
 857                kfree(orph);
 858        }
 859
 860        while (!list_empty(&c->orph_list)) {
 861                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 862                list_del(&orph->list);
 863                kfree(orph);
 864                ubifs_err(c, "orphan list not empty at unmount");
 865        }
 866
 867        vfree(c->orph_buf);
 868        c->orph_buf = NULL;
 869}
 870
 871/**
 872 * free_buds - free per-bud objects.
 873 * @c: UBIFS file-system description object
 874 */
 875static void free_buds(struct ubifs_info *c)
 876{
 877        struct ubifs_bud *bud, *n;
 878
 879        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 880                kfree(bud);
 881}
 882
 883/**
 884 * check_volume_empty - check if the UBI volume is empty.
 885 * @c: UBIFS file-system description object
 886 *
 887 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 888 * mapped or not. The result of checking is stored in the @c->empty variable.
 889 * Returns zero in case of success and a negative error code in case of
 890 * failure.
 891 */
 892static int check_volume_empty(struct ubifs_info *c)
 893{
 894        int lnum, err;
 895
 896        c->empty = 1;
 897        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 898                err = ubifs_is_mapped(c, lnum);
 899                if (unlikely(err < 0))
 900                        return err;
 901                if (err == 1) {
 902                        c->empty = 0;
 903                        break;
 904                }
 905
 906                cond_resched();
 907        }
 908
 909        return 0;
 910}
 911
 912/*
 913 * UBIFS mount options.
 914 *
 915 * Opt_fast_unmount: do not run a journal commit before un-mounting
 916 * Opt_norm_unmount: run a journal commit before un-mounting
 917 * Opt_bulk_read: enable bulk-reads
 918 * Opt_no_bulk_read: disable bulk-reads
 919 * Opt_chk_data_crc: check CRCs when reading data nodes
 920 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 921 * Opt_override_compr: override default compressor
 922 * Opt_err: just end of array marker
 923 */
 924enum {
 925        Opt_fast_unmount,
 926        Opt_norm_unmount,
 927        Opt_bulk_read,
 928        Opt_no_bulk_read,
 929        Opt_chk_data_crc,
 930        Opt_no_chk_data_crc,
 931        Opt_override_compr,
 932        Opt_err,
 933};
 934
 935static const match_table_t tokens = {
 936        {Opt_fast_unmount, "fast_unmount"},
 937        {Opt_norm_unmount, "norm_unmount"},
 938        {Opt_bulk_read, "bulk_read"},
 939        {Opt_no_bulk_read, "no_bulk_read"},
 940        {Opt_chk_data_crc, "chk_data_crc"},
 941        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 942        {Opt_override_compr, "compr=%s"},
 943        {Opt_err, NULL},
 944};
 945
 946/**
 947 * parse_standard_option - parse a standard mount option.
 948 * @option: the option to parse
 949 *
 950 * Normally, standard mount options like "sync" are passed to file-systems as
 951 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 952 * be present in the options string. This function tries to deal with this
 953 * situation and parse standard options. Returns 0 if the option was not
 954 * recognized, and the corresponding integer flag if it was.
 955 *
 956 * UBIFS is only interested in the "sync" option, so do not check for anything
 957 * else.
 958 */
 959static int parse_standard_option(const char *option)
 960{
 961
 962        pr_notice("UBIFS: parse %s\n", option);
 963        if (!strcmp(option, "sync"))
 964                return MS_SYNCHRONOUS;
 965        return 0;
 966}
 967
 968/**
 969 * ubifs_parse_options - parse mount parameters.
 970 * @c: UBIFS file-system description object
 971 * @options: parameters to parse
 972 * @is_remount: non-zero if this is FS re-mount
 973 *
 974 * This function parses UBIFS mount options and returns zero in case success
 975 * and a negative error code in case of failure.
 976 */
 977static int ubifs_parse_options(struct ubifs_info *c, char *options,
 978                               int is_remount)
 979{
 980        char *p;
 981        substring_t args[MAX_OPT_ARGS];
 982
 983        if (!options)
 984                return 0;
 985
 986        while ((p = strsep(&options, ","))) {
 987                int token;
 988
 989                if (!*p)
 990                        continue;
 991
 992                token = match_token(p, tokens, args);
 993                switch (token) {
 994                /*
 995                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
 996                 * We accept them in order to be backward-compatible. But this
 997                 * should be removed at some point.
 998                 */
 999                case Opt_fast_unmount:
1000                        c->mount_opts.unmount_mode = 2;
1001                        break;
1002                case Opt_norm_unmount:
1003                        c->mount_opts.unmount_mode = 1;
1004                        break;
1005                case Opt_bulk_read:
1006                        c->mount_opts.bulk_read = 2;
1007                        c->bulk_read = 1;
1008                        break;
1009                case Opt_no_bulk_read:
1010                        c->mount_opts.bulk_read = 1;
1011                        c->bulk_read = 0;
1012                        break;
1013                case Opt_chk_data_crc:
1014                        c->mount_opts.chk_data_crc = 2;
1015                        c->no_chk_data_crc = 0;
1016                        break;
1017                case Opt_no_chk_data_crc:
1018                        c->mount_opts.chk_data_crc = 1;
1019                        c->no_chk_data_crc = 1;
1020                        break;
1021                case Opt_override_compr:
1022                {
1023                        char *name = match_strdup(&args[0]);
1024
1025                        if (!name)
1026                                return -ENOMEM;
1027                        if (!strcmp(name, "none"))
1028                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1029                        else if (!strcmp(name, "lzo"))
1030                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1031                        else if (!strcmp(name, "zlib"))
1032                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1033                        else {
1034                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1035                                kfree(name);
1036                                return -EINVAL;
1037                        }
1038                        kfree(name);
1039                        c->mount_opts.override_compr = 1;
1040                        c->default_compr = c->mount_opts.compr_type;
1041                        break;
1042                }
1043                default:
1044                {
1045                        unsigned long flag;
1046                        struct super_block *sb = c->vfs_sb;
1047
1048                        flag = parse_standard_option(p);
1049                        if (!flag) {
1050                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1051                                          p);
1052                                return -EINVAL;
1053                        }
1054                        sb->s_flags |= flag;
1055                        break;
1056                }
1057                }
1058        }
1059
1060        return 0;
1061}
1062
1063/**
1064 * destroy_journal - destroy journal data structures.
