linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_dir2.h"
  31#include "xfs_ialloc.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_bmap.h"
  35#include "xfs_trans.h"
  36#include "xfs_trans_priv.h"
  37#include "xfs_log.h"
  38#include "xfs_error.h"
  39#include "xfs_quota.h"
  40#include "xfs_fsops.h"
  41#include "xfs_trace.h"
  42#include "xfs_icache.h"
  43#include "xfs_sysfs.h"
  44
  45
  46static DEFINE_MUTEX(xfs_uuid_table_mutex);
  47static int xfs_uuid_table_size;
  48static uuid_t *xfs_uuid_table;
  49
  50void
  51xfs_uuid_table_free(void)
  52{
  53        if (xfs_uuid_table_size == 0)
  54                return;
  55        kmem_free(xfs_uuid_table);
  56        xfs_uuid_table = NULL;
  57        xfs_uuid_table_size = 0;
  58}
  59
  60/*
  61 * See if the UUID is unique among mounted XFS filesystems.
  62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  63 */
  64STATIC int
  65xfs_uuid_mount(
  66        struct xfs_mount        *mp)
  67{
  68        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  69        int                     hole, i;
  70
  71        if (mp->m_flags & XFS_MOUNT_NOUUID)
  72                return 0;
  73
  74        if (uuid_is_nil(uuid)) {
  75                xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  76                return -EINVAL;
  77        }
  78
  79        mutex_lock(&xfs_uuid_table_mutex);
  80        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  81                if (uuid_is_nil(&xfs_uuid_table[i])) {
  82                        hole = i;
  83                        continue;
  84                }
  85                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  86                        goto out_duplicate;
  87        }
  88
  89        if (hole < 0) {
  90                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  91                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  92                        xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
  93                        KM_SLEEP);
  94                hole = xfs_uuid_table_size++;
  95        }
  96        xfs_uuid_table[hole] = *uuid;
  97        mutex_unlock(&xfs_uuid_table_mutex);
  98
  99        return 0;
 100
 101 out_duplicate:
 102        mutex_unlock(&xfs_uuid_table_mutex);
 103        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 104        return -EINVAL;
 105}
 106
 107STATIC void
 108xfs_uuid_unmount(
 109        struct xfs_mount        *mp)
 110{
 111        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 112        int                     i;
 113
 114        if (mp->m_flags & XFS_MOUNT_NOUUID)
 115                return;
 116
 117        mutex_lock(&xfs_uuid_table_mutex);
 118        for (i = 0; i < xfs_uuid_table_size; i++) {
 119                if (uuid_is_nil(&xfs_uuid_table[i]))
 120                        continue;
 121                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 122                        continue;
 123                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 124                break;
 125        }
 126        ASSERT(i < xfs_uuid_table_size);
 127        mutex_unlock(&xfs_uuid_table_mutex);
 128}
 129
 130
 131STATIC void
 132__xfs_free_perag(
 133        struct rcu_head *head)
 134{
 135        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 136
 137        ASSERT(atomic_read(&pag->pag_ref) == 0);
 138        kmem_free(pag);
 139}
 140
 141/*
 142 * Free up the per-ag resources associated with the mount structure.
 143 */
 144STATIC void
 145xfs_free_perag(
 146        xfs_mount_t     *mp)
 147{
 148        xfs_agnumber_t  agno;
 149        struct xfs_perag *pag;
 150
 151        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 152                spin_lock(&mp->m_perag_lock);
 153                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 154                spin_unlock(&mp->m_perag_lock);
 155                ASSERT(pag);
 156                ASSERT(atomic_read(&pag->pag_ref) == 0);
 157                call_rcu(&pag->rcu_head, __xfs_free_perag);
 158        }
 159}
 160
 161/*
 162 * Check size of device based on the (data/realtime) block count.
 163 * Note: this check is used by the growfs code as well as mount.
 164 */
 165int
 166xfs_sb_validate_fsb_count(
 167        xfs_sb_t        *sbp,
 168        __uint64_t      nblocks)
 169{
 170        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 171        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 172
 173        /* Limited by ULONG_MAX of page cache index */
 174        if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 175                return -EFBIG;
 176        return 0;
 177}
 178
 179int
 180xfs_initialize_perag(
 181        xfs_mount_t     *mp,
 182        xfs_agnumber_t  agcount,
 183        xfs_agnumber_t  *maxagi)
 184{
 185        xfs_agnumber_t  index;
 186        xfs_agnumber_t  first_initialised = 0;
 187        xfs_perag_t     *pag;
 188        int             error = -ENOMEM;
 189
 190        /*
 191         * Walk the current per-ag tree so we don't try to initialise AGs
 192         * that already exist (growfs case). Allocate and insert all the
 193         * AGs we don't find ready for initialisation.
