linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_log.h"
  32#include "xfs_log_priv.h"
  33#include "xfs_log_recover.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_extfree_item.h"
  36#include "xfs_trans_priv.h"
  37#include "xfs_alloc.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_quota.h"
  40#include "xfs_cksum.h"
  41#include "xfs_trace.h"
  42#include "xfs_icache.h"
  43#include "xfs_bmap_btree.h"
  44#include "xfs_error.h"
  45#include "xfs_dir2.h"
  46
  47#define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
  48
  49STATIC int
  50xlog_find_zeroed(
  51        struct xlog     *,
  52        xfs_daddr_t     *);
  53STATIC int
  54xlog_clear_stale_blocks(
  55        struct xlog     *,
  56        xfs_lsn_t);
  57#if defined(DEBUG)
  58STATIC void
  59xlog_recover_check_summary(
  60        struct xlog *);
  61#else
  62#define xlog_recover_check_summary(log)
  63#endif
  64STATIC int
  65xlog_do_recovery_pass(
  66        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  67
  68/*
  69 * This structure is used during recovery to record the buf log items which
  70 * have been canceled and should not be replayed.
  71 */
  72struct xfs_buf_cancel {
  73        xfs_daddr_t             bc_blkno;
  74        uint                    bc_len;
  75        int                     bc_refcount;
  76        struct list_head        bc_list;
  77};
  78
  79/*
  80 * Sector aligned buffer routines for buffer create/read/write/access
  81 */
  82
  83/*
  84 * Verify the given count of basic blocks is valid number of blocks
  85 * to specify for an operation involving the given XFS log buffer.
  86 * Returns nonzero if the count is valid, 0 otherwise.
  87 */
  88
  89static inline int
  90xlog_buf_bbcount_valid(
  91        struct xlog     *log,
  92        int             bbcount)
  93{
  94        return bbcount > 0 && bbcount <= log->l_logBBsize;
  95}
  96
  97/*
  98 * Allocate a buffer to hold log data.  The buffer needs to be able
  99 * to map to a range of nbblks basic blocks at any valid (basic
 100 * block) offset within the log.
 101 */
 102STATIC xfs_buf_t *
 103xlog_get_bp(
 104        struct xlog     *log,
 105        int             nbblks)
 106{
 107        struct xfs_buf  *bp;
 108
 109        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 110                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 111                        nbblks);
 112                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 113                return NULL;
 114        }
 115
 116        /*
 117         * We do log I/O in units of log sectors (a power-of-2
 118         * multiple of the basic block size), so we round up the
 119         * requested size to accommodate the basic blocks required
 120         * for complete log sectors.
 121         *
 122         * In addition, the buffer may be used for a non-sector-
 123         * aligned block offset, in which case an I/O of the
 124         * requested size could extend beyond the end of the
 125         * buffer.  If the requested size is only 1 basic block it
 126         * will never straddle a sector boundary, so this won't be
 127         * an issue.  Nor will this be a problem if the log I/O is
 128         * done in basic blocks (sector size 1).  But otherwise we
 129         * extend the buffer by one extra log sector to ensure
 130         * there's space to accommodate this possibility.
 131         */
 132        if (nbblks > 1 && log->l_sectBBsize > 1)
 133                nbblks += log->l_sectBBsize;
 134        nbblks = round_up(nbblks, log->l_sectBBsize);
 135
 136        bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 137        if (bp)
 138                xfs_buf_unlock(bp);
 139        return bp;
 140}
 141
 142STATIC void
 143xlog_put_bp(
 144        xfs_buf_t       *bp)
 145{
 146        xfs_buf_free(bp);
 147}
 148
 149/*
 150 * Return the address of the start of the given block number's data
 151 * in a log buffer.  The buffer covers a log sector-aligned region.
 152 */
 153STATIC char *
 154xlog_align(
 155        struct xlog     *log,
 156        xfs_daddr_t     blk_no,
 157        int             nbblks,
 158        struct xfs_buf  *bp)
 159{
 160        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 161
 162        ASSERT(offset + nbblks <= bp->b_length);
 163        return bp->b_addr + BBTOB(offset);
 164}
 165
 166
 167/*
 168 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 169 */
 170STATIC int
 171xlog_bread_noalign(
 172        struct xlog     *log,
 173        xfs_daddr_t     blk_no,
 174        int             nbblks,
 175        struct xfs_buf  *bp)
 176{
 177        int             error;
 178
 179        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 180                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 181                        nbblks);
 182                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 183                return -EFSCORRUPTED;
 184        }
 185
 186        blk_no = round_down(blk_no, log->l_sectBBsize);
 187        nbblks = round_up(nbblks, log->l_sectBBsize);
 188
 189        ASSERT(nbblks > 0);
 190        ASSERT(nbblks <= bp->b_length);
 191
 192        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 193        bp->b_flags |= XBF_READ;
 194        bp->b_io_length = nbblks;
 195        bp->b_error = 0;
 196
 197        error = xfs_buf_submit_wait(bp);
 198        if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
 199                xfs_buf_ioerror_alert(bp, __func__);
 200        return error;
 201}
 202
 203STATIC int
 204xlog_bread(
 205        struct xlog     *log,
 206        xfs_daddr_t     blk_no,
 207        int             nbblks,
 208        struct xfs_buf  *bp,
 209        char            **offset)
 210{
 211        int             error;
 212
 213        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 214        if (error)
 215                return error;
 216
 217        *offset = xlog_align(log, blk_no, nbblks, bp);
 218        return 0;
 219}
 220
 221/*
 222 * Read at an offset into the buffer. Returns with the buffer in it's original
 223 * state regardless of the result of the read.
 224 */
 225STATIC int
 226xlog_bread_offset(
 227        struct xlog     *log,
 228        xfs_daddr_t     blk_no,         /* block to read from */
 229        int             nbblks,         /* blocks to read */
 230        struct xfs_buf  *bp,
 231        char            *offset)
 232{
 233        char            *orig_offset = bp->b_addr;
 234        int             orig_len = BBTOB(bp->b_length);
 235        int             error, error2;
 236
 237        error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 238        if (error)
 239                return error;
 240
 241        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 242
 243        /* must reset buffer pointer even on error */
 244        error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 245        if (error)
 246                return error;
 247        return error2;
 248}
 249
 250/*
 251 * Write out the buffer at the given block for the given number of blocks.
 252 * The buffer is kept locked across the write and is returned locked.
 253 * This can only be used for synchronous log writes.
 254 */
 255STATIC int
 256xlog_bwrite(
 257        struct xlog     *log,
 258        xfs_daddr_t     blk_no,
 259        int             nbblks,
 260        struct xfs_buf  *bp)
 261{
 262        int             error;
 263
 264        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 265                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 266                        nbblks);
 267                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 268                return -EFSCORRUPTED;
 269        }
 270
 271        blk_no = round_down(blk_no, log->l_sectBBsize);
 272        nbblks = round_up(nbblks, log->l_sectBBsize);
 273
 274        ASSERT(nbblks > 0);
 275        ASSERT(nbblks <= bp->b_length);
 276
 277        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 278        xfs_buf_hold(bp);
 279        xfs_buf_lock(bp);
 280        bp->b_io_length = nbblks;
 281        bp->b_error = 0;
 282
 283        error = xfs_bwrite(bp);
 284        if (error)
 285                xfs_buf_ioerror_alert(bp, __func__);
 286        xfs_buf_relse(bp);
 287        return error;
 288}
 289
 290#ifdef DEBUG
 291/*
 292 * dump debug superblock and log record information
 293 */
 294STATIC void
 295xlog_header_check_dump(
 296        xfs_mount_t             *mp,
 297        xlog_rec_header_t       *head)
 298{
 299        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 300                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 301        xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 302                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 303}
 304#else
 305#define xlog_header_check_dump(mp, head)
 306#endif
 307
 308/*
 309 * check log record header for recovery
 310 */
 311STATIC int
 312xlog_header_check_recover(
 313        xfs_mount_t             *mp,
 314        xlog_rec_header_t       *head)
 315{
 316        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 317
 318        /*
 319         * IRIX doesn't write the h_fmt field and leaves it zeroed
 320         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 321         * a dirty log created in IRIX.
 322         */
 323        if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 324                xfs_warn(mp,
 325        "dirty log written in incompatible format - can't recover");
 326                xlog_header_check_dump(mp, head);
 327                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 328                                 XFS_ERRLEVEL_HIGH, mp);
 329                return -EFSCORRUPTED;
 330        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 331                xfs_warn(mp,
 332        "dirty log entry has mismatched uuid - can't recover");
 333                xlog_header_check_dump(mp, head);
 334                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 335                                 XFS_ERRLEVEL_HIGH, mp);
 336                return -EFSCORRUPTED;
 337        }
 338        return 0;
 339}
 340
 341/*
 342 * read the head block of the log and check the header
 343 */
 344STATIC int
 345xlog_header_check_mount(
 346        xfs_mount_t             *mp,
 347        xlog_rec_header_t       *head)
 348{
 349        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 350
 351        if (uuid_is_nil(&head->h_fs_uuid)) {
 352                /*
 353                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 354                 * h_fs_uuid is nil, we assume this log was last mounted
 355                 * by IRIX and continue.
 356                 */
 357                xfs_warn(mp, "nil uuid in log - IRIX style log");
 358        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 359                xfs_warn(mp, "log has mismatched uuid - can't recover");
 360                xlog_header_check_dump(mp, head);
 361                XFS_ERROR_REPORT("xlog_header_check_mount",
 362                                 XFS_ERRLEVEL_HIGH, mp);
 363                return -EFSCORRUPTED;
 364        }
 365        return 0;
 366}
 367
 368STATIC void
 369xlog_recover_iodone(
 370        struct xfs_buf  *bp)
 371{
 372        if (bp->b_error) {
 373                /*
 374                 * We're not going to bother about retrying
 375                 * this during recovery. One strike!
 376                 */
 377                if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 378                        xfs_buf_ioerror_alert(bp, __func__);
 379                        xfs_force_shutdown(bp->b_target->bt_mount,
 380                                                SHUTDOWN_META_IO_ERROR);
 381                }
 382        }
 383        bp->b_iodone = NULL;
 384        xfs_buf_ioend(bp);
 385}
 386
 387/*
 388 * This routine finds (to an approximation) the first block in the physical
 389 * log which contains the given cycle.  It uses a binary search algorithm.
 390 * Note that the algorithm can not be perfect because the disk will not
 391 * necessarily be perfect.
 392 */
 393STATIC int
 394xlog_find_cycle_start(
 395        struct xlog     *log,
 396        struct xfs_buf  *bp,
 397        xfs_daddr_t     first_blk,
 398        xfs_daddr_t     *last_blk,
 399        uint            cycle)
 400{
 401        char            *offset;
 402        xfs_daddr_t     mid_blk;
 403        xfs_daddr_t     end_blk;
 404        uint            mid_cycle;
 405        int             error;
 406
 407        end_blk = *last_blk;
 408        mid_blk = BLK_AVG(first_blk, end_blk);
 409        while (mid_blk != first_blk && mid_blk != end_blk) {
 410                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 411                if (error)
 412                        return error;
 413                mid_cycle = xlog_get_cycle(offset);
 414                if (mid_cycle == cycle)
 415                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 416                else
 417                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 418                mid_blk = BLK_AVG(first_blk, end_blk);
 419        }
 420        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 421               (mid_blk == end_blk && mid_blk-1 == first_blk));
 422
 423        *last_blk = end_blk;
 424
 425        return 0;
 426}
 427
 428/*
 429 * Check that a range of blocks does not contain stop_on_cycle_no.
 430 * Fill in *new_blk with the block offset where such a block is
 431 * found, or with -1 (an invalid block number) if there is no such
 432 * block in the range.  The scan needs to occur from front to back
 433 * and the pointer into the region must be updated since a later
 434 * routine will need to perform another test.
 435 */
 436STATIC int
 437xlog_find_verify_cycle(
 438        struct xlog     *log,
 439        xfs_daddr_t     start_blk,
 440        int             nbblks,
 441        uint            stop_on_cycle_no,
 442        xfs_daddr_t     *new_blk)
 443{
 444        xfs_daddr_t     i, j;
 445        uint            cycle;
 446        xfs_buf_t       *bp;
 447        xfs_daddr_t     bufblks;
 448        char            *buf = NULL;
 449        int             error = 0;
 450
 451        /*
 452         * Greedily allocate a buffer big enough to handle the full
 453         * range of basic blocks we'll be examining.  If that fails,
 454         * try a smaller size.  We need to be able to read at least
 455         * a log sector, or we're out of luck.
 456         */
 457        bufblks = 1 << ffs(nbblks);
 458        while (bufblks > log->l_logBBsize)
 459                bufblks >>= 1;
 460        while (!(bp = xlog_get_bp(log, bufblks))) {
 461                bufblks >>= 1;
 462                if (bufblks < log->l_sectBBsize)
 463                        return -ENOMEM;
 464        }
 465
 466        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 467                int     bcount;
 468
 469                bcount = min(bufblks, (start_blk + nbblks - i));
 470
 471                error = xlog_bread(log, i, bcount, bp, &buf);
 472                if (error)
 473                        goto out;
 474
 475                for (j = 0; j < bcount; j++) {
 476                        cycle = xlog_get_cycle(buf);
 477                        if (cycle == stop_on_cycle_no) {
 478                                *new_blk = i+j;
 479                                goto out;
 480                        }
 481
 482                        buf += BBSIZE;
 483                }
 484        }
 485
 486        *new_blk = -1;
 487
 488out:
 489        xlog_put_bp(bp);
 490        return error;
 491}
 492
 493/*
 494 * Potentially backup over partial log record write.
 495 *
 496 * In the typical case, last_blk is the number of the block directly after
 497 * a good log record.  Therefore, we subtract one to get the block number
 498 * of the last block in the given buffer.  extra_bblks contains the number
 499 * of blocks we would have read on a previous read.  This happens when the
 500 * last log record is split over the end of the physical log.
 501 *
 502 * extra_bblks is the number of blocks potentially verified on a previous
 503 * call to this routine.
 504 */
 505STATIC int
 506xlog_find_verify_log_record(
 507        struct xlog             *log,
 508        xfs_daddr_t             start_blk,
 509        xfs_daddr_t             *last_blk,
 510        int                     extra_bblks)
 511{
 512        xfs_daddr_t             i;
 513        xfs_buf_t               *bp;
 514        char                    *offset = NULL;
 515        xlog_rec_header_t       *head = NULL;
 516        int                     error = 0;
 517        int                     smallmem = 0;
 518        int                     num_blks = *last_blk - start_blk;
 519        int                     xhdrs;
 520
 521        ASSERT(start_blk != 0 || *last_blk != start_blk);
 522
 523        if (!(bp = xlog_get_bp(log, num_blks))) {
 524                if (!(bp = xlog_get_bp(log, 1)))
 525                        return -ENOMEM;
 526                smallmem = 1;
 527        } else {
 528                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 529                if (error)
 530                        goto out;
 531                offset += ((num_blks - 1) << BBSHIFT);
 532        }
 533
 534        for (i = (*last_blk) - 1; i >= 0; i--) {
 535                if (i < start_blk) {
 536                        /* valid log record not found */
 537                        xfs_warn(log->l_mp,
 538                "Log inconsistent (didn't find previous header)");
 539                        ASSERT(0);
 540                        error = -EIO;
 541                        goto out;
 542                }
 543
 544                if (smallmem) {
 545                        error = xlog_bread(log, i, 1, bp, &offset);
 546                        if (error)
 547                                goto out;
 548                }
 549
 550                head = (xlog_rec_header_t *)offset;
 551
 552                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 553                        break;
 554
 555                if (!smallmem)
 556                        offset -= BBSIZE;
 557        }
 558
 559        /*
 560         * We hit the beginning of the physical log & still no header.  Return
 561         * to caller.  If caller can handle a return of -1, then this routine
 562         * will be called again for the end of the physical log.
 563         */
 564        if (i == -1) {
 565                error = 1;
 566                goto out;
 567        }
 568
 569        /*
 570         * We have the final block of the good log (the first block
 571         * of the log record _before_ the head. So we check the uuid.
 572         */
 573        if ((error = xlog_header_check_mount(log->l_mp, head)))
 574                goto out;
 575
 576        /*
 577         * We may have found a log record header before we expected one.
 578         * last_blk will be the 1st block # with a given cycle #.  We may end
 579         * up reading an entire log record.  In this case, we don't want to
 580         * reset last_blk.  Only when last_blk points in the middle of a log
 581         * record do we update last_blk.
 582         */
 583        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 584                uint    h_size = be32_to_cpu(head->h_size);
 585
 586                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 587                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 588                        xhdrs++;
 589        } else {
 590                xhdrs = 1;
 591        }
 592
 593        if (*last_blk - i + extra_bblks !=
 594            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 595                *last_blk = i;
 596
 597out:
 598        xlog_put_bp(bp);
 599        return error;
 600}
 601
 602/*
 603 * Head is defined to be the point of the log where the next log write
 604 * could go.  This means that incomplete LR writes at the end are
 605 * eliminated when calculating the head.  We aren't guaranteed that previous
 606 * LR have complete transactions.  We only know that a cycle number of
 607 * current cycle number -1 won't be present in the log if we start writing
 608 * from our current block number.
 609 *
 610 * last_blk contains the block number of the first block with a given
 611 * cycle number.
 612 *
 613 * Return: zero if normal, non-zero if error.
 614 */
 615STATIC int
 616xlog_find_head(
 617        struct xlog     *log,
 618        xfs_daddr_t     *return_head_blk)
 619{
 620        xfs_buf_t       *bp;
 621        char            *offset;
 622        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 623        int             num_scan_bblks;
 624        uint            first_half_cycle, last_half_cycle;
 625        uint            stop_on_cycle;
 626        int             error, log_bbnum = log->l_logBBsize;
 627
 628        /* Is the end of the log device zeroed? */
 629        error = xlog_find_zeroed(log, &first_blk);
 630        if (error < 0) {
 631                xfs_warn(log->l_mp, "empty log check failed");
 632                return error;
 633        }
 634        if (error == 1) {
 635                *return_head_blk = first_blk;
 636
 637                /* Is the whole lot zeroed? */
 638                if (!first_blk) {
 639                        /* Linux XFS shouldn't generate totally zeroed logs -
 640                         * mkfs etc write a dummy unmount record to a fresh
 641                         * log so we can store the uuid in there
 642                         */
 643                        xfs_warn(log->l_mp, "totally zeroed log");
 644                }
 645
 646                return 0;
 647        }
 648
 649        first_blk = 0;                  /* get cycle # of 1st block */
 650        bp = xlog_get_bp(log, 1);
 651        if (!bp)
 652                return -ENOMEM;
 653
 654        error = xlog_bread(log, 0, 1, bp, &offset);
 655        if (error)
 656                goto bp_err;
 657
 658        first_half_cycle = xlog_get_cycle(offset);
 659
 660        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 661        error = xlog_bread(log, last_blk, 1, bp, &offset);
 662        if (error)
 663                goto bp_err;
 664
 665        last_half_cycle = xlog_get_cycle(offset);
 666        ASSERT(last_half_cycle != 0);
 667
 668        /*
 669         * If the 1st half cycle number is equal to the last half cycle number,
 670         * then the entire log is stamped with the same cycle number.  In this
 671         * case, head_blk can't be set to zero (which makes sense).  The below
 672         * math doesn't work out properly with head_blk equal to zero.  Instead,
 673         * we set it to log_bbnum which is an invalid block number, but this
 674         * value makes the math correct.  If head_blk doesn't changed through
 675         * all the tests below, *head_blk is set to zero at the very end rather
 676         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 677         * in a circular file.
 678         */
 679        if (first_half_cycle == last_half_cycle) {
 680                /*
 681                 * In this case we believe that the entire log should have
 682                 * cycle number last_half_cycle.  We need to scan backwards
 683                 * from the end verifying that there are no holes still
 684                 * containing last_half_cycle - 1.  If we find such a hole,
 685                 * then the start of that hole will be the new head.  The
 686                 * simple case looks like
 687                 *        x | x ... | x - 1 | x
 688                 * Another case that fits this picture would be
 689                 *        x | x + 1 | x ... | x
 690                 * In this case the head really is somewhere at the end of the
 691                 * log, as one of the latest writes at the beginning was
 692                 * incomplete.
 693                 * One more case is
 694                 *        x | x + 1 | x ... | x - 1 | x
 695                 * This is really the combination of the above two cases, and
 696                 * the head has to end up at the start of the x-1 hole at the
 697                 * end of the log.
 698                 *
 699                 * In the 256k log case, we will read from the beginning to the
 700                 * end of the log and search for cycle numbers equal to x-1.
 701                 * We don't worry about the x+1 blocks that we encounter,
 702                 * because we know that they cannot be the head since the log
 703                 * started with x.