1065 * @c: UBIFS file-system description object
1066 *
1067 * This function destroys journal data structures including those that may have
1068 * been created by recovery functions.
1069 */
1070static void destroy_journal(struct ubifs_info *c)
1071{
1072        while (!list_empty(&c->unclean_leb_list)) {
1073                struct ubifs_unclean_leb *ucleb;
1074
1075                ucleb = list_entry(c->unclean_leb_list.next,
1076                                   struct ubifs_unclean_leb, list);
1077                list_del(&ucleb->list);
1078                kfree(ucleb);
1079        }
1080        while (!list_empty(&c->old_buds)) {
1081                struct ubifs_bud *bud;
1082
1083                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1084                list_del(&bud->list);
1085                kfree(bud);
1086        }
1087        ubifs_destroy_idx_gc(c);
1088        ubifs_destroy_size_tree(c);
1089        ubifs_tnc_close(c);
1090        free_buds(c);
1091}
1092
1093/**
1094 * bu_init - initialize bulk-read information.
1095 * @c: UBIFS file-system description object
1096 */
1097static void bu_init(struct ubifs_info *c)
1098{
1099        ubifs_assert(c->bulk_read == 1);
1100
1101        if (c->bu.buf)
1102                return; /* Already initialized */
1103
1104again:
1105        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1106        if (!c->bu.buf) {
1107                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1108                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1109                        goto again;
1110                }
1111
1112                /* Just disable bulk-read */
1113                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1114                           c->max_bu_buf_len);
1115                c->mount_opts.bulk_read = 1;
1116                c->bulk_read = 0;
1117                return;
1118        }
1119}
1120
1121/**
1122 * check_free_space - check if there is enough free space to mount.
1123 * @c: UBIFS file-system description object
1124 *
1125 * This function makes sure UBIFS has enough free space to be mounted in
1126 * read/write mode. UBIFS must always have some free space to allow deletions.
1127 */
1128static int check_free_space(struct ubifs_info *c)
1129{
1130        ubifs_assert(c->dark_wm > 0);
1131        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1132                ubifs_err(c, "insufficient free space to mount in R/W mode");
1133                ubifs_dump_budg(c, &c->bi);
1134                ubifs_dump_lprops(c);
1135                return -ENOSPC;
1136        }
1137        return 0;
1138}
1139
1140/**
1141 * mount_ubifs - mount UBIFS file-system.
1142 * @c: UBIFS file-system description object
1143 *
1144 * This function mounts UBIFS file system. Returns zero in case of success and
1145 * a negative error code in case of failure.
1146 */
1147static int mount_ubifs(struct ubifs_info *c)
1148{
1149        int err;
1150        long long x, y;
1151        size_t sz;
1152
1153        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1154        /* Suppress error messages while probing if MS_SILENT is set */
1155        c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1156
1157        err = init_constants_early(c);
1158        if (err)
1159                return err;
1160
1161        err = ubifs_debugging_init(c);
1162        if (err)
1163                return err;
1164
1165        err = check_volume_empty(c);
1166        if (err)
1167                goto out_free;
1168
1169        if (c->empty && (c->ro_mount || c->ro_media)) {
1170                /*
1171                 * This UBI volume is empty, and read-only, or the file system
1172                 * is mounted read-only - we cannot format it.
1173                 */
1174                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1175                          c->ro_media ? "UBI volume" : "mount");
1176                err = -EROFS;
1177                goto out_free;
1178        }
1179
1180        if (c->ro_media && !c->ro_mount) {
1181                ubifs_err(c, "cannot mount read-write - read-only media");
1182                err = -EROFS;
1183                goto out_free;
1184        }
1185
1186        /*
1187         * The requirement for the buffer is that it should fit indexing B-tree
1188         * height amount of integers. We assume the height if the TNC tree will
1189         * never exceed 64.
1190         */
1191        err = -ENOMEM;
1192        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1193        if (!c->bottom_up_buf)
1194                goto out_free;
1195
1196        c->sbuf = vmalloc(c->leb_size);
1197        if (!c->sbuf)
1198                goto out_free;
1199
1200        if (!c->ro_mount) {
1201                c->ileb_buf = vmalloc(c->leb_size);
1202                if (!c->ileb_buf)
1203                        goto out_free;
1204        }
1205
1206        if (c->bulk_read == 1)
1207                bu_init(c);
1208
1209        if (!c->ro_mount) {
1210                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1211                                               GFP_KERNEL);
1212                if (!c->write_reserve_buf)
1213                        goto out_free;
1214        }
1215
1216        c->mounting = 1;
1217
1218        err = ubifs_read_superblock(c);
1219        if (err)
1220                goto out_free;
1221
1222        c->probing = 0;
1223
1224        /*
1225         * Make sure the compressor which is set as default in the superblock
1226         * or overridden by mount options is actually compiled in.
