linux/fs/userfaultfd.c
<<
>>
Prefs
   1/*
   2 *  fs/userfaultfd.c
   3 *
   4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc.
   6 *  Copyright (C) 2015  Red Hat, Inc.
   7 *
   8 *  This work is licensed under the terms of the GNU GPL, version 2. See
   9 *  the COPYING file in the top-level directory.
  10 *
  11 *  Some part derived from fs/eventfd.c (anon inode setup) and
  12 *  mm/ksm.c (mm hashing).
  13 */
  14
  15#include <linux/hashtable.h>
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/seq_file.h>
  21#include <linux/file.h>
  22#include <linux/bug.h>
  23#include <linux/anon_inodes.h>
  24#include <linux/syscalls.h>
  25#include <linux/userfaultfd_k.h>
  26#include <linux/mempolicy.h>
  27#include <linux/ioctl.h>
  28#include <linux/security.h>
  29
  30static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
  31
  32enum userfaultfd_state {
  33        UFFD_STATE_WAIT_API,
  34        UFFD_STATE_RUNNING,
  35};
  36
  37/*
  38 * Start with fault_pending_wqh and fault_wqh so they're more likely
  39 * to be in the same cacheline.
  40 */
  41struct userfaultfd_ctx {
  42        /* waitqueue head for the pending (i.e. not read) userfaults */
  43        wait_queue_head_t fault_pending_wqh;
  44        /* waitqueue head for the userfaults */
  45        wait_queue_head_t fault_wqh;
  46        /* waitqueue head for the pseudo fd to wakeup poll/read */
  47        wait_queue_head_t fd_wqh;
  48        /* a refile sequence protected by fault_pending_wqh lock */
  49        struct seqcount refile_seq;
  50        /* pseudo fd refcounting */
  51        atomic_t refcount;
  52        /* userfaultfd syscall flags */
  53        unsigned int flags;
  54        /* state machine */
  55        enum userfaultfd_state state;
  56        /* released */
  57        bool released;
  58        /* mm with one ore more vmas attached to this userfaultfd_ctx */
  59        struct mm_struct *mm;
  60};
  61
  62struct userfaultfd_wait_queue {
  63        struct uffd_msg msg;
  64        wait_queue_t wq;
  65        struct userfaultfd_ctx *ctx;
  66};
  67
  68struct userfaultfd_wake_range {
  69        unsigned long start;
  70        unsigned long len;
  71};
  72
  73static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
  74                                     int wake_flags, void *key)
  75{
  76        struct userfaultfd_wake_range *range = key;
  77        int ret;
  78        struct userfaultfd_wait_queue *uwq;
  79        unsigned long start, len;
  80
  81        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
  82        ret = 0;
  83        /* len == 0 means wake all */
  84        start = range->start;
  85        len = range->len;
  86        if (len && (start > uwq->msg.arg.pagefault.address ||
  87                    start + len <= uwq->msg.arg.pagefault.address))
  88                goto out;
  89        ret = wake_up_state(wq->private, mode);
  90        if (ret)
  91                /*
  92                 * Wake only once, autoremove behavior.
  93                 *
  94                 * After the effect of list_del_init is visible to the
  95                 * other CPUs, the waitqueue may disappear from under
  96                 * us, see the !list_empty_careful() in
  97                 * handle_userfault(). try_to_wake_up() has an
  98                 * implicit smp_mb__before_spinlock, and the
  99                 * wq->private is read before calling the extern
 100                 * function "wake_up_state" (which in turns calls
 101                 * try_to_wake_up). While the spin_lock;spin_unlock;
 102                 * wouldn't be enough, the smp_mb__before_spinlock is
 103                 * enough to avoid an explicit smp_mb() here.
 104                 */
 105                list_del_init(&wq->task_list);
 106out:
 107        return ret;
 108}
 109
 110/**
 111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 112 * context.
 113 * @ctx: [in] Pointer to the userfaultfd context.
 114 *
 115 * Returns: In case of success, returns not zero.
 116 */
 117static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 118{
 119        if (!atomic_inc_not_zero(&ctx->refcount))
 120                BUG();
 121}
 122
 123/**
 124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 125 * context.
 126 * @ctx: [in] Pointer to userfaultfd context.
 127 *
 128 * The userfaultfd context reference must have been previously acquired either
 129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 130 */
 131static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 132{
 133        if (atomic_dec_and_test(&ctx->refcount)) {
 134                VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 135                VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 136                VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 137                VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 138                VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 139                VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 140                mmput(ctx->mm);
 141                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 142        }
 143}
 144
 145static inline void msg_init(struct uffd_msg *msg)
 146{
 147        BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 148        /*
 149         * Must use memset to zero out the paddings or kernel data is
 150         * leaked to userland.
 151         */
 152        memset(msg, 0, sizeof(struct uffd_msg));
 153}
 154
 155static inline struct uffd_msg userfault_msg(unsigned long address,
 156                                            unsigned int flags,
 157                                            unsigned long reason)
 158{
 159        struct uffd_msg msg;
 160        msg_init(&msg);
 161        msg.event = UFFD_EVENT_PAGEFAULT;
 162        msg.arg.pagefault.address = address;
 163        if (flags & FAULT_FLAG_WRITE)
 164                /*
 165                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
 166                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
 167                 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
 168                 * was a read fault, otherwise if set it means it's
 169                 * a write fault.
