linux/include/crypto/algapi.h
<<
>>
Prefs
   1/*
   2 * Cryptographic API for algorithms (i.e., low-level API).
   3 *
   4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12#ifndef _CRYPTO_ALGAPI_H
  13#define _CRYPTO_ALGAPI_H
  14
  15#include <linux/crypto.h>
  16#include <linux/list.h>
  17#include <linux/kernel.h>
  18#include <linux/kthread.h>
  19#include <linux/skbuff.h>
  20
  21struct crypto_aead;
  22struct crypto_instance;
  23struct module;
  24struct rtattr;
  25struct seq_file;
  26
  27struct crypto_type {
  28        unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
  29        unsigned int (*extsize)(struct crypto_alg *alg);
  30        int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
  31        int (*init_tfm)(struct crypto_tfm *tfm);
  32        void (*show)(struct seq_file *m, struct crypto_alg *alg);
  33        int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
  34        struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
  35        void (*free)(struct crypto_instance *inst);
  36
  37        unsigned int type;
  38        unsigned int maskclear;
  39        unsigned int maskset;
  40        unsigned int tfmsize;
  41};
  42
  43struct crypto_instance {
  44        struct crypto_alg alg;
  45
  46        struct crypto_template *tmpl;
  47        struct hlist_node list;
  48
  49        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  50};
  51
  52struct crypto_template {
  53        struct list_head list;
  54        struct hlist_head instances;
  55        struct module *module;
  56
  57        struct crypto_instance *(*alloc)(struct rtattr **tb);
  58        void (*free)(struct crypto_instance *inst);
  59        int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
  60
  61        char name[CRYPTO_MAX_ALG_NAME];
  62};
  63
  64struct crypto_spawn {
  65        struct list_head list;
  66        struct crypto_alg *alg;
  67        struct crypto_instance *inst;
  68        const struct crypto_type *frontend;
  69        u32 mask;
  70};
  71
  72struct crypto_queue {
  73        struct list_head list;
  74        struct list_head *backlog;
  75
  76        unsigned int qlen;
  77        unsigned int max_qlen;
  78};
  79
  80struct scatter_walk {
  81        struct scatterlist *sg;
  82        unsigned int offset;
  83};
  84
  85struct blkcipher_walk {
  86        union {
  87                struct {
  88                        struct page *page;
  89                        unsigned long offset;
  90                } phys;
  91
  92                struct {
  93                        u8 *page;
  94                        u8 *addr;
  95                } virt;
  96        } src, dst;
  97
  98        struct scatter_walk in;
  99        unsigned int nbytes;
 100
 101        struct scatter_walk out;
 102        unsigned int total;
 103
 104        void *page;
 105        u8 *buffer;
 106        u8 *iv;
 107        unsigned int ivsize;
 108
 109        int flags;
 110        unsigned int walk_blocksize;
 111        unsigned int cipher_blocksize;
 112        unsigned int alignmask;
 113};
 114
 115struct ablkcipher_walk {
 116        struct {
 117                struct page *page;
 118                unsigned int offset;
 119        } src, dst;
 120
 121        struct scatter_walk     in;
 122        unsigned int            nbytes;
 123        struct scatter_walk     out;
 124        unsigned int            total;
 125        struct list_head        buffers;
 126        u8                      *iv_buffer;
 127        u8                      *iv;
 128        int                     flags;
 129        unsigned int            blocksize;
 130};
 131
 132#define ENGINE_NAME_LEN 30
 133/*
 134 * struct crypto_engine - crypto hardware engine
 135 * @name: the engine name
 136 * @idling: the engine is entering idle state
 137 * @busy: request pump is busy
 138 * @running: the engine is on working
 139 * @cur_req_prepared: current request is prepared
 140 * @list: link with the global crypto engine list
 141 * @queue_lock: spinlock to syncronise access to request queue
 142 * @queue: the crypto queue of the engine
 143 * @rt: whether this queue is set to run as a realtime task
 144 * @prepare_crypt_hardware: a request will soon arrive from the queue
 145 * so the subsystem requests the driver to prepare the hardware
 146 * by issuing this call
 147 * @unprepare_crypt_hardware: there are currently no more requests on the
 148 * queue so the subsystem notifies the driver that it may relax the
 149 * hardware by issuing this call
 150 * @prepare_request: do some prepare if need before handle the current request
 151 * @unprepare_request: undo any work done by prepare_message()
 152 * @crypt_one_request: do encryption for current request
 153 * @kworker: thread struct for request pump
 154 * @kworker_task: pointer to task for request pump kworker thread
 155 * @pump_requests: work struct for scheduling work to the request pump
 156 * @priv_data: the engine private data
 157 * @cur_req: the current request which is on processing
 158 */
 159struct crypto_engine {
 160        char                    name[ENGINE_NAME_LEN];
 161        bool                    idling;
 162        bool                    busy;
 163        bool                    running;
 164        bool                    cur_req_prepared;
 165
 166        struct list_head        list;
 167        spinlock_t              queue_lock;