1227         */
1228        if (!ubifs_compr_present(c->default_compr)) {
1229                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1230                          ubifs_compr_name(c->default_compr));
1231                err = -ENOTSUPP;
1232                goto out_free;
1233        }
1234
1235        err = init_constants_sb(c);
1236        if (err)
1237                goto out_free;
1238
1239        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1240        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1241        c->cbuf = kmalloc(sz, GFP_NOFS);
1242        if (!c->cbuf) {
1243                err = -ENOMEM;
1244                goto out_free;
1245        }
1246
1247        err = alloc_wbufs(c);
1248        if (err)
1249                goto out_cbuf;
1250
1251        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1252        if (!c->ro_mount) {
1253                /* Create background thread */
1254                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1255                if (IS_ERR(c->bgt)) {
1256                        err = PTR_ERR(c->bgt);
1257                        c->bgt = NULL;
1258                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1259                                  c->bgt_name, err);
1260                        goto out_wbufs;
1261                }
1262                wake_up_process(c->bgt);
1263        }
1264
1265        err = ubifs_read_master(c);
1266        if (err)
1267                goto out_master;
1268
1269        init_constants_master(c);
1270
1271        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1272                ubifs_msg(c, "recovery needed");
1273                c->need_recovery = 1;
1274        }
1275
1276        if (c->need_recovery && !c->ro_mount) {
1277                err = ubifs_recover_inl_heads(c, c->sbuf);
1278                if (err)
1279                        goto out_master;
1280        }
1281
1282        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1283        if (err)
1284                goto out_master;
1285
1286        if (!c->ro_mount && c->space_fixup) {
1287                err = ubifs_fixup_free_space(c);
1288                if (err)
1289                        goto out_lpt;
1290        }
1291
1292        if (!c->ro_mount && !c->need_recovery) {
1293                /*
1294                 * Set the "dirty" flag so that if we reboot uncleanly we
1295                 * will notice this immediately on the next mount.
1296                 */
1297                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1298                err = ubifs_write_master(c);
1299                if (err)
1300                        goto out_lpt;
1301        }
1302
1303        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1304        if (err)
1305                goto out_lpt;
1306
1307        err = ubifs_replay_journal(c);
1308        if (err)
1309                goto out_journal;
1310
1311        /* Calculate 'min_idx_lebs' after journal replay */
1312        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1313
1314        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1315        if (err)
1316                goto out_orphans;
1317
1318        if (!c->ro_mount) {
1319                int lnum;
1320
1321                err = check_free_space(c);
1322                if (err)
1323                        goto out_orphans;
1324
1325                /* Check for enough log space */
1326                lnum = c->lhead_lnum + 1;
1327                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1328                        lnum = UBIFS_LOG_LNUM;
1329                if (lnum == c->ltail_lnum) {
1330                        err = ubifs_consolidate_log(c);
1331                        if (err)
1332                                goto out_orphans;
1333                }
1334
1335                if (c->need_recovery) {
1336                        err = ubifs_recover_size(c);
1337                        if (err)
1338                                goto out_orphans;
1339                        err = ubifs_rcvry_gc_commit(c);
1340                        if (err)
1341                                goto out_orphans;
1342                } else {
1343                        err = take_gc_lnum(c);
1344                        if (err)
1345                                goto out_orphans;
1346
1347                        /*
1348                         * GC LEB may contain garbage if there was an unclean
1349                         * reboot, and it should be un-mapped.
1350                         */
1351                        err = ubifs_leb_unmap(c, c->gc_lnum);
1352                        if (err)
1353                                goto out_orphans;
1354                }
1355
1356                err = dbg_check_lprops(c);
1357                if (err)
1358                        goto out_orphans;
1359        } else if (c->need_recovery) {
1360                err = ubifs_recover_size(c);
1361                if (err)
1362                        goto out_orphans;
1363        } else {
1364                /*
1365                 * Even if we mount read-only, we have to set space in GC LEB
1366                 * to proper value because this affects UBIFS free space
1367                 * reporting. We do not want to have a situation when
1368                 * re-mounting from R/O to R/W changes amount of free space.
1369                 */
1370                err = take_gc_lnum(c);
1371                if (err)
1372                        goto out_orphans;
1373        }
1374
1375        spin_lock(&ubifs_infos_lock);
1376        list_add_tail(&c->infos_list, &ubifs_infos);
1377        spin_unlock(&ubifs_infos_lock);
1378
1379        if (c->need_recovery) {
1380                if (c->ro_mount)
1381                        ubifs_msg(c, "recovery deferred");
1382                else {
1383                        c->need_recovery = 0;
1384                        ubifs_msg(c, "recovery completed");
1385                        /*
1386                         * GC LEB has to be empty and taken at this point. But
1387                         * the journal head LEBs may also be accounted as
1388                         * "empty taken" if they are empty.