 170                 */
 171                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 172        if (reason & VM_UFFD_WP)
 173                /*
 174                 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
 175                 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
 176                 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
 177                 * a missing fault, otherwise if set it means it's a
 178                 * write protect fault.
 179                 */
 180                msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 181        return msg;
 182}
 183
 184/*
 185 * Verify the pagetables are still not ok after having reigstered into
 186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 187 * userfault that has already been resolved, if userfaultfd_read and
 188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 189 * threads.
 190 */
 191static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 192                                         unsigned long address,
 193                                         unsigned long flags,
 194                                         unsigned long reason)
 195{
 196        struct mm_struct *mm = ctx->mm;
 197        pgd_t *pgd;
 198        pud_t *pud;
 199        pmd_t *pmd, _pmd;
 200        pte_t *pte;
 201        bool ret = true;
 202
 203        VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 204
 205        pgd = pgd_offset(mm, address);
 206        if (!pgd_present(*pgd))
 207                goto out;
 208        pud = pud_offset(pgd, address);
 209        if (!pud_present(*pud))
 210                goto out;
 211        pmd = pmd_offset(pud, address);
 212        /*
 213         * READ_ONCE must function as a barrier with narrower scope
 214         * and it must be equivalent to:
 215         *      _pmd = *pmd; barrier();
 216         *
 217         * This is to deal with the instability (as in
 218         * pmd_trans_unstable) of the pmd.
 219         */
 220        _pmd = READ_ONCE(*pmd);
 221        if (!pmd_present(_pmd))
 222                goto out;
 223
 224        ret = false;
 225        if (pmd_trans_huge(_pmd))
 226                goto out;
 227
 228        /*
 229         * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 230         * and use the standard pte_offset_map() instead of parsing _pmd.
 231         */
 232        pte = pte_offset_map(pmd, address);
 233        /*
 234         * Lockless access: we're in a wait_event so it's ok if it
 235         * changes under us.
 236         */
 237        if (pte_none(*pte))
 238                ret = true;
 239        pte_unmap(pte);
 240
 241out:
 242        return ret;
 243}
 244
 245/*
 246 * The locking rules involved in returning VM_FAULT_RETRY depending on
 247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 249 * recommendation in __lock_page_or_retry is not an understatement.
 250 *
 251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
 252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 253 * not set.
 254 *
 255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 256 * set, VM_FAULT_RETRY can still be returned if and only if there are
 257 * fatal_signal_pending()s, and the mmap_sem must be released before
 258 * returning it.
 259 */
 260int handle_userfault(struct vm_area_struct *vma, unsigned long address,
 261                     unsigned int flags, unsigned long reason)
 262{
 263        struct mm_struct *mm = vma->vm_mm;
 264        struct userfaultfd_ctx *ctx;
 265        struct userfaultfd_wait_queue uwq;
 266        int ret;
 267        bool must_wait, return_to_userland;
 268
 269        BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
 270
 271        ret = VM_FAULT_SIGBUS;
 272        ctx = vma->vm_userfaultfd_ctx.ctx;
 273        if (!ctx)
 274                goto out;
 275
 276        BUG_ON(ctx->mm != mm);
 277
 278        VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
 279        VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
 280
 281        /*
 282         * If it's already released don't get it. This avoids to loop
 283         * in __get_user_pages if userfaultfd_release waits on the
 284         * caller of handle_userfault to release the mmap_sem.
 285         */
 286        if (unlikely(ACCESS_ONCE(ctx->released)))
 287                goto out;
 288
 289        /*
 290         * We don't do userfault handling for the final child pid update.
 291         */
 292        if (current->flags & PF_EXITING)
 293                goto out;
 294
 295        /*
 296         * Check that we can return VM_FAULT_RETRY.
 297         *
 298         * NOTE: it should become possible to return VM_FAULT_RETRY
 299         * even if FAULT_FLAG_TRIED is set without leading to gup()
 300         * -EBUSY failures, if the userfaultfd is to be extended for
 301         * VM_UFFD_WP tracking and we intend to arm the userfault
 302         * without first stopping userland access to the memory. For
 303         * VM_UFFD_MISSING userfaults this is enough for now.
 304         */
 305        if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
 306                /*
 307                 * Validate the invariant that nowait must allow retry
 308                 * to be sure not to return SIGBUS erroneously on
 309                 * nowait invocations.
 310                 */
 311                BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
 312#ifdef CONFIG_DEBUG_VM
 313                if (printk_ratelimit()) {
 314                        printk(KERN_WARNING
 315                               "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
 316                        dump_stack();
 317                }
 318#endif
 319                goto out;
 320        }
 321
 322        /*
 323         * Handle nowait, not much to do other than tell it to retry
 324         * and wait.
 325         */
 326        ret = VM_FAULT_RETRY;
 327        if (flags & FAULT_FLAG_RETRY_NOWAIT)
 328                goto out;
 329
 330        /* take the reference before dropping the mmap_sem */
 331        userfaultfd_ctx_get(ctx);
 332
 333        init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 334        uwq.wq.private = current;
 335        uwq.msg = userfault_msg(address, flags, reason);
 336        uwq.ctx = ctx;
 337
 338        return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
 339                (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
 340
 341        spin_lock(&ctx->fault_pending_wqh.lock);
 342        /*
 343         * After the __add_wait_queue the uwq is visible to userland
 344         * through poll/read().