 704                 */
 705                head_blk = log_bbnum;
 706                stop_on_cycle = last_half_cycle - 1;
 707        } else {
 708                /*
 709                 * In this case we want to find the first block with cycle
 710                 * number matching last_half_cycle.  We expect the log to be
 711                 * some variation on
 712                 *        x + 1 ... | x ... | x
 713                 * The first block with cycle number x (last_half_cycle) will
 714                 * be where the new head belongs.  First we do a binary search
 715                 * for the first occurrence of last_half_cycle.  The binary
 716                 * search may not be totally accurate, so then we scan back
 717                 * from there looking for occurrences of last_half_cycle before
 718                 * us.  If that backwards scan wraps around the beginning of
 719                 * the log, then we look for occurrences of last_half_cycle - 1
 720                 * at the end of the log.  The cases we're looking for look
 721                 * like
 722                 *                               v binary search stopped here
 723                 *        x + 1 ... | x | x + 1 | x ... | x
 724                 *                   ^ but we want to locate this spot
 725                 * or
 726                 *        <---------> less than scan distance
 727                 *        x + 1 ... | x ... | x - 1 | x
 728                 *                           ^ we want to locate this spot
 729                 */
 730                stop_on_cycle = last_half_cycle;
 731                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 732                                                &head_blk, last_half_cycle)))
 733                        goto bp_err;
 734        }
 735
 736        /*
 737         * Now validate the answer.  Scan back some number of maximum possible
 738         * blocks and make sure each one has the expected cycle number.  The
 739         * maximum is determined by the total possible amount of buffering
 740         * in the in-core log.  The following number can be made tighter if
 741         * we actually look at the block size of the filesystem.
 742         */
 743        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 744        if (head_blk >= num_scan_bblks) {
 745                /*
 746                 * We are guaranteed that the entire check can be performed
 747                 * in one buffer.
 748                 */
 749                start_blk = head_blk - num_scan_bblks;
 750                if ((error = xlog_find_verify_cycle(log,
 751                                                start_blk, num_scan_bblks,
 752                                                stop_on_cycle, &new_blk)))
 753                        goto bp_err;
 754                if (new_blk != -1)
 755                        head_blk = new_blk;
 756        } else {                /* need to read 2 parts of log */
 757                /*
 758                 * We are going to scan backwards in the log in two parts.
 759                 * First we scan the physical end of the log.  In this part
 760                 * of the log, we are looking for blocks with cycle number
 761                 * last_half_cycle - 1.
 762                 * If we find one, then we know that the log starts there, as
 763                 * we've found a hole that didn't get written in going around
 764                 * the end of the physical log.  The simple case for this is
 765                 *        x + 1 ... | x ... | x - 1 | x
 766                 *        <---------> less than scan distance
 767                 * If all of the blocks at the end of the log have cycle number
 768                 * last_half_cycle, then we check the blocks at the start of
 769                 * the log looking for occurrences of last_half_cycle.  If we
 770                 * find one, then our current estimate for the location of the
 771                 * first occurrence of last_half_cycle is wrong and we move
 772                 * back to the hole we've found.  This case looks like
 773                 *        x + 1 ... | x | x + 1 | x ...
 774                 *                               ^ binary search stopped here
 775                 * Another case we need to handle that only occurs in 256k
 776                 * logs is
 777                 *        x + 1 ... | x ... | x+1 | x ...
 778                 *                   ^ binary search stops here
 779                 * In a 256k log, the scan at the end of the log will see the
 780                 * x + 1 blocks.  We need to skip past those since that is
 781                 * certainly not the head of the log.  By searching for
 782                 * last_half_cycle-1 we accomplish that.
 783                 */
 784                ASSERT(head_blk <= INT_MAX &&
 785                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 786                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 787                if ((error = xlog_find_verify_cycle(log, start_blk,
 788                                        num_scan_bblks - (int)head_blk,
 789                                        (stop_on_cycle - 1), &new_blk)))
 790                        goto bp_err;
 791                if (new_blk != -1) {
 792                        head_blk = new_blk;
 793                        goto validate_head;
 794                }
 795
 796                /*
 797                 * Scan beginning of log now.  The last part of the physical
 798                 * log is good.  This scan needs to verify that it doesn't find
 799                 * the last_half_cycle.
 800                 */
 801                start_blk = 0;
 802                ASSERT(head_blk <= INT_MAX);
 803                if ((error = xlog_find_verify_cycle(log,
 804                                        start_blk, (int)head_blk,
 805                                        stop_on_cycle, &new_blk)))
 806                        goto bp_err;
 807                if (new_blk != -1)
 808                        head_blk = new_blk;
 809        }
 810
 811validate_head:
 812        /*
 813         * Now we need to make sure head_blk is not pointing to a block in
 814         * the middle of a log record.
 815         */
 816        num_scan_bblks = XLOG_REC_SHIFT(log);
 817        if (head_blk >= num_scan_bblks) {
 818                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 819
 820                /* start ptr at last block ptr before head_blk */
 821                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 822                if (error == 1)
 823                        error = -EIO;
 824                if (error)
 825                        goto bp_err;
 826        } else {
 827                start_blk = 0;
 828                ASSERT(head_blk <= INT_MAX);
 829                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 830                if (error < 0)
 831                        goto bp_err;
 832                if (error == 1) {
 833                        /* We hit the beginning of the log during our search */
 834                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 835                        new_blk = log_bbnum;
 836                        ASSERT(start_blk <= INT_MAX &&
 837                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 838                        ASSERT(head_blk <= INT_MAX);
 839                        error = xlog_find_verify_log_record(log, start_blk,
 840                                                        &new_blk, (int)head_blk);
 841                        if (error == 1)
 842                                error = -EIO;
 843                        if (error)
 844                                goto bp_err;
 845                        if (new_blk != log_bbnum)
 846                                head_blk = new_blk;
 847                } else if (error)
 848                        goto bp_err;
 849        }
 850
 851        xlog_put_bp(bp);
 852        if (head_blk == log_bbnum)
 853                *return_head_blk = 0;
 854        else
 855                *return_head_blk = head_blk;
 856        /*
 857         * When returning here, we have a good block number.  Bad block
 858         * means that during a previous crash, we didn't have a clean break
 859         * from cycle number N to cycle number N-1.  In this case, we need
 860         * to find the first block with cycle number N-1.
 861         */
 862        return 0;
 863
 864 bp_err:
 865        xlog_put_bp(bp);
 866
 867        if (error)
 868                xfs_warn(log->l_mp, "failed to find log head");
 869        return error;
 870}
 871
 872/*
 873 * Seek backwards in the log for log record headers.
 874 *
 875 * Given a starting log block, walk backwards until we find the provided number
 876 * of records or hit the provided tail block. The return value is the number of
 877 * records encountered or a negative error code. The log block and buffer
 878 * pointer of the last record seen are returned in rblk and rhead respectively.
 879 */
 880STATIC int
 881xlog_rseek_logrec_hdr(
 882        struct xlog             *log,
 883        xfs_daddr_t             head_blk,
 884        xfs_daddr_t             tail_blk,
 885        int                     count,
 886        struct xfs_buf          *bp,
 887        xfs_daddr_t             *rblk,
 888        struct xlog_rec_header  **rhead,
 889        bool                    *wrapped)
 890{
 891        int                     i;
 892        int                     error;
 893        int                     found = 0;
 894        char                    *offset = NULL;
 895        xfs_daddr_t             end_blk;
 896
 897        *wrapped = false;
 898
 899        /*
 900         * Walk backwards from the head block until we hit the tail or the first
 901         * block in the log.
 902         */
 903        end_blk = head_blk > tail_blk ? tail_blk : 0;
 904        for (i = (int) head_blk - 1; i >= end_blk; i--) {
 905                error = xlog_bread(log, i, 1, bp, &offset);
 906                if (error)
 907                        goto out_error;
 908
 909                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 910                        *rblk = i;
 911                        *rhead = (struct xlog_rec_header *) offset;
 912                        if (++found == count)
 913                                break;
 914                }
 915        }
 916
 917        /*
 918         * If we haven't hit the tail block or the log record header count,
 919         * start looking again from the end of the physical log. Note that
 920         * callers can pass head == tail if the tail is not yet known.
 921         */
 922        if (tail_blk >= head_blk && found != count) {
 923                for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 924                        error = xlog_bread(log, i, 1, bp, &offset);
 925                        if (error)
 926                                goto out_error;
 927
 928                        if (*(__be32 *)offset ==
 929                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 930                                *wrapped = true;
 931                                *rblk = i;
 932                                *rhead = (struct xlog_rec_header *) offset;
 933                                if (++found == count)
 934                                        break;
 935                        }
 936                }
 937        }
 938
 939        return found;
 940
 941out_error:
 942        return error;
 943}
 944
 945/*
 946 * Seek forward in the log for log record headers.
 947 *
 948 * Given head and tail blocks, walk forward from the tail block until we find
 949 * the provided number of records or hit the head block. The return value is the
 950 * number of records encountered or a negative error code. The log block and
 951 * buffer pointer of the last record seen are returned in rblk and rhead
 952 * respectively.
 953 */
 954STATIC int
 955xlog_seek_logrec_hdr(
 956        struct xlog             *log,
 957        xfs_daddr_t             head_blk,
 958        xfs_daddr_t             tail_blk,
 959        int                     count,
 960        struct xfs_buf          *bp,
 961        xfs_daddr_t             *rblk,
 962        struct xlog_rec_header  **rhead,
 963        bool                    *wrapped)
 964{
 965        int                     i;
 966        int                     error;
 967        int                     found = 0;
 968        char                    *offset = NULL;
 969        xfs_daddr_t             end_blk;
 970
 971        *wrapped = false;
 972
 973        /*
 974         * Walk forward from the tail block until we hit the head or the last
 975         * block in the log.
 976         */
 977        end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
 978        for (i = (int) tail_blk; i <= end_blk; i++) {
 979                error = xlog_bread(log, i, 1, bp, &offset);
 980                if (error)
 981                        goto out_error;
 982
 983                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 984                        *rblk = i;
 985                        *rhead = (struct xlog_rec_header *) offset;
 986                        if (++found == count)
 987                                break;
 988                }
 989        }
 990
 991        /*
 992         * If we haven't hit the head block or the log record header count,
 993         * start looking again from the start of the physical log.
 994         */
 995        if (tail_blk > head_blk && found != count) {
 996                for (i = 0; i < (int) head_blk; i++) {
 997                        error = xlog_bread(log, i, 1, bp, &offset);
 998                        if (error)
 999                                goto out_error;
1000
1001                        if (*(__be32 *)offset ==
1002                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1003                                *wrapped = true;
1004                                *rblk = i;
1005                                *rhead = (struct xlog_rec_header *) offset;
1006                                if (++found == count)
1007                                        break;
1008                        }
1009                }
1010        }
1011
1012        return found;
1013
1014out_error:
1015        return error;
1016}
1017
1018/*
1019 * Check the log tail for torn writes. This is required when torn writes are
1020 * detected at the head and the head had to be walked back to a previous record.
1021 * The tail of the previous record must now be verified to ensure the torn
1022 * writes didn't corrupt the previous tail.
1023 *
1024 * Return an error if CRC verification fails as recovery cannot proceed.
1025 */
1026STATIC int
1027xlog_verify_tail(
1028        struct xlog             *log,
1029        xfs_daddr_t             head_blk,
1030        xfs_daddr_t             tail_blk)
1031{
1032        struct xlog_rec_header  *thead;
1033        struct xfs_buf          *bp;
1034        xfs_daddr_t             first_bad;
1035        int                     count;
1036        int                     error = 0;
1037        bool                    wrapped;
1038        xfs_daddr_t             tmp_head;
1039
1040        bp = xlog_get_bp(log, 1);
1041        if (!bp)
1042                return -ENOMEM;
1043
1044        /*
1045         * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1046         * a temporary head block that points after the last possible
1047         * concurrently written record of the tail.
1048         */
1049        count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1050                                     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1051                                     &wrapped);
1052        if (count < 0) {
1053                error = count;
1054                goto out;
1055        }
1056
1057        /*
1058         * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1059         * into the actual log head. tmp_head points to the start of the record
1060         * so update it to the actual head block.
1061         */
1062        if (count < XLOG_MAX_ICLOGS + 1)
1063                tmp_head = head_blk;
1064
1065        /*
1066         * We now have a tail and temporary head block that covers at least
1067         * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1068         * records were completely written. Run a CRC verification pass from
1069         * tail to head and return the result.
1070         */
1071        error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1072                                      XLOG_RECOVER_CRCPASS, &first_bad);
1073
1074out:
1075        xlog_put_bp(bp);
1076        return error;
1077}
1078
1079/*
1080 * Detect and trim torn writes from the head of the log.
1081 *
1082 * Storage without sector atomicity guarantees can result in torn writes in the
1083 * log in the event of a crash. Our only means to detect this scenario is via
1084 * CRC verification. While we can't always be certain that CRC verification
1085 * failure is due to a torn write vs. an unrelated corruption, we do know that
1086 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1087 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1088 * the log and treat failures in this range as torn writes as a matter of
1089 * policy. In the event of CRC failure, the head is walked back to the last good
1090 * record in the log and the tail is updated from that record and verified.
1091 */
1092STATIC int
1093xlog_verify_head(
1094        struct xlog             *log,
1095        xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1096        xfs_daddr_t             *tail_blk,      /* out: tail block */
1097        struct xfs_buf          *bp,
1098        xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1099        struct xlog_rec_header  **rhead,        /* ptr to last record */
1100        bool                    *wrapped)       /* last rec. wraps phys. log */
1101{
1102        struct xlog_rec_header  *tmp_rhead;
1103        struct xfs_buf          *tmp_bp;
1104        xfs_daddr_t             first_bad;
1105        xfs_daddr_t             tmp_rhead_blk;
1106        int                     found;
1107        int                     error;
1108        bool                    tmp_wrapped;
1109
1110        /*
1111         * Check the head of the log for torn writes. Search backwards from the
1112         * head until we hit the tail or the maximum number of log record I/Os
1113         * that could have been in flight at one time. Use a temporary buffer so
1114         * we don't trash the rhead/bp pointers from the caller.
1115         */
1116        tmp_bp = xlog_get_bp(log, 1);
1117        if (!tmp_bp)
1118                return -ENOMEM;
1119        error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1120                                      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1121                                      &tmp_rhead, &tmp_wrapped);
1122        xlog_put_bp(tmp_bp);
1123        if (error < 0)
1124                return error;
1125
1126        /*
1127         * Now run a CRC verification pass over the records starting at the
1128         * block found above to the current head. If a CRC failure occurs, the
1129         * log block of the first bad record is saved in first_bad.
1130         */
1131        error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1132                                      XLOG_RECOVER_CRCPASS, &first_bad);
1133        if (error == -EFSBADCRC) {
1134                /*
1135                 * We've hit a potential torn write. Reset the error and warn
1136                 * about it.
1137                 */
1138                error = 0;
1139                xfs_warn(log->l_mp,
1140"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1141                         first_bad, *head_blk);
1142
1143                /*
1144                 * Get the header block and buffer pointer for the last good
1145                 * record before the bad record.
1146                 *
1147                 * Note that xlog_find_tail() clears the blocks at the new head
1148                 * (i.e., the records with invalid CRC) if the cycle number
1149                 * matches the the current cycle.
1150                 */
1151                found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1152                                              rhead_blk, rhead, wrapped);
1153                if (found < 0)
1154                        return found;
1155                if (found == 0)         /* XXX: right thing to do here? */
1156                        return -EIO;
1157
1158                /*
1159                 * Reset the head block to the starting block of the first bad
1160                 * log record and set the tail block based on the last good
1161                 * record.
1162                 *
1163                 * Bail out if the updated head/tail match as this indicates
1164                 * possible corruption outside of the acceptable
1165                 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1166                 */
1167                *head_blk = first_bad;
1168                *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1169                if (*head_blk == *tail_blk) {
1170                        ASSERT(0);
1171                        return 0;
1172                }
1173
1174                /*
1175                 * Now verify the tail based on the updated head. This is
1176                 * required because the torn writes trimmed from the head could
1177                 * have been written over the tail of a previous record. Return
1178                 * any errors since recovery cannot proceed if the tail is
1179                 * corrupt.
1180                 *
1181                 * XXX: This leaves a gap in truly robust protection from torn
1182                 * writes in the log. If the head is behind the tail, the tail
1183                 * pushes forward to create some space and then a crash occurs
1184                 * causing the writes into the previous record's tail region to
1185                 * tear, log recovery isn't able to recover.
1186                 *
1187                 * How likely is this to occur? If possible, can we do something
1188                 * more intelligent here? Is it safe to push the tail forward if
1189                 * we can determine that the tail is within the range of the
1190                 * torn write (e.g., the kernel can only overwrite the tail if
1191                 * it has actually been pushed forward)? Alternatively, could we
1192                 * somehow prevent this condition at runtime?
1193                 */
1194                error = xlog_verify_tail(log, *head_blk, *tail_blk);
1195        }
1196
1197        return error;
1198}
1199
1200/*
1201 * Check whether the head of the log points to an unmount record. In other
1202 * words, determine whether the log is clean. If so, update the in-core state
1203 * appropriately.
1204 */
1205static int
1206xlog_check_unmount_rec(
1207        struct xlog             *log,
1208        xfs_daddr_t             *head_blk,
1209        xfs_daddr_t             *tail_blk,
1210        struct xlog_rec_header  *rhead,
1211        xfs_daddr_t             rhead_blk,
1212        struct xfs_buf          *bp,
1213        bool                    *clean)
1214{
1215        struct xlog_op_header   *op_head;
1216        xfs_daddr_t             umount_data_blk;
1217        xfs_daddr_t             after_umount_blk;
1218        int                     hblks;
1219        int                     error;
1220        char                    *offset;
1221
1222        *clean = false;
1223
1224        /*
1225         * Look for unmount record. If we find it, then we know there was a
1226         * clean unmount. Since 'i' could be the last block in the physical
1227         * log, we convert to a log block before comparing to the head_blk.
1228         *
1229         * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1230         * below. We won't want to clear the unmount record if there is one, so
1231         * we pass the lsn of the unmount record rather than the block after it.
1232         */
1233        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1234                int     h_size = be32_to_cpu(rhead->h_size);
1235                int     h_version = be32_to_cpu(rhead->h_version);
1236
1237                if ((h_version & XLOG_VERSION_2) &&
1238                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1239                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1240                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1241                                hblks++;
1242                } else {
1243                        hblks = 1;
1244                }
1245        } else {
1246                hblks = 1;
1247        }
1248        after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1249        after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1250        if (*head_blk == after_umount_blk &&
1251            be32_to_cpu(rhead->h_num_logops) == 1) {
1252                umount_data_blk = rhead_blk + hblks;
1253                umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1254                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1255                if (error)
1256                        return error;
1257
1258                op_head = (struct xlog_op_header *)offset;
1259                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1260                        /*
1261                         * Set tail and last sync so that newly written log
1262                         * records will point recovery to after the current
1263                         * unmount record.
1264                         */
1265                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1266                                        log->l_curr_cycle, after_umount_blk);
1267                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1268                                        log->l_curr_cycle, after_umount_blk);
1269                        *tail_blk = after_umount_blk;
1270
1271                        *clean = true;
1272                }
1273        }
1274
1275        return 0;
1276}
1277
1278static void
1279xlog_set_state(
1280        struct xlog             *log,
1281        xfs_daddr_t             head_blk,
1282        struct xlog_rec_header  *rhead,
1283        xfs_daddr_t             rhead_blk,
1284        bool                    bump_cycle)
1285{
1286        /*
1287         * Reset log values according to the state of the log when we
1288         * crashed.  In the case where head_blk == 0, we bump curr_cycle
1289         * one because the next write starts a new cycle rather than
1290         * continuing the cycle of the last good log record.  At this
1291         * point we have guaranteed that all partial log records have been
1292         * accounted for.  Therefore, we know that the last good log record
1293         * written was complete and ended exactly on the end boundary
1294         * of the physical log.
1295         */
1296        log->l_prev_block = rhead_blk;
1297        log->l_curr_block = (int)head_blk;
1298        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1299        if (bump_cycle)
1300                log->l_curr_cycle++;
1301        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1302        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1303        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1304                                        BBTOB(log->l_curr_block));
1305        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1306                                        BBTOB(log->l_curr_block));
1307}
1308
1309/*
1310 * Find the sync block number or the tail of the log.
1311 *
1312 * This will be the block number of the last record to have its
1313 * associated buffers synced to disk.  Every log record header has
1314 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1315 * to get a sync block number.  The only concern is to figure out which
1316 * log record header to believe.
1317 *
1318 * The following algorithm uses the log record header with the largest
1319 * lsn.  The entire log record does not need to be valid.  We only care
1320 * that the header is valid.
1321 *
1322 * We could speed up search by using current head_blk buffer, but it is not
1323 * available.