 194         */
 195        for (index = 0; index < agcount; index++) {
 196                pag = xfs_perag_get(mp, index);
 197                if (pag) {
 198                        xfs_perag_put(pag);
 199                        continue;
 200                }
 201                if (!first_initialised)
 202                        first_initialised = index;
 203
 204                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 205                if (!pag)
 206                        goto out_unwind;
 207                pag->pag_agno = index;
 208                pag->pag_mount = mp;
 209                spin_lock_init(&pag->pag_ici_lock);
 210                mutex_init(&pag->pag_ici_reclaim_lock);
 211                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 212                spin_lock_init(&pag->pag_buf_lock);
 213                pag->pag_buf_tree = RB_ROOT;
 214
 215                if (radix_tree_preload(GFP_NOFS))
 216                        goto out_unwind;
 217
 218                spin_lock(&mp->m_perag_lock);
 219                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 220                        BUG();
 221                        spin_unlock(&mp->m_perag_lock);
 222                        radix_tree_preload_end();
 223                        error = -EEXIST;
 224                        goto out_unwind;
 225                }
 226                spin_unlock(&mp->m_perag_lock);
 227                radix_tree_preload_end();
 228        }
 229
 230        index = xfs_set_inode_alloc(mp, agcount);
 231
 232        if (maxagi)
 233                *maxagi = index;
 234        return 0;
 235
 236out_unwind:
 237        kmem_free(pag);
 238        for (; index > first_initialised; index--) {
 239                pag = radix_tree_delete(&mp->m_perag_tree, index);
 240                kmem_free(pag);
 241        }
 242        return error;
 243}
 244
 245/*
 246 * xfs_readsb
 247 *
 248 * Does the initial read of the superblock.
 249 */
 250int
 251xfs_readsb(
 252        struct xfs_mount *mp,
 253        int             flags)
 254{
 255        unsigned int    sector_size;
 256        struct xfs_buf  *bp;
 257        struct xfs_sb   *sbp = &mp->m_sb;
 258        int             error;
 259        int             loud = !(flags & XFS_MFSI_QUIET);
 260        const struct xfs_buf_ops *buf_ops;
 261
 262        ASSERT(mp->m_sb_bp == NULL);
 263        ASSERT(mp->m_ddev_targp != NULL);
 264
 265        /*
 266         * For the initial read, we must guess at the sector
 267         * size based on the block device.  It's enough to
 268         * get the sb_sectsize out of the superblock and
 269         * then reread with the proper length.
 270         * We don't verify it yet, because it may not be complete.
 271         */
 272        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 273        buf_ops = NULL;
 274
 275        /*
 276         * Allocate a (locked) buffer to hold the superblock.
 277         * This will be kept around at all times to optimize
 278         * access to the superblock.
 279         */
 280reread:
 281        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 282                                   BTOBB(sector_size), 0, &bp, buf_ops);
 283        if (error) {
 284                if (loud)
 285                        xfs_warn(mp, "SB validate failed with error %d.", error);
 286                /* bad CRC means corrupted metadata */
 287                if (error == -EFSBADCRC)
 288                        error = -EFSCORRUPTED;
 289                return error;
 290        }
 291
 292        /*
 293         * Initialize the mount structure from the superblock.
 294         */
 295        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 296
 297        /*
 298         * If we haven't validated the superblock, do so now before we try
 299         * to check the sector size and reread the superblock appropriately.
 300         */
 301        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 302                if (loud)
 303                        xfs_warn(mp, "Invalid superblock magic number");
 304                error = -EINVAL;
 305                goto release_buf;
 306        }
 307
 308        /*
 309         * We must be able to do sector-sized and sector-aligned IO.
 310         */
 311        if (sector_size > sbp->sb_sectsize) {
 312                if (loud)
 313                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 314                                sector_size, sbp->sb_sectsize);
 315                error = -ENOSYS;
 316                goto release_buf;
 317        }
 318
 319        if (buf_ops == NULL) {
 320                /*
 321                 * Re-read the superblock so the buffer is correctly sized,
 322                 * and properly verified.
 323                 */
 324                xfs_buf_relse(bp);
 325                sector_size = sbp->sb_sectsize;
 326                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 327                goto reread;
 328        }
 329
 330        xfs_reinit_percpu_counters(mp);
 331
 332        /* no need to be quiet anymore, so reset the buf ops */
 333        bp->b_ops = &xfs_sb_buf_ops;
 334
 335        mp->m_sb_bp = bp;
 336        xfs_buf_unlock(bp);
 337        return 0;
 338
 339release_buf:
 340        xfs_buf_relse(bp);
 341        return error;
 342}
 343
 344/*
 345 * Update alignment values based on mount options and sb values
 346 */
 347STATIC int
 348xfs_update_alignment(xfs_mount_t *mp)
 349{
 350        xfs_sb_t        *sbp = &(mp->m_sb);
 351
 352        if (mp->m_dalign) {
 353                /*
 354                 * If stripe unit and stripe width are not multiples
 355                 * of the fs blocksize turn off alignment.
 356                 */
 357                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 358                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 359                        xfs_warn(mp,
 360                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 361                                sbp->sb_blocksize);
 362                        return -EINVAL;
 363                } else {
 364                        /*
 365                         * Convert the stripe unit and width to FSBs.