 345         */
 346        __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 347        /*
 348         * The smp_mb() after __set_current_state prevents the reads
 349         * following the spin_unlock to happen before the list_add in
 350         * __add_wait_queue.
 351         */
 352        set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
 353                          TASK_KILLABLE);
 354        spin_unlock(&ctx->fault_pending_wqh.lock);
 355
 356        must_wait = userfaultfd_must_wait(ctx, address, flags, reason);
 357        up_read(&mm->mmap_sem);
 358
 359        if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
 360                   (return_to_userland ? !signal_pending(current) :
 361                    !fatal_signal_pending(current)))) {
 362                wake_up_poll(&ctx->fd_wqh, POLLIN);
 363                schedule();
 364                ret |= VM_FAULT_MAJOR;
 365        }
 366
 367        __set_current_state(TASK_RUNNING);
 368
 369        if (return_to_userland) {
 370                if (signal_pending(current) &&
 371                    !fatal_signal_pending(current)) {
 372                        /*
 373                         * If we got a SIGSTOP or SIGCONT and this is
 374                         * a normal userland page fault, just let
 375                         * userland return so the signal will be
 376                         * handled and gdb debugging works.  The page
 377                         * fault code immediately after we return from
 378                         * this function is going to release the
 379                         * mmap_sem and it's not depending on it
 380                         * (unlike gup would if we were not to return
 381                         * VM_FAULT_RETRY).
 382                         *
 383                         * If a fatal signal is pending we still take
 384                         * the streamlined VM_FAULT_RETRY failure path
 385                         * and there's no need to retake the mmap_sem
 386                         * in such case.
 387                         */
 388                        down_read(&mm->mmap_sem);
 389                        ret = 0;
 390                }
 391        }
 392
 393        /*
 394         * Here we race with the list_del; list_add in
 395         * userfaultfd_ctx_read(), however because we don't ever run
 396         * list_del_init() to refile across the two lists, the prev
 397         * and next pointers will never point to self. list_add also
 398         * would never let any of the two pointers to point to
 399         * self. So list_empty_careful won't risk to see both pointers
 400         * pointing to self at any time during the list refile. The
 401         * only case where list_del_init() is called is the full
 402         * removal in the wake function and there we don't re-list_add
 403         * and it's fine not to block on the spinlock. The uwq on this
 404         * kernel stack can be released after the list_del_init.
 405         */
 406        if (!list_empty_careful(&uwq.wq.task_list)) {
 407                spin_lock(&ctx->fault_pending_wqh.lock);
 408                /*
 409                 * No need of list_del_init(), the uwq on the stack
 410                 * will be freed shortly anyway.
 411                 */
 412                list_del(&uwq.wq.task_list);
 413                spin_unlock(&ctx->fault_pending_wqh.lock);
 414        }
 415
 416        /*
 417         * ctx may go away after this if the userfault pseudo fd is
 418         * already released.
 419         */
 420        userfaultfd_ctx_put(ctx);
 421
 422out:
 423        return ret;
 424}
 425
 426static int userfaultfd_release(struct inode *inode, struct file *file)
 427{
 428        struct userfaultfd_ctx *ctx = file->private_data;
 429        struct mm_struct *mm = ctx->mm;
 430        struct vm_area_struct *vma, *prev;
 431        /* len == 0 means wake all */
 432        struct userfaultfd_wake_range range = { .len = 0, };
 433        unsigned long new_flags;
 434
 435        ACCESS_ONCE(ctx->released) = true;
 436
 437        /*
 438         * Flush page faults out of all CPUs. NOTE: all page faults
 439         * must be retried without returning VM_FAULT_SIGBUS if
 440         * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 441         * changes while handle_userfault released the mmap_sem. So
 442         * it's critical that released is set to true (above), before
 443         * taking the mmap_sem for writing.
 444         */
 445        down_write(&mm->mmap_sem);
 446        prev = NULL;
 447        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 448                cond_resched();
 449                BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 450                       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 451                if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 452                        prev = vma;
 453                        continue;
 454                }
 455                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 456                prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 457                                 new_flags, vma->anon_vma,
 458                                 vma->vm_file, vma->vm_pgoff,
 459                                 vma_policy(vma),
 460                                 NULL_VM_UFFD_CTX);
 461                if (prev)
 462                        vma = prev;
 463                else
 464                        prev = vma;
 465                vma->vm_flags = new_flags;
 466                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 467        }
 468        up_write(&mm->mmap_sem);
 469
 470        /*
 471         * After no new page faults can wait on this fault_*wqh, flush
 472         * the last page faults that may have been already waiting on
 473         * the fault_*wqh.