1324 */
1325STATIC int
1326xlog_find_tail(
1327        struct xlog             *log,
1328        xfs_daddr_t             *head_blk,
1329        xfs_daddr_t             *tail_blk)
1330{
1331        xlog_rec_header_t       *rhead;
1332        char                    *offset = NULL;
1333        xfs_buf_t               *bp;
1334        int                     error;
1335        xfs_daddr_t             rhead_blk;
1336        xfs_lsn_t               tail_lsn;
1337        bool                    wrapped = false;
1338        bool                    clean = false;
1339
1340        /*
1341         * Find previous log record
1342         */
1343        if ((error = xlog_find_head(log, head_blk)))
1344                return error;
1345        ASSERT(*head_blk < INT_MAX);
1346
1347        bp = xlog_get_bp(log, 1);
1348        if (!bp)
1349                return -ENOMEM;
1350        if (*head_blk == 0) {                           /* special case */
1351                error = xlog_bread(log, 0, 1, bp, &offset);
1352                if (error)
1353                        goto done;
1354
1355                if (xlog_get_cycle(offset) == 0) {
1356                        *tail_blk = 0;
1357                        /* leave all other log inited values alone */
1358                        goto done;
1359                }
1360        }
1361
1362        /*
1363         * Search backwards through the log looking for the log record header
1364         * block. This wraps all the way back around to the head so something is
1365         * seriously wrong if we can't find it.
1366         */
1367        error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1368                                      &rhead_blk, &rhead, &wrapped);
1369        if (error < 0)
1370                return error;
1371        if (!error) {
1372                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1373                return -EIO;
1374        }
1375        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1376
1377        /*
1378         * Set the log state based on the current head record.
1379         */
1380        xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1381        tail_lsn = atomic64_read(&log->l_tail_lsn);
1382
1383        /*
1384         * Look for an unmount record at the head of the log. This sets the log
1385         * state to determine whether recovery is necessary.
1386         */
1387        error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1388                                       rhead_blk, bp, &clean);
1389        if (error)
1390                goto done;
1391
1392        /*
1393         * Verify the log head if the log is not clean (e.g., we have anything
1394         * but an unmount record at the head). This uses CRC verification to
1395         * detect and trim torn writes. If discovered, CRC failures are
1396         * considered torn writes and the log head is trimmed accordingly.
1397         *
1398         * Note that we can only run CRC verification when the log is dirty
1399         * because there's no guarantee that the log data behind an unmount
1400         * record is compatible with the current architecture.
1401         */
1402        if (!clean) {
1403                xfs_daddr_t     orig_head = *head_blk;
1404
1405                error = xlog_verify_head(log, head_blk, tail_blk, bp,
1406                                         &rhead_blk, &rhead, &wrapped);
1407                if (error)
1408                        goto done;
1409
1410                /* update in-core state again if the head changed */
1411                if (*head_blk != orig_head) {
1412                        xlog_set_state(log, *head_blk, rhead, rhead_blk,
1413                                       wrapped);
1414                        tail_lsn = atomic64_read(&log->l_tail_lsn);
1415                        error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1416                                                       rhead, rhead_blk, bp,
1417                                                       &clean);
1418                        if (error)
1419                                goto done;
1420                }
1421        }
1422
1423        /*
1424         * Note that the unmount was clean. If the unmount was not clean, we
1425         * need to know this to rebuild the superblock counters from the perag
1426         * headers if we have a filesystem using non-persistent counters.
1427         */
1428        if (clean)
1429                log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1430
1431        /*
1432         * Make sure that there are no blocks in front of the head
1433         * with the same cycle number as the head.  This can happen
1434         * because we allow multiple outstanding log writes concurrently,
1435         * and the later writes might make it out before earlier ones.
1436         *
1437         * We use the lsn from before modifying it so that we'll never
1438         * overwrite the unmount record after a clean unmount.
1439         *
1440         * Do this only if we are going to recover the filesystem
1441         *
1442         * NOTE: This used to say "if (!readonly)"
1443         * However on Linux, we can & do recover a read-only filesystem.
1444         * We only skip recovery if NORECOVERY is specified on mount,
1445         * in which case we would not be here.
1446         *
1447         * But... if the -device- itself is readonly, just skip this.
1448         * We can't recover this device anyway, so it won't matter.
1449         */
1450        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1451                error = xlog_clear_stale_blocks(log, tail_lsn);
1452
1453done:
1454        xlog_put_bp(bp);
1455
1456        if (error)
1457                xfs_warn(log->l_mp, "failed to locate log tail");
1458        return error;
1459}
1460
1461/*
1462 * Is the log zeroed at all?
1463 *
1464 * The last binary search should be changed to perform an X block read
1465 * once X becomes small enough.  You can then search linearly through
1466 * the X blocks.  This will cut down on the number of reads we need to do.
1467 *
1468 * If the log is partially zeroed, this routine will pass back the blkno
1469 * of the first block with cycle number 0.  It won't have a complete LR
1470 * preceding it.
1471 *
1472 * Return:
1473 *      0  => the log is completely written to
1474 *      1 => use *blk_no as the first block of the log
1475 *      <0 => error has occurred
1476 */
1477STATIC int
1478xlog_find_zeroed(
1479        struct xlog     *log,
1480        xfs_daddr_t     *blk_no)
1481{
1482        xfs_buf_t       *bp;
1483        char            *offset;
1484        uint            first_cycle, last_cycle;
1485        xfs_daddr_t     new_blk, last_blk, start_blk;
1486        xfs_daddr_t     num_scan_bblks;
1487        int             error, log_bbnum = log->l_logBBsize;
1488
1489        *blk_no = 0;
1490
1491        /* check totally zeroed log */
1492        bp = xlog_get_bp(log, 1);
1493        if (!bp)
1494                return -ENOMEM;
1495        error = xlog_bread(log, 0, 1, bp, &offset);
1496        if (error)
1497                goto bp_err;
1498
1499        first_cycle = xlog_get_cycle(offset);
1500        if (first_cycle == 0) {         /* completely zeroed log */
1501                *blk_no = 0;
1502                xlog_put_bp(bp);
1503                return 1;
1504        }
1505
1506        /* check partially zeroed log */
1507        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1508        if (error)
1509                goto bp_err;
1510
1511        last_cycle = xlog_get_cycle(offset);
1512        if (last_cycle != 0) {          /* log completely written to */
1513                xlog_put_bp(bp);
1514                return 0;
1515        } else if (first_cycle != 1) {
1516                /*
1517                 * If the cycle of the last block is zero, the cycle of
1518                 * the first block must be 1. If it's not, maybe we're
1519                 * not looking at a log... Bail out.
1520                 */
1521                xfs_warn(log->l_mp,
1522                        "Log inconsistent or not a log (last==0, first!=1)");
1523                error = -EINVAL;
1524                goto bp_err;
1525        }
1526
1527        /* we have a partially zeroed log */
1528        last_blk = log_bbnum-1;
1529        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1530                goto bp_err;
1531
1532        /*
1533         * Validate the answer.  Because there is no way to guarantee that
1534         * the entire log is made up of log records which are the same size,
1535         * we scan over the defined maximum blocks.  At this point, the maximum
1536         * is not chosen to mean anything special.   XXXmiken
1537         */
1538        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1539        ASSERT(num_scan_bblks <= INT_MAX);
1540
1541        if (last_blk < num_scan_bblks)
1542                num_scan_bblks = last_blk;
1543        start_blk = last_blk - num_scan_bblks;
1544
1545        /*
1546         * We search for any instances of cycle number 0 that occur before
1547         * our current estimate of the head.  What we're trying to detect is
1548         *        1 ... | 0 | 1 | 0...
1549         *                       ^ binary search ends here
1550         */
1551        if ((error = xlog_find_verify_cycle(log, start_blk,
1552                                         (int)num_scan_bblks, 0, &new_blk)))
1553                goto bp_err;
1554        if (new_blk != -1)
1555                last_blk = new_blk;
1556
1557        /*
1558         * Potentially backup over partial log record write.  We don't need
1559         * to search the end of the log because we know it is zero.
1560         */
1561        error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1562        if (error == 1)
1563                error = -EIO;
1564        if (error)
1565                goto bp_err;
1566
1567        *blk_no = last_blk;
1568bp_err:
1569        xlog_put_bp(bp);
1570        if (error)
1571                return error;
1572        return 1;
1573}
1574
1575/*
1576 * These are simple subroutines used by xlog_clear_stale_blocks() below
1577 * to initialize a buffer full of empty log record headers and write
1578 * them into the log.
1579 */
1580STATIC void
1581xlog_add_record(
1582        struct xlog             *log,
1583        char                    *buf,
1584        int                     cycle,
1585        int                     block,
1586        int                     tail_cycle,
1587        int                     tail_block)
1588{
1589        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1590
1591        memset(buf, 0, BBSIZE);
1592        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1593        recp->h_cycle = cpu_to_be32(cycle);
1594        recp->h_version = cpu_to_be32(
1595                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1596        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1597        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1598        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1599        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1600}
1601
1602STATIC int
1603xlog_write_log_records(
1604        struct xlog     *log,
1605        int             cycle,
1606        int             start_block,
1607        int             blocks,
1608        int             tail_cycle,
1609        int             tail_block)
1610{
1611        char            *offset;
1612        xfs_buf_t       *bp;
1613        int             balign, ealign;
1614        int             sectbb = log->l_sectBBsize;
1615        int             end_block = start_block + blocks;
1616        int             bufblks;
1617        int             error = 0;
1618        int             i, j = 0;
1619
1620        /*
1621         * Greedily allocate a buffer big enough to handle the full
1622         * range of basic blocks to be written.  If that fails, try
1623         * a smaller size.  We need to be able to write at least a
1624         * log sector, or we're out of luck.
1625         */
1626        bufblks = 1 << ffs(blocks);
1627        while (bufblks > log->l_logBBsize)
1628                bufblks >>= 1;
1629        while (!(bp = xlog_get_bp(log, bufblks))) {
1630                bufblks >>= 1;
1631                if (bufblks < sectbb)
1632                        return -ENOMEM;
1633        }
1634
1635        /* We may need to do a read at the start to fill in part of
1636         * the buffer in the starting sector not covered by the first
1637         * write below.
1638         */
1639        balign = round_down(start_block, sectbb);
1640        if (balign != start_block) {
1641                error = xlog_bread_noalign(log, start_block, 1, bp);
1642                if (error)
1643                        goto out_put_bp;
1644
1645                j = start_block - balign;
1646        }
1647
1648        for (i = start_block; i < end_block; i += bufblks) {
1649                int             bcount, endcount;
1650
1651                bcount = min(bufblks, end_block - start_block);
1652                endcount = bcount - j;
1653
1654                /* We may need to do a read at the end to fill in part of
1655                 * the buffer in the final sector not covered by the write.
1656                 * If this is the same sector as the above read, skip it.
1657                 */
1658                ealign = round_down(end_block, sectbb);
1659                if (j == 0 && (start_block + endcount > ealign)) {
1660                        offset = bp->b_addr + BBTOB(ealign - start_block);
1661                        error = xlog_bread_offset(log, ealign, sectbb,
1662                                                        bp, offset);
1663                        if (error)
1664                                break;
1665
1666                }
1667
1668                offset = xlog_align(log, start_block, endcount, bp);
1669                for (; j < endcount; j++) {
1670                        xlog_add_record(log, offset, cycle, i+j,
1671                                        tail_cycle, tail_block);
1672                        offset += BBSIZE;
1673                }
1674                error = xlog_bwrite(log, start_block, endcount, bp);
1675                if (error)
1676                        break;
1677                start_block += endcount;
1678                j = 0;
1679        }
1680
1681 out_put_bp:
1682        xlog_put_bp(bp);
1683        return error;
1684}
1685
1686/*
1687 * This routine is called to blow away any incomplete log writes out
1688 * in front of the log head.  We do this so that we won't become confused
1689 * if we come up, write only a little bit more, and then crash again.
1690 * If we leave the partial log records out there, this situation could
1691 * cause us to think those partial writes are valid blocks since they
1692 * have the current cycle number.  We get rid of them by overwriting them
1693 * with empty log records with the old cycle number rather than the
1694 * current one.
1695 *
1696 * The tail lsn is passed in rather than taken from
1697 * the log so that we will not write over the unmount record after a
1698 * clean unmount in a 512 block log.  Doing so would leave the log without
1699 * any valid log records in it until a new one was written.  If we crashed
1700 * during that time we would not be able to recover.
1701 */
1702STATIC int
1703xlog_clear_stale_blocks(
1704        struct xlog     *log,
1705        xfs_lsn_t       tail_lsn)
1706{
1707        int             tail_cycle, head_cycle;
1708        int             tail_block, head_block;
1709        int             tail_distance, max_distance;
1710        int             distance;
1711        int             error;
1712
1713        tail_cycle = CYCLE_LSN(tail_lsn);
1714        tail_block = BLOCK_LSN(tail_lsn);
1715        head_cycle = log->l_curr_cycle;
1716        head_block = log->l_curr_block;
1717
1718        /*
1719         * Figure out the distance between the new head of the log
1720         * and the tail.  We want to write over any blocks beyond the
1721         * head that we may have written just before the crash, but
1722         * we don't want to overwrite the tail of the log.
1723         */
1724        if (head_cycle == tail_cycle) {
1725                /*
1726                 * The tail is behind the head in the physical log,
1727                 * so the distance from the head to the tail is the
1728                 * distance from the head to the end of the log plus
1729                 * the distance from the beginning of the log to the
1730                 * tail.
1731                 */
1732                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1733                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1734                                         XFS_ERRLEVEL_LOW, log->l_mp);
1735                        return -EFSCORRUPTED;
1736                }
1737                tail_distance = tail_block + (log->l_logBBsize - head_block);
1738        } else {
1739                /*
1740                 * The head is behind the tail in the physical log,
1741                 * so the distance from the head to the tail is just
1742                 * the tail block minus the head block.
1743                 */
1744                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1745                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1746                                         XFS_ERRLEVEL_LOW, log->l_mp);
1747                        return -EFSCORRUPTED;
1748                }
1749                tail_distance = tail_block - head_block;
1750        }
1751
1752        /*
1753         * If the head is right up against the tail, we can't clear
1754         * anything.
1755         */
1756        if (tail_distance <= 0) {
1757                ASSERT(tail_distance == 0);
1758                return 0;
1759        }
1760
1761        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1762        /*
1763         * Take the smaller of the maximum amount of outstanding I/O
1764         * we could have and the distance to the tail to clear out.
1765         * We take the smaller so that we don't overwrite the tail and
1766         * we don't waste all day writing from the head to the tail
1767         * for no reason.
1768         */
1769        max_distance = MIN(max_distance, tail_distance);
1770
1771        if ((head_block + max_distance) <= log->l_logBBsize) {
1772                /*
1773                 * We can stomp all the blocks we need to without
1774                 * wrapping around the end of the log.  Just do it
1775                 * in a single write.  Use the cycle number of the
1776                 * current cycle minus one so that the log will look like:
1777                 *     n ... | n - 1 ...
1778                 */
1779                error = xlog_write_log_records(log, (head_cycle - 1),
1780                                head_block, max_distance, tail_cycle,
1781                                tail_block);
1782                if (error)
1783                        return error;
1784        } else {
1785                /*
1786                 * We need to wrap around the end of the physical log in
1787                 * order to clear all the blocks.  Do it in two separate
1788                 * I/Os.  The first write should be from the head to the
1789                 * end of the physical log, and it should use the current
1790                 * cycle number minus one just like above.
1791                 */
1792                distance = log->l_logBBsize - head_block;
1793                error = xlog_write_log_records(log, (head_cycle - 1),
1794                                head_block, distance, tail_cycle,
1795                                tail_block);
1796
1797                if (error)
1798                        return error;
1799
1800                /*
1801                 * Now write the blocks at the start of the physical log.
1802                 * This writes the remainder of the blocks we want to clear.
1803                 * It uses the current cycle number since we're now on the
1804                 * same cycle as the head so that we get:
1805                 *    n ... n ... | n - 1 ...
1806                 *    ^^^^^ blocks we're writing
1807                 */
1808                distance = max_distance - (log->l_logBBsize - head_block);
1809                error = xlog_write_log_records(log, head_cycle, 0, distance,
1810                                tail_cycle, tail_block);
1811                if (error)
1812                        return error;
1813        }
1814
1815        return 0;
1816}
1817
1818/******************************************************************************
1819 *
1820 *              Log recover routines
1821 *
1822 ******************************************************************************
1823 */
1824
1825/*
1826 * Sort the log items in the transaction.
1827 *
1828 * The ordering constraints are defined by the inode allocation and unlink
1829 * behaviour. The rules are:
1830 *
1831 *      1. Every item is only logged once in a given transaction. Hence it
1832 *         represents the last logged state of the item. Hence ordering is
1833 *         dependent on the order in which operations need to be performed so
1834 *         required initial conditions are always met.
1835 *
1836 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1837 *         there's nothing to replay from them so we can simply cull them
1838 *         from the transaction. However, we can't do that until after we've
1839 *         replayed all the other items because they may be dependent on the
1840 *         cancelled buffer and replaying the cancelled buffer can remove it
1841 *         form the cancelled buffer table. Hence they have tobe done last.
1842 *
1843 *      3. Inode allocation buffers must be replayed before inode items that
1844 *         read the buffer and replay changes into it. For filesystems using the
1845 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1846 *         treated the same as inode allocation buffers as they create and
1847 *         initialise the buffers directly.
1848 *
1849 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1850 *         This ensures that inodes are completely flushed to the inode buffer
1851 *         in a "free" state before we remove the unlinked inode list pointer.
1852 *
1853 * Hence the ordering needs to be inode allocation buffers first, inode items
1854 * second, inode unlink buffers third and cancelled buffers last.
1855 *
1856 * But there's a problem with that - we can't tell an inode allocation buffer
1857 * apart from a regular buffer, so we can't separate them. We can, however,
1858 * tell an inode unlink buffer from the others, and so we can separate them out
1859 * from all the other buffers and move them to last.
1860 *
1861 * Hence, 4 lists, in order from head to tail:
1862 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1863 *      - item_list for all non-buffer items
1864 *      - inode_buffer_list for inode unlink buffers
1865 *      - cancel_list for the cancelled buffers
1866 *
1867 * Note that we add objects to the tail of the lists so that first-to-last
1868 * ordering is preserved within the lists. Adding objects to the head of the
1869 * list means when we traverse from the head we walk them in last-to-first
1870 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1871 * but for all other items there may be specific ordering that we need to
1872 * preserve.
1873 */
1874STATIC int
1875xlog_recover_reorder_trans(
1876        struct xlog             *log,
1877        struct xlog_recover     *trans,
1878        int                     pass)
1879{
1880        xlog_recover_item_t     *item, *n;
1881        int                     error = 0;
1882        LIST_HEAD(sort_list);
1883        LIST_HEAD(cancel_list);
1884        LIST_HEAD(buffer_list);
1885        LIST_HEAD(inode_buffer_list);
1886        LIST_HEAD(inode_list);
1887
1888        list_splice_init(&trans->r_itemq, &sort_list);
1889        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1890                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1891
1892                switch (ITEM_TYPE(item)) {
1893                case XFS_LI_ICREATE:
1894                        list_move_tail(&item->ri_list, &buffer_list);
1895                        break;
1896                case XFS_LI_BUF:
1897                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1898                                trace_xfs_log_recover_item_reorder_head(log,
1899                                                        trans, item, pass);
1900                                list_move(&item->ri_list, &cancel_list);
1901                                break;
1902                        }
1903                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1904                                list_move(&item->ri_list, &inode_buffer_list);
1905                                break;
1906                        }
1907                        list_move_tail(&item->ri_list, &buffer_list);
1908                        break;
1909                case XFS_LI_INODE:
1910                case XFS_LI_DQUOT:
1911                case XFS_LI_QUOTAOFF:
1912                case XFS_LI_EFD:
1913                case XFS_LI_EFI:
1914                        trace_xfs_log_recover_item_reorder_tail(log,
1915                                                        trans, item, pass);
1916                        list_move_tail(&item->ri_list, &inode_list);
1917                        break;
1918                default:
1919                        xfs_warn(log->l_mp,
1920                                "%s: unrecognized type of log operation",
1921                                __func__);
1922                        ASSERT(0);
1923                        /*
1924                         * return the remaining items back to the transaction
1925                         * item list so they can be freed in caller.
1926                         */
1927                        if (!list_empty(&sort_list))
1928                                list_splice_init(&sort_list, &trans->r_itemq);
1929                        error = -EIO;
1930                        goto out;
1931                }
1932        }
1933out:
1934        ASSERT(list_empty(&sort_list));
1935        if (!list_empty(&buffer_list))
1936                list_splice(&buffer_list, &trans->r_itemq);
1937        if (!list_empty(&inode_list))
1938                list_splice_tail(&inode_list, &trans->r_itemq);
1939        if (!list_empty(&inode_buffer_list))
1940                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1941        if (!list_empty(&cancel_list))
1942                list_splice_tail(&cancel_list, &trans->r_itemq);
1943        return error;
1944}
1945
1946/*
1947 * Build up the table of buf cancel records so that we don't replay
1948 * cancelled data in the second pass.  For buffer records that are
1949 * not cancel records, there is nothing to do here so we just return.
1950 *
1951 * If we get a cancel record which is already in the table, this indicates
1952 * that the buffer was cancelled multiple times.  In order to ensure
1953 * that during pass 2 we keep the record in the table until we reach its
1954 * last occurrence in the log, we keep a reference count in the cancel
1955 * record in the table to tell us how many times we expect to see this
1956 * record during the second pass.