1389                         */
1390                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1391                }
1392        } else
1393                ubifs_assert(c->lst.taken_empty_lebs > 0);
1394
1395        err = dbg_check_filesystem(c);
1396        if (err)
1397                goto out_infos;
1398
1399        err = dbg_debugfs_init_fs(c);
1400        if (err)
1401                goto out_infos;
1402
1403        c->mounting = 0;
1404
1405        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1406                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1407                  c->ro_mount ? ", R/O mode" : "");
1408        x = (long long)c->main_lebs * c->leb_size;
1409        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1410        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1411                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1412                  c->max_write_size);
1413        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1414                  x, x >> 20, c->main_lebs,
1415                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1416        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1417                  c->report_rp_size, c->report_rp_size >> 10);
1418        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1419                  c->fmt_version, c->ro_compat_version,
1420                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1421                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1422
1423        dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1424        dbg_gen("data journal heads:  %d",
1425                c->jhead_cnt - NONDATA_JHEADS_CNT);
1426        dbg_gen("log LEBs:            %d (%d - %d)",
1427                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1428        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1429                c->lpt_lebs, c->lpt_first, c->lpt_last);
1430        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1431                c->orph_lebs, c->orph_first, c->orph_last);
1432        dbg_gen("main area LEBs:      %d (%d - %d)",
1433                c->main_lebs, c->main_first, c->leb_cnt - 1);
1434        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1435        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1436                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1437                c->bi.old_idx_sz >> 20);
1438        dbg_gen("key hash type:       %d", c->key_hash_type);
1439        dbg_gen("tree fanout:         %d", c->fanout);
1440        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1441        dbg_gen("max. znode size      %d", c->max_znode_sz);
1442        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1443        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1444                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1445        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1446                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1447        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1448                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1449        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1450                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1451                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1452        dbg_gen("dead watermark:      %d", c->dead_wm);
1453        dbg_gen("dark watermark:      %d", c->dark_wm);
1454        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1455        x = (long long)c->main_lebs * c->dark_wm;
1456        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1457                x, x >> 10, x >> 20);
1458        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1459                c->max_bud_bytes, c->max_bud_bytes >> 10,
1460                c->max_bud_bytes >> 20);
1461        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1462                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1463                c->bg_bud_bytes >> 20);
1464        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1465                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1466        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1467        dbg_gen("commit number:       %llu", c->cmt_no);
1468
1469        return 0;
1470
1471out_infos:
1472        spin_lock(&ubifs_infos_lock);
1473        list_del(&c->infos_list);
1474        spin_unlock(&ubifs_infos_lock);
1475out_orphans:
1476        free_orphans(c);
1477out_journal:
1478        destroy_journal(c);
1479out_lpt:
1480        ubifs_lpt_free(c, 0);
1481out_master:
1482        kfree(c->mst_node);
1483        kfree(c->rcvrd_mst_node);
1484        if (c->bgt)
1485                kthread_stop(c->bgt);
1486out_wbufs:
1487        free_wbufs(c);
1488out_cbuf:
1489        kfree(c->cbuf);
1490out_free:
1491        kfree(c->write_reserve_buf);
1492        kfree(c->bu.buf);
1493        vfree(c->ileb_buf);
1494        vfree(c->sbuf);
1495        kfree(c->bottom_up_buf);
1496        ubifs_debugging_exit(c);
1497        return err;
1498}
1499
1500/**
1501 * ubifs_umount - un-mount UBIFS file-system.
1502 * @c: UBIFS file-system description object
1503 *
1504 * Note, this function is called to free allocated resourced when un-mounting,
1505 * as well as free resources when an error occurred while we were half way
1506 * through mounting (error path cleanup function). So it has to make sure the
1507 * resource was actually allocated before freeing it.
1508 */
1509static void ubifs_umount(struct ubifs_info *c)
1510{
1511        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1512                c->vi.vol_id);
1513
1514        dbg_debugfs_exit_fs(c);
1515        spin_lock(&ubifs_infos_lock);
1516        list_del(&c->infos_list);
1517        spin_unlock(&ubifs_infos_lock);
1518
1519        if (c->bgt)
1520                kthread_stop(c->bgt);
1521
1522        destroy_journal(c);
1523        free_wbufs(c);
1524        free_orphans(c);
1525        ubifs_lpt_free(c, 0);
1526
1527        kfree(c->cbuf);
1528        kfree(c->rcvrd_mst_node);
1529        kfree(c->mst_node);
1530        kfree(c->write_reserve_buf);
1531        kfree(c->bu.buf);
1532        vfree(c->ileb_buf);
1533        vfree(c->sbuf);
1534        kfree(c->bottom_up_buf);
1535        ubifs_debugging_exit(c);
1536}
1537
1538/**
1539 * ubifs_remount_rw - re-mount in read-write mode.
1540 * @c: UBIFS file-system description object
1541 *
1542 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1543 * mode. This function allocates the needed resources and re-mounts UBIFS in
1544 * read-write mode.