 474         */
 475        spin_lock(&ctx->fault_pending_wqh.lock);
 476        __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 477        __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
 478        spin_unlock(&ctx->fault_pending_wqh.lock);
 479
 480        wake_up_poll(&ctx->fd_wqh, POLLHUP);
 481        userfaultfd_ctx_put(ctx);
 482        return 0;
 483}
 484
 485/* fault_pending_wqh.lock must be hold by the caller */
 486static inline struct userfaultfd_wait_queue *find_userfault(
 487        struct userfaultfd_ctx *ctx)
 488{
 489        wait_queue_t *wq;
 490        struct userfaultfd_wait_queue *uwq;
 491
 492        VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
 493
 494        uwq = NULL;
 495        if (!waitqueue_active(&ctx->fault_pending_wqh))
 496                goto out;
 497        /* walk in reverse to provide FIFO behavior to read userfaults */
 498        wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
 499                             typeof(*wq), task_list);
 500        uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 501out:
 502        return uwq;
 503}
 504
 505static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
 506{
 507        struct userfaultfd_ctx *ctx = file->private_data;
 508        unsigned int ret;
 509
 510        poll_wait(file, &ctx->fd_wqh, wait);
 511
 512        switch (ctx->state) {
 513        case UFFD_STATE_WAIT_API:
 514                return POLLERR;
 515        case UFFD_STATE_RUNNING:
 516                /*
 517                 * poll() never guarantees that read won't block.
 518                 * userfaults can be waken before they're read().
 519                 */
 520                if (unlikely(!(file->f_flags & O_NONBLOCK)))
 521                        return POLLERR;
 522                /*
 523                 * lockless access to see if there are pending faults
 524                 * __pollwait last action is the add_wait_queue but
 525                 * the spin_unlock would allow the waitqueue_active to
 526                 * pass above the actual list_add inside
 527                 * add_wait_queue critical section. So use a full
 528                 * memory barrier to serialize the list_add write of
 529                 * add_wait_queue() with the waitqueue_active read
 530                 * below.
 531                 */
 532                ret = 0;
 533                smp_mb();
 534                if (waitqueue_active(&ctx->fault_pending_wqh))
 535                        ret = POLLIN;
 536                return ret;
 537        default:
 538                BUG();
 539        }
 540}
 541
 542static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 543                                    struct uffd_msg *msg)
 544{
 545        ssize_t ret;
 546        DECLARE_WAITQUEUE(wait, current);
 547        struct userfaultfd_wait_queue *uwq;
 548
 549        /* always take the fd_wqh lock before the fault_pending_wqh lock */
 550        spin_lock(&ctx->fd_wqh.lock);
 551        __add_wait_queue(&ctx->fd_wqh, &wait);
 552        for (;;) {
 553                set_current_state(TASK_INTERRUPTIBLE);
 554                spin_lock(&ctx->fault_pending_wqh.lock);
 555                uwq = find_userfault(ctx);
 556                if (uwq) {
 557                        /*
 558                         * Use a seqcount to repeat the lockless check
 559                         * in wake_userfault() to avoid missing
 560                         * wakeups because during the refile both
 561                         * waitqueue could become empty if this is the
 562                         * only userfault.
 563                         */
 564                        write_seqcount_begin(&ctx->refile_seq);
 565
 566                        /*
 567                         * The fault_pending_wqh.lock prevents the uwq
 568                         * to disappear from under us.
 569                         *
 570                         * Refile this userfault from
 571                         * fault_pending_wqh to fault_wqh, it's not
 572                         * pending anymore after we read it.
 573                         *
 574                         * Use list_del() by hand (as
 575                         * userfaultfd_wake_function also uses
 576                         * list_del_init() by hand) to be sure nobody
 577                         * changes __remove_wait_queue() to use
 578                         * list_del_init() in turn breaking the
 579                         * !list_empty_careful() check in
 580                         * handle_userfault(). The uwq->wq.task_list
 581                         * must never be empty at any time during the
 582                         * refile, or the waitqueue could disappear
 583                         * from under us. The "wait_queue_head_t"
 584                         * parameter of __remove_wait_queue() is unused
 585                         * anyway.
 586                         */
 587                        list_del(&uwq->wq.task_list);
 588                        __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
 589
 590                        write_seqcount_end(&ctx->refile_seq);
 591
 592                        /* careful to always initialize msg if ret == 0 */
 593                        *msg = uwq->msg;
 594                        spin_unlock(&ctx->fault_pending_wqh.lock);
 595                        ret = 0;
 596                        break;
 597                }
 598                spin_unlock(&ctx->fault_pending_wqh.lock);
 599                if (signal_pending(current)) {
 600                        ret = -ERESTARTSYS;
 601                        break;
 602                }
 603                if (no_wait) {
 604                        ret = -EAGAIN;
 605                        break;
 606                }
 607                spin_unlock(&ctx->fd_wqh.lock);
 608                schedule();
 609                spin_lock(&ctx->fd_wqh.lock);
 610        }
 611        __remove_wait_queue(&ctx->fd_wqh, &wait);
 612        __set_current_state(TASK_RUNNING);
 613        spin_unlock(&ctx->fd_wqh.lock);
 614
 615        return ret;
 616}
 617
 618static ssize_t userfaultfd_read(struct file *file, char __user *buf,
 619                                size_t count, loff_t *ppos)
 620{
 621        struct userfaultfd_ctx *ctx = file->private_data;
 622        ssize_t _ret, ret = 0;
 623        struct uffd_msg msg;
 624        int no_wait = file->f_flags & O_NONBLOCK;
 625
 626        if (ctx->state == UFFD_STATE_WAIT_API)
 627                return -EINVAL;
 628
 629        for (;;) {
 630                if (count < sizeof(msg))
 631                        return ret ? ret : -EINVAL;
 632                _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
 633                if (_ret < 0)
 634                        return ret ? ret : _ret;
 635                if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
 636                        return ret ? ret : -EFAULT;
 637                ret += sizeof(msg);
 638                buf += sizeof(msg);
 639                count -= sizeof(msg);
 640                /*
 641                 * Allow to read more than one fault at time but only
 642                 * block if waiting for the very first one.
