linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/*
   2 * Symmetric key ciphers.
   3 * 
   4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_SKCIPHER_H
  14#define _CRYPTO_SKCIPHER_H
  15
  16#include <linux/crypto.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19
  20/**
  21 *      struct skcipher_request - Symmetric key cipher request
  22 *      @cryptlen: Number of bytes to encrypt or decrypt
  23 *      @iv: Initialisation Vector
  24 *      @src: Source SG list
  25 *      @dst: Destination SG list
  26 *      @base: Underlying async request request
  27 *      @__ctx: Start of private context data
  28 */
  29struct skcipher_request {
  30        unsigned int cryptlen;
  31
  32        u8 *iv;
  33
  34        struct scatterlist *src;
  35        struct scatterlist *dst;
  36
  37        struct crypto_async_request base;
  38
  39        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  40};
  41
  42/**
  43 *      struct skcipher_givcrypt_request - Crypto request with IV generation
  44 *      @seq: Sequence number for IV generation
  45 *      @giv: Space for generated IV
  46 *      @creq: The crypto request itself
  47 */
  48struct skcipher_givcrypt_request {
  49        u64 seq;
  50        u8 *giv;
  51
  52        struct ablkcipher_request creq;
  53};
  54
  55struct crypto_skcipher {
  56        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  57                      unsigned int keylen);
  58        int (*encrypt)(struct skcipher_request *req);
  59        int (*decrypt)(struct skcipher_request *req);
  60
  61        unsigned int ivsize;
  62        unsigned int reqsize;
  63        unsigned int keysize;
  64
  65        struct crypto_tfm base;
  66};
  67
  68#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  69        char __##name##_desc[sizeof(struct skcipher_request) + \
  70                crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
  71        struct skcipher_request *name = (void *)__##name##_desc
  72
  73static inline struct crypto_ablkcipher *skcipher_givcrypt_reqtfm(
  74        struct skcipher_givcrypt_request *req)
  75{
  76        return crypto_ablkcipher_reqtfm(&req->creq);
  77}
  78
  79static inline int crypto_skcipher_givencrypt(
  80        struct skcipher_givcrypt_request *req)
  81{
  82        struct ablkcipher_tfm *crt =
  83                crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
  84        return crt->givencrypt(req);
  85};
  86
  87static inline int crypto_skcipher_givdecrypt(
  88        struct skcipher_givcrypt_request *req)
  89{
  90        struct ablkcipher_tfm *crt =
  91                crypto_ablkcipher_crt(skcipher_givcrypt_reqtfm(req));
  92        return crt->givdecrypt(req);
  93};
  94
  95static inline void skcipher_givcrypt_set_tfm(
  96        struct skcipher_givcrypt_request *req, struct crypto_ablkcipher *tfm)
  97{
  98        req->creq.base.tfm = crypto_ablkcipher_tfm(tfm);
  99}
 100
 101static inline struct skcipher_givcrypt_request *skcipher_givcrypt_cast(
 102        struct crypto_async_request *req)
 103{
 104        return container_of(ablkcipher_request_cast(req),
 105                            struct skcipher_givcrypt_request, creq);
 106}
 107
 108static inline struct skcipher_givcrypt_request *skcipher_givcrypt_alloc(
 109        struct crypto_ablkcipher *tfm, gfp_t gfp)
 110{
 111        struct skcipher_givcrypt_request *req;
 112
 113        req = kmalloc(sizeof(struct skcipher_givcrypt_request) +
 114                      crypto_ablkcipher_reqsize(tfm), gfp);
 115
 116        if (likely(req))
 117                skcipher_givcrypt_set_tfm(req, tfm);
 118
 119        return req;
 120}
 121
 122static inline void skcipher_givcrypt_free(struct skcipher_givcrypt_request *req)
 123{
 124        kfree(req);
 125}
 126
 127static inline void skcipher_givcrypt_set_callback(
 128        struct skcipher_givcrypt_request *req, u32 flags,
 129        crypto_completion_t compl, void *data)
 130{
 131        ablkcipher_request_set_callback(&req->creq, flags, compl, data);
 132}
 133
 134static inline void skcipher_givcrypt_set_crypt(
 135        struct skcipher_givcrypt_request *req,
 136        struct scatterlist *src, struct scatterlist *dst,
 137        unsigned int nbytes, void *iv)
 138{
 139        ablkcipher_request_set_crypt(&req->creq, src, dst, nbytes, iv);
 140}
 141
 142static inline void skcipher_givcrypt_set_giv(
 143        struct skcipher_givcrypt_request *req, u8 *giv, u64 seq)
 144{
 145        req->giv = giv;
 146        req->seq = seq;
 147}
 148
 149/**
 150 * DOC: Symmetric Key Cipher API
 151 *
 152 * Symmetric key cipher API is used with the ciphers of type
 153 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 154 *
 155 * Asynchronous cipher operations imply that the function invocation for a
 156 * cipher request returns immediately before the completion of the operation.