1957 */
1958STATIC int
1959xlog_recover_buffer_pass1(
1960        struct xlog                     *log,
1961        struct xlog_recover_item        *item)
1962{
1963        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1964        struct list_head        *bucket;
1965        struct xfs_buf_cancel   *bcp;
1966
1967        /*
1968         * If this isn't a cancel buffer item, then just return.
1969         */
1970        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1971                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1972                return 0;
1973        }
1974
1975        /*
1976         * Insert an xfs_buf_cancel record into the hash table of them.
1977         * If there is already an identical record, bump its reference count.
1978         */
1979        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1980        list_for_each_entry(bcp, bucket, bc_list) {
1981                if (bcp->bc_blkno == buf_f->blf_blkno &&
1982                    bcp->bc_len == buf_f->blf_len) {
1983                        bcp->bc_refcount++;
1984                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1985                        return 0;
1986                }
1987        }
1988
1989        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1990        bcp->bc_blkno = buf_f->blf_blkno;
1991        bcp->bc_len = buf_f->blf_len;
1992        bcp->bc_refcount = 1;
1993        list_add_tail(&bcp->bc_list, bucket);
1994
1995        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1996        return 0;
1997}
1998
1999/*
2000 * Check to see whether the buffer being recovered has a corresponding
2001 * entry in the buffer cancel record table. If it is, return the cancel
2002 * buffer structure to the caller.
2003 */
2004STATIC struct xfs_buf_cancel *
2005xlog_peek_buffer_cancelled(
2006        struct xlog             *log,
2007        xfs_daddr_t             blkno,
2008        uint                    len,
2009        ushort                  flags)
2010{
2011        struct list_head        *bucket;
2012        struct xfs_buf_cancel   *bcp;
2013
2014        if (!log->l_buf_cancel_table) {
2015                /* empty table means no cancelled buffers in the log */
2016                ASSERT(!(flags & XFS_BLF_CANCEL));
2017                return NULL;
2018        }
2019
2020        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2021        list_for_each_entry(bcp, bucket, bc_list) {
2022                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2023                        return bcp;
2024        }
2025
2026        /*
2027         * We didn't find a corresponding entry in the table, so return 0 so
2028         * that the buffer is NOT cancelled.
2029         */
2030        ASSERT(!(flags & XFS_BLF_CANCEL));
2031        return NULL;
2032}
2033
2034/*
2035 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2036 * otherwise return 0.  If the buffer is actually a buffer cancel item
2037 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2038 * table and remove it from the table if this is the last reference.
2039 *
2040 * We remove the cancel record from the table when we encounter its last
2041 * occurrence in the log so that if the same buffer is re-used again after its
2042 * last cancellation we actually replay the changes made at that point.
2043 */
2044STATIC int
2045xlog_check_buffer_cancelled(
2046        struct xlog             *log,
2047        xfs_daddr_t             blkno,
2048        uint                    len,
2049        ushort                  flags)
2050{
2051        struct xfs_buf_cancel   *bcp;
2052
2053        bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2054        if (!bcp)
2055                return 0;
2056
2057        /*
2058         * We've go a match, so return 1 so that the recovery of this buffer
2059         * is cancelled.  If this buffer is actually a buffer cancel log
2060         * item, then decrement the refcount on the one in the table and
2061         * remove it if this is the last reference.
2062         */
2063        if (flags & XFS_BLF_CANCEL) {
2064                if (--bcp->bc_refcount == 0) {
2065                        list_del(&bcp->bc_list);
2066                        kmem_free(bcp);
2067                }
2068        }
2069        return 1;
2070}
2071
2072/*
2073 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2074 * data which should be recovered is that which corresponds to the
2075 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2076 * data for the inodes is always logged through the inodes themselves rather
2077 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2078 *
2079 * The only time when buffers full of inodes are fully recovered is when the
2080 * buffer is full of newly allocated inodes.  In this case the buffer will
2081 * not be marked as an inode buffer and so will be sent to
2082 * xlog_recover_do_reg_buffer() below during recovery.
2083 */
2084STATIC int
2085xlog_recover_do_inode_buffer(
2086        struct xfs_mount        *mp,
2087        xlog_recover_item_t     *item,
2088        struct xfs_buf          *bp,
2089        xfs_buf_log_format_t    *buf_f)
2090{
2091        int                     i;
2092        int                     item_index = 0;
2093        int                     bit = 0;
2094        int                     nbits = 0;
2095        int                     reg_buf_offset = 0;
2096        int                     reg_buf_bytes = 0;
2097        int                     next_unlinked_offset;
2098        int                     inodes_per_buf;
2099        xfs_agino_t             *logged_nextp;
2100        xfs_agino_t             *buffer_nextp;
2101
2102        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2103
2104        /*
2105         * Post recovery validation only works properly on CRC enabled
2106         * filesystems.
2107         */
2108        if (xfs_sb_version_hascrc(&mp->m_sb))
2109                bp->b_ops = &xfs_inode_buf_ops;
2110
2111        inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2112        for (i = 0; i < inodes_per_buf; i++) {
2113                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2114                        offsetof(xfs_dinode_t, di_next_unlinked);
2115
2116                while (next_unlinked_offset >=
2117                       (reg_buf_offset + reg_buf_bytes)) {
2118                        /*
2119                         * The next di_next_unlinked field is beyond
2120                         * the current logged region.  Find the next
2121                         * logged region that contains or is beyond
2122                         * the current di_next_unlinked field.
2123                         */
2124                        bit += nbits;
2125                        bit = xfs_next_bit(buf_f->blf_data_map,
2126                                           buf_f->blf_map_size, bit);
2127
2128                        /*
2129                         * If there are no more logged regions in the
2130                         * buffer, then we're done.
2131                         */
2132                        if (bit == -1)
2133                                return 0;
2134
2135                        nbits = xfs_contig_bits(buf_f->blf_data_map,
2136                                                buf_f->blf_map_size, bit);
2137                        ASSERT(nbits > 0);
2138                        reg_buf_offset = bit << XFS_BLF_SHIFT;
2139                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2140                        item_index++;
2141                }
2142
2143                /*
2144                 * If the current logged region starts after the current
2145                 * di_next_unlinked field, then move on to the next
2146                 * di_next_unlinked field.
2147                 */
2148                if (next_unlinked_offset < reg_buf_offset)
2149                        continue;
2150
2151                ASSERT(item->ri_buf[item_index].i_addr != NULL);
2152                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2153                ASSERT((reg_buf_offset + reg_buf_bytes) <=
2154                                                        BBTOB(bp->b_io_length));
2155
2156                /*
2157                 * The current logged region contains a copy of the
2158                 * current di_next_unlinked field.  Extract its value
2159                 * and copy it to the buffer copy.
2160                 */
2161                logged_nextp = item->ri_buf[item_index].i_addr +
2162                                next_unlinked_offset - reg_buf_offset;
2163                if (unlikely(*logged_nextp == 0)) {
2164                        xfs_alert(mp,
2165                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2166                "Trying to replay bad (0) inode di_next_unlinked field.",
2167                                item, bp);
2168                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2169                                         XFS_ERRLEVEL_LOW, mp);
2170                        return -EFSCORRUPTED;
2171                }
2172
2173                buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2174                *buffer_nextp = *logged_nextp;
2175
2176                /*
2177                 * If necessary, recalculate the CRC in the on-disk inode. We
2178                 * have to leave the inode in a consistent state for whoever
2179                 * reads it next....
2180                 */
2181                xfs_dinode_calc_crc(mp,
2182                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2183
2184        }
2185
2186        return 0;
2187}
2188
2189/*
2190 * V5 filesystems know the age of the buffer on disk being recovered. We can
2191 * have newer objects on disk than we are replaying, and so for these cases we
2192 * don't want to replay the current change as that will make the buffer contents
2193 * temporarily invalid on disk.
2194 *
2195 * The magic number might not match the buffer type we are going to recover
2196 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2197 * extract the LSN of the existing object in the buffer based on it's current
2198 * magic number.  If we don't recognise the magic number in the buffer, then
2199 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2200 * so can recover the buffer.
2201 *
2202 * Note: we cannot rely solely on magic number matches to determine that the
2203 * buffer has a valid LSN - we also need to verify that it belongs to this
2204 * filesystem, so we need to extract the object's LSN and compare it to that
2205 * which we read from the superblock. If the UUIDs don't match, then we've got a
2206 * stale metadata block from an old filesystem instance that we need to recover
2207 * over the top of.
2208 */
2209static xfs_lsn_t
2210xlog_recover_get_buf_lsn(
2211        struct xfs_mount        *mp,
2212        struct xfs_buf          *bp)
2213{
2214        __uint32_t              magic32;
2215        __uint16_t              magic16;
2216        __uint16_t              magicda;
2217        void                    *blk = bp->b_addr;
2218        uuid_t                  *uuid;
2219        xfs_lsn_t               lsn = -1;
2220
2221        /* v4 filesystems always recover immediately */
2222        if (!xfs_sb_version_hascrc(&mp->m_sb))
2223                goto recover_immediately;
2224
2225        magic32 = be32_to_cpu(*(__be32 *)blk);
2226        switch (magic32) {
2227        case XFS_ABTB_CRC_MAGIC:
2228        case XFS_ABTC_CRC_MAGIC:
2229        case XFS_ABTB_MAGIC:
2230        case XFS_ABTC_MAGIC:
2231        case XFS_IBT_CRC_MAGIC:
2232        case XFS_IBT_MAGIC: {
2233                struct xfs_btree_block *btb = blk;
2234
2235                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2236                uuid = &btb->bb_u.s.bb_uuid;
2237                break;
2238        }
2239        case XFS_BMAP_CRC_MAGIC:
2240        case XFS_BMAP_MAGIC: {
2241                struct xfs_btree_block *btb = blk;
2242
2243                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2244                uuid = &btb->bb_u.l.bb_uuid;
2245                break;
2246        }
2247        case XFS_AGF_MAGIC:
2248                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2249                uuid = &((struct xfs_agf *)blk)->agf_uuid;
2250                break;
2251        case XFS_AGFL_MAGIC:
2252                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2253                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2254                break;
2255        case XFS_AGI_MAGIC:
2256                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2257                uuid = &((struct xfs_agi *)blk)->agi_uuid;
2258                break;
2259        case XFS_SYMLINK_MAGIC:
2260                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2261                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2262                break;
2263        case XFS_DIR3_BLOCK_MAGIC:
2264        case XFS_DIR3_DATA_MAGIC:
2265        case XFS_DIR3_FREE_MAGIC:
2266                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2267                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2268                break;
2269        case XFS_ATTR3_RMT_MAGIC:
2270                /*
2271                 * Remote attr blocks are written synchronously, rather than
2272                 * being logged. That means they do not contain a valid LSN
2273                 * (i.e. transactionally ordered) in them, and hence any time we
2274                 * see a buffer to replay over the top of a remote attribute
2275                 * block we should simply do so.
2276                 */
2277                goto recover_immediately;
2278        case XFS_SB_MAGIC:
2279                /*
2280                 * superblock uuids are magic. We may or may not have a
2281                 * sb_meta_uuid on disk, but it will be set in the in-core
2282                 * superblock. We set the uuid pointer for verification
2283                 * according to the superblock feature mask to ensure we check
2284                 * the relevant UUID in the superblock.
2285                 */
2286                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2287                if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2288                        uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2289                else
2290                        uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2291                break;
2292        default:
2293                break;
2294        }
2295
2296        if (lsn != (xfs_lsn_t)-1) {
2297                if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2298                        goto recover_immediately;
2299                return lsn;
2300        }
2301
2302        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2303        switch (magicda) {
2304        case XFS_DIR3_LEAF1_MAGIC:
2305        case XFS_DIR3_LEAFN_MAGIC:
2306        case XFS_DA3_NODE_MAGIC:
2307                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2308                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2309                break;
2310        default:
2311                break;
2312        }
2313
2314        if (lsn != (xfs_lsn_t)-1) {
2315                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2316                        goto recover_immediately;
2317                return lsn;
2318        }
2319
2320        /*
2321         * We do individual object checks on dquot and inode buffers as they
2322         * have their own individual LSN records. Also, we could have a stale
2323         * buffer here, so we have to at least recognise these buffer types.
2324         *
2325         * A notd complexity here is inode unlinked list processing - it logs
2326         * the inode directly in the buffer, but we don't know which inodes have
2327         * been modified, and there is no global buffer LSN. Hence we need to
2328         * recover all inode buffer types immediately. This problem will be
2329         * fixed by logical logging of the unlinked list modifications.
2330         */
2331        magic16 = be16_to_cpu(*(__be16 *)blk);
2332        switch (magic16) {
2333        case XFS_DQUOT_MAGIC:
2334        case XFS_DINODE_MAGIC:
2335                goto recover_immediately;
2336        default:
2337                break;
2338        }
2339
2340        /* unknown buffer contents, recover immediately */
2341
2342recover_immediately:
2343        return (xfs_lsn_t)-1;
2344
2345}
2346
2347/*
2348 * Validate the recovered buffer is of the correct type and attach the
2349 * appropriate buffer operations to them for writeback. Magic numbers are in a
2350 * few places:
2351 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
2352 *      the first 32 bits of the buffer (most blocks),
2353 *      inside a struct xfs_da_blkinfo at the start of the buffer.
2354 */
2355static void
2356xlog_recover_validate_buf_type(
2357        struct xfs_mount        *mp,
2358        struct xfs_buf          *bp,
2359        xfs_buf_log_format_t    *buf_f)
2360{
2361        struct xfs_da_blkinfo   *info = bp->b_addr;
2362        __uint32_t              magic32;
2363        __uint16_t              magic16;
2364        __uint16_t              magicda;
2365
2366        /*
2367         * We can only do post recovery validation on items on CRC enabled
2368         * fielsystems as we need to know when the buffer was written to be able
2369         * to determine if we should have replayed the item. If we replay old
2370         * metadata over a newer buffer, then it will enter a temporarily
2371         * inconsistent state resulting in verification failures. Hence for now
2372         * just avoid the verification stage for non-crc filesystems
2373         */
2374        if (!xfs_sb_version_hascrc(&mp->m_sb))
2375                return;
2376
2377        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2378        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2379        magicda = be16_to_cpu(info->magic);
2380        switch (xfs_blft_from_flags(buf_f)) {
2381        case XFS_BLFT_BTREE_BUF:
2382                switch (magic32) {
2383                case XFS_ABTB_CRC_MAGIC:
2384                case XFS_ABTC_CRC_MAGIC:
2385                case XFS_ABTB_MAGIC:
2386                case XFS_ABTC_MAGIC:
2387                        bp->b_ops = &xfs_allocbt_buf_ops;
2388                        break;
2389                case XFS_IBT_CRC_MAGIC:
2390                case XFS_FIBT_CRC_MAGIC:
2391                case XFS_IBT_MAGIC:
2392                case XFS_FIBT_MAGIC:
2393                        bp->b_ops = &xfs_inobt_buf_ops;
2394                        break;
2395                case XFS_BMAP_CRC_MAGIC:
2396                case XFS_BMAP_MAGIC:
2397                        bp->b_ops = &xfs_bmbt_buf_ops;
2398                        break;
2399                default:
2400                        xfs_warn(mp, "Bad btree block magic!");
2401                        ASSERT(0);
2402                        break;
2403                }
2404                break;
2405        case XFS_BLFT_AGF_BUF:
2406                if (magic32 != XFS_AGF_MAGIC) {
2407                        xfs_warn(mp, "Bad AGF block magic!");
2408                        ASSERT(0);
2409                        break;
2410                }
2411                bp->b_ops = &xfs_agf_buf_ops;
2412                break;
2413        case XFS_BLFT_AGFL_BUF:
2414                if (magic32 != XFS_AGFL_MAGIC) {
2415                        xfs_warn(mp, "Bad AGFL block magic!");
2416                        ASSERT(0);
2417                        break;
2418                }
2419                bp->b_ops = &xfs_agfl_buf_ops;
2420                break;
2421        case XFS_BLFT_AGI_BUF:
2422                if (magic32 != XFS_AGI_MAGIC) {
2423                        xfs_warn(mp, "Bad AGI block magic!");
2424                        ASSERT(0);
2425                        break;
2426                }
2427                bp->b_ops = &xfs_agi_buf_ops;
2428                break;
2429        case XFS_BLFT_UDQUOT_BUF:
2430        case XFS_BLFT_PDQUOT_BUF:
2431        case XFS_BLFT_GDQUOT_BUF:
2432#ifdef CONFIG_XFS_QUOTA
2433                if (magic16 != XFS_DQUOT_MAGIC) {
2434                        xfs_warn(mp, "Bad DQUOT block magic!");
2435                        ASSERT(0);
2436                        break;
2437                }
2438                bp->b_ops = &xfs_dquot_buf_ops;
2439#else
2440                xfs_alert(mp,
2441        "Trying to recover dquots without QUOTA support built in!");
2442                ASSERT(0);
2443#endif
2444                break;
2445        case XFS_BLFT_DINO_BUF:
2446                if (magic16 != XFS_DINODE_MAGIC) {
2447                        xfs_warn(mp, "Bad INODE block magic!");
2448                        ASSERT(0);
2449                        break;
2450                }
2451                bp->b_ops = &xfs_inode_buf_ops;
2452                break;
2453        case XFS_BLFT_SYMLINK_BUF:
2454                if (magic32 != XFS_SYMLINK_MAGIC) {
2455                        xfs_warn(mp, "Bad symlink block magic!");
2456                        ASSERT(0);
2457                        break;
2458                }
2459                bp->b_ops = &xfs_symlink_buf_ops;
2460                break;
2461        case XFS_BLFT_DIR_BLOCK_BUF:
2462                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2463                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2464                        xfs_warn(mp, "Bad dir block magic!");
2465                        ASSERT(0);
2466                        break;
2467                }
2468                bp->b_ops = &xfs_dir3_block_buf_ops;
2469                break;
2470        case XFS_BLFT_DIR_DATA_BUF:
2471                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2472                    magic32 != XFS_DIR3_DATA_MAGIC) {
2473                        xfs_warn(mp, "Bad dir data magic!");
2474                        ASSERT(0);
2475                        break;
2476                }
2477                bp->b_ops = &xfs_dir3_data_buf_ops;
2478                break;
2479        case XFS_BLFT_DIR_FREE_BUF:
2480                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2481                    magic32 != XFS_DIR3_FREE_MAGIC) {
2482                        xfs_warn(mp, "Bad dir3 free magic!");
2483                        ASSERT(0);
2484                        break;
2485                }
2486                bp->b_ops = &xfs_dir3_free_buf_ops;
2487                break;
2488        case XFS_BLFT_DIR_LEAF1_BUF:
2489                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2490                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2491                        xfs_warn(mp, "Bad dir leaf1 magic!");
2492                        ASSERT(0);
2493                        break;
2494                }
2495                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2496                break;
2497        case XFS_BLFT_DIR_LEAFN_BUF:
2498                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2499                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2500                        xfs_warn(mp, "Bad dir leafn magic!");
2501                        ASSERT(0);
2502                        break;
2503                }
2504                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2505                break;
2506        case XFS_BLFT_DA_NODE_BUF:
2507                if (magicda != XFS_DA_NODE_MAGIC &&
2508                    magicda != XFS_DA3_NODE_MAGIC) {
2509                        xfs_warn(mp, "Bad da node magic!");
2510                        ASSERT(0);
2511                        break;
2512                }
2513                bp->b_ops = &xfs_da3_node_buf_ops;
2514                break;
2515        case XFS_BLFT_ATTR_LEAF_BUF:
2516                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2517                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2518                        xfs_warn(mp, "Bad attr leaf magic!");
2519                        ASSERT(0);
2520                        break;
2521                }
2522                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2523                break;
2524        case XFS_BLFT_ATTR_RMT_BUF:
2525                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2526                        xfs_warn(mp, "Bad attr remote magic!");
2527                        ASSERT(0);
2528                        break;
2529                }
2530                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2531                break;
2532        case XFS_BLFT_SB_BUF:
2533                if (magic32 != XFS_SB_MAGIC) {
2534                        xfs_warn(mp, "Bad SB block magic!");
2535                        ASSERT(0);
2536                        break;
2537                }
2538                bp->b_ops = &xfs_sb_buf_ops;
2539                break;
2540#ifdef CONFIG_XFS_RT
2541        case XFS_BLFT_RTBITMAP_BUF:
2542        case XFS_BLFT_RTSUMMARY_BUF:
2543                /* no magic numbers for verification of RT buffers */
2544                bp->b_ops = &xfs_rtbuf_ops;
2545                break;
2546#endif /* CONFIG_XFS_RT */
2547        default:
2548                xfs_warn(mp, "Unknown buffer type %d!",
2549                         xfs_blft_from_flags(buf_f));
2550                break;
2551        }
2552}
2553
2554/*
2555 * Perform a 'normal' buffer recovery.  Each logged region of the
2556 * buffer should be copied over the corresponding region in the
2557 * given buffer.  The bitmap in the buf log format structure indicates
2558 * where to place the logged data.