 643                 */
 644                no_wait = O_NONBLOCK;
 645        }
 646}
 647
 648static void __wake_userfault(struct userfaultfd_ctx *ctx,
 649                             struct userfaultfd_wake_range *range)
 650{
 651        unsigned long start, end;
 652
 653        start = range->start;
 654        end = range->start + range->len;
 655
 656        spin_lock(&ctx->fault_pending_wqh.lock);
 657        /* wake all in the range and autoremove */
 658        if (waitqueue_active(&ctx->fault_pending_wqh))
 659                __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
 660                                     range);
 661        if (waitqueue_active(&ctx->fault_wqh))
 662                __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
 663        spin_unlock(&ctx->fault_pending_wqh.lock);
 664}
 665
 666static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
 667                                           struct userfaultfd_wake_range *range)
 668{
 669        unsigned seq;
 670        bool need_wakeup;
 671
 672        /*
 673         * To be sure waitqueue_active() is not reordered by the CPU
 674         * before the pagetable update, use an explicit SMP memory
 675         * barrier here. PT lock release or up_read(mmap_sem) still
 676         * have release semantics that can allow the
 677         * waitqueue_active() to be reordered before the pte update.
 678         */
 679        smp_mb();
 680
 681        /*
 682         * Use waitqueue_active because it's very frequent to
 683         * change the address space atomically even if there are no
 684         * userfaults yet. So we take the spinlock only when we're
 685         * sure we've userfaults to wake.
 686         */
 687        do {
 688                seq = read_seqcount_begin(&ctx->refile_seq);
 689                need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
 690                        waitqueue_active(&ctx->fault_wqh);
 691                cond_resched();
 692        } while (read_seqcount_retry(&ctx->refile_seq, seq));
 693        if (need_wakeup)
 694                __wake_userfault(ctx, range);
 695}
 696
 697static __always_inline int validate_range(struct mm_struct *mm,
 698                                          __u64 start, __u64 len)
 699{
 700        __u64 task_size = mm->task_size;
 701
 702        if (start & ~PAGE_MASK)
 703                return -EINVAL;
 704        if (len & ~PAGE_MASK)
 705                return -EINVAL;
 706        if (!len)
 707                return -EINVAL;
 708        if (start < mmap_min_addr)
 709                return -EINVAL;
 710        if (start >= task_size)
 711                return -EINVAL;
 712        if (len > task_size - start)
 713                return -EINVAL;
 714        return 0;
 715}
 716
 717static int userfaultfd_register(struct userfaultfd_ctx *ctx,
 718                                unsigned long arg)
 719{
 720        struct mm_struct *mm = ctx->mm;
 721        struct vm_area_struct *vma, *prev, *cur;
 722        int ret;
 723        struct uffdio_register uffdio_register;
 724        struct uffdio_register __user *user_uffdio_register;
 725        unsigned long vm_flags, new_flags;
 726        bool found;
 727        unsigned long start, end, vma_end;
 728
 729        user_uffdio_register = (struct uffdio_register __user *) arg;
 730
 731        ret = -EFAULT;
 732        if (copy_from_user(&uffdio_register, user_uffdio_register,
 733                           sizeof(uffdio_register)-sizeof(__u64)))
 734                goto out;
 735
 736        ret = -EINVAL;
 737        if (!uffdio_register.mode)
 738                goto out;
 739        if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
 740                                     UFFDIO_REGISTER_MODE_WP))
 741                goto out;
 742        vm_flags = 0;
 743        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
 744                vm_flags |= VM_UFFD_MISSING;
 745        if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
 746                vm_flags |= VM_UFFD_WP;
 747                /*
 748                 * FIXME: remove the below error constraint by
 749                 * implementing the wprotect tracking mode.
 750                 */
 751                ret = -EINVAL;
 752                goto out;
 753        }
 754
 755        ret = validate_range(mm, uffdio_register.range.start,
 756                             uffdio_register.range.len);
 757        if (ret)
 758                goto out;
 759
 760        start = uffdio_register.range.start;
 761        end = start + uffdio_register.range.len;
 762
 763        down_write(&mm->mmap_sem);
 764        vma = find_vma_prev(mm, start, &prev);
 765
 766        ret = -ENOMEM;
 767        if (!vma)
 768                goto out_unlock;
 769
 770        /* check that there's at least one vma in the range */
 771        ret = -EINVAL;
 772        if (vma->vm_start >= end)
 773                goto out_unlock;
 774
 775        /*
 776         * Search for not compatible vmas.
 777         *
 778         * FIXME: this shall be relaxed later so that it doesn't fail
 779         * on tmpfs backed vmas (in addition to the current allowance
 780         * on anonymous vmas).
 781         */
 782        found = false;
 783        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 784                cond_resched();
 785
 786                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 787                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 788
 789                /* check not compatible vmas */
 790                ret = -EINVAL;
 791                if (cur->vm_ops)
 792                        goto out_unlock;
 793
 794                /*
 795                 * Check that this vma isn't already owned by a
 796                 * different userfaultfd. We can't allow more than one
 797                 * userfaultfd to own a single vma simultaneously or we
 798                 * wouldn't know which one to deliver the userfaults to.