 366                         */
 367                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 368                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 369                                xfs_warn(mp,
 370                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 371                                         sbp->sb_agblocks);
 372                                return -EINVAL;
 373                        } else if (mp->m_dalign) {
 374                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 375                        } else {
 376                                xfs_warn(mp,
 377                        "alignment check failed: sunit(%d) less than bsize(%d)",
 378                                         mp->m_dalign, sbp->sb_blocksize);
 379                                return -EINVAL;
 380                        }
 381                }
 382
 383                /*
 384                 * Update superblock with new values
 385                 * and log changes
 386                 */
 387                if (xfs_sb_version_hasdalign(sbp)) {
 388                        if (sbp->sb_unit != mp->m_dalign) {
 389                                sbp->sb_unit = mp->m_dalign;
 390                                mp->m_update_sb = true;
 391                        }
 392                        if (sbp->sb_width != mp->m_swidth) {
 393                                sbp->sb_width = mp->m_swidth;
 394                                mp->m_update_sb = true;
 395                        }
 396                } else {
 397                        xfs_warn(mp,
 398        "cannot change alignment: superblock does not support data alignment");
 399                        return -EINVAL;
 400                }
 401        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 402                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 403                        mp->m_dalign = sbp->sb_unit;
 404                        mp->m_swidth = sbp->sb_width;
 405        }
 406
 407        return 0;
 408}
 409
 410/*
 411 * Set the maximum inode count for this filesystem
 412 */
 413STATIC void
 414xfs_set_maxicount(xfs_mount_t *mp)
 415{
 416        xfs_sb_t        *sbp = &(mp->m_sb);
 417        __uint64_t      icount;
 418
 419        if (sbp->sb_imax_pct) {
 420                /*
 421                 * Make sure the maximum inode count is a multiple
 422                 * of the units we allocate inodes in.
 423                 */
 424                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 425                do_div(icount, 100);
 426                do_div(icount, mp->m_ialloc_blks);
 427                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 428                                   sbp->sb_inopblog;
 429        } else {
 430                mp->m_maxicount = 0;
 431        }
 432}
 433
 434/*
 435 * Set the default minimum read and write sizes unless
 436 * already specified in a mount option.
 437 * We use smaller I/O sizes when the file system
 438 * is being used for NFS service (wsync mount option).
 439 */
 440STATIC void
 441xfs_set_rw_sizes(xfs_mount_t *mp)
 442{
 443        xfs_sb_t        *sbp = &(mp->m_sb);
 444        int             readio_log, writeio_log;
 445
 446        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 447                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 448                        readio_log = XFS_WSYNC_READIO_LOG;
 449                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 450                } else {
 451                        readio_log = XFS_READIO_LOG_LARGE;
 452                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 453                }
 454        } else {
 455                readio_log = mp->m_readio_log;
 456                writeio_log = mp->m_writeio_log;
 457        }
 458
 459        if (sbp->sb_blocklog > readio_log) {
 460                mp->m_readio_log = sbp->sb_blocklog;
 461        } else {
 462                mp->m_readio_log = readio_log;
 463        }
 464        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 465        if (sbp->sb_blocklog > writeio_log) {
 466                mp->m_writeio_log = sbp->sb_blocklog;
 467        } else {
 468                mp->m_writeio_log = writeio_log;
 469        }
 470        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 471}
 472
 473/*
 474 * precalculate the low space thresholds for dynamic speculative preallocation.
 475 */
 476void
 477xfs_set_low_space_thresholds(
 478        struct xfs_mount        *mp)
 479{
 480        int i;
 481
 482        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 483                __uint64_t space = mp->m_sb.sb_dblocks;
 484
 485                do_div(space, 100);
 486                mp->m_low_space[i] = space * (i + 1);
 487        }
 488}
 489
 490
 491/*
 492 * Set whether we're using inode alignment.
 493 */
 494STATIC void
 495xfs_set_inoalignment(xfs_mount_t *mp)
 496{
 497        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 498            mp->m_sb.sb_inoalignmt >=
 499            XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 500                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 501        else
 502                mp->m_inoalign_mask = 0;
 503        /*
 504         * If we are using stripe alignment, check whether
 505         * the stripe unit is a multiple of the inode alignment
 506         */
 507        if (mp->m_dalign && mp->m_inoalign_mask &&
 508            !(mp->m_dalign & mp->m_inoalign_mask))
 509                mp->m_sinoalign = mp->m_dalign;
 510        else
 511                mp->m_sinoalign = 0;
 512}
 513
 514/*
 515 * Check that the data (and log if separate) is an ok size.