 168        struct crypto_queue     queue;
 169
 170        bool                    rt;
 171
 172        int (*prepare_crypt_hardware)(struct crypto_engine *engine);
 173        int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
 174
 175        int (*prepare_request)(struct crypto_engine *engine,
 176                               struct ablkcipher_request *req);
 177        int (*unprepare_request)(struct crypto_engine *engine,
 178                                 struct ablkcipher_request *req);
 179        int (*crypt_one_request)(struct crypto_engine *engine,
 180                                 struct ablkcipher_request *req);
 181
 182        struct kthread_worker           kworker;
 183        struct task_struct              *kworker_task;
 184        struct kthread_work             pump_requests;
 185
 186        void                            *priv_data;
 187        struct ablkcipher_request       *cur_req;
 188};
 189
 190int crypto_transfer_request(struct crypto_engine *engine,
 191                            struct ablkcipher_request *req, bool need_pump);
 192int crypto_transfer_request_to_engine(struct crypto_engine *engine,
 193                                      struct ablkcipher_request *req);
 194void crypto_finalize_request(struct crypto_engine *engine,
 195                             struct ablkcipher_request *req, int err);
 196int crypto_engine_start(struct crypto_engine *engine);
 197int crypto_engine_stop(struct crypto_engine *engine);
 198struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
 199int crypto_engine_exit(struct crypto_engine *engine);
 200
 201extern const struct crypto_type crypto_ablkcipher_type;
 202extern const struct crypto_type crypto_blkcipher_type;
 203
 204void crypto_mod_put(struct crypto_alg *alg);
 205
 206int crypto_register_template(struct crypto_template *tmpl);
 207void crypto_unregister_template(struct crypto_template *tmpl);
 208struct crypto_template *crypto_lookup_template(const char *name);
 209
 210int crypto_register_instance(struct crypto_template *tmpl,
 211                             struct crypto_instance *inst);
 212int crypto_unregister_instance(struct crypto_instance *inst);
 213
 214int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
 215                      struct crypto_instance *inst, u32 mask);
 216int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
 217                       struct crypto_instance *inst,
 218                       const struct crypto_type *frontend);
 219int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
 220                      u32 type, u32 mask);
 221
 222void crypto_drop_spawn(struct crypto_spawn *spawn);
 223struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
 224                                    u32 mask);
 225void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
 226
 227static inline void crypto_set_spawn(struct crypto_spawn *spawn,
 228                                    struct crypto_instance *inst)
 229{
 230        spawn->inst = inst;
 231}
 232
 233struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
 234int crypto_check_attr_type(struct rtattr **tb, u32 type);
 235const char *crypto_attr_alg_name(struct rtattr *rta);
 236struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
 237                                    const struct crypto_type *frontend,
 238                                    u32 type, u32 mask);
 239
 240static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
 241                                                 u32 type, u32 mask)
 242{
 243        return crypto_attr_alg2(rta, NULL, type, mask);
 244}
 245
 246int crypto_attr_u32(struct rtattr *rta, u32 *num);
 247void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
 248                             unsigned int head);
 249struct crypto_instance *crypto_alloc_instance(const char *name,
 250                                              struct crypto_alg *alg);
 251
 252void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
 253int crypto_enqueue_request(struct crypto_queue *queue,
 254                           struct crypto_async_request *request);
 255struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
 256int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
 257static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
 258{
 259        return queue->qlen;
 260}
 261
 262/* These functions require the input/output to be aligned as u32. */
 263void crypto_inc(u8 *a, unsigned int size);
 264void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
 265
 266int blkcipher_walk_done(struct blkcipher_desc *desc,
 267                        struct blkcipher_walk *walk, int err);
 268int blkcipher_walk_virt(struct blkcipher_desc *desc,
 269                        struct blkcipher_walk *walk);
 270int blkcipher_walk_phys(struct blkcipher_desc *desc,
 271                        struct blkcipher_walk *walk);
 272int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
 273                              struct blkcipher_walk *walk,
 274                              unsigned int blocksize);
 275int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
 276                                   struct blkcipher_walk *walk,
 277                                   struct crypto_aead *tfm,
 278                                   unsigned int blocksize);
 279
 280int ablkcipher_walk_done(struct ablkcipher_request *req,