2559 */
2560STATIC void
2561xlog_recover_do_reg_buffer(
2562        struct xfs_mount        *mp,
2563        xlog_recover_item_t     *item,
2564        struct xfs_buf          *bp,
2565        xfs_buf_log_format_t    *buf_f)
2566{
2567        int                     i;
2568        int                     bit;
2569        int                     nbits;
2570        int                     error;
2571
2572        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2573
2574        bit = 0;
2575        i = 1;  /* 0 is the buf format structure */
2576        while (1) {
2577                bit = xfs_next_bit(buf_f->blf_data_map,
2578                                   buf_f->blf_map_size, bit);
2579                if (bit == -1)
2580                        break;
2581                nbits = xfs_contig_bits(buf_f->blf_data_map,
2582                                        buf_f->blf_map_size, bit);
2583                ASSERT(nbits > 0);
2584                ASSERT(item->ri_buf[i].i_addr != NULL);
2585                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2586                ASSERT(BBTOB(bp->b_io_length) >=
2587                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2588
2589                /*
2590                 * The dirty regions logged in the buffer, even though
2591                 * contiguous, may span multiple chunks. This is because the
2592                 * dirty region may span a physical page boundary in a buffer
2593                 * and hence be split into two separate vectors for writing into
2594                 * the log. Hence we need to trim nbits back to the length of
2595                 * the current region being copied out of the log.
2596                 */
2597                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2598                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2599
2600                /*
2601                 * Do a sanity check if this is a dquot buffer. Just checking
2602                 * the first dquot in the buffer should do. XXXThis is
2603                 * probably a good thing to do for other buf types also.
2604                 */
2605                error = 0;
2606                if (buf_f->blf_flags &
2607                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2608                        if (item->ri_buf[i].i_addr == NULL) {
2609                                xfs_alert(mp,
2610                                        "XFS: NULL dquot in %s.", __func__);
2611                                goto next;
2612                        }
2613                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2614                                xfs_alert(mp,
2615                                        "XFS: dquot too small (%d) in %s.",
2616                                        item->ri_buf[i].i_len, __func__);
2617                                goto next;
2618                        }
2619                        error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2620                                               -1, 0, XFS_QMOPT_DOWARN,
2621                                               "dquot_buf_recover");
2622                        if (error)
2623                                goto next;
2624                }
2625
2626                memcpy(xfs_buf_offset(bp,
2627                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2628                        item->ri_buf[i].i_addr,         /* source */
2629                        nbits<<XFS_BLF_SHIFT);          /* length */
2630 next:
2631                i++;
2632                bit += nbits;
2633        }
2634
2635        /* Shouldn't be any more regions */
2636        ASSERT(i == item->ri_total);
2637
2638        xlog_recover_validate_buf_type(mp, bp, buf_f);
2639}
2640
2641/*
2642 * Perform a dquot buffer recovery.
2643 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2644 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2645 * Else, treat it as a regular buffer and do recovery.
2646 *
2647 * Return false if the buffer was tossed and true if we recovered the buffer to
2648 * indicate to the caller if the buffer needs writing.
2649 */
2650STATIC bool
2651xlog_recover_do_dquot_buffer(
2652        struct xfs_mount                *mp,
2653        struct xlog                     *log,
2654        struct xlog_recover_item        *item,
2655        struct xfs_buf                  *bp,
2656        struct xfs_buf_log_format       *buf_f)
2657{
2658        uint                    type;
2659
2660        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2661
2662        /*
2663         * Filesystems are required to send in quota flags at mount time.
2664         */
2665        if (!mp->m_qflags)
2666                return false;
2667
2668        type = 0;
2669        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2670                type |= XFS_DQ_USER;
2671        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2672                type |= XFS_DQ_PROJ;
2673        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2674                type |= XFS_DQ_GROUP;
2675        /*
2676         * This type of quotas was turned off, so ignore this buffer
2677         */
2678        if (log->l_quotaoffs_flag & type)
2679                return false;
2680
2681        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2682        return true;
2683}
2684
2685/*
2686 * This routine replays a modification made to a buffer at runtime.
2687 * There are actually two types of buffer, regular and inode, which
2688 * are handled differently.  Inode buffers are handled differently
2689 * in that we only recover a specific set of data from them, namely
2690 * the inode di_next_unlinked fields.  This is because all other inode
2691 * data is actually logged via inode records and any data we replay
2692 * here which overlaps that may be stale.
2693 *
2694 * When meta-data buffers are freed at run time we log a buffer item
2695 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2696 * of the buffer in the log should not be replayed at recovery time.
2697 * This is so that if the blocks covered by the buffer are reused for
2698 * file data before we crash we don't end up replaying old, freed
2699 * meta-data into a user's file.
2700 *
2701 * To handle the cancellation of buffer log items, we make two passes
2702 * over the log during recovery.  During the first we build a table of
2703 * those buffers which have been cancelled, and during the second we
2704 * only replay those buffers which do not have corresponding cancel
2705 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2706 * for more details on the implementation of the table of cancel records.
2707 */
2708STATIC int
2709xlog_recover_buffer_pass2(
2710        struct xlog                     *log,
2711        struct list_head                *buffer_list,
2712        struct xlog_recover_item        *item,
2713        xfs_lsn_t                       current_lsn)
2714{
2715        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2716        xfs_mount_t             *mp = log->l_mp;
2717        xfs_buf_t               *bp;
2718        int                     error;
2719        uint                    buf_flags;
2720        xfs_lsn_t               lsn;
2721
2722        /*
2723         * In this pass we only want to recover all the buffers which have
2724         * not been cancelled and are not cancellation buffers themselves.
2725         */
2726        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2727                        buf_f->blf_len, buf_f->blf_flags)) {
2728                trace_xfs_log_recover_buf_cancel(log, buf_f);
2729                return 0;
2730        }
2731
2732        trace_xfs_log_recover_buf_recover(log, buf_f);
2733
2734        buf_flags = 0;
2735        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2736                buf_flags |= XBF_UNMAPPED;
2737
2738        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2739                          buf_flags, NULL);
2740        if (!bp)
2741                return -ENOMEM;
2742        error = bp->b_error;
2743        if (error) {
2744                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2745                goto out_release;
2746        }
2747
2748        /*
2749         * Recover the buffer only if we get an LSN from it and it's less than
2750         * the lsn of the transaction we are replaying.
2751         *
2752         * Note that we have to be extremely careful of readahead here.
2753         * Readahead does not attach verfiers to the buffers so if we don't
2754         * actually do any replay after readahead because of the LSN we found
2755         * in the buffer if more recent than that current transaction then we
2756         * need to attach the verifier directly. Failure to do so can lead to
2757         * future recovery actions (e.g. EFI and unlinked list recovery) can
2758         * operate on the buffers and they won't get the verifier attached. This
2759         * can lead to blocks on disk having the correct content but a stale
2760         * CRC.
2761         *
2762         * It is safe to assume these clean buffers are currently up to date.
2763         * If the buffer is dirtied by a later transaction being replayed, then
2764         * the verifier will be reset to match whatever recover turns that
2765         * buffer into.
2766         */
2767        lsn = xlog_recover_get_buf_lsn(mp, bp);
2768        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2769                xlog_recover_validate_buf_type(mp, bp, buf_f);
2770                goto out_release;
2771        }
2772
2773        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2774                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2775                if (error)
2776                        goto out_release;
2777        } else if (buf_f->blf_flags &
2778                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2779                bool    dirty;
2780
2781                dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2782                if (!dirty)
2783                        goto out_release;
2784        } else {
2785                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2786        }
2787
2788        /*
2789         * Perform delayed write on the buffer.  Asynchronous writes will be
2790         * slower when taking into account all the buffers to be flushed.
2791         *
2792         * Also make sure that only inode buffers with good sizes stay in
2793         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2794         * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2795         * buffers in the log can be a different size if the log was generated
2796         * by an older kernel using unclustered inode buffers or a newer kernel
2797         * running with a different inode cluster size.  Regardless, if the
2798         * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2799         * for *our* value of mp->m_inode_cluster_size, then we need to keep
2800         * the buffer out of the buffer cache so that the buffer won't
2801         * overlap with future reads of those inodes.
2802         */
2803        if (XFS_DINODE_MAGIC ==
2804            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2805            (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2806                        (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2807                xfs_buf_stale(bp);
2808                error = xfs_bwrite(bp);
2809        } else {
2810                ASSERT(bp->b_target->bt_mount == mp);
2811                bp->b_iodone = xlog_recover_iodone;
2812                xfs_buf_delwri_queue(bp, buffer_list);
2813        }
2814
2815out_release:
2816        xfs_buf_relse(bp);
2817        return error;
2818}
2819
2820/*
2821 * Inode fork owner changes
2822 *
2823 * If we have been told that we have to reparent the inode fork, it's because an
2824 * extent swap operation on a CRC enabled filesystem has been done and we are
2825 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2826 * owners of it.
2827 *
2828 * The complexity here is that we don't have an inode context to work with, so
2829 * after we've replayed the inode we need to instantiate one.  This is where the
2830 * fun begins.
2831 *
2832 * We are in the middle of log recovery, so we can't run transactions. That
2833 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2834 * that will result in the corresponding iput() running the inode through
2835 * xfs_inactive(). If we've just replayed an inode core that changes the link
2836 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2837 * transactions (bad!).
2838 *
2839 * So, to avoid this, we instantiate an inode directly from the inode core we've
2840 * just recovered. We have the buffer still locked, and all we really need to
2841 * instantiate is the inode core and the forks being modified. We can do this
2842 * manually, then run the inode btree owner change, and then tear down the
2843 * xfs_inode without having to run any transactions at all.
2844 *
2845 * Also, because we don't have a transaction context available here but need to
2846 * gather all the buffers we modify for writeback so we pass the buffer_list
2847 * instead for the operation to use.
2848 */
2849
2850STATIC int
2851xfs_recover_inode_owner_change(
2852        struct xfs_mount        *mp,
2853        struct xfs_dinode       *dip,
2854        struct xfs_inode_log_format *in_f,
2855        struct list_head        *buffer_list)
2856{
2857        struct xfs_inode        *ip;
2858        int                     error;
2859
2860        ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2861
2862        ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2863        if (!ip)
2864                return -ENOMEM;
2865
2866        /* instantiate the inode */
2867        xfs_inode_from_disk(ip, dip);
2868        ASSERT(ip->i_d.di_version >= 3);
2869
2870        error = xfs_iformat_fork(ip, dip);
2871        if (error)
2872                goto out_free_ip;
2873
2874
2875        if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2876                ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2877                error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2878                                              ip->i_ino, buffer_list);
2879                if (error)
2880                        goto out_free_ip;
2881        }
2882
2883        if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2884                ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2885                error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2886                                              ip->i_ino, buffer_list);
2887                if (error)
2888                        goto out_free_ip;
2889        }
2890
2891out_free_ip:
2892        xfs_inode_free(ip);
2893        return error;
2894}
2895
2896STATIC int
2897xlog_recover_inode_pass2(
2898        struct xlog                     *log,
2899        struct list_head                *buffer_list,
2900        struct xlog_recover_item        *item,
2901        xfs_lsn_t                       current_lsn)
2902{
2903        xfs_inode_log_format_t  *in_f;
2904        xfs_mount_t             *mp = log->l_mp;
2905        xfs_buf_t               *bp;
2906        xfs_dinode_t            *dip;
2907        int                     len;
2908        char                    *src;
2909        char                    *dest;
2910        int                     error;
2911        int                     attr_index;
2912        uint                    fields;
2913        struct xfs_log_dinode   *ldip;
2914        uint                    isize;
2915        int                     need_free = 0;
2916
2917        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2918                in_f = item->ri_buf[0].i_addr;
2919        } else {
2920                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2921                need_free = 1;
2922                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2923                if (error)
2924                        goto error;
2925        }
2926
2927        /*
2928         * Inode buffers can be freed, look out for it,
2929         * and do not replay the inode.
2930         */
2931        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2932                                        in_f->ilf_len, 0)) {
2933                error = 0;
2934                trace_xfs_log_recover_inode_cancel(log, in_f);
2935                goto error;
2936        }
2937        trace_xfs_log_recover_inode_recover(log, in_f);
2938
2939        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2940                          &xfs_inode_buf_ops);
2941        if (!bp) {
2942                error = -ENOMEM;
2943                goto error;
2944        }
2945        error = bp->b_error;
2946        if (error) {
2947                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2948                goto out_release;
2949        }
2950        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2951        dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2952
2953        /*
2954         * Make sure the place we're flushing out to really looks
2955         * like an inode!
2956         */
2957        if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2958                xfs_alert(mp,
2959        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2960                        __func__, dip, bp, in_f->ilf_ino);
2961                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2962                                 XFS_ERRLEVEL_LOW, mp);
2963                error = -EFSCORRUPTED;
2964                goto out_release;
2965        }
2966        ldip = item->ri_buf[1].i_addr;
2967        if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2968                xfs_alert(mp,
2969                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2970                        __func__, item, in_f->ilf_ino);
2971                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2972                                 XFS_ERRLEVEL_LOW, mp);
2973                error = -EFSCORRUPTED;
2974                goto out_release;
2975        }
2976
2977        /*
2978         * If the inode has an LSN in it, recover the inode only if it's less
2979         * than the lsn of the transaction we are replaying. Note: we still
2980         * need to replay an owner change even though the inode is more recent
2981         * than the transaction as there is no guarantee that all the btree
2982         * blocks are more recent than this transaction, too.
2983         */
2984        if (dip->di_version >= 3) {
2985                xfs_lsn_t       lsn = be64_to_cpu(dip->di_lsn);
2986
2987                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2988                        trace_xfs_log_recover_inode_skip(log, in_f);
2989                        error = 0;
2990                        goto out_owner_change;
2991                }
2992        }
2993
2994        /*
2995         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2996         * are transactional and if ordering is necessary we can determine that
2997         * more accurately by the LSN field in the V3 inode core. Don't trust
2998         * the inode versions we might be changing them here - use the
2999         * superblock flag to determine whether we need to look at di_flushiter
3000         * to skip replay when the on disk inode is newer than the log one
3001         */
3002        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3003            ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3004                /*
3005                 * Deal with the wrap case, DI_MAX_FLUSH is less
3006                 * than smaller numbers
3007                 */
3008                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3009                    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3010                        /* do nothing */
3011                } else {
3012                        trace_xfs_log_recover_inode_skip(log, in_f);
3013                        error = 0;
3014                        goto out_release;
3015                }
3016        }
3017
3018        /* Take the opportunity to reset the flush iteration count */
3019        ldip->di_flushiter = 0;
3020
3021        if (unlikely(S_ISREG(ldip->di_mode))) {
3022                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3023                    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3024                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3025                                         XFS_ERRLEVEL_LOW, mp, ldip);
3026                        xfs_alert(mp,
3027                "%s: Bad regular inode log record, rec ptr 0x%p, "
3028                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3029                                __func__, item, dip, bp, in_f->ilf_ino);
3030                        error = -EFSCORRUPTED;
3031                        goto out_release;
3032                }
3033        } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3034                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3035                    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3036                    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3037                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3038                                             XFS_ERRLEVEL_LOW, mp, ldip);
3039                        xfs_alert(mp,
3040                "%s: Bad dir inode log record, rec ptr 0x%p, "
3041                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3042                                __func__, item, dip, bp, in_f->ilf_ino);
3043                        error = -EFSCORRUPTED;
3044                        goto out_release;
3045                }
3046        }
3047        if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3048                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3049                                     XFS_ERRLEVEL_LOW, mp, ldip);
3050                xfs_alert(mp,
3051        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3052        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3053                        __func__, item, dip, bp, in_f->ilf_ino,
3054                        ldip->di_nextents + ldip->di_anextents,
3055                        ldip->di_nblocks);
3056                error = -EFSCORRUPTED;
3057                goto out_release;
3058        }
3059        if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3060                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3061                                     XFS_ERRLEVEL_LOW, mp, ldip);
3062                xfs_alert(mp,
3063        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3064        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3065                        item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3066                error = -EFSCORRUPTED;
3067                goto out_release;
3068        }
3069        isize = xfs_log_dinode_size(ldip->di_version);
3070        if (unlikely(item->ri_buf[1].i_len > isize)) {
3071                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3072                                     XFS_ERRLEVEL_LOW, mp, ldip);
3073                xfs_alert(mp,
3074                        "%s: Bad inode log record length %d, rec ptr 0x%p",
3075                        __func__, item->ri_buf[1].i_len, item);
3076                error = -EFSCORRUPTED;
3077                goto out_release;
3078        }
3079
3080        /* recover the log dinode inode into the on disk inode */
3081        xfs_log_dinode_to_disk(ldip, dip);
3082
3083        /* the rest is in on-disk format */
3084        if (item->ri_buf[1].i_len > isize) {
3085                memcpy((char *)dip + isize,
3086                        item->ri_buf[1].i_addr + isize,
3087                        item->ri_buf[1].i_len - isize);
3088        }
3089
3090        fields = in_f->ilf_fields;
3091        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3092        case XFS_ILOG_DEV:
3093                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3094                break;
3095        case XFS_ILOG_UUID:
3096                memcpy(XFS_DFORK_DPTR(dip),
3097                       &in_f->ilf_u.ilfu_uuid,
3098                       sizeof(uuid_t));
3099                break;
3100        }
3101
3102        if (in_f->ilf_size == 2)
3103                goto out_owner_change;
3104        len = item->ri_buf[2].i_len;
3105        src = item->ri_buf[2].i_addr;
3106        ASSERT(in_f->ilf_size <= 4);
3107        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3108        ASSERT(!(fields & XFS_ILOG_DFORK) ||
3109               (len == in_f->ilf_dsize));
3110
3111        switch (fields & XFS_ILOG_DFORK) {
3112        case XFS_ILOG_DDATA:
3113        case XFS_ILOG_DEXT:
3114                memcpy(XFS_DFORK_DPTR(dip), src, len);
3115                break;
3116
3117        case XFS_ILOG_DBROOT:
3118                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3119                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3120                                 XFS_DFORK_DSIZE(dip, mp));
3121                break;
3122
3123        default:
3124                /*
3125                 * There are no data fork flags set.
3126                 */
3127                ASSERT((fields & XFS_ILOG_DFORK) == 0);
3128                break;
3129        }
3130
3131        /*
3132         * If we logged any attribute data, recover it.  There may or
3133         * may not have been any other non-core data logged in this
3134         * transaction.
3135         */
3136        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3137                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3138                        attr_index = 3;
3139                } else {
3140                        attr_index = 2;
3141                }
3142                len = item->ri_buf[attr_index].i_len;
3143                src = item->ri_buf[attr_index].i_addr;
3144                ASSERT(len == in_f->ilf_asize);
3145
3146                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3147                case XFS_ILOG_ADATA:
3148                case XFS_ILOG_AEXT:
3149                        dest = XFS_DFORK_APTR(dip);
3150                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3151                        memcpy(dest, src, len);
3152                        break;
3153
3154                case XFS_ILOG_ABROOT:
3155                        dest = XFS_DFORK_APTR(dip);
3156                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3157                                         len, (xfs_bmdr_block_t*)dest,
3158                                         XFS_DFORK_ASIZE(dip, mp));
3159                        break;
3160
3161                default:
3162                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3163                        ASSERT(0);
3164                        error = -EIO;
3165                        goto out_release;
3166                }
3167        }
3168
3169out_owner_change:
3170        if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3171                error = xfs_recover_inode_owner_change(mp, dip, in_f,
3172                                                       buffer_list);
3173        /* re-generate the checksum. */
3174        xfs_dinode_calc_crc(log->l_mp, dip);
3175
3176        ASSERT(bp->b_target->bt_mount == mp);
3177        bp->b_iodone = xlog_recover_iodone;
3178        xfs_buf_delwri_queue(bp, buffer_list);
3179
3180out_release:
3181        xfs_buf_relse(bp);
3182error:
3183        if (need_free)
3184                kmem_free(in_f);
3185        return error;
3186}
3187
3188/*
3189 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3190 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3191 * of that type.
3192 */
3193STATIC int
3194xlog_recover_quotaoff_pass1(
3195        struct xlog                     *log,
3196        struct xlog_recover_item        *item)
3197{
3198        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
3199        ASSERT(qoff_f);
3200
3201        /*
3202         * The logitem format's flag tells us if this was user quotaoff,
3203         * group/project quotaoff or both.
3204         */
3205        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3206                log->l_quotaoffs_flag |= XFS_DQ_USER;
3207        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3208                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3209        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3210                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3211
3212        return 0;
3213}
3214
3215/*
3216 * Recover a dquot record
3217 */
3218STATIC int
3219xlog_recover_dquot_pass2(
3220        struct xlog                     *log,
3221        struct list_head                *buffer_list,
3222        struct xlog_recover_item        *item,
3223        xfs_lsn_t                       current_lsn)
3224{
3225        xfs_mount_t             *mp = log->l_mp;
3226        xfs_buf_t               *bp;
3227        struct xfs_disk_dquot   *ddq, *recddq;
3228        int                     error;
3229        xfs_dq_logformat_t      *dq_f;
3230        uint                    type;
3231
3232
3233        /*
3234         * Filesystems are required to send in quota flags at mount time.