 799                 */
 800                ret = -EBUSY;
 801                if (cur->vm_userfaultfd_ctx.ctx &&
 802                    cur->vm_userfaultfd_ctx.ctx != ctx)
 803                        goto out_unlock;
 804
 805                found = true;
 806        }
 807        BUG_ON(!found);
 808
 809        if (vma->vm_start < start)
 810                prev = vma;
 811
 812        ret = 0;
 813        do {
 814                cond_resched();
 815
 816                BUG_ON(vma->vm_ops);
 817                BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
 818                       vma->vm_userfaultfd_ctx.ctx != ctx);
 819
 820                /*
 821                 * Nothing to do: this vma is already registered into this
 822                 * userfaultfd and with the right tracking mode too.
 823                 */
 824                if (vma->vm_userfaultfd_ctx.ctx == ctx &&
 825                    (vma->vm_flags & vm_flags) == vm_flags)
 826                        goto skip;
 827
 828                if (vma->vm_start > start)
 829                        start = vma->vm_start;
 830                vma_end = min(end, vma->vm_end);
 831
 832                new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
 833                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 834                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 835                                 vma_policy(vma),
 836                                 ((struct vm_userfaultfd_ctx){ ctx }));
 837                if (prev) {
 838                        vma = prev;
 839                        goto next;
 840                }
 841                if (vma->vm_start < start) {
 842                        ret = split_vma(mm, vma, start, 1);
 843                        if (ret)
 844                                break;
 845                }
 846                if (vma->vm_end > end) {
 847                        ret = split_vma(mm, vma, end, 0);
 848                        if (ret)
 849                                break;
 850                }
 851        next:
 852                /*
 853                 * In the vma_merge() successful mprotect-like case 8:
 854                 * the next vma was merged into the current one and
 855                 * the current one has not been updated yet.
 856                 */
 857                vma->vm_flags = new_flags;
 858                vma->vm_userfaultfd_ctx.ctx = ctx;
 859
 860        skip:
 861                prev = vma;
 862                start = vma->vm_end;
 863                vma = vma->vm_next;
 864        } while (vma && vma->vm_start < end);
 865out_unlock:
 866        up_write(&mm->mmap_sem);
 867        if (!ret) {
 868                /*
 869                 * Now that we scanned all vmas we can already tell
 870                 * userland which ioctls methods are guaranteed to
 871                 * succeed on this range.
 872                 */
 873                if (put_user(UFFD_API_RANGE_IOCTLS,
 874                             &user_uffdio_register->ioctls))
 875                        ret = -EFAULT;
 876        }
 877out:
 878        return ret;
 879}
 880
 881static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
 882                                  unsigned long arg)
 883{
 884        struct mm_struct *mm = ctx->mm;
 885        struct vm_area_struct *vma, *prev, *cur;
 886        int ret;
 887        struct uffdio_range uffdio_unregister;
 888        unsigned long new_flags;
 889        bool found;
 890        unsigned long start, end, vma_end;
 891        const void __user *buf = (void __user *)arg;
 892
 893        ret = -EFAULT;
 894        if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
 895                goto out;
 896
 897        ret = validate_range(mm, uffdio_unregister.start,
 898                             uffdio_unregister.len);
 899        if (ret)
 900                goto out;
 901
 902        start = uffdio_unregister.start;
 903        end = start + uffdio_unregister.len;
 904
 905        down_write(&mm->mmap_sem);
 906        vma = find_vma_prev(mm, start, &prev);
 907
 908        ret = -ENOMEM;
 909        if (!vma)
 910                goto out_unlock;
 911
 912        /* check that there's at least one vma in the range */
 913        ret = -EINVAL;
 914        if (vma->vm_start >= end)
 915                goto out_unlock;
 916
 917        /*
 918         * Search for not compatible vmas.
 919         *
 920         * FIXME: this shall be relaxed later so that it doesn't fail
 921         * on tmpfs backed vmas (in addition to the current allowance
 922         * on anonymous vmas).
 923         */
 924        found = false;
 925        ret = -EINVAL;
 926        for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 927                cond_resched();
 928
 929                BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
 930                       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
 931
 932                /*
 933                 * Check not compatible vmas, not strictly required
 934                 * here as not compatible vmas cannot have an
 935                 * userfaultfd_ctx registered on them, but this
 936                 * provides for more strict behavior to notice
 937                 * unregistration errors.
 938                 */
 939                if (cur->vm_ops)
 940                        goto out_unlock;
 941
 942                found = true;
 943        }
 944        BUG_ON(!found);
 945
 946        if (vma->vm_start < start)
 947                prev = vma;
 948
 949        ret = 0;
 950        do {
 951                cond_resched();
 952
 953                BUG_ON(vma->vm_ops);
 954
 955                /*
 956                 * Nothing to do: this vma is already registered into this
 957                 * userfaultfd and with the right tracking mode too.