 516 */
 517STATIC int
 518xfs_check_sizes(
 519        struct xfs_mount *mp)
 520{
 521        struct xfs_buf  *bp;
 522        xfs_daddr_t     d;
 523        int             error;
 524
 525        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 526        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 527                xfs_warn(mp, "filesystem size mismatch detected");
 528                return -EFBIG;
 529        }
 530        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 531                                        d - XFS_FSS_TO_BB(mp, 1),
 532                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 533        if (error) {
 534                xfs_warn(mp, "last sector read failed");
 535                return error;
 536        }
 537        xfs_buf_relse(bp);
 538
 539        if (mp->m_logdev_targp == mp->m_ddev_targp)
 540                return 0;
 541
 542        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 543        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 544                xfs_warn(mp, "log size mismatch detected");
 545                return -EFBIG;
 546        }
 547        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 548                                        d - XFS_FSB_TO_BB(mp, 1),
 549                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 550        if (error) {
 551                xfs_warn(mp, "log device read failed");
 552                return error;
 553        }
 554        xfs_buf_relse(bp);
 555        return 0;
 556}
 557
 558/*
 559 * Clear the quotaflags in memory and in the superblock.
 560 */
 561int
 562xfs_mount_reset_sbqflags(
 563        struct xfs_mount        *mp)
 564{
 565        mp->m_qflags = 0;
 566
 567        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 568        if (mp->m_sb.sb_qflags == 0)
 569                return 0;
 570        spin_lock(&mp->m_sb_lock);
 571        mp->m_sb.sb_qflags = 0;
 572        spin_unlock(&mp->m_sb_lock);
 573
 574        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 575                return 0;
 576
 577        return xfs_sync_sb(mp, false);
 578}
 579
 580__uint64_t
 581xfs_default_resblks(xfs_mount_t *mp)
 582{
 583        __uint64_t resblks;
 584
 585        /*
 586         * We default to 5% or 8192 fsbs of space reserved, whichever is
 587         * smaller.  This is intended to cover concurrent allocation
 588         * transactions when we initially hit enospc. These each require a 4
 589         * block reservation. Hence by default we cover roughly 2000 concurrent
 590         * allocation reservations.
 591         */
 592        resblks = mp->m_sb.sb_dblocks;
 593        do_div(resblks, 20);
 594        resblks = min_t(__uint64_t, resblks, 8192);
 595        return resblks;
 596}
 597
 598/*
 599 * This function does the following on an initial mount of a file system:
 600 *      - reads the superblock from disk and init the mount struct
 601 *      - if we're a 32-bit kernel, do a size check on the superblock
 602 *              so we don't mount terabyte filesystems
 603 *      - init mount struct realtime fields
 604 *      - allocate inode hash table for fs
 605 *      - init directory manager
 606 *      - perform recovery and init the log manager
 607 */
 608int
 609xfs_mountfs(
 610        struct xfs_mount        *mp)
 611{
 612        struct xfs_sb           *sbp = &(mp->m_sb);
 613        struct xfs_inode        *rip;
 614        __uint64_t              resblks;
 615        uint                    quotamount = 0;
 616        uint                    quotaflags = 0;
 617        int                     error = 0;
 618
 619        xfs_sb_mount_common(mp, sbp);
 620
 621        /*
 622         * Check for a mismatched features2 values.  Older kernels read & wrote
 623         * into the wrong sb offset for sb_features2 on some platforms due to
 624         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 625         * which made older superblock reading/writing routines swap it as a
 626         * 64-bit value.
 627         *
 628         * For backwards compatibility, we make both slots equal.
 629         *
 630         * If we detect a mismatched field, we OR the set bits into the existing
 631         * features2 field in case it has already been modified; we don't want
 632         * to lose any features.  We then update the bad location with the ORed
 633         * value so that older kernels will see any features2 flags. The
 634         * superblock writeback code ensures the new sb_features2 is copied to
 635         * sb_bad_features2 before it is logged or written to disk.
 636         */
 637        if (xfs_sb_has_mismatched_features2(sbp)) {
 638                xfs_warn(mp, "correcting sb_features alignment problem");
 639                sbp->sb_features2 |= sbp->sb_bad_features2;
 640                mp->m_update_sb = true;
 641
 642                /*
 643                 * Re-check for ATTR2 in case it was found in bad_features2
 644                 * slot.
 645                 */
 646                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 647                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 648                        mp->m_flags |= XFS_MOUNT_ATTR2;
 649        }
 650
 651        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 652           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 653                xfs_sb_version_removeattr2(&mp->m_sb);
 654                mp->m_update_sb = true;
 655
 656                /* update sb_versionnum for the clearing of the morebits */
 657                if (!sbp->sb_features2)
 658                        mp->m_update_sb = true;
 659        }
 660
 661        /* always use v2 inodes by default now */
 662        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 663                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 664                mp->m_update_sb = true;
 665        }
 666
 667        /*
 668         * Check if sb_agblocks is aligned at stripe boundary
 669         * If sb_agblocks is NOT aligned turn off m_dalign since
 670         * allocator alignment is within an ag, therefore ag has
 671         * to be aligned at stripe boundary.