1545 */
1546static int ubifs_remount_rw(struct ubifs_info *c)
1547{
1548        int err, lnum;
1549
1550        if (c->rw_incompat) {
1551                ubifs_err(c, "the file-system is not R/W-compatible");
1552                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1553                          c->fmt_version, c->ro_compat_version,
1554                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1555                return -EROFS;
1556        }
1557
1558        mutex_lock(&c->umount_mutex);
1559        dbg_save_space_info(c);
1560        c->remounting_rw = 1;
1561        c->ro_mount = 0;
1562
1563        if (c->space_fixup) {
1564                err = ubifs_fixup_free_space(c);
1565                if (err)
1566                        goto out;
1567        }
1568
1569        err = check_free_space(c);
1570        if (err)
1571                goto out;
1572
1573        if (c->old_leb_cnt != c->leb_cnt) {
1574                struct ubifs_sb_node *sup;
1575
1576                sup = ubifs_read_sb_node(c);
1577                if (IS_ERR(sup)) {
1578                        err = PTR_ERR(sup);
1579                        goto out;
1580                }
1581                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1582                err = ubifs_write_sb_node(c, sup);
1583                kfree(sup);
1584                if (err)
1585                        goto out;
1586        }
1587
1588        if (c->need_recovery) {
1589                ubifs_msg(c, "completing deferred recovery");
1590                err = ubifs_write_rcvrd_mst_node(c);
1591                if (err)
1592                        goto out;
1593                err = ubifs_recover_size(c);
1594                if (err)
1595                        goto out;
1596                err = ubifs_clean_lebs(c, c->sbuf);
1597                if (err)
1598                        goto out;
1599                err = ubifs_recover_inl_heads(c, c->sbuf);
1600                if (err)
1601                        goto out;
1602        } else {
1603                /* A readonly mount is not allowed to have orphans */
1604                ubifs_assert(c->tot_orphans == 0);
1605                err = ubifs_clear_orphans(c);
1606                if (err)
1607                        goto out;
1608        }
1609
1610        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1611                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1612                err = ubifs_write_master(c);
1613                if (err)
1614                        goto out;
1615        }
1616
1617        c->ileb_buf = vmalloc(c->leb_size);
1618        if (!c->ileb_buf) {
1619                err = -ENOMEM;
1620                goto out;
1621        }
1622
1623        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1624        if (!c->write_reserve_buf) {
1625                err = -ENOMEM;
1626                goto out;
1627        }
1628
1629        err = ubifs_lpt_init(c, 0, 1);
1630        if (err)
1631                goto out;
1632
1633        /* Create background thread */
1634        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1635        if (IS_ERR(c->bgt)) {
1636                err = PTR_ERR(c->bgt);
1637                c->bgt = NULL;
1638                ubifs_err(c, "cannot spawn \"%s\", error %d",
1639                          c->bgt_name, err);
1640                goto out;
1641        }
1642        wake_up_process(c->bgt);
1643
1644        c->orph_buf = vmalloc(c->leb_size);
1645        if (!c->orph_buf) {
1646                err = -ENOMEM;
1647                goto out;
1648        }
1649
1650        /* Check for enough log space */
1651        lnum = c->lhead_lnum + 1;
1652        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1653                lnum = UBIFS_LOG_LNUM;
1654        if (lnum == c->ltail_lnum) {
1655                err = ubifs_consolidate_log(c);
1656                if (err)
1657                        goto out;
1658        }
1659
1660        if (c->need_recovery)
1661                err = ubifs_rcvry_gc_commit(c);
1662        else
1663                err = ubifs_leb_unmap(c, c->gc_lnum);
1664        if (err)
1665                goto out;
1666
1667        dbg_gen("re-mounted read-write");
1668        c->remounting_rw = 0;
1669
1670        if (c->need_recovery) {
1671                c->need_recovery = 0;
1672                ubifs_msg(c, "deferred recovery completed");
1673        } else {
1674                /*
1675                 * Do not run the debugging space check if the were doing
1676                 * recovery, because when we saved the information we had the
1677                 * file-system in a state where the TNC and lprops has been
1678                 * modified in memory, but all the I/O operations (including a
1679                 * commit) were deferred. So the file-system was in
1680                 * "non-committed" state. Now the file-system is in committed
1681                 * state, and of course the amount of free space will change
1682                 * because, for example, the old index size was imprecise.
1683                 */
1684                err = dbg_check_space_info(c);
1685        }
1686
1687        mutex_unlock(&c->umount_mutex);
1688        return err;
1689
1690out:
1691        c->ro_mount = 1;
1692        vfree(c->orph_buf);
1693        c->orph_buf = NULL;
1694        if (c->bgt) {
1695                kthread_stop(c->bgt);
1696                c->bgt = NULL;
1697        }
1698        free_wbufs(c);
1699        kfree(c->write_reserve_buf);
1700        c->write_reserve_buf = NULL;
1701        vfree(c->ileb_buf);
1702        c->ileb_buf = NULL;
1703        ubifs_lpt_free(c, 1);
1704        c->remounting_rw = 0;
1705        mutex_unlock(&c->umount_mutex);
1706        return err;
1707}
1708
1709/**
1710 * ubifs_remount_ro - re-mount in read-only mode.
1711 * @c: UBIFS file-system description object
1712 *
1713 * We assume VFS has stopped writing. Possibly the background thread could be
1714 * running a commit, however kthread_stop will wait in that case.
1715 */
1716static void ubifs_remount_ro(struct ubifs_info *c)
1717{
1718        int i, err;
1719
1720        ubifs_assert(!c->need_recovery);
1721        ubifs_assert(!c->ro_mount);
1722
1723        mutex_lock(&c->umount_mutex);
1724        if (c->bgt) {
1725                kthread_stop(c->bgt);
1726                c->bgt = NULL;
1727        }
1728
1729        dbg_save_space_info(c);
1730
1731        for (i = 0; i < c->jhead_cnt; i++)
1732                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1733
1734        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1735        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1736        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1737        err = ubifs_write_master(c);
1738        if (err)
1739                ubifs_ro_mode(c, err);
1740
1741        vfree(c->orph_buf);
1742        c->orph_buf = NULL;
1743        kfree(c->write_reserve_buf);
1744        c->write_reserve_buf = NULL;
1745        vfree(c->ileb_buf);
1746        c->ileb_buf = NULL;
1747        ubifs_lpt_free(c, 1);
1748        c->ro_mount = 1;
1749        err = dbg_check_space_info(c);
1750        if (err)
1751                ubifs_ro_mode(c, err);
1752        mutex_unlock(&c->umount_mutex);
1753}
1754
1755static void ubifs_put_super(struct super_block *sb)
1756{
1757        int i;
1758        struct ubifs_info *c = sb->s_fs_info;
1759
1760        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1761
1762        /*
1763         * The following asserts are only valid if there has not been a failure
1764         * of the media. For example, there will be dirty inodes if we failed
1765         * to write them back because of I/O errors.