 157 * The cipher request is scheduled as a separate kernel thread and therefore
 158 * load-balanced on the different CPUs via the process scheduler. To allow
 159 * the kernel crypto API to inform the caller about the completion of a cipher
 160 * request, the caller must provide a callback function. That function is
 161 * invoked with the cipher handle when the request completes.
 162 *
 163 * To support the asynchronous operation, additional information than just the
 164 * cipher handle must be supplied to the kernel crypto API. That additional
 165 * information is given by filling in the skcipher_request data structure.
 166 *
 167 * For the symmetric key cipher API, the state is maintained with the tfm
 168 * cipher handle. A single tfm can be used across multiple calls and in
 169 * parallel. For asynchronous block cipher calls, context data supplied and
 170 * only used by the caller can be referenced the request data structure in
 171 * addition to the IV used for the cipher request. The maintenance of such
 172 * state information would be important for a crypto driver implementer to
 173 * have, because when calling the callback function upon completion of the
 174 * cipher operation, that callback function may need some information about
 175 * which operation just finished if it invoked multiple in parallel. This
 176 * state information is unused by the kernel crypto API.
 177 */
 178
 179static inline struct crypto_skcipher *__crypto_skcipher_cast(
 180        struct crypto_tfm *tfm)
 181{
 182        return container_of(tfm, struct crypto_skcipher, base);
 183}
 184
 185/**
 186 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 187 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 188 *            skcipher cipher
 189 * @type: specifies the type of the cipher
 190 * @mask: specifies the mask for the cipher
 191 *
 192 * Allocate a cipher handle for an skcipher. The returned struct
 193 * crypto_skcipher is the cipher handle that is required for any subsequent
 194 * API invocation for that skcipher.
 195 *
 196 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 197 *         of an error, PTR_ERR() returns the error code.
 198 */
 199struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 200                                              u32 type, u32 mask);
 201
 202static inline struct crypto_tfm *crypto_skcipher_tfm(
 203        struct crypto_skcipher *tfm)
 204{
 205        return &tfm->base;
 206}
 207
 208/**
 209 * crypto_free_skcipher() - zeroize and free cipher handle
 210 * @tfm: cipher handle to be freed
 211 */
 212static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 213{
 214        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 215}
 216
 217/**
 218 * crypto_has_skcipher() - Search for the availability of an skcipher.
 219 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 220 *            skcipher
 221 * @type: specifies the type of the cipher
 222 * @mask: specifies the mask for the cipher
 223 *
 224 * Return: true when the skcipher is known to the kernel crypto API; false
 225 *         otherwise
 226 */
 227static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 228                                        u32 mask)
 229{
 230        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 231                              crypto_skcipher_mask(mask));
 232}
 233
 234static inline const char *crypto_skcipher_driver_name(
 235        struct crypto_skcipher *tfm)
 236{
 237        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 238}
 239
 240/**
 241 * crypto_skcipher_ivsize() - obtain IV size
 242 * @tfm: cipher handle
 243 *
 244 * The size of the IV for the skcipher referenced by the cipher handle is
 245 * returned. This IV size may be zero if the cipher does not need an IV.
 246 *
 247 * Return: IV size in bytes
 248 */
 249static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 250{
 251        return tfm->ivsize;
 252}
 253
 254/**
 255 * crypto_skcipher_blocksize() - obtain block size of cipher
 256 * @tfm: cipher handle
 257 *
 258 * The block size for the skcipher referenced with the cipher handle is
 259 * returned. The caller may use that information to allocate appropriate
 260 * memory for the data returned by the encryption or decryption operation
 261 *
 262 * Return: block size of cipher
 263 */
 264static inline unsigned int crypto_skcipher_blocksize(
 265        struct crypto_skcipher *tfm)
 266{
 267        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 268}
 269
 270static inline unsigned int crypto_skcipher_alignmask(
 271        struct crypto_skcipher *tfm)
 272{
 273        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 274}
 275
 276static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 277{
 278        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 279}
 280
 281static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 282                                               u32 flags)
 283{
 284        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 285}
 286
 287static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 288                                                 u32 flags)
 289{
 290        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 291}
 292
 293/**
 294 * crypto_skcipher_setkey() - set key for cipher
 295 * @tfm: cipher handle
 296 * @key: buffer holding the key
 297 * @keylen: length of the key in bytes
 298 *
 299 * The caller provided key is set for the skcipher referenced by the cipher
 300 * handle.
 301 *
 302 * Note, the key length determines the cipher type. Many block ciphers implement
 303 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 304 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 305 * is performed.