 672         */
 673        error = xfs_update_alignment(mp);
 674        if (error)
 675                goto out;
 676
 677        xfs_alloc_compute_maxlevels(mp);
 678        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 679        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 680        xfs_ialloc_compute_maxlevels(mp);
 681
 682        xfs_set_maxicount(mp);
 683
 684        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 685        if (error)
 686                goto out;
 687
 688        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 689                               &mp->m_kobj, "stats");
 690        if (error)
 691                goto out_remove_sysfs;
 692
 693        error = xfs_uuid_mount(mp);
 694        if (error)
 695                goto out_del_stats;
 696
 697        /*
 698         * Set the minimum read and write sizes
 699         */
 700        xfs_set_rw_sizes(mp);
 701
 702        /* set the low space thresholds for dynamic preallocation */
 703        xfs_set_low_space_thresholds(mp);
 704
 705        /*
 706         * Set the inode cluster size.
 707         * This may still be overridden by the file system
 708         * block size if it is larger than the chosen cluster size.
 709         *
 710         * For v5 filesystems, scale the cluster size with the inode size to
 711         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 712         * has set the inode alignment value appropriately for larger cluster
 713         * sizes.
 714         */
 715        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 716        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 717                int     new_size = mp->m_inode_cluster_size;
 718
 719                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 720                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 721                        mp->m_inode_cluster_size = new_size;
 722        }
 723
 724        /*
 725         * If enabled, sparse inode chunk alignment is expected to match the
 726         * cluster size. Full inode chunk alignment must match the chunk size,
 727         * but that is checked on sb read verification...
 728         */
 729        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 730            mp->m_sb.sb_spino_align !=
 731                        XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 732                xfs_warn(mp,
 733        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 734                         mp->m_sb.sb_spino_align,
 735                         XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 736                error = -EINVAL;
 737                goto out_remove_uuid;
 738        }
 739
 740        /*
 741         * Set inode alignment fields
 742         */
 743        xfs_set_inoalignment(mp);
 744
 745        /*
 746         * Check that the data (and log if separate) is an ok size.
 747         */
 748        error = xfs_check_sizes(mp);
 749        if (error)
 750                goto out_remove_uuid;
 751
 752        /*
 753         * Initialize realtime fields in the mount structure
 754         */
 755        error = xfs_rtmount_init(mp);
 756        if (error) {
 757                xfs_warn(mp, "RT mount failed");
 758                goto out_remove_uuid;
 759        }
 760
 761        /*
 762         *  Copies the low order bits of the timestamp and the randomly
 763         *  set "sequence" number out of a UUID.
 764         */
 765        uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 766
 767        mp->m_dmevmask = 0;     /* not persistent; set after each mount */
 768
 769        error = xfs_da_mount(mp);
 770        if (error) {
 771                xfs_warn(mp, "Failed dir/attr init: %d", error);
 772                goto out_remove_uuid;
 773        }
 774
 775        /*
 776         * Initialize the precomputed transaction reservations values.
 777         */
 778        xfs_trans_init(mp);
 779
 780        /*
 781         * Allocate and initialize the per-ag data.
 782         */
 783        spin_lock_init(&mp->m_perag_lock);
 784        INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 785        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 786        if (error) {
 787                xfs_warn(mp, "Failed per-ag init: %d", error);
 788                goto out_free_dir;
 789        }
 790
 791        if (!sbp->sb_logblocks) {
 792                xfs_warn(mp, "no log defined");
 793                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 794                error = -EFSCORRUPTED;
 795                goto out_free_perag;
 796        }
 797
 798        /*
 799         * Log's mount-time initialization. The first part of recovery can place
 800         * some items on the AIL, to be handled when recovery is finished or
 801         * cancelled.
 802         */
 803        error = xfs_log_mount(mp, mp->m_logdev_targp,
 804                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 805                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 806        if (error) {
 807                xfs_warn(mp, "log mount failed");
 808                goto out_fail_wait;
 809        }
 810
 811        /*
 812         * Now the log is mounted, we know if it was an unclean shutdown or
 813         * not. If it was, with the first phase of recovery has completed, we
 814         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 815         * but they are recovered transactionally in the second recovery phase
 816         * later.
 817         *
 818         * Hence we can safely re-initialise incore superblock counters from
 819         * the per-ag data. These may not be correct if the filesystem was not
 820         * cleanly unmounted, so we need to wait for recovery to finish before
 821         * doing this.
 822         *
 823         * If the filesystem was cleanly unmounted, then we can trust the
 824         * values in the superblock to be correct and we don't need to do
 825         * anything here.
 826         *
 827         * If we are currently making the filesystem, the initialisation will
 828         * fail as the perag data is in an undefined state.
 829         */
 830        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 831            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 832             !mp->m_sb.sb_inprogress) {
 833                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 834                if (error)
 835                        goto out_log_dealloc;
 836        }
 837
 838        /*
 839         * Get and sanity-check the root inode.
 840         * Save the pointer to it in the mount structure.