1766         */
1767        if (!c->ro_error) {
1768                ubifs_assert(c->bi.idx_growth == 0);
1769                ubifs_assert(c->bi.dd_growth == 0);
1770                ubifs_assert(c->bi.data_growth == 0);
1771        }
1772
1773        /*
1774         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1775         * and file system un-mount. Namely, it prevents the shrinker from
1776         * picking this superblock for shrinking - it will be just skipped if
1777         * the mutex is locked.
1778         */
1779        mutex_lock(&c->umount_mutex);
1780        if (!c->ro_mount) {
1781                /*
1782                 * First of all kill the background thread to make sure it does
1783                 * not interfere with un-mounting and freeing resources.
1784                 */
1785                if (c->bgt) {
1786                        kthread_stop(c->bgt);
1787                        c->bgt = NULL;
1788                }
1789
1790                /*
1791                 * On fatal errors c->ro_error is set to 1, in which case we do
1792                 * not write the master node.
1793                 */
1794                if (!c->ro_error) {
1795                        int err;
1796
1797                        /* Synchronize write-buffers */
1798                        for (i = 0; i < c->jhead_cnt; i++)
1799                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1800
1801                        /*
1802                         * We are being cleanly unmounted which means the
1803                         * orphans were killed - indicate this in the master
1804                         * node. Also save the reserved GC LEB number.
1805                         */
1806                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1807                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1808                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1809                        err = ubifs_write_master(c);
1810                        if (err)
1811                                /*
1812                                 * Recovery will attempt to fix the master area
1813                                 * next mount, so we just print a message and
1814                                 * continue to unmount normally.
1815                                 */
1816                                ubifs_err(c, "failed to write master node, error %d",
1817                                          err);
1818                } else {
1819                        for (i = 0; i < c->jhead_cnt; i++)
1820                                /* Make sure write-buffer timers are canceled */
1821                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1822                }
1823        }
1824
1825        ubifs_umount(c);
1826        bdi_destroy(&c->bdi);
1827        ubi_close_volume(c->ubi);
1828        mutex_unlock(&c->umount_mutex);
1829}
1830
1831static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1832{
1833        int err;
1834        struct ubifs_info *c = sb->s_fs_info;
1835
1836        sync_filesystem(sb);
1837        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1838
1839        err = ubifs_parse_options(c, data, 1);
1840        if (err) {
1841                ubifs_err(c, "invalid or unknown remount parameter");
1842                return err;
1843        }
1844
1845        if (c->ro_mount && !(*flags & MS_RDONLY)) {
1846                if (c->ro_error) {
1847                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1848                        return -EROFS;
1849                }
1850                if (c->ro_media) {
1851                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1852                        return -EROFS;
1853                }
1854                err = ubifs_remount_rw(c);
1855                if (err)
1856                        return err;
1857        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1858                if (c->ro_error) {
1859                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1860                        return -EROFS;
1861                }
1862                ubifs_remount_ro(c);
1863        }
1864
1865        if (c->bulk_read == 1)
1866                bu_init(c);
1867        else {
1868                dbg_gen("disable bulk-read");
1869                kfree(c->bu.buf);
1870                c->bu.buf = NULL;
1871        }
1872
1873        ubifs_assert(c->lst.taken_empty_lebs > 0);
1874        return 0;
1875}
1876
1877const struct super_operations ubifs_super_operations = {
1878        .alloc_inode   = ubifs_alloc_inode,
1879        .destroy_inode = ubifs_destroy_inode,
1880        .put_super     = ubifs_put_super,
1881        .write_inode   = ubifs_write_inode,
1882        .evict_inode   = ubifs_evict_inode,
1883        .statfs        = ubifs_statfs,
1884        .dirty_inode   = ubifs_dirty_inode,
1885        .remount_fs    = ubifs_remount_fs,
1886        .show_options  = ubifs_show_options,
1887        .sync_fs       = ubifs_sync_fs,
1888};
1889
1890/**
1891 * open_ubi - parse UBI device name string and open the UBI device.
1892 * @name: UBI volume name
1893 * @mode: UBI volume open mode
1894 *
1895 * The primary method of mounting UBIFS is by specifying the UBI volume
1896 * character device node path. However, UBIFS may also be mounted withoug any
1897 * character device node using one of the following methods:
1898 *
1899 * o ubiX_Y    - mount UBI device number X, volume Y;
1900 * o ubiY      - mount UBI device number 0, volume Y;
1901 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1902 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1903 *
1904 * Alternative '!' separator may be used instead of ':' (because some shells
1905 * like busybox may interpret ':' as an NFS host name separator). This function
1906 * returns UBI volume description object in case of success and a negative
1907 * error code in case of failure.