3235         */
3236        if (mp->m_qflags == 0)
3237                return 0;
3238
3239        recddq = item->ri_buf[1].i_addr;
3240        if (recddq == NULL) {
3241                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3242                return -EIO;
3243        }
3244        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3245                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3246                        item->ri_buf[1].i_len, __func__);
3247                return -EIO;
3248        }
3249
3250        /*
3251         * This type of quotas was turned off, so ignore this record.
3252         */
3253        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3254        ASSERT(type);
3255        if (log->l_quotaoffs_flag & type)
3256                return 0;
3257
3258        /*
3259         * At this point we know that quota was _not_ turned off.
3260         * Since the mount flags are not indicating to us otherwise, this
3261         * must mean that quota is on, and the dquot needs to be replayed.
3262         * Remember that we may not have fully recovered the superblock yet,
3263         * so we can't do the usual trick of looking at the SB quota bits.
3264         *
3265         * The other possibility, of course, is that the quota subsystem was
3266         * removed since the last mount - ENOSYS.
3267         */
3268        dq_f = item->ri_buf[0].i_addr;
3269        ASSERT(dq_f);
3270        error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3271                           "xlog_recover_dquot_pass2 (log copy)");
3272        if (error)
3273                return -EIO;
3274        ASSERT(dq_f->qlf_len == 1);
3275
3276        /*
3277         * At this point we are assuming that the dquots have been allocated
3278         * and hence the buffer has valid dquots stamped in it. It should,
3279         * therefore, pass verifier validation. If the dquot is bad, then the
3280         * we'll return an error here, so we don't need to specifically check
3281         * the dquot in the buffer after the verifier has run.
3282         */
3283        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3284                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3285                                   &xfs_dquot_buf_ops);
3286        if (error)
3287                return error;
3288
3289        ASSERT(bp);
3290        ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3291
3292        /*
3293         * If the dquot has an LSN in it, recover the dquot only if it's less
3294         * than the lsn of the transaction we are replaying.
3295         */
3296        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3297                struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3298                xfs_lsn_t       lsn = be64_to_cpu(dqb->dd_lsn);
3299
3300                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3301                        goto out_release;
3302                }
3303        }
3304
3305        memcpy(ddq, recddq, item->ri_buf[1].i_len);
3306        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3307                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3308                                 XFS_DQUOT_CRC_OFF);
3309        }
3310
3311        ASSERT(dq_f->qlf_size == 2);
3312        ASSERT(bp->b_target->bt_mount == mp);
3313        bp->b_iodone = xlog_recover_iodone;
3314        xfs_buf_delwri_queue(bp, buffer_list);
3315
3316out_release:
3317        xfs_buf_relse(bp);
3318        return 0;
3319}
3320
3321/*
3322 * This routine is called to create an in-core extent free intent
3323 * item from the efi format structure which was logged on disk.
3324 * It allocates an in-core efi, copies the extents from the format
3325 * structure into it, and adds the efi to the AIL with the given
3326 * LSN.
3327 */
3328STATIC int
3329xlog_recover_efi_pass2(
3330        struct xlog                     *log,
3331        struct xlog_recover_item        *item,
3332        xfs_lsn_t                       lsn)
3333{
3334        int                             error;
3335        struct xfs_mount                *mp = log->l_mp;
3336        struct xfs_efi_log_item         *efip;
3337        struct xfs_efi_log_format       *efi_formatp;
3338
3339        efi_formatp = item->ri_buf[0].i_addr;
3340
3341        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3342        error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3343        if (error) {
3344                xfs_efi_item_free(efip);
3345                return error;
3346        }
3347        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3348
3349        spin_lock(&log->l_ailp->xa_lock);
3350        /*
3351         * The EFI has two references. One for the EFD and one for EFI to ensure
3352         * it makes it into the AIL. Insert the EFI into the AIL directly and
3353         * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3354         * AIL lock.
3355         */
3356        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3357        xfs_efi_release(efip);
3358        return 0;
3359}
3360
3361
3362/*
3363 * This routine is called when an EFD format structure is found in a committed
3364 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3365 * was still in the log. To do this it searches the AIL for the EFI with an id
3366 * equal to that in the EFD format structure. If we find it we drop the EFD
3367 * reference, which removes the EFI from the AIL and frees it.
3368 */
3369STATIC int
3370xlog_recover_efd_pass2(
3371        struct xlog                     *log,
3372        struct xlog_recover_item        *item)
3373{
3374        xfs_efd_log_format_t    *efd_formatp;
3375        xfs_efi_log_item_t      *efip = NULL;
3376        xfs_log_item_t          *lip;
3377        __uint64_t              efi_id;
3378        struct xfs_ail_cursor   cur;
3379        struct xfs_ail          *ailp = log->l_ailp;
3380
3381        efd_formatp = item->ri_buf[0].i_addr;
3382        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3383                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3384               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3385                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3386        efi_id = efd_formatp->efd_efi_id;
3387
3388        /*
3389         * Search for the EFI with the id in the EFD format structure in the
3390         * AIL.
3391         */
3392        spin_lock(&ailp->xa_lock);
3393        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3394        while (lip != NULL) {
3395                if (lip->li_type == XFS_LI_EFI) {
3396                        efip = (xfs_efi_log_item_t *)lip;
3397                        if (efip->efi_format.efi_id == efi_id) {
3398                                /*
3399                                 * Drop the EFD reference to the EFI. This
3400                                 * removes the EFI from the AIL and frees it.
3401                                 */
3402                                spin_unlock(&ailp->xa_lock);
3403                                xfs_efi_release(efip);
3404                                spin_lock(&ailp->xa_lock);
3405                                break;
3406                        }
3407                }
3408                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3409        }
3410
3411        xfs_trans_ail_cursor_done(&cur);
3412        spin_unlock(&ailp->xa_lock);
3413
3414        return 0;
3415}
3416
3417/*
3418 * This routine is called when an inode create format structure is found in a
3419 * committed transaction in the log.  It's purpose is to initialise the inodes
3420 * being allocated on disk. This requires us to get inode cluster buffers that
3421 * match the range to be intialised, stamped with inode templates and written
3422 * by delayed write so that subsequent modifications will hit the cached buffer
3423 * and only need writing out at the end of recovery.
3424 */
3425STATIC int
3426xlog_recover_do_icreate_pass2(
3427        struct xlog             *log,
3428        struct list_head        *buffer_list,
3429        xlog_recover_item_t     *item)
3430{
3431        struct xfs_mount        *mp = log->l_mp;
3432        struct xfs_icreate_log  *icl;
3433        xfs_agnumber_t          agno;
3434        xfs_agblock_t           agbno;
3435        unsigned int            count;
3436        unsigned int            isize;
3437        xfs_agblock_t           length;
3438        int                     blks_per_cluster;
3439        int                     bb_per_cluster;
3440        int                     cancel_count;
3441        int                     nbufs;
3442        int                     i;
3443
3444        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3445        if (icl->icl_type != XFS_LI_ICREATE) {
3446                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3447                return -EINVAL;
3448        }
3449
3450        if (icl->icl_size != 1) {
3451                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3452                return -EINVAL;
3453        }
3454
3455        agno = be32_to_cpu(icl->icl_ag);
3456        if (agno >= mp->m_sb.sb_agcount) {
3457                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3458                return -EINVAL;
3459        }
3460        agbno = be32_to_cpu(icl->icl_agbno);
3461        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3462                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3463                return -EINVAL;
3464        }
3465        isize = be32_to_cpu(icl->icl_isize);
3466        if (isize != mp->m_sb.sb_inodesize) {
3467                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3468                return -EINVAL;
3469        }
3470        count = be32_to_cpu(icl->icl_count);
3471        if (!count) {
3472                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3473                return -EINVAL;
3474        }
3475        length = be32_to_cpu(icl->icl_length);
3476        if (!length || length >= mp->m_sb.sb_agblocks) {
3477                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3478                return -EINVAL;
3479        }
3480
3481        /*
3482         * The inode chunk is either full or sparse and we only support
3483         * m_ialloc_min_blks sized sparse allocations at this time.
3484         */
3485        if (length != mp->m_ialloc_blks &&
3486            length != mp->m_ialloc_min_blks) {
3487                xfs_warn(log->l_mp,
3488                         "%s: unsupported chunk length", __FUNCTION__);
3489                return -EINVAL;
3490        }
3491
3492        /* verify inode count is consistent with extent length */
3493        if ((count >> mp->m_sb.sb_inopblog) != length) {
3494                xfs_warn(log->l_mp,
3495                         "%s: inconsistent inode count and chunk length",
3496                         __FUNCTION__);
3497                return -EINVAL;
3498        }
3499
3500        /*
3501         * The icreate transaction can cover multiple cluster buffers and these
3502         * buffers could have been freed and reused. Check the individual
3503         * buffers for cancellation so we don't overwrite anything written after
3504         * a cancellation.
3505         */
3506        blks_per_cluster = xfs_icluster_size_fsb(mp);
3507        bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3508        nbufs = length / blks_per_cluster;
3509        for (i = 0, cancel_count = 0; i < nbufs; i++) {
3510                xfs_daddr_t     daddr;
3511
3512                daddr = XFS_AGB_TO_DADDR(mp, agno,
3513                                         agbno + i * blks_per_cluster);
3514                if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3515                        cancel_count++;
3516        }
3517
3518        /*
3519         * We currently only use icreate for a single allocation at a time. This
3520         * means we should expect either all or none of the buffers to be
3521         * cancelled. Be conservative and skip replay if at least one buffer is
3522         * cancelled, but warn the user that something is awry if the buffers
3523         * are not consistent.
3524         *
3525         * XXX: This must be refined to only skip cancelled clusters once we use
3526         * icreate for multiple chunk allocations.
3527         */
3528        ASSERT(!cancel_count || cancel_count == nbufs);
3529        if (cancel_count) {
3530                if (cancel_count != nbufs)
3531                        xfs_warn(mp,
3532        "WARNING: partial inode chunk cancellation, skipped icreate.");
3533                trace_xfs_log_recover_icreate_cancel(log, icl);
3534                return 0;
3535        }
3536
3537        trace_xfs_log_recover_icreate_recover(log, icl);
3538        return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3539                                     length, be32_to_cpu(icl->icl_gen));
3540}
3541
3542STATIC void
3543xlog_recover_buffer_ra_pass2(
3544        struct xlog                     *log,
3545        struct xlog_recover_item        *item)
3546{
3547        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
3548        struct xfs_mount                *mp = log->l_mp;
3549
3550        if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3551                        buf_f->blf_len, buf_f->blf_flags)) {
3552                return;
3553        }
3554
3555        xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3556                                buf_f->blf_len, NULL);
3557}
3558
3559STATIC void
3560xlog_recover_inode_ra_pass2(
3561        struct xlog                     *log,
3562        struct xlog_recover_item        *item)
3563{
3564        struct xfs_inode_log_format     ilf_buf;
3565        struct xfs_inode_log_format     *ilfp;
3566        struct xfs_mount                *mp = log->l_mp;
3567        int                     error;
3568
3569        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3570                ilfp = item->ri_buf[0].i_addr;
3571        } else {
3572                ilfp = &ilf_buf;
3573                memset(ilfp, 0, sizeof(*ilfp));
3574                error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3575                if (error)
3576                        return;
3577        }
3578
3579        if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3580                return;
3581
3582        xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3583                                ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3584}
3585
3586STATIC void
3587xlog_recover_dquot_ra_pass2(
3588        struct xlog                     *log,
3589        struct xlog_recover_item        *item)
3590{
3591        struct xfs_mount        *mp = log->l_mp;
3592        struct xfs_disk_dquot   *recddq;
3593        struct xfs_dq_logformat *dq_f;
3594        uint                    type;
3595        int                     len;
3596
3597
3598        if (mp->m_qflags == 0)
3599                return;
3600
3601        recddq = item->ri_buf[1].i_addr;
3602        if (recddq == NULL)
3603                return;
3604        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3605                return;
3606
3607        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3608        ASSERT(type);
3609        if (log->l_quotaoffs_flag & type)
3610                return;
3611
3612        dq_f = item->ri_buf[0].i_addr;
3613        ASSERT(dq_f);
3614        ASSERT(dq_f->qlf_len == 1);
3615
3616        len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3617        if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3618                return;
3619
3620        xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3621                          &xfs_dquot_buf_ra_ops);
3622}
3623
3624STATIC void
3625xlog_recover_ra_pass2(
3626        struct xlog                     *log,
3627        struct xlog_recover_item        *item)
3628{
3629        switch (ITEM_TYPE(item)) {
3630        case XFS_LI_BUF:
3631                xlog_recover_buffer_ra_pass2(log, item);
3632                break;
3633        case XFS_LI_INODE:
3634                xlog_recover_inode_ra_pass2(log, item);
3635                break;
3636        case XFS_LI_DQUOT:
3637                xlog_recover_dquot_ra_pass2(log, item);
3638                break;
3639        case XFS_LI_EFI:
3640        case XFS_LI_EFD:
3641        case XFS_LI_QUOTAOFF:
3642        default:
3643                break;
3644        }
3645}
3646
3647STATIC int
3648xlog_recover_commit_pass1(
3649        struct xlog                     *log,
3650        struct xlog_recover             *trans,
3651        struct xlog_recover_item        *item)
3652{
3653        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3654
3655        switch (ITEM_TYPE(item)) {
3656        case XFS_LI_BUF:
3657                return xlog_recover_buffer_pass1(log, item);
3658        case XFS_LI_QUOTAOFF:
3659                return xlog_recover_quotaoff_pass1(log, item);
3660        case XFS_LI_INODE:
3661        case XFS_LI_EFI:
3662        case XFS_LI_EFD:
3663        case XFS_LI_DQUOT:
3664        case XFS_LI_ICREATE:
3665                /* nothing to do in pass 1 */
3666                return 0;
3667        default:
3668                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3669                        __func__, ITEM_TYPE(item));
3670                ASSERT(0);
3671                return -EIO;
3672        }
3673}
3674
3675STATIC int
3676xlog_recover_commit_pass2(
3677        struct xlog                     *log,
3678        struct xlog_recover             *trans,
3679        struct list_head                *buffer_list,
3680        struct xlog_recover_item        *item)
3681{
3682        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3683
3684        switch (ITEM_TYPE(item)) {
3685        case XFS_LI_BUF:
3686                return xlog_recover_buffer_pass2(log, buffer_list, item,
3687                                                 trans->r_lsn);
3688        case XFS_LI_INODE:
3689                return xlog_recover_inode_pass2(log, buffer_list, item,
3690                                                 trans->r_lsn);
3691        case XFS_LI_EFI:
3692                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3693        case XFS_LI_EFD:
3694                return xlog_recover_efd_pass2(log, item);
3695        case XFS_LI_DQUOT:
3696                return xlog_recover_dquot_pass2(log, buffer_list, item,
3697                                                trans->r_lsn);
3698        case XFS_LI_ICREATE:
3699                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3700        case XFS_LI_QUOTAOFF:
3701                /* nothing to do in pass2 */
3702                return 0;
3703        default:
3704                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3705                        __func__, ITEM_TYPE(item));
3706                ASSERT(0);
3707                return -EIO;
3708        }
3709}
3710
3711STATIC int
3712xlog_recover_items_pass2(
3713        struct xlog                     *log,
3714        struct xlog_recover             *trans,
3715        struct list_head                *buffer_list,
3716        struct list_head                *item_list)
3717{
3718        struct xlog_recover_item        *item;
3719        int                             error = 0;
3720
3721        list_for_each_entry(item, item_list, ri_list) {
3722                error = xlog_recover_commit_pass2(log, trans,
3723                                          buffer_list, item);
3724                if (error)
3725                        return error;
3726        }
3727
3728        return error;
3729}
3730
3731/*
3732 * Perform the transaction.
3733 *
3734 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3735 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3736 */
3737STATIC int
3738xlog_recover_commit_trans(
3739        struct xlog             *log,
3740        struct xlog_recover     *trans,
3741        int                     pass)
3742{
3743        int                             error = 0;
3744        int                             error2;
3745        int                             items_queued = 0;
3746        struct xlog_recover_item        *item;
3747        struct xlog_recover_item        *next;
3748        LIST_HEAD                       (buffer_list);
3749        LIST_HEAD                       (ra_list);
3750        LIST_HEAD                       (done_list);
3751
3752        #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3753
3754        hlist_del(&trans->r_list);
3755
3756        error = xlog_recover_reorder_trans(log, trans, pass);
3757        if (error)
3758                return error;
3759
3760        list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3761                switch (pass) {
3762                case XLOG_RECOVER_PASS1:
3763                        error = xlog_recover_commit_pass1(log, trans, item);
3764                        break;
3765                case XLOG_RECOVER_PASS2:
3766                        xlog_recover_ra_pass2(log, item);
3767                        list_move_tail(&item->ri_list, &ra_list);
3768                        items_queued++;
3769                        if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3770                                error = xlog_recover_items_pass2(log, trans,
3771                                                &buffer_list, &ra_list);
3772                                list_splice_tail_init(&ra_list, &done_list);
3773                                items_queued = 0;
3774                        }
3775
3776                        break;
3777                default:
3778                        ASSERT(0);
3779                }
3780
3781                if (error)
3782                        goto out;
3783        }
3784
3785out:
3786        if (!list_empty(&ra_list)) {
3787                if (!error)
3788                        error = xlog_recover_items_pass2(log, trans,
3789                                        &buffer_list, &ra_list);
3790                list_splice_tail_init(&ra_list, &done_list);
3791        }
3792
3793        if (!list_empty(&done_list))
3794                list_splice_init(&done_list, &trans->r_itemq);
3795
3796        error2 = xfs_buf_delwri_submit(&buffer_list);
3797        return error ? error : error2;
3798}
3799
3800STATIC void
3801xlog_recover_add_item(
3802        struct list_head        *head)
3803{
3804        xlog_recover_item_t     *item;
3805
3806        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3807        INIT_LIST_HEAD(&item->ri_list);
3808        list_add_tail(&item->ri_list, head);
3809}
3810
3811STATIC int
3812xlog_recover_add_to_cont_trans(
3813        struct xlog             *log,
3814        struct xlog_recover     *trans,
3815        char                    *dp,
3816        int                     len)
3817{
3818        xlog_recover_item_t     *item;
3819        char                    *ptr, *old_ptr;
3820        int                     old_len;
3821
3822        /*
3823         * If the transaction is empty, the header was split across this and the
3824         * previous record. Copy the rest of the header.
3825         */
3826        if (list_empty(&trans->r_itemq)) {
3827                ASSERT(len <= sizeof(struct xfs_trans_header));
3828                if (len > sizeof(struct xfs_trans_header)) {
3829                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
3830                        return -EIO;
3831                }
3832
3833                xlog_recover_add_item(&trans->r_itemq);
3834                ptr = (char *)&trans->r_theader +
3835                                sizeof(struct xfs_trans_header) - len;
3836                memcpy(ptr, dp, len);
3837                return 0;
3838        }
3839
3840        /* take the tail entry */
3841        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3842
3843        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3844        old_len = item->ri_buf[item->ri_cnt-1].i_len;
3845
3846        ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3847        memcpy(&ptr[old_len], dp, len);
3848        item->ri_buf[item->ri_cnt-1].i_len += len;
3849        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3850        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3851        return 0;
3852}
3853
3854/*
3855 * The next region to add is the start of a new region.  It could be
3856 * a whole region or it could be the first part of a new region.  Because
3857 * of this, the assumption here is that the type and size fields of all
3858 * format structures fit into the first 32 bits of the structure.
3859 *
3860 * This works because all regions must be 32 bit aligned.  Therefore, we
3861 * either have both fields or we have neither field.  In the case we have
3862 * neither field, the data part of the region is zero length.  We only have
3863 * a log_op_header and can throw away the header since a new one will appear
3864 * later.  If we have at least 4 bytes, then we can determine how many regions
3865 * will appear in the current log item.
3866 */
3867STATIC int
3868xlog_recover_add_to_trans(
3869        struct xlog             *log,
3870        struct xlog_recover     *trans,
3871        char                    *dp,
3872        int                     len)
3873{
3874        xfs_inode_log_format_t  *in_f;                  /* any will do */
3875        xlog_recover_item_t     *item;
3876        char                    *ptr;
3877
3878        if (!len)
3879                return 0;
3880        if (list_empty(&trans->r_itemq)) {
3881                /* we need to catch log corruptions here */
3882                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3883                        xfs_warn(log->l_mp, "%s: bad header magic number",
3884                                __func__);
3885                        ASSERT(0);
3886                        return -EIO;
3887                }
3888
3889                if (len > sizeof(struct xfs_trans_header)) {
3890                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
3891                        ASSERT(0);
3892                        return -EIO;
3893                }
3894
3895                /*
3896                 * The transaction header can be arbitrarily split across op
3897                 * records. If we don't have the whole thing here, copy what we
3898                 * do have and handle the rest in the next record.