 841         */
 842        error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 843        if (error) {
 844                xfs_warn(mp, "failed to read root inode");
 845                goto out_log_dealloc;
 846        }
 847
 848        ASSERT(rip != NULL);
 849
 850        if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 851                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 852                        (unsigned long long)rip->i_ino);
 853                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 854                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 855                                 mp);
 856                error = -EFSCORRUPTED;
 857                goto out_rele_rip;
 858        }
 859        mp->m_rootip = rip;     /* save it */
 860
 861        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 862
 863        /*
 864         * Initialize realtime inode pointers in the mount structure
 865         */
 866        error = xfs_rtmount_inodes(mp);
 867        if (error) {
 868                /*
 869                 * Free up the root inode.
 870                 */
 871                xfs_warn(mp, "failed to read RT inodes");
 872                goto out_rele_rip;
 873        }
 874
 875        /*
 876         * If this is a read-only mount defer the superblock updates until
 877         * the next remount into writeable mode.  Otherwise we would never
 878         * perform the update e.g. for the root filesystem.
 879         */
 880        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 881                error = xfs_sync_sb(mp, false);
 882                if (error) {
 883                        xfs_warn(mp, "failed to write sb changes");
 884                        goto out_rtunmount;
 885                }
 886        }
 887
 888        /*
 889         * Initialise the XFS quota management subsystem for this mount
 890         */
 891        if (XFS_IS_QUOTA_RUNNING(mp)) {
 892                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 893                if (error)
 894                        goto out_rtunmount;
 895        } else {
 896                ASSERT(!XFS_IS_QUOTA_ON(mp));
 897
 898                /*
 899                 * If a file system had quotas running earlier, but decided to
 900                 * mount without -o uquota/pquota/gquota options, revoke the
 901                 * quotachecked license.
 902                 */
 903                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 904                        xfs_notice(mp, "resetting quota flags");
 905                        error = xfs_mount_reset_sbqflags(mp);
 906                        if (error)
 907                                goto out_rtunmount;
 908                }
 909        }
 910
 911        /*
 912         * Finish recovering the file system.  This part needed to be delayed
 913         * until after the root and real-time bitmap inodes were consistently
 914         * read in.
 915         */
 916        error = xfs_log_mount_finish(mp);
 917        if (error) {
 918                xfs_warn(mp, "log mount finish failed");
 919                goto out_rtunmount;
 920        }
 921
 922        /*
 923         * Complete the quota initialisation, post-log-replay component.
 924         */
 925        if (quotamount) {
 926                ASSERT(mp->m_qflags == 0);
 927                mp->m_qflags = quotaflags;
 928
 929                xfs_qm_mount_quotas(mp);
 930        }
 931
 932        /*
 933         * Now we are mounted, reserve a small amount of unused space for
 934         * privileged transactions. This is needed so that transaction
 935         * space required for critical operations can dip into this pool
 936         * when at ENOSPC. This is needed for operations like create with
 937         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 938         * are not allowed to use this reserved space.
 939         *
 940         * This may drive us straight to ENOSPC on mount, but that implies
 941         * we were already there on the last unmount. Warn if this occurs.
 942         */
 943        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 944                resblks = xfs_default_resblks(mp);
 945                error = xfs_reserve_blocks(mp, &resblks, NULL);
 946                if (error)
 947                        xfs_warn(mp,
 948        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 949        }
 950
 951        return 0;
 952
 953 out_rtunmount:
 954        xfs_rtunmount_inodes(mp);
 955 out_rele_rip:
 956        IRELE(rip);
 957        cancel_delayed_work_sync(&mp->m_reclaim_work);
 958        xfs_reclaim_inodes(mp, SYNC_WAIT);
 959 out_log_dealloc:
 960        xfs_log_mount_cancel(mp);
 961 out_fail_wait:
 962        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 963                xfs_wait_buftarg(mp->m_logdev_targp);
 964        xfs_wait_buftarg(mp->m_ddev_targp);
 965 out_free_perag:
 966        xfs_free_perag(mp);
 967 out_free_dir:
 968        xfs_da_unmount(mp);
 969 out_remove_uuid:
 970        xfs_uuid_unmount(mp);
 971 out_del_stats:
 972        xfs_sysfs_del(&mp->m_stats.xs_kobj);
 973 out_remove_sysfs:
 974        xfs_sysfs_del(&mp->m_kobj);
 975 out:
 976        return error;
 977}
 978
 979/*
 980 * This flushes out the inodes,dquots and the superblock, unmounts the
 981 * log and makes sure that incore structures are freed.
 982 */
 983void
 984xfs_unmountfs(
 985        struct xfs_mount        *mp)
 986{
 987        __uint64_t              resblks;
 988        int                     error;
 989
 990        cancel_delayed_work_sync(&mp->m_eofblocks_work);
 991
 992        xfs_qm_unmount_quotas(mp);
 993        xfs_rtunmount_inodes(mp);
 994        IRELE(mp->m_rootip);
 995
 996        /*
 997         * We can potentially deadlock here if we have an inode cluster
 998         * that has been freed has its buffer still pinned in memory because
 999         * the transaction is still sitting in a iclog. The stale inodes
1000         * on that buffer will have their flush locks held until the
1001         * transaction hits the disk and the callbacks run. the inode
1002         * flush takes the flush lock unconditionally and with nothing to
1003         * push out the iclog we will never get that unlocked. hence we
1004         * need to force the log first.