1908 */
1909static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1910{
1911        struct ubi_volume_desc *ubi;
1912        int dev, vol;
1913        char *endptr;
1914
1915        /* First, try to open using the device node path method */
1916        ubi = ubi_open_volume_path(name, mode);
1917        if (!IS_ERR(ubi))
1918                return ubi;
1919
1920        /* Try the "nodev" method */
1921        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1922                return ERR_PTR(-EINVAL);
1923
1924        /* ubi:NAME method */
1925        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1926                return ubi_open_volume_nm(0, name + 4, mode);
1927
1928        if (!isdigit(name[3]))
1929                return ERR_PTR(-EINVAL);
1930
1931        dev = simple_strtoul(name + 3, &endptr, 0);
1932
1933        /* ubiY method */
1934        if (*endptr == '\0')
1935                return ubi_open_volume(0, dev, mode);
1936
1937        /* ubiX_Y method */
1938        if (*endptr == '_' && isdigit(endptr[1])) {
1939                vol = simple_strtoul(endptr + 1, &endptr, 0);
1940                if (*endptr != '\0')
1941                        return ERR_PTR(-EINVAL);
1942                return ubi_open_volume(dev, vol, mode);
1943        }
1944
1945        /* ubiX:NAME method */
1946        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1947                return ubi_open_volume_nm(dev, ++endptr, mode);
1948
1949        return ERR_PTR(-EINVAL);
1950}
1951
1952static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1953{
1954        struct ubifs_info *c;
1955
1956        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1957        if (c) {
1958                spin_lock_init(&c->cnt_lock);
1959                spin_lock_init(&c->cs_lock);
1960                spin_lock_init(&c->buds_lock);
1961                spin_lock_init(&c->space_lock);
1962                spin_lock_init(&c->orphan_lock);
1963                init_rwsem(&c->commit_sem);
1964                mutex_init(&c->lp_mutex);
1965                mutex_init(&c->tnc_mutex);
1966                mutex_init(&c->log_mutex);
1967                mutex_init(&c->umount_mutex);
1968                mutex_init(&c->bu_mutex);
1969                mutex_init(&c->write_reserve_mutex);
1970                init_waitqueue_head(&c->cmt_wq);
1971                c->buds = RB_ROOT;
1972                c->old_idx = RB_ROOT;
1973                c->size_tree = RB_ROOT;
1974                c->orph_tree = RB_ROOT;
1975                INIT_LIST_HEAD(&c->infos_list);
1976                INIT_LIST_HEAD(&c->idx_gc);
1977                INIT_LIST_HEAD(&c->replay_list);
1978                INIT_LIST_HEAD(&c->replay_buds);
1979                INIT_LIST_HEAD(&c->uncat_list);
1980                INIT_LIST_HEAD(&c->empty_list);
1981                INIT_LIST_HEAD(&c->freeable_list);
1982                INIT_LIST_HEAD(&c->frdi_idx_list);
1983                INIT_LIST_HEAD(&c->unclean_leb_list);
1984                INIT_LIST_HEAD(&c->old_buds);
1985                INIT_LIST_HEAD(&c->orph_list);
1986                INIT_LIST_HEAD(&c->orph_new);
1987                c->no_chk_data_crc = 1;
1988
1989                c->highest_inum = UBIFS_FIRST_INO;
1990                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1991
1992                ubi_get_volume_info(ubi, &c->vi);
1993                ubi_get_device_info(c->vi.ubi_num, &c->di);
1994        }
1995        return c;
1996}
1997
1998static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1999{
2000        struct ubifs_info *c = sb->s_fs_info;
2001        struct inode *root;
2002        int err;
2003
2004        c->vfs_sb = sb;
2005        /* Re-open the UBI device in read-write mode */
2006        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2007        if (IS_ERR(c->ubi)) {
2008                err = PTR_ERR(c->ubi);
2009                goto out;
2010        }
2011
2012        /*
2013         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2014         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2015         * which means the user would have to wait not just for their own I/O
2016         * but the read-ahead I/O as well i.e. completely pointless.
2017         *
2018         * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2019         */
2020        c->bdi.name = "ubifs",
2021        c->bdi.capabilities = 0;
2022        err  = bdi_init(&c->bdi);
2023        if (err)
2024                goto out_close;
2025        err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2026                           c->vi.ubi_num, c->vi.vol_id);
2027        if (err)
2028                goto out_bdi;
2029
2030        err = ubifs_parse_options(c, data, 0);
2031        if (err)
2032                goto out_bdi;
2033
2034        sb->s_bdi = &c->bdi;
2035        sb->s_fs_info = c;
2036        sb->s_magic = UBIFS_SUPER_MAGIC;
2037        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2038        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2039        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2040        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2041                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2042        sb->s_op = &ubifs_super_operations;
2043
2044        mutex_lock(&c->umount_mutex);
2045        err = mount_ubifs(c);
2046        if (err) {
2047                ubifs_assert(err < 0);
2048                goto out_unlock;
2049        }
2050
2051        /* Read the root inode */
2052        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2053        if (IS_ERR(root)) {
2054                err = PTR_ERR(root);
2055                goto out_umount;
2056        }
2057
2058        sb->s_root = d_make_root(root);
2059        if (!sb->s_root) {
2060                err = -ENOMEM;
2061                goto out_umount;
2062        }
2063
2064        mutex_unlock(&c->umount_mutex);
2065        return 0;
2066
2067out_umount:
2068        ubifs_umount(c);
2069out_unlock:
2070        mutex_unlock(&c->umount_mutex);
2071out_bdi:
2072        bdi_destroy(&c->bdi);
2073out_close:
2074        ubi_close_volume(c->ubi);
2075out:
2076        return err;
2077}
2078
2079static int sb_test(struct super_block *sb, void *data)
2080{
2081        struct ubifs_info *c1 = data;
2082        struct ubifs_info *c = sb->s_fs_info;
2083
2084        return c->vi.cdev == c1->vi.cdev;
2085}
2086
2087static int sb_set(struct super_block *sb, void *data)
2088{
2089        sb->s_fs_info = data;
2090        return set_anon_super(sb, NULL);
2091}
2092
2093static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2094                        const char *name, void *data)
2095{
2096        struct ubi_volume_desc *ubi;
2097        struct ubifs_info *c;
2098        struct super_block *sb;
2099        int err;
2100
2101        dbg_gen("name %s, flags %#x", name, flags);
2102
2103        /*
2104         * Get UBI device number and volume ID. Mount it read-only so far
2105         * because this might be a new mount point, and UBI allows only one
2106         * read-write user at a time.