3899                 */
3900                if (len == sizeof(struct xfs_trans_header))
3901                        xlog_recover_add_item(&trans->r_itemq);
3902                memcpy(&trans->r_theader, dp, len);
3903                return 0;
3904        }
3905
3906        ptr = kmem_alloc(len, KM_SLEEP);
3907        memcpy(ptr, dp, len);
3908        in_f = (xfs_inode_log_format_t *)ptr;
3909
3910        /* take the tail entry */
3911        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3912        if (item->ri_total != 0 &&
3913             item->ri_total == item->ri_cnt) {
3914                /* tail item is in use, get a new one */
3915                xlog_recover_add_item(&trans->r_itemq);
3916                item = list_entry(trans->r_itemq.prev,
3917                                        xlog_recover_item_t, ri_list);
3918        }
3919
3920        if (item->ri_total == 0) {              /* first region to be added */
3921                if (in_f->ilf_size == 0 ||
3922                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3923                        xfs_warn(log->l_mp,
3924                "bad number of regions (%d) in inode log format",
3925                                  in_f->ilf_size);
3926                        ASSERT(0);
3927                        kmem_free(ptr);
3928                        return -EIO;
3929                }
3930
3931                item->ri_total = in_f->ilf_size;
3932                item->ri_buf =
3933                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3934                                    KM_SLEEP);
3935        }
3936        ASSERT(item->ri_total > item->ri_cnt);
3937        /* Description region is ri_buf[0] */
3938        item->ri_buf[item->ri_cnt].i_addr = ptr;
3939        item->ri_buf[item->ri_cnt].i_len  = len;
3940        item->ri_cnt++;
3941        trace_xfs_log_recover_item_add(log, trans, item, 0);
3942        return 0;
3943}
3944
3945/*
3946 * Free up any resources allocated by the transaction
3947 *
3948 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3949 */
3950STATIC void
3951xlog_recover_free_trans(
3952        struct xlog_recover     *trans)
3953{
3954        xlog_recover_item_t     *item, *n;
3955        int                     i;
3956
3957        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3958                /* Free the regions in the item. */
3959                list_del(&item->ri_list);
3960                for (i = 0; i < item->ri_cnt; i++)
3961                        kmem_free(item->ri_buf[i].i_addr);
3962                /* Free the item itself */
3963                kmem_free(item->ri_buf);
3964                kmem_free(item);
3965        }
3966        /* Free the transaction recover structure */
3967        kmem_free(trans);
3968}
3969
3970/*
3971 * On error or completion, trans is freed.
3972 */
3973STATIC int
3974xlog_recovery_process_trans(
3975        struct xlog             *log,
3976        struct xlog_recover     *trans,
3977        char                    *dp,
3978        unsigned int            len,
3979        unsigned int            flags,
3980        int                     pass)
3981{
3982        int                     error = 0;
3983        bool                    freeit = false;
3984
3985        /* mask off ophdr transaction container flags */
3986        flags &= ~XLOG_END_TRANS;
3987        if (flags & XLOG_WAS_CONT_TRANS)
3988                flags &= ~XLOG_CONTINUE_TRANS;
3989
3990        /*
3991         * Callees must not free the trans structure. We'll decide if we need to
3992         * free it or not based on the operation being done and it's result.
3993         */
3994        switch (flags) {
3995        /* expected flag values */
3996        case 0:
3997        case XLOG_CONTINUE_TRANS:
3998                error = xlog_recover_add_to_trans(log, trans, dp, len);
3999                break;
4000        case XLOG_WAS_CONT_TRANS:
4001                error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4002                break;
4003        case XLOG_COMMIT_TRANS:
4004                error = xlog_recover_commit_trans(log, trans, pass);
4005                /* success or fail, we are now done with this transaction. */
4006                freeit = true;
4007                break;
4008
4009        /* unexpected flag values */
4010        case XLOG_UNMOUNT_TRANS:
4011                /* just skip trans */
4012                xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4013                freeit = true;
4014                break;
4015        case XLOG_START_TRANS:
4016        default:
4017                xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4018                ASSERT(0);
4019                error = -EIO;
4020                break;
4021        }
4022        if (error || freeit)
4023                xlog_recover_free_trans(trans);
4024        return error;
4025}
4026
4027/*
4028 * Lookup the transaction recovery structure associated with the ID in the
4029 * current ophdr. If the transaction doesn't exist and the start flag is set in
4030 * the ophdr, then allocate a new transaction for future ID matches to find.
4031 * Either way, return what we found during the lookup - an existing transaction
4032 * or nothing.
4033 */
4034STATIC struct xlog_recover *
4035xlog_recover_ophdr_to_trans(
4036        struct hlist_head       rhash[],
4037        struct xlog_rec_header  *rhead,
4038        struct xlog_op_header   *ohead)
4039{
4040        struct xlog_recover     *trans;
4041        xlog_tid_t              tid;
4042        struct hlist_head       *rhp;
4043
4044        tid = be32_to_cpu(ohead->oh_tid);
4045        rhp = &rhash[XLOG_RHASH(tid)];
4046        hlist_for_each_entry(trans, rhp, r_list) {
4047                if (trans->r_log_tid == tid)
4048                        return trans;
4049        }
4050
4051        /*
4052         * skip over non-start transaction headers - we could be
4053         * processing slack space before the next transaction starts
4054         */
4055        if (!(ohead->oh_flags & XLOG_START_TRANS))
4056                return NULL;
4057
4058        ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4059
4060        /*
4061         * This is a new transaction so allocate a new recovery container to
4062         * hold the recovery ops that will follow.
4063         */
4064        trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4065        trans->r_log_tid = tid;
4066        trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4067        INIT_LIST_HEAD(&trans->r_itemq);
4068        INIT_HLIST_NODE(&trans->r_list);
4069        hlist_add_head(&trans->r_list, rhp);
4070
4071        /*
4072         * Nothing more to do for this ophdr. Items to be added to this new
4073         * transaction will be in subsequent ophdr containers.
4074         */
4075        return NULL;
4076}
4077
4078STATIC int
4079xlog_recover_process_ophdr(
4080        struct xlog             *log,
4081        struct hlist_head       rhash[],
4082        struct xlog_rec_header  *rhead,
4083        struct xlog_op_header   *ohead,
4084        char                    *dp,
4085        char                    *end,
4086        int                     pass)
4087{
4088        struct xlog_recover     *trans;
4089        unsigned int            len;
4090
4091        /* Do we understand who wrote this op? */
4092        if (ohead->oh_clientid != XFS_TRANSACTION &&
4093            ohead->oh_clientid != XFS_LOG) {
4094                xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4095                        __func__, ohead->oh_clientid);
4096                ASSERT(0);
4097                return -EIO;
4098        }
4099
4100        /*
4101         * Check the ophdr contains all the data it is supposed to contain.
4102         */
4103        len = be32_to_cpu(ohead->oh_len);
4104        if (dp + len > end) {
4105                xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4106                WARN_ON(1);
4107                return -EIO;
4108        }
4109
4110        trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4111        if (!trans) {
4112                /* nothing to do, so skip over this ophdr */
4113                return 0;
4114        }
4115
4116        return xlog_recovery_process_trans(log, trans, dp, len,
4117                                           ohead->oh_flags, pass);
4118}
4119
4120/*
4121 * There are two valid states of the r_state field.  0 indicates that the
4122 * transaction structure is in a normal state.  We have either seen the
4123 * start of the transaction or the last operation we added was not a partial
4124 * operation.  If the last operation we added to the transaction was a
4125 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4126 *
4127 * NOTE: skip LRs with 0 data length.
4128 */
4129STATIC int
4130xlog_recover_process_data(
4131        struct xlog             *log,
4132        struct hlist_head       rhash[],
4133        struct xlog_rec_header  *rhead,
4134        char                    *dp,
4135        int                     pass)
4136{
4137        struct xlog_op_header   *ohead;
4138        char                    *end;
4139        int                     num_logops;
4140        int                     error;
4141
4142        end = dp + be32_to_cpu(rhead->h_len);
4143        num_logops = be32_to_cpu(rhead->h_num_logops);
4144
4145        /* check the log format matches our own - else we can't recover */
4146        if (xlog_header_check_recover(log->l_mp, rhead))
4147                return -EIO;
4148
4149        while ((dp < end) && num_logops) {
4150
4151                ohead = (struct xlog_op_header *)dp;
4152                dp += sizeof(*ohead);
4153                ASSERT(dp <= end);
4154
4155                /* errors will abort recovery */
4156                error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4157                                                    dp, end, pass);
4158                if (error)
4159                        return error;
4160
4161                dp += be32_to_cpu(ohead->oh_len);
4162                num_logops--;
4163        }
4164        return 0;
4165}
4166
4167/*
4168 * Process an extent free intent item that was recovered from
4169 * the log.  We need to free the extents that it describes.
4170 */
4171STATIC int
4172xlog_recover_process_efi(
4173        xfs_mount_t             *mp,
4174        xfs_efi_log_item_t      *efip)
4175{
4176        xfs_efd_log_item_t      *efdp;
4177        xfs_trans_t             *tp;
4178        int                     i;
4179        int                     error = 0;
4180        xfs_extent_t            *extp;
4181        xfs_fsblock_t           startblock_fsb;
4182
4183        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
4184
4185        /*
4186         * First check the validity of the extents described by the
4187         * EFI.  If any are bad, then assume that all are bad and
4188         * just toss the EFI.
4189         */
4190        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4191                extp = &(efip->efi_format.efi_extents[i]);
4192                startblock_fsb = XFS_BB_TO_FSB(mp,
4193                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
4194                if ((startblock_fsb == 0) ||
4195                    (extp->ext_len == 0) ||
4196                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4197                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4198                        /*
4199                         * This will pull the EFI from the AIL and
4200                         * free the memory associated with it.
4201                         */
4202                        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4203                        xfs_efi_release(efip);
4204                        return -EIO;
4205                }
4206        }
4207
4208        tp = xfs_trans_alloc(mp, 0);
4209        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
4210        if (error)
4211                goto abort_error;
4212        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4213
4214        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4215                extp = &(efip->efi_format.efi_extents[i]);
4216                error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4217                                              extp->ext_len);
4218                if (error)
4219                        goto abort_error;
4220
4221        }
4222
4223        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
4224        error = xfs_trans_commit(tp);
4225        return error;
4226
4227abort_error:
4228        xfs_trans_cancel(tp);
4229        return error;
4230}
4231
4232/*
4233 * When this is called, all of the EFIs which did not have
4234 * corresponding EFDs should be in the AIL.  What we do now
4235 * is free the extents associated with each one.
4236 *
4237 * Since we process the EFIs in normal transactions, they
4238 * will be removed at some point after the commit.  This prevents
4239 * us from just walking down the list processing each one.
4240 * We'll use a flag in the EFI to skip those that we've already
4241 * processed and use the AIL iteration mechanism's generation
4242 * count to try to speed this up at least a bit.
4243 *
4244 * When we start, we know that the EFIs are the only things in
4245 * the AIL.  As we process them, however, other items are added
4246 * to the AIL.  Since everything added to the AIL must come after
4247 * everything already in the AIL, we stop processing as soon as
4248 * we see something other than an EFI in the AIL.
4249 */
4250STATIC int
4251xlog_recover_process_efis(
4252        struct xlog             *log)
4253{
4254        struct xfs_log_item     *lip;
4255        struct xfs_efi_log_item *efip;
4256        int                     error = 0;
4257        struct xfs_ail_cursor   cur;
4258        struct xfs_ail          *ailp;
4259
4260        ailp = log->l_ailp;
4261        spin_lock(&ailp->xa_lock);
4262        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4263        while (lip != NULL) {
4264                /*
4265                 * We're done when we see something other than an EFI.
4266                 * There should be no EFIs left in the AIL now.
4267                 */
4268                if (lip->li_type != XFS_LI_EFI) {
4269#ifdef DEBUG
4270                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4271                                ASSERT(lip->li_type != XFS_LI_EFI);
4272#endif
4273                        break;
4274                }
4275
4276                /*
4277                 * Skip EFIs that we've already processed.
4278                 */
4279                efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4280                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
4281                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
4282                        continue;
4283                }
4284
4285                spin_unlock(&ailp->xa_lock);
4286                error = xlog_recover_process_efi(log->l_mp, efip);
4287                spin_lock(&ailp->xa_lock);
4288                if (error)
4289                        goto out;
4290                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4291        }
4292out:
4293        xfs_trans_ail_cursor_done(&cur);
4294        spin_unlock(&ailp->xa_lock);
4295        return error;
4296}
4297
4298/*
4299 * A cancel occurs when the mount has failed and we're bailing out. Release all
4300 * pending EFIs so they don't pin the AIL.
4301 */
4302STATIC int
4303xlog_recover_cancel_efis(
4304        struct xlog             *log)
4305{
4306        struct xfs_log_item     *lip;
4307        struct xfs_efi_log_item *efip;
4308        int                     error = 0;
4309        struct xfs_ail_cursor   cur;
4310        struct xfs_ail          *ailp;
4311
4312        ailp = log->l_ailp;
4313        spin_lock(&ailp->xa_lock);
4314        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4315        while (lip != NULL) {
4316                /*
4317                 * We're done when we see something other than an EFI.
4318                 * There should be no EFIs left in the AIL now.
4319                 */
4320                if (lip->li_type != XFS_LI_EFI) {
4321#ifdef DEBUG
4322                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4323                                ASSERT(lip->li_type != XFS_LI_EFI);
4324#endif
4325                        break;
4326                }
4327
4328                efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4329
4330                spin_unlock(&ailp->xa_lock);
4331                xfs_efi_release(efip);
4332                spin_lock(&ailp->xa_lock);
4333
4334                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4335        }
4336
4337        xfs_trans_ail_cursor_done(&cur);
4338        spin_unlock(&ailp->xa_lock);
4339        return error;
4340}
4341
4342/*
4343 * This routine performs a transaction to null out a bad inode pointer
4344 * in an agi unlinked inode hash bucket.
4345 */
4346STATIC void
4347xlog_recover_clear_agi_bucket(
4348        xfs_mount_t     *mp,
4349        xfs_agnumber_t  agno,
4350        int             bucket)
4351{
4352        xfs_trans_t     *tp;
4353        xfs_agi_t       *agi;
4354        xfs_buf_t       *agibp;
4355        int             offset;
4356        int             error;
4357
4358        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
4359        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
4360        if (error)
4361                goto out_abort;
4362
4363        error = xfs_read_agi(mp, tp, agno, &agibp);
4364        if (error)
4365                goto out_abort;
4366
4367        agi = XFS_BUF_TO_AGI(agibp);
4368        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4369        offset = offsetof(xfs_agi_t, agi_unlinked) +
4370                 (sizeof(xfs_agino_t) * bucket);
4371        xfs_trans_log_buf(tp, agibp, offset,
4372                          (offset + sizeof(xfs_agino_t) - 1));
4373
4374        error = xfs_trans_commit(tp);
4375        if (error)
4376                goto out_error;
4377        return;
4378
4379out_abort:
4380        xfs_trans_cancel(tp);
4381out_error:
4382        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4383        return;
4384}
4385
4386STATIC xfs_agino_t
4387xlog_recover_process_one_iunlink(
4388        struct xfs_mount                *mp,
4389        xfs_agnumber_t                  agno,
4390        xfs_agino_t                     agino,
4391        int                             bucket)
4392{
4393        struct xfs_buf                  *ibp;
4394        struct xfs_dinode               *dip;
4395        struct xfs_inode                *ip;
4396        xfs_ino_t                       ino;
4397        int                             error;
4398
4399        ino = XFS_AGINO_TO_INO(mp, agno, agino);
4400        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4401        if (error)
4402                goto fail;
4403
4404        /*
4405         * Get the on disk inode to find the next inode in the bucket.
4406         */
4407        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4408        if (error)
4409                goto fail_iput;
4410
4411        ASSERT(VFS_I(ip)->i_nlink == 0);
4412        ASSERT(VFS_I(ip)->i_mode != 0);
4413
4414        /* setup for the next pass */
4415        agino = be32_to_cpu(dip->di_next_unlinked);
4416        xfs_buf_relse(ibp);
4417
4418        /*
4419         * Prevent any DMAPI event from being sent when the reference on
4420         * the inode is dropped.
4421         */
4422        ip->i_d.di_dmevmask = 0;
4423
4424        IRELE(ip);
4425        return agino;
4426
4427 fail_iput:
4428        IRELE(ip);
4429 fail:
4430        /*
4431         * We can't read in the inode this bucket points to, or this inode
4432         * is messed up.  Just ditch this bucket of inodes.  We will lose
4433         * some inodes and space, but at least we won't hang.
4434         *
4435         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4436         * clear the inode pointer in the bucket.
4437         */
4438        xlog_recover_clear_agi_bucket(mp, agno, bucket);
4439        return NULLAGINO;
4440}
4441
4442/*
4443 * xlog_iunlink_recover
4444 *
4445 * This is called during recovery to process any inodes which
4446 * we unlinked but not freed when the system crashed.  These
4447 * inodes will be on the lists in the AGI blocks.  What we do
4448 * here is scan all the AGIs and fully truncate and free any
4449 * inodes found on the lists.  Each inode is removed from the
4450 * lists when it has been fully truncated and is freed.  The
4451 * freeing of the inode and its removal from the list must be
4452 * atomic.
4453 */
4454STATIC void
4455xlog_recover_process_iunlinks(
4456        struct xlog     *log)
4457{
4458        xfs_mount_t     *mp;
4459        xfs_agnumber_t  agno;
4460        xfs_agi_t       *agi;
4461        xfs_buf_t       *agibp;
4462        xfs_agino_t     agino;
4463        int             bucket;
4464        int             error;
4465        uint            mp_dmevmask;
4466
4467        mp = log->l_mp;
4468
4469        /*
4470         * Prevent any DMAPI event from being sent while in this function.
4471         */
4472        mp_dmevmask = mp->m_dmevmask;
4473        mp->m_dmevmask = 0;
4474
4475        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4476                /*
4477                 * Find the agi for this ag.
4478                 */
4479                error = xfs_read_agi(mp, NULL, agno, &agibp);
4480                if (error) {
4481                        /*
4482                         * AGI is b0rked. Don't process it.
4483                         *
4484                         * We should probably mark the filesystem as corrupt
4485                         * after we've recovered all the ag's we can....
4486                         */
4487                        continue;
4488                }
4489                /*
4490                 * Unlock the buffer so that it can be acquired in the normal
4491                 * course of the transaction to truncate and free each inode.
4492                 * Because we are not racing with anyone else here for the AGI
4493                 * buffer, we don't even need to hold it locked to read the
4494                 * initial unlinked bucket entries out of the buffer. We keep
4495                 * buffer reference though, so that it stays pinned in memory
4496                 * while we need the buffer.
4497                 */
4498                agi = XFS_BUF_TO_AGI(agibp);
4499                xfs_buf_unlock(agibp);
4500
4501                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
4502                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
4503                        while (agino != NULLAGINO) {
4504                                agino = xlog_recover_process_one_iunlink(mp,
4505                                                        agno, agino, bucket);
4506                        }
4507                }
4508                xfs_buf_rele(agibp);
4509        }
4510
4511        mp->m_dmevmask = mp_dmevmask;
4512}
4513
4514STATIC int
4515xlog_unpack_data(
4516        struct xlog_rec_header  *rhead,
4517        char                    *dp,
4518        struct xlog             *log)
4519{
4520        int                     i, j, k;
4521
4522        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
4523                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
4524                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
4525                dp += BBSIZE;
4526        }
4527
4528        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4529                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
4530                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4531                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4532                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4533                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4534                        dp += BBSIZE;
4535                }
4536        }
4537
4538        return 0;
4539}
4540
4541/*
4542 * CRC check, unpack and process a log record.
4543 */
4544STATIC int
4545xlog_recover_process(
4546        struct xlog             *log,
4547        struct hlist_head       rhash[],
4548        struct xlog_rec_header  *rhead,
4549        char                    *dp,
4550        int                     pass)
4551{
4552        int                     error;
4553        __le32                  crc;
4554
4555        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4556
4557        /*
4558         * Nothing else to do if this is a CRC verification pass. Just return
4559         * if this a record with a non-zero crc. Unfortunately, mkfs always
4560         * sets h_crc to 0 so we must consider this valid even on v5 supers.
4561         * Otherwise, return EFSBADCRC on failure so the callers up the stack
4562         * know precisely what failed.
4563         */
4564        if (pass == XLOG_RECOVER_CRCPASS) {
4565                if (rhead->h_crc && crc != rhead->h_crc)
4566                        return -EFSBADCRC;
4567                return 0;
4568        }
4569
4570        /*
4571         * We're in the normal recovery path. Issue a warning if and only if the
4572         * CRC in the header is non-zero. This is an advisory warning and the
4573         * zero CRC check prevents warnings from being emitted when upgrading
4574         * the kernel from one that does not add CRCs by default.
4575         */
4576        if (crc != rhead->h_crc) {
4577                if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4578                        xfs_alert(log->l_mp,
4579                "log record CRC mismatch: found 0x%x, expected 0x%x.",
4580                                        le32_to_cpu(rhead->h_crc),
4581                                        le32_to_cpu(crc));
4582                        xfs_hex_dump(dp, 32);
4583                }
4584
4585                /*
4586                 * If the filesystem is CRC enabled, this mismatch becomes a
4587                 * fatal log corruption failure.