 958                 */
 959                if (!vma->vm_userfaultfd_ctx.ctx)
 960                        goto skip;
 961
 962                if (vma->vm_start > start)
 963                        start = vma->vm_start;
 964                vma_end = min(end, vma->vm_end);
 965
 966                new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
 967                prev = vma_merge(mm, prev, start, vma_end, new_flags,
 968                                 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
 969                                 vma_policy(vma),
 970                                 NULL_VM_UFFD_CTX);
 971                if (prev) {
 972                        vma = prev;
 973                        goto next;
 974                }
 975                if (vma->vm_start < start) {
 976                        ret = split_vma(mm, vma, start, 1);
 977                        if (ret)
 978                                break;
 979                }
 980                if (vma->vm_end > end) {
 981                        ret = split_vma(mm, vma, end, 0);
 982                        if (ret)
 983                                break;
 984                }
 985        next:
 986                /*
 987                 * In the vma_merge() successful mprotect-like case 8:
 988                 * the next vma was merged into the current one and
 989                 * the current one has not been updated yet.
 990                 */
 991                vma->vm_flags = new_flags;
 992                vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 993
 994        skip:
 995                prev = vma;
 996                start = vma->vm_end;
 997                vma = vma->vm_next;
 998        } while (vma && vma->vm_start < end);
 999out_unlock:
1000        up_write(&mm->mmap_sem);
1001out:
1002        return ret;
1003}
1004
1005/*
1006 * userfaultfd_wake may be used in combination with the
1007 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1008 */
1009static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1010                            unsigned long arg)
1011{
1012        int ret;
1013        struct uffdio_range uffdio_wake;
1014        struct userfaultfd_wake_range range;
1015        const void __user *buf = (void __user *)arg;
1016
1017        ret = -EFAULT;
1018        if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1019                goto out;
1020
1021        ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1022        if (ret)
1023                goto out;
1024
1025        range.start = uffdio_wake.start;
1026        range.len = uffdio_wake.len;
1027
1028        /*
1029         * len == 0 means wake all and we don't want to wake all here,
1030         * so check it again to be sure.
1031         */
1032        VM_BUG_ON(!range.len);
1033
1034        wake_userfault(ctx, &range);
1035        ret = 0;
1036
1037out:
1038        return ret;
1039}
1040
1041static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1042                            unsigned long arg)
1043{
1044        __s64 ret;
1045        struct uffdio_copy uffdio_copy;
1046        struct uffdio_copy __user *user_uffdio_copy;
1047        struct userfaultfd_wake_range range;
1048
1049        user_uffdio_copy = (struct uffdio_copy __user *) arg;
1050
1051        ret = -EFAULT;
1052        if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1053                           /* don't copy "copy" last field */
1054                           sizeof(uffdio_copy)-sizeof(__s64)))
1055                goto out;
1056
1057        ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1058        if (ret)
1059                goto out;
1060        /*
1061         * double check for wraparound just in case. copy_from_user()
1062         * will later check uffdio_copy.src + uffdio_copy.len to fit
1063         * in the userland range.
1064         */
1065        ret = -EINVAL;
1066        if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1067                goto out;
1068        if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1069                goto out;
1070
1071        ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1072                           uffdio_copy.len);
1073        if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1074                return -EFAULT;
1075        if (ret < 0)
1076                goto out;
1077        BUG_ON(!ret);
1078        /* len == 0 would wake all */
1079        range.len = ret;
1080        if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1081                range.start = uffdio_copy.dst;
1082                wake_userfault(ctx, &range);
1083        }
1084        ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1085out:
1086        return ret;
1087}
1088
1089static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1090                                unsigned long arg)
1091{
1092        __s64 ret;
1093        struct uffdio_zeropage uffdio_zeropage;
1094        struct uffdio_zeropage __user *user_uffdio_zeropage;
1095        struct userfaultfd_wake_range range;
1096
1097        user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1098
1099        ret = -EFAULT;
1100        if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1101                           /* don't copy "zeropage" last field */
1102                           sizeof(uffdio_zeropage)-sizeof(__s64)))
1103                goto out;
1104
1105        ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1106                             uffdio_zeropage.range.len);
1107        if (ret)
1108                goto out;
1109        ret = -EINVAL;
1110        if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1111                goto out;
1112
1113        ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1114                             uffdio_zeropage.range.len);
1115        if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1116                return -EFAULT;
1117        if (ret < 0)
1118                goto out;
1119        /* len == 0 would wake all */
1120        BUG_ON(!ret);
1121        range.len = ret;
1122        if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1123                range.start = uffdio_zeropage.range.start;
1124                wake_userfault(ctx, &range);
1125        }
1126        ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1127out:
1128        return ret;
1129}
1130
1131/*
1132 * userland asks for a certain API version and we return which bits
1133 * and ioctl commands are implemented in this kernel for such API
1134 * version or -EINVAL if unknown.