2107         */
2108        ubi = open_ubi(name, UBI_READONLY);
2109        if (IS_ERR(ubi)) {
2110                pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2111                       current->pid, name, (int)PTR_ERR(ubi));
2112                return ERR_CAST(ubi);
2113        }
2114
2115        c = alloc_ubifs_info(ubi);
2116        if (!c) {
2117                err = -ENOMEM;
2118                goto out_close;
2119        }
2120
2121        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2122
2123        sb = sget(fs_type, sb_test, sb_set, flags, c);
2124        if (IS_ERR(sb)) {
2125                err = PTR_ERR(sb);
2126                kfree(c);
2127                goto out_close;
2128        }
2129
2130        if (sb->s_root) {
2131                struct ubifs_info *c1 = sb->s_fs_info;
2132                kfree(c);
2133                /* A new mount point for already mounted UBIFS */
2134                dbg_gen("this ubi volume is already mounted");
2135                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2136                        err = -EBUSY;
2137                        goto out_deact;
2138                }
2139        } else {
2140                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2141                if (err)
2142                        goto out_deact;
2143                /* We do not support atime */
2144                sb->s_flags |= MS_ACTIVE;
2145#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2146                sb->s_flags |= MS_NOATIME;
2147#else
2148                ubifs_msg(c, "full atime support is enabled.");
2149#endif
2150        }
2151
2152        /* 'fill_super()' opens ubi again so we must close it here */
2153        ubi_close_volume(ubi);
2154
2155        return dget(sb->s_root);
2156
2157out_deact:
2158        deactivate_locked_super(sb);
2159out_close:
2160        ubi_close_volume(ubi);
2161        return ERR_PTR(err);
2162}
2163
2164static void kill_ubifs_super(struct super_block *s)
2165{
2166        struct ubifs_info *c = s->s_fs_info;
2167        kill_anon_super(s);
2168        kfree(c);
2169}
2170
2171static struct file_system_type ubifs_fs_type = {
2172        .name    = "ubifs",
2173        .owner   = THIS_MODULE,
2174        .mount   = ubifs_mount,
2175        .kill_sb = kill_ubifs_super,
2176};
2177MODULE_ALIAS_FS("ubifs");
2178
2179/*
2180 * Inode slab cache constructor.
2181 */
2182static void inode_slab_ctor(void *obj)
2183{
2184        struct ubifs_inode *ui = obj;
2185        inode_init_once(&ui->vfs_inode);
2186}
2187
2188static int __init ubifs_init(void)
2189{
2190        int err;
2191
2192        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2193
2194        /* Make sure node sizes are 8-byte aligned */
2195        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2196        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2197        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2198        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2199        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2200        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2201        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2202        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2203        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2204        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2205        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2206
2207        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2208        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2209        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2210        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2211        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2212        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2213
2214        /* Check min. node size */
2215        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2216        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2217        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2218        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2219
2220        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2221        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2222        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2223        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2224
2225        /* Defined node sizes */
2226        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2227        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2228        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2229        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2230
2231        /*
2232         * We use 2 bit wide bit-fields to store compression type, which should
2233         * be amended if more compressors are added. The bit-fields are:
2234         * @compr_type in 'struct ubifs_inode', @default_compr in
2235         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2236         */
2237        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2238
2239        /*
2240         * We require that PAGE_SIZE is greater-than-or-equal-to
2241         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2242         */
2243        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2244                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2245                       current->pid, (unsigned int)PAGE_SIZE);
2246                return -EINVAL;
2247        }
2248
2249        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2250                                sizeof(struct ubifs_inode), 0,
2251                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2252                                SLAB_ACCOUNT, &inode_slab_ctor);
2253        if (!ubifs_inode_slab)
2254                return -ENOMEM;
2255
2256        err = register_shrinker(&ubifs_shrinker_info);
2257        if (err)
2258                goto out_slab;
2259
2260        err = ubifs_compressors_init();
2261        if (err)
2262                goto out_shrinker;
2263
2264        err = dbg_debugfs_init();
2265        if (err)
2266                goto out_compr;
2267
2268        err = register_filesystem(&ubifs_fs_type);
2269        if (err) {
2270                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2271                       current->pid, err);
2272                goto out_dbg;
2273        }
2274        return 0;
2275
2276out_dbg:
2277        dbg_debugfs_exit();
2278out_compr:
2279        ubifs_compressors_exit();
2280out_shrinker:
2281        unregister_shrinker(&ubifs_shrinker_info);
2282out_slab:
2283        kmem_cache_destroy(ubifs_inode_slab);
2284        return err;
2285}
2286/* late_initcall to let compressors initialize first */
2287late_initcall(ubifs_init);
2288
2289static void __exit ubifs_exit(void)
2290{
2291        ubifs_assert(list_empty(&ubifs_infos));
2292        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2293
2294        dbg_debugfs_exit();
2295        ubifs_compressors_exit();
2296        unregister_shrinker(&ubifs_shrinker_info);
2297
2298        /*
2299         * Make sure all delayed rcu free inodes are flushed before we
2300         * destroy cache.
2301         */
2302        rcu_barrier();
2303        kmem_cache_destroy(ubifs_inode_slab);
2304        unregister_filesystem(&ubifs_fs_type);
2305}
2306module_exit(ubifs_exit);
2307
2308MODULE_LICENSE("GPL");
2309MODULE_VERSION(__stringify(UBIFS_VERSION));
2310MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2311MODULE_DESCRIPTION("UBIFS - UBI File System");
2312