1005         */
1006        xfs_log_force(mp, XFS_LOG_SYNC);
1007
1008        /*
1009         * Flush all pending changes from the AIL.
1010         */
1011        xfs_ail_push_all_sync(mp->m_ail);
1012
1013        /*
1014         * And reclaim all inodes.  At this point there should be no dirty
1015         * inodes and none should be pinned or locked, but use synchronous
1016         * reclaim just to be sure. We can stop background inode reclaim
1017         * here as well if it is still running.
1018         */
1019        cancel_delayed_work_sync(&mp->m_reclaim_work);
1020        xfs_reclaim_inodes(mp, SYNC_WAIT);
1021
1022        xfs_qm_unmount(mp);
1023
1024        /*
1025         * Unreserve any blocks we have so that when we unmount we don't account
1026         * the reserved free space as used. This is really only necessary for
1027         * lazy superblock counting because it trusts the incore superblock
1028         * counters to be absolutely correct on clean unmount.
1029         *
1030         * We don't bother correcting this elsewhere for lazy superblock
1031         * counting because on mount of an unclean filesystem we reconstruct the
1032         * correct counter value and this is irrelevant.
1033         *
1034         * For non-lazy counter filesystems, this doesn't matter at all because
1035         * we only every apply deltas to the superblock and hence the incore
1036         * value does not matter....
1037         */
1038        resblks = 0;
1039        error = xfs_reserve_blocks(mp, &resblks, NULL);
1040        if (error)
1041                xfs_warn(mp, "Unable to free reserved block pool. "
1042                                "Freespace may not be correct on next mount.");
1043
1044        error = xfs_log_sbcount(mp);
1045        if (error)
1046                xfs_warn(mp, "Unable to update superblock counters. "
1047                                "Freespace may not be correct on next mount.");
1048
1049
1050        xfs_log_unmount(mp);
1051        xfs_da_unmount(mp);
1052        xfs_uuid_unmount(mp);
1053
1054#if defined(DEBUG)
1055        xfs_errortag_clearall(mp, 0);
1056#endif
1057        xfs_free_perag(mp);
1058
1059        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1060        xfs_sysfs_del(&mp->m_kobj);
1061}
1062
1063/*
1064 * Determine whether modifications can proceed. The caller specifies the minimum
1065 * freeze level for which modifications should not be allowed. This allows
1066 * certain operations to proceed while the freeze sequence is in progress, if
1067 * necessary.
1068 */
1069bool
1070xfs_fs_writable(
1071        struct xfs_mount        *mp,
1072        int                     level)
1073{
1074        ASSERT(level > SB_UNFROZEN);
1075        if ((mp->m_super->s_writers.frozen >= level) ||
1076            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1077                return false;
1078
1079        return true;
1080}
1081
1082/*
1083 * xfs_log_sbcount
1084 *
1085 * Sync the superblock counters to disk.
1086 *
1087 * Note this code can be called during the process of freezing, so we use the
1088 * transaction allocator that does not block when the transaction subsystem is
1089 * in its frozen state.
1090 */
1091int
1092xfs_log_sbcount(xfs_mount_t *mp)
1093{
1094        /* allow this to proceed during the freeze sequence... */
1095        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1096                return 0;
1097
1098        /*
1099         * we don't need to do this if we are updating the superblock
1100         * counters on every modification.
1101         */
1102        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1103                return 0;
1104
1105        return xfs_sync_sb(mp, true);
1106}
1107
1108/*
1109 * Deltas for the inode count are +/-64, hence we use a large batch size
1110 * of 128 so we don't need to take the counter lock on every update.
1111 */
1112#define XFS_ICOUNT_BATCH        128
1113int
1114xfs_mod_icount(
1115        struct xfs_mount        *mp,
1116        int64_t                 delta)
1117{
1118        __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1119        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1120                ASSERT(0);
1121                percpu_counter_add(&mp->m_icount, -delta);
1122                return -EINVAL;
1123        }
1124        return 0;
1125}
1126
1127int
1128xfs_mod_ifree(
1129        struct xfs_mount        *mp,
1130        int64_t                 delta)
1131{
1132        percpu_counter_add(&mp->m_ifree, delta);
1133        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1134                ASSERT(0);
1135                percpu_counter_add(&mp->m_ifree, -delta);
1136                return -EINVAL;
1137        }
1138        return 0;
1139}
1140
1141/*
1142 * Deltas for the block count can vary from 1 to very large, but lock contention
1143 * only occurs on frequent small block count updates such as in the delayed
1144 * allocation path for buffered writes (page a time updates). Hence we set
1145 * a large batch count (1024) to minimise global counter updates except when
1146 * we get near to ENOSPC and we have to be very accurate with our updates.