 281                         struct ablkcipher_walk *walk, int err);
 282int ablkcipher_walk_phys(struct ablkcipher_request *req,
 283                         struct ablkcipher_walk *walk);
 284void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
 285
 286static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
 287{
 288        return PTR_ALIGN(crypto_tfm_ctx(tfm),
 289                         crypto_tfm_alg_alignmask(tfm) + 1);
 290}
 291
 292static inline struct crypto_instance *crypto_tfm_alg_instance(
 293        struct crypto_tfm *tfm)
 294{
 295        return container_of(tfm->__crt_alg, struct crypto_instance, alg);
 296}
 297
 298static inline void *crypto_instance_ctx(struct crypto_instance *inst)
 299{
 300        return inst->__ctx;
 301}
 302
 303static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
 304        struct crypto_ablkcipher *tfm)
 305{
 306        return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
 307}
 308
 309static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
 310{
 311        return crypto_tfm_ctx(&tfm->base);
 312}
 313
 314static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
 315{
 316        return crypto_tfm_ctx_aligned(&tfm->base);
 317}
 318
 319static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
 320        struct crypto_spawn *spawn)
 321{
 322        u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
 323        u32 mask = CRYPTO_ALG_TYPE_MASK;
 324
 325        return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
 326}
 327
 328static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
 329{
 330        return crypto_tfm_ctx(&tfm->base);
 331}
 332
 333static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
 334{
 335        return crypto_tfm_ctx_aligned(&tfm->base);
 336}
 337
 338static inline struct crypto_cipher *crypto_spawn_cipher(
 339        struct crypto_spawn *spawn)
 340{
 341        u32 type = CRYPTO_ALG_TYPE_CIPHER;
 342        u32 mask = CRYPTO_ALG_TYPE_MASK;
 343
 344        return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
 345}
 346
 347static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
 348{
 349        return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
 350}
 351
 352static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
 353                                       struct scatterlist *dst,
 354                                       struct scatterlist *src,
 355                                       unsigned int nbytes)
 356{
 357        walk->in.sg = src;
 358        walk->out.sg = dst;
 359        walk->total = nbytes;
 360}
 361
 362static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
 363                                        struct scatterlist *dst,
 364                                        struct scatterlist *src,
 365                                        unsigned int nbytes)
 366{
 367        walk->in.sg = src;
 368        walk->out.sg = dst;
 369        walk->total = nbytes;
 370        INIT_LIST_HEAD(&walk->buffers);
 371}
 372
 373static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
 374{
 375        if (unlikely(!list_empty(&walk->buffers)))
 376                __ablkcipher_walk_complete(walk);
 377}
 378
 379static inline struct crypto_async_request *crypto_get_backlog(
 380        struct crypto_queue *queue)
 381{
 382        return queue->backlog == &queue->list ? NULL :
 383               container_of(queue->backlog, struct crypto_async_request, list);
 384}
 385
 386static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
 387                                             struct ablkcipher_request *request)
 388{
 389        return crypto_enqueue_request(queue, &request->base);
 390}
 391
 392static inline struct ablkcipher_request *ablkcipher_dequeue_request(
 393        struct crypto_queue *queue)
 394{
 395        return ablkcipher_request_cast(crypto_dequeue_request(queue));
 396}
 397
 398static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
 399{
 400        return req->__ctx;
 401}
 402
 403static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
 404                                          struct crypto_ablkcipher *tfm)
 405{
 406        return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
 407}
 408
 409static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
 410                                                     u32 type, u32 mask)
 411{
 412        return crypto_attr_alg(tb[1], type, mask);
 413}
 414
 415/*
 416 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
 417 * Otherwise returns zero.
 418 */
 419static inline int crypto_requires_sync(u32 type, u32 mask)
 420{
 421        return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
 422}
 423
 424noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
 425
 426/**
 427 * crypto_memneq - Compare two areas of memory without leaking
 428 *                 timing information.
 429 *
 430 * @a: One area of memory
 431 * @b: Another area of memory
 432 * @size: The size of the area.
 433 *
 434 * Returns 0 when data is equal, 1 otherwise.
 435 */
 436static inline int crypto_memneq(const void *a, const void *b, size_t size)
 437{
 438        return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
 439}
 440
 441static inline void crypto_yield(u32 flags)
 442{
 443        if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
 444                cond_resched();
 445}
 446
 447#endif  /* _CRYPTO_ALGAPI_H */
 448