1135 */
1136static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1137                           unsigned long arg)
1138{
1139        struct uffdio_api uffdio_api;
1140        void __user *buf = (void __user *)arg;
1141        int ret;
1142
1143        ret = -EINVAL;
1144        if (ctx->state != UFFD_STATE_WAIT_API)
1145                goto out;
1146        ret = -EFAULT;
1147        if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1148                goto out;
1149        if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1150                memset(&uffdio_api, 0, sizeof(uffdio_api));
1151                if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1152                        goto out;
1153                ret = -EINVAL;
1154                goto out;
1155        }
1156        uffdio_api.features = UFFD_API_FEATURES;
1157        uffdio_api.ioctls = UFFD_API_IOCTLS;
1158        ret = -EFAULT;
1159        if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1160                goto out;
1161        ctx->state = UFFD_STATE_RUNNING;
1162        ret = 0;
1163out:
1164        return ret;
1165}
1166
1167static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1168                              unsigned long arg)
1169{
1170        int ret = -EINVAL;
1171        struct userfaultfd_ctx *ctx = file->private_data;
1172
1173        if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1174                return -EINVAL;
1175
1176        switch(cmd) {
1177        case UFFDIO_API:
1178                ret = userfaultfd_api(ctx, arg);
1179                break;
1180        case UFFDIO_REGISTER:
1181                ret = userfaultfd_register(ctx, arg);
1182                break;
1183        case UFFDIO_UNREGISTER:
1184                ret = userfaultfd_unregister(ctx, arg);
1185                break;
1186        case UFFDIO_WAKE:
1187                ret = userfaultfd_wake(ctx, arg);
1188                break;
1189        case UFFDIO_COPY:
1190                ret = userfaultfd_copy(ctx, arg);
1191                break;
1192        case UFFDIO_ZEROPAGE:
1193                ret = userfaultfd_zeropage(ctx, arg);
1194                break;
1195        }
1196        return ret;
1197}
1198
1199#ifdef CONFIG_PROC_FS
1200static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1201{
1202        struct userfaultfd_ctx *ctx = f->private_data;
1203        wait_queue_t *wq;
1204        struct userfaultfd_wait_queue *uwq;
1205        unsigned long pending = 0, total = 0;
1206
1207        spin_lock(&ctx->fault_pending_wqh.lock);
1208        list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1209                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1210                pending++;
1211                total++;
1212        }
1213        list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1214                uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1215                total++;
1216        }
1217        spin_unlock(&ctx->fault_pending_wqh.lock);
1218
1219        /*
1220         * If more protocols will be added, there will be all shown
1221         * separated by a space. Like this:
1222         *      protocols: aa:... bb:...
1223         */
1224        seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1225                   pending, total, UFFD_API, UFFD_API_FEATURES,
1226                   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1227}
1228#endif
1229
1230static const struct file_operations userfaultfd_fops = {
1231#ifdef CONFIG_PROC_FS
1232        .show_fdinfo    = userfaultfd_show_fdinfo,
1233#endif
1234        .release        = userfaultfd_release,
1235        .poll           = userfaultfd_poll,
1236        .read           = userfaultfd_read,
1237        .unlocked_ioctl = userfaultfd_ioctl,
1238        .compat_ioctl   = userfaultfd_ioctl,
1239        .llseek         = noop_llseek,
1240};
1241
1242static void init_once_userfaultfd_ctx(void *mem)
1243{
1244        struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1245
1246        init_waitqueue_head(&ctx->fault_pending_wqh);
1247        init_waitqueue_head(&ctx->fault_wqh);
1248        init_waitqueue_head(&ctx->fd_wqh);
1249        seqcount_init(&ctx->refile_seq);
1250}
1251
1252/**
1253 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1254 * @flags: Flags for the userfaultfd file.
1255 *
1256 * This function creates an userfaultfd file pointer, w/out installing
1257 * it into the fd table. This is useful when the userfaultfd file is
1258 * used during the initialization of data structures that require
1259 * extra setup after the userfaultfd creation. So the userfaultfd
1260 * creation is split into the file pointer creation phase, and the
1261 * file descriptor installation phase.  In this way races with
1262 * userspace closing the newly installed file descriptor can be
1263 * avoided.  Returns an userfaultfd file pointer, or a proper error
1264 * pointer.
1265 */
1266static struct file *userfaultfd_file_create(int flags)
1267{
1268        struct file *file;
1269        struct userfaultfd_ctx *ctx;
1270
1271        BUG_ON(!current->mm);
1272
1273        /* Check the UFFD_* constants for consistency.  */
1274        BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1275        BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1276
1277        file = ERR_PTR(-EINVAL);
1278        if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1279                goto out;
1280
1281        file = ERR_PTR(-ENOMEM);
1282        ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1283        if (!ctx)
1284                goto out;
1285
1286        atomic_set(&ctx->refcount, 1);
1287        ctx->flags = flags;
1288        ctx->state = UFFD_STATE_WAIT_API;
1289        ctx->released = false;
1290        ctx->mm = current->mm;
1291        /* prevent the mm struct to be freed */
1292        atomic_inc(&ctx->mm->mm_users);
1293
1294        file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1295                                  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1296        if (IS_ERR(file)) {
1297                mmput(ctx->mm);
1298                kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1299        }
1300out:
1301        return file;
1302}
1303
1304SYSCALL_DEFINE1(userfaultfd, int, flags)
1305{
1306        int fd, error;
1307        struct file *file;
1308
1309        error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1310        if (error < 0)
1311                return error;
1312        fd = error;
1313
1314        file = userfaultfd_file_create(flags);
1315        if (IS_ERR(file)) {
1316                error = PTR_ERR(file);
1317                goto err_put_unused_fd;
1318        }
1319        fd_install(fd, file);
1320
1321        return fd;
1322
1323err_put_unused_fd:
1324        put_unused_fd(fd);
1325
1326        return error;
1327}
1328
1329static int __init userfaultfd_init(void)
1330{
1331        userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1332                                                sizeof(struct userfaultfd_ctx),
1333                                                0,
1334                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1335                                                init_once_userfaultfd_ctx);
1336        return 0;
1337}
1338__initcall(userfaultfd_init);
1339