4588                 */
4589                if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4590                        return -EFSCORRUPTED;
4591        }
4592
4593        error = xlog_unpack_data(rhead, dp, log);
4594        if (error)
4595                return error;
4596
4597        return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4598}
4599
4600STATIC int
4601xlog_valid_rec_header(
4602        struct xlog             *log,
4603        struct xlog_rec_header  *rhead,
4604        xfs_daddr_t             blkno)
4605{
4606        int                     hlen;
4607
4608        if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4609                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4610                                XFS_ERRLEVEL_LOW, log->l_mp);
4611                return -EFSCORRUPTED;
4612        }
4613        if (unlikely(
4614            (!rhead->h_version ||
4615            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4616                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4617                        __func__, be32_to_cpu(rhead->h_version));
4618                return -EIO;
4619        }
4620
4621        /* LR body must have data or it wouldn't have been written */
4622        hlen = be32_to_cpu(rhead->h_len);
4623        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4624                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4625                                XFS_ERRLEVEL_LOW, log->l_mp);
4626                return -EFSCORRUPTED;
4627        }
4628        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4629                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4630                                XFS_ERRLEVEL_LOW, log->l_mp);
4631                return -EFSCORRUPTED;
4632        }
4633        return 0;
4634}
4635
4636/*
4637 * Read the log from tail to head and process the log records found.
4638 * Handle the two cases where the tail and head are in the same cycle
4639 * and where the active portion of the log wraps around the end of
4640 * the physical log separately.  The pass parameter is passed through
4641 * to the routines called to process the data and is not looked at
4642 * here.
4643 */
4644STATIC int
4645xlog_do_recovery_pass(
4646        struct xlog             *log,
4647        xfs_daddr_t             head_blk,
4648        xfs_daddr_t             tail_blk,
4649        int                     pass,
4650        xfs_daddr_t             *first_bad)     /* out: first bad log rec */
4651{
4652        xlog_rec_header_t       *rhead;
4653        xfs_daddr_t             blk_no;
4654        xfs_daddr_t             rhead_blk;
4655        char                    *offset;
4656        xfs_buf_t               *hbp, *dbp;
4657        int                     error = 0, h_size, h_len;
4658        int                     bblks, split_bblks;
4659        int                     hblks, split_hblks, wrapped_hblks;
4660        struct hlist_head       rhash[XLOG_RHASH_SIZE];
4661
4662        ASSERT(head_blk != tail_blk);
4663        rhead_blk = 0;
4664
4665        /*
4666         * Read the header of the tail block and get the iclog buffer size from
4667         * h_size.  Use this to tell how many sectors make up the log header.
4668         */
4669        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4670                /*
4671                 * When using variable length iclogs, read first sector of
4672                 * iclog header and extract the header size from it.  Get a
4673                 * new hbp that is the correct size.
4674                 */
4675                hbp = xlog_get_bp(log, 1);
4676                if (!hbp)
4677                        return -ENOMEM;
4678
4679                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4680                if (error)
4681                        goto bread_err1;
4682
4683                rhead = (xlog_rec_header_t *)offset;
4684                error = xlog_valid_rec_header(log, rhead, tail_blk);
4685                if (error)
4686                        goto bread_err1;
4687
4688                /*
4689                 * xfsprogs has a bug where record length is based on lsunit but
4690                 * h_size (iclog size) is hardcoded to 32k. Now that we
4691                 * unconditionally CRC verify the unmount record, this means the
4692                 * log buffer can be too small for the record and cause an
4693                 * overrun.
4694                 *
4695                 * Detect this condition here. Use lsunit for the buffer size as
4696                 * long as this looks like the mkfs case. Otherwise, return an
4697                 * error to avoid a buffer overrun.
4698                 */
4699                h_size = be32_to_cpu(rhead->h_size);
4700                h_len = be32_to_cpu(rhead->h_len);
4701                if (h_len > h_size) {
4702                        if (h_len <= log->l_mp->m_logbsize &&
4703                            be32_to_cpu(rhead->h_num_logops) == 1) {
4704                                xfs_warn(log->l_mp,
4705                "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4706                                         h_size, log->l_mp->m_logbsize);
4707                                h_size = log->l_mp->m_logbsize;
4708                        } else
4709                                return -EFSCORRUPTED;
4710                }
4711
4712                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4713                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4714                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4715                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
4716                                hblks++;
4717                        xlog_put_bp(hbp);
4718                        hbp = xlog_get_bp(log, hblks);
4719                } else {
4720                        hblks = 1;
4721                }
4722        } else {
4723                ASSERT(log->l_sectBBsize == 1);
4724                hblks = 1;
4725                hbp = xlog_get_bp(log, 1);
4726                h_size = XLOG_BIG_RECORD_BSIZE;
4727        }
4728
4729        if (!hbp)
4730                return -ENOMEM;
4731        dbp = xlog_get_bp(log, BTOBB(h_size));
4732        if (!dbp) {
4733                xlog_put_bp(hbp);
4734                return -ENOMEM;
4735        }
4736
4737        memset(rhash, 0, sizeof(rhash));
4738        blk_no = rhead_blk = tail_blk;
4739        if (tail_blk > head_blk) {
4740                /*
4741                 * Perform recovery around the end of the physical log.
4742                 * When the head is not on the same cycle number as the tail,
4743                 * we can't do a sequential recovery.
4744                 */
4745                while (blk_no < log->l_logBBsize) {
4746                        /*
4747                         * Check for header wrapping around physical end-of-log
4748                         */
4749                        offset = hbp->b_addr;
4750                        split_hblks = 0;
4751                        wrapped_hblks = 0;
4752                        if (blk_no + hblks <= log->l_logBBsize) {
4753                                /* Read header in one read */
4754                                error = xlog_bread(log, blk_no, hblks, hbp,
4755                                                   &offset);
4756                                if (error)
4757                                        goto bread_err2;
4758                        } else {
4759                                /* This LR is split across physical log end */
4760                                if (blk_no != log->l_logBBsize) {
4761                                        /* some data before physical log end */
4762                                        ASSERT(blk_no <= INT_MAX);
4763                                        split_hblks = log->l_logBBsize - (int)blk_no;
4764                                        ASSERT(split_hblks > 0);
4765                                        error = xlog_bread(log, blk_no,
4766                                                           split_hblks, hbp,
4767                                                           &offset);
4768                                        if (error)
4769                                                goto bread_err2;
4770                                }
4771
4772                                /*
4773                                 * Note: this black magic still works with
4774                                 * large sector sizes (non-512) only because:
4775                                 * - we increased the buffer size originally
4776                                 *   by 1 sector giving us enough extra space
4777                                 *   for the second read;
4778                                 * - the log start is guaranteed to be sector
4779                                 *   aligned;
4780                                 * - we read the log end (LR header start)
4781                                 *   _first_, then the log start (LR header end)
4782                                 *   - order is important.
4783                                 */
4784                                wrapped_hblks = hblks - split_hblks;
4785                                error = xlog_bread_offset(log, 0,
4786                                                wrapped_hblks, hbp,
4787                                                offset + BBTOB(split_hblks));
4788                                if (error)
4789                                        goto bread_err2;
4790                        }
4791                        rhead = (xlog_rec_header_t *)offset;
4792                        error = xlog_valid_rec_header(log, rhead,
4793                                                split_hblks ? blk_no : 0);
4794                        if (error)
4795                                goto bread_err2;
4796
4797                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4798                        blk_no += hblks;
4799
4800                        /* Read in data for log record */
4801                        if (blk_no + bblks <= log->l_logBBsize) {
4802                                error = xlog_bread(log, blk_no, bblks, dbp,
4803                                                   &offset);
4804                                if (error)
4805                                        goto bread_err2;
4806                        } else {
4807                                /* This log record is split across the
4808                                 * physical end of log */
4809                                offset = dbp->b_addr;
4810                                split_bblks = 0;
4811                                if (blk_no != log->l_logBBsize) {
4812                                        /* some data is before the physical
4813                                         * end of log */
4814                                        ASSERT(!wrapped_hblks);
4815                                        ASSERT(blk_no <= INT_MAX);
4816                                        split_bblks =
4817                                                log->l_logBBsize - (int)blk_no;
4818                                        ASSERT(split_bblks > 0);
4819                                        error = xlog_bread(log, blk_no,
4820                                                        split_bblks, dbp,
4821                                                        &offset);
4822                                        if (error)
4823                                                goto bread_err2;
4824                                }
4825
4826                                /*
4827                                 * Note: this black magic still works with
4828                                 * large sector sizes (non-512) only because:
4829                                 * - we increased the buffer size originally
4830                                 *   by 1 sector giving us enough extra space
4831                                 *   for the second read;
4832                                 * - the log start is guaranteed to be sector
4833                                 *   aligned;
4834                                 * - we read the log end (LR header start)
4835                                 *   _first_, then the log start (LR header end)
4836                                 *   - order is important.
4837                                 */
4838                                error = xlog_bread_offset(log, 0,
4839                                                bblks - split_bblks, dbp,
4840                                                offset + BBTOB(split_bblks));
4841                                if (error)
4842                                        goto bread_err2;
4843                        }
4844
4845                        error = xlog_recover_process(log, rhash, rhead, offset,
4846                                                     pass);
4847                        if (error)
4848                                goto bread_err2;
4849
4850                        blk_no += bblks;
4851                        rhead_blk = blk_no;
4852                }
4853
4854                ASSERT(blk_no >= log->l_logBBsize);
4855                blk_no -= log->l_logBBsize;
4856                rhead_blk = blk_no;
4857        }
4858
4859        /* read first part of physical log */
4860        while (blk_no < head_blk) {
4861                error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4862                if (error)
4863                        goto bread_err2;
4864
4865                rhead = (xlog_rec_header_t *)offset;
4866                error = xlog_valid_rec_header(log, rhead, blk_no);
4867                if (error)
4868                        goto bread_err2;
4869
4870                /* blocks in data section */
4871                bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4872                error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4873                                   &offset);
4874                if (error)
4875                        goto bread_err2;
4876
4877                error = xlog_recover_process(log, rhash, rhead, offset, pass);
4878                if (error)
4879                        goto bread_err2;
4880
4881                blk_no += bblks + hblks;
4882                rhead_blk = blk_no;
4883        }
4884
4885 bread_err2:
4886        xlog_put_bp(dbp);
4887 bread_err1:
4888        xlog_put_bp(hbp);
4889
4890        if (error && first_bad)
4891                *first_bad = rhead_blk;
4892
4893        return error;
4894}
4895
4896/*
4897 * Do the recovery of the log.  We actually do this in two phases.
4898 * The two passes are necessary in order to implement the function
4899 * of cancelling a record written into the log.  The first pass
4900 * determines those things which have been cancelled, and the
4901 * second pass replays log items normally except for those which
4902 * have been cancelled.  The handling of the replay and cancellations
4903 * takes place in the log item type specific routines.
4904 *
4905 * The table of items which have cancel records in the log is allocated
4906 * and freed at this level, since only here do we know when all of
4907 * the log recovery has been completed.
4908 */
4909STATIC int
4910xlog_do_log_recovery(
4911        struct xlog     *log,
4912        xfs_daddr_t     head_blk,
4913        xfs_daddr_t     tail_blk)
4914{
4915        int             error, i;
4916
4917        ASSERT(head_blk != tail_blk);
4918
4919        /*
4920         * First do a pass to find all of the cancelled buf log items.
4921         * Store them in the buf_cancel_table for use in the second pass.
4922         */
4923        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4924                                                 sizeof(struct list_head),
4925                                                 KM_SLEEP);
4926        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4927                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4928
4929        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4930                                      XLOG_RECOVER_PASS1, NULL);
4931        if (error != 0) {
4932                kmem_free(log->l_buf_cancel_table);
4933                log->l_buf_cancel_table = NULL;
4934                return error;
4935        }
4936        /*
4937         * Then do a second pass to actually recover the items in the log.
4938         * When it is complete free the table of buf cancel items.
4939         */
4940        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4941                                      XLOG_RECOVER_PASS2, NULL);
4942#ifdef DEBUG
4943        if (!error) {
4944                int     i;
4945
4946                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4947                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4948        }
4949#endif  /* DEBUG */
4950
4951        kmem_free(log->l_buf_cancel_table);
4952        log->l_buf_cancel_table = NULL;
4953
4954        return error;
4955}
4956
4957/*
4958 * Do the actual recovery
4959 */
4960STATIC int
4961xlog_do_recover(
4962        struct xlog     *log,
4963        xfs_daddr_t     head_blk,
4964        xfs_daddr_t     tail_blk)
4965{
4966        struct xfs_mount *mp = log->l_mp;
4967        int             error;
4968        xfs_buf_t       *bp;
4969        xfs_sb_t        *sbp;
4970
4971        /*
4972         * First replay the images in the log.
4973         */
4974        error = xlog_do_log_recovery(log, head_blk, tail_blk);
4975        if (error)
4976                return error;
4977
4978        /*
4979         * If IO errors happened during recovery, bail out.
4980         */
4981        if (XFS_FORCED_SHUTDOWN(mp)) {
4982                return -EIO;
4983        }
4984
4985        /*
4986         * We now update the tail_lsn since much of the recovery has completed
4987         * and there may be space available to use.  If there were no extent
4988         * or iunlinks, we can free up the entire log and set the tail_lsn to
4989         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4990         * lsn of the last known good LR on disk.  If there are extent frees
4991         * or iunlinks they will have some entries in the AIL; so we look at
4992         * the AIL to determine how to set the tail_lsn.
4993         */
4994        xlog_assign_tail_lsn(mp);
4995
4996        /*
4997         * Now that we've finished replaying all buffer and inode
4998         * updates, re-read in the superblock and reverify it.
4999         */
5000        bp = xfs_getsb(mp, 0);
5001        bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5002        ASSERT(!(bp->b_flags & XBF_WRITE));
5003        bp->b_flags |= XBF_READ;
5004        bp->b_ops = &xfs_sb_buf_ops;
5005
5006        error = xfs_buf_submit_wait(bp);
5007        if (error) {
5008                if (!XFS_FORCED_SHUTDOWN(mp)) {
5009                        xfs_buf_ioerror_alert(bp, __func__);
5010                        ASSERT(0);
5011                }
5012                xfs_buf_relse(bp);
5013                return error;
5014        }
5015
5016        /* Convert superblock from on-disk format */
5017        sbp = &mp->m_sb;
5018        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5019        xfs_buf_relse(bp);
5020
5021        /* re-initialise in-core superblock and geometry structures */
5022        xfs_reinit_percpu_counters(mp);
5023        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5024        if (error) {
5025                xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5026                return error;
5027        }
5028
5029        xlog_recover_check_summary(log);
5030
5031        /* Normal transactions can now occur */
5032        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5033        return 0;
5034}
5035
5036/*
5037 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5038 *
5039 * Return error or zero.
5040 */
5041int
5042xlog_recover(
5043        struct xlog     *log)
5044{
5045        xfs_daddr_t     head_blk, tail_blk;
5046        int             error;
5047
5048        /* find the tail of the log */
5049        error = xlog_find_tail(log, &head_blk, &tail_blk);
5050        if (error)
5051                return error;
5052
5053        /*
5054         * The superblock was read before the log was available and thus the LSN
5055         * could not be verified. Check the superblock LSN against the current
5056         * LSN now that it's known.
5057         */
5058        if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5059            !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5060                return -EINVAL;
5061
5062        if (tail_blk != head_blk) {
5063                /* There used to be a comment here:
5064                 *
5065                 * disallow recovery on read-only mounts.  note -- mount
5066                 * checks for ENOSPC and turns it into an intelligent
5067                 * error message.
5068                 * ...but this is no longer true.  Now, unless you specify
5069                 * NORECOVERY (in which case this function would never be
5070                 * called), we just go ahead and recover.  We do this all
5071                 * under the vfs layer, so we can get away with it unless
5072                 * the device itself is read-only, in which case we fail.
5073                 */
5074                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5075                        return error;
5076                }
5077
5078                /*
5079                 * Version 5 superblock log feature mask validation. We know the
5080                 * log is dirty so check if there are any unknown log features
5081                 * in what we need to recover. If there are unknown features
5082                 * (e.g. unsupported transactions, then simply reject the
5083                 * attempt at recovery before touching anything.
5084                 */
5085                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5086                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5087                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5088                        xfs_warn(log->l_mp,
5089"Superblock has unknown incompatible log features (0x%x) enabled.",
5090                                (log->l_mp->m_sb.sb_features_log_incompat &
5091                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5092                        xfs_warn(log->l_mp,
5093"The log can not be fully and/or safely recovered by this kernel.");
5094                        xfs_warn(log->l_mp,
5095"Please recover the log on a kernel that supports the unknown features.");
5096                        return -EINVAL;
5097                }
5098
5099                /*
5100                 * Delay log recovery if the debug hook is set. This is debug
5101                 * instrumention to coordinate simulation of I/O failures with
5102                 * log recovery.
5103                 */
5104                if (xfs_globals.log_recovery_delay) {
5105                        xfs_notice(log->l_mp,
5106                                "Delaying log recovery for %d seconds.",
5107                                xfs_globals.log_recovery_delay);
5108                        msleep(xfs_globals.log_recovery_delay * 1000);
5109                }
5110
5111                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5112                                log->l_mp->m_logname ? log->l_mp->m_logname
5113                                                     : "internal");
5114
5115                error = xlog_do_recover(log, head_blk, tail_blk);
5116                log->l_flags |= XLOG_RECOVERY_NEEDED;
5117        }
5118        return error;
5119}
5120
5121/*
5122 * In the first part of recovery we replay inodes and buffers and build
5123 * up the list of extent free items which need to be processed.  Here
5124 * we process the extent free items and clean up the on disk unlinked
5125 * inode lists.  This is separated from the first part of recovery so
5126 * that the root and real-time bitmap inodes can be read in from disk in
5127 * between the two stages.  This is necessary so that we can free space
5128 * in the real-time portion of the file system.
5129 */
5130int
5131xlog_recover_finish(
5132        struct xlog     *log)
5133{
5134        /*
5135         * Now we're ready to do the transactions needed for the
5136         * rest of recovery.  Start with completing all the extent
5137         * free intent records and then process the unlinked inode
5138         * lists.  At this point, we essentially run in normal mode
5139         * except that we're still performing recovery actions
5140         * rather than accepting new requests.
5141         */
5142        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5143                int     error;
5144                error = xlog_recover_process_efis(log);
5145                if (error) {
5146                        xfs_alert(log->l_mp, "Failed to recover EFIs");
5147                        return error;
5148                }
5149                /*
5150                 * Sync the log to get all the EFIs out of the AIL.
5151                 * This isn't absolutely necessary, but it helps in
5152                 * case the unlink transactions would have problems
5153                 * pushing the EFIs out of the way.
5154                 */
5155                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5156
5157                xlog_recover_process_iunlinks(log);
5158
5159                xlog_recover_check_summary(log);
5160
5161                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5162                                log->l_mp->m_logname ? log->l_mp->m_logname
5163                                                     : "internal");
5164                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5165        } else {
5166                xfs_info(log->l_mp, "Ending clean mount");
5167        }
5168        return 0;
5169}
5170
5171int
5172xlog_recover_cancel(
5173        struct xlog     *log)
5174{
5175        int             error = 0;
5176
5177        if (log->l_flags & XLOG_RECOVERY_NEEDED)
5178                error = xlog_recover_cancel_efis(log);
5179
5180        return error;
5181}
5182
5183#if defined(DEBUG)
5184/*
5185 * Read all of the agf and agi counters and check that they
5186 * are consistent with the superblock counters.
5187 */
5188void
5189xlog_recover_check_summary(
5190        struct xlog     *log)
5191{
5192        xfs_mount_t     *mp;
5193        xfs_agf_t       *agfp;
5194        xfs_buf_t       *agfbp;
5195        xfs_buf_t       *agibp;
5196        xfs_agnumber_t  agno;
5197        __uint64_t      freeblks;
5198        __uint64_t      itotal;
5199        __uint64_t      ifree;
5200        int             error;
5201
5202        mp = log->l_mp;
5203
5204        freeblks = 0LL;
5205        itotal = 0LL;
5206        ifree = 0LL;
5207        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5208                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5209                if (error) {
5210                        xfs_alert(mp, "%s agf read failed agno %d error %d",
5211                                                __func__, agno, error);
5212                } else {
5213                        agfp = XFS_BUF_TO_AGF(agfbp);
5214                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
5215                                    be32_to_cpu(agfp->agf_flcount);
5216                        xfs_buf_relse(agfbp);
5217                }
5218
5219                error = xfs_read_agi(mp, NULL, agno, &agibp);
5220                if (error) {
5221                        xfs_alert(mp, "%s agi read failed agno %d error %d",
5222                                                __func__, agno, error);
5223                } else {
5224                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
5225
5226                        itotal += be32_to_cpu(agi->agi_count);
5227                        ifree += be32_to_cpu(agi->agi_freecount);
5228                        xfs_buf_relse(agibp);
5229                }
5230        }
5231}
5232#endif /* DEBUG */
5233