1147 */
1148#define XFS_FDBLOCKS_BATCH      1024
1149int
1150xfs_mod_fdblocks(
1151        struct xfs_mount        *mp,
1152        int64_t                 delta,
1153        bool                    rsvd)
1154{
1155        int64_t                 lcounter;
1156        long long               res_used;
1157        s32                     batch;
1158
1159        if (delta > 0) {
1160                /*
1161                 * If the reserve pool is depleted, put blocks back into it
1162                 * first. Most of the time the pool is full.
1163                 */
1164                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1165                        percpu_counter_add(&mp->m_fdblocks, delta);
1166                        return 0;
1167                }
1168
1169                spin_lock(&mp->m_sb_lock);
1170                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1171
1172                if (res_used > delta) {
1173                        mp->m_resblks_avail += delta;
1174                } else {
1175                        delta -= res_used;
1176                        mp->m_resblks_avail = mp->m_resblks;
1177                        percpu_counter_add(&mp->m_fdblocks, delta);
1178                }
1179                spin_unlock(&mp->m_sb_lock);
1180                return 0;
1181        }
1182
1183        /*
1184         * Taking blocks away, need to be more accurate the closer we
1185         * are to zero.
1186         *
1187         * If the counter has a value of less than 2 * max batch size,
1188         * then make everything serialise as we are real close to
1189         * ENOSPC.
1190         */
1191        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1192                                     XFS_FDBLOCKS_BATCH) < 0)
1193                batch = 1;
1194        else
1195                batch = XFS_FDBLOCKS_BATCH;
1196
1197        __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1198        if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1199                                     XFS_FDBLOCKS_BATCH) >= 0) {
1200                /* we had space! */
1201                return 0;
1202        }
1203
1204        /*
1205         * lock up the sb for dipping into reserves before releasing the space
1206         * that took us to ENOSPC.
1207         */
1208        spin_lock(&mp->m_sb_lock);
1209        percpu_counter_add(&mp->m_fdblocks, -delta);
1210        if (!rsvd)
1211                goto fdblocks_enospc;
1212
1213        lcounter = (long long)mp->m_resblks_avail + delta;
1214        if (lcounter >= 0) {
1215                mp->m_resblks_avail = lcounter;
1216                spin_unlock(&mp->m_sb_lock);
1217                return 0;
1218        }
1219        printk_once(KERN_WARNING
1220                "Filesystem \"%s\": reserve blocks depleted! "
1221                "Consider increasing reserve pool size.",
1222                mp->m_fsname);
1223fdblocks_enospc:
1224        spin_unlock(&mp->m_sb_lock);
1225        return -ENOSPC;
1226}
1227
1228int
1229xfs_mod_frextents(
1230        struct xfs_mount        *mp,
1231        int64_t                 delta)
1232{
1233        int64_t                 lcounter;
1234        int                     ret = 0;
1235
1236        spin_lock(&mp->m_sb_lock);
1237        lcounter = mp->m_sb.sb_frextents + delta;
1238        if (lcounter < 0)
1239                ret = -ENOSPC;
1240        else
1241                mp->m_sb.sb_frextents = lcounter;
1242        spin_unlock(&mp->m_sb_lock);
1243        return ret;
1244}
1245
1246/*
1247 * xfs_getsb() is called to obtain the buffer for the superblock.
1248 * The buffer is returned locked and read in from disk.
1249 * The buffer should be released with a call to xfs_brelse().
1250 *
1251 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1252 * the superblock buffer if it can be locked without sleeping.
1253 * If it can't then we'll return NULL.
1254 */
1255struct xfs_buf *
1256xfs_getsb(
1257        struct xfs_mount        *mp,
1258        int                     flags)
1259{
1260        struct xfs_buf          *bp = mp->m_sb_bp;
1261
1262        if (!xfs_buf_trylock(bp)) {
1263                if (flags & XBF_TRYLOCK)
1264                        return NULL;
1265                xfs_buf_lock(bp);
1266        }
1267
1268        xfs_buf_hold(bp);
1269        ASSERT(bp->b_flags & XBF_DONE);
1270        return bp;
1271}
1272
1273/*
1274 * Used to free the superblock along various error paths.
1275 */
1276void
1277xfs_freesb(
1278        struct xfs_mount        *mp)
1279{
1280        struct xfs_buf          *bp = mp->m_sb_bp;
1281
1282        xfs_buf_lock(bp);
1283        mp->m_sb_bp = NULL;
1284        xfs_buf_relse(bp);
1285}
1286
1287/*
1288 * If the underlying (data/log/rt) device is readonly, there are some
1289 * operations that cannot proceed.
1290 */
1291int
1292xfs_dev_is_read_only(
1293        struct xfs_mount        *mp,
1294        char                    *message)
1295{
1296        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1297            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1298            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1299                xfs_notice(mp, "%s required on read-only device.", message);
1300                xfs_notice(mp, "write access unavailable, cannot proceed.");
1301                return -EROFS;
1302        }
1303        return 0;
1304}
1305