 306 *
 307 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 308 */
 309static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 310                                         const u8 *key, unsigned int keylen)
 311{
 312        return tfm->setkey(tfm, key, keylen);
 313}
 314
 315static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
 316{
 317        return tfm->keysize;
 318}
 319
 320static inline unsigned int crypto_skcipher_default_keysize(
 321        struct crypto_skcipher *tfm)
 322{
 323        return tfm->keysize;
 324}
 325
 326/**
 327 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 328 * @req: skcipher_request out of which the cipher handle is to be obtained
 329 *
 330 * Return the crypto_skcipher handle when furnishing an skcipher_request
 331 * data structure.
 332 *
 333 * Return: crypto_skcipher handle
 334 */
 335static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 336        struct skcipher_request *req)
 337{
 338        return __crypto_skcipher_cast(req->base.tfm);
 339}
 340
 341/**
 342 * crypto_skcipher_encrypt() - encrypt plaintext
 343 * @req: reference to the skcipher_request handle that holds all information
 344 *       needed to perform the cipher operation
 345 *
 346 * Encrypt plaintext data using the skcipher_request handle. That data
 347 * structure and how it is filled with data is discussed with the
 348 * skcipher_request_* functions.
 349 *
 350 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 351 */
 352static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
 353{
 354        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 355
 356        return tfm->encrypt(req);
 357}
 358
 359/**
 360 * crypto_skcipher_decrypt() - decrypt ciphertext
 361 * @req: reference to the skcipher_request handle that holds all information
 362 *       needed to perform the cipher operation
 363 *
 364 * Decrypt ciphertext data using the skcipher_request handle. That data
 365 * structure and how it is filled with data is discussed with the
 366 * skcipher_request_* functions.
 367 *
 368 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 369 */
 370static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
 371{
 372        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 373
 374        return tfm->decrypt(req);
 375}
 376
 377/**
 378 * DOC: Symmetric Key Cipher Request Handle
 379 *
 380 * The skcipher_request data structure contains all pointers to data
 381 * required for the symmetric key cipher operation. This includes the cipher
 382 * handle (which can be used by multiple skcipher_request instances), pointer
 383 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 384 * as a handle to the skcipher_request_* API calls in a similar way as
 385 * skcipher handle to the crypto_skcipher_* API calls.
 386 */
 387
 388/**
 389 * crypto_skcipher_reqsize() - obtain size of the request data structure
 390 * @tfm: cipher handle
 391 *
 392 * Return: number of bytes
 393 */
 394static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 395{
 396        return tfm->reqsize;
 397}
 398
 399/**
 400 * skcipher_request_set_tfm() - update cipher handle reference in request
 401 * @req: request handle to be modified
 402 * @tfm: cipher handle that shall be added to the request handle
 403 *
 404 * Allow the caller to replace the existing skcipher handle in the request
 405 * data structure with a different one.
 406 */
 407static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 408                                            struct crypto_skcipher *tfm)
 409{
 410        req->base.tfm = crypto_skcipher_tfm(tfm);
 411}
 412
 413static inline struct skcipher_request *skcipher_request_cast(
 414        struct crypto_async_request *req)
 415{
 416        return container_of(req, struct skcipher_request, base);
 417}
 418
 419/**
 420 * skcipher_request_alloc() - allocate request data structure
 421 * @tfm: cipher handle to be registered with the request
 422 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 423 *
 424 * Allocate the request data structure that must be used with the skcipher
 425 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 426 * handle is registered in the request data structure.
 427 *
 428 * Return: allocated request handle in case of success; IS_ERR() is true in case
 429 *         of an error, PTR_ERR() returns the error code.
 430 */
 431static inline struct skcipher_request *skcipher_request_alloc(
 432        struct crypto_skcipher *tfm, gfp_t gfp)
 433{
 434        struct skcipher_request *req;
 435
 436        req = kmalloc(sizeof(struct skcipher_request) +
 437                      crypto_skcipher_reqsize(tfm), gfp);
 438
 439        if (likely(req))
 440                skcipher_request_set_tfm(req, tfm);
 441
 442        return req;
 443}
 444
 445/**
 446 * skcipher_request_free() - zeroize and free request data structure
 447 * @req: request data structure cipher handle to be freed
 448 */
 449static inline void skcipher_request_free(struct skcipher_request *req)
 450{
 451        kzfree(req);
 452}
 453
 454static inline void skcipher_request_zero(struct skcipher_request *req)
 455{
 456        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 457
 458        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 459}
 460
 461/**
 462 * skcipher_request_set_callback() - set asynchronous callback function
 463 * @req: request handle
 464 * @flags: specify zero or an ORing of the flags
 465 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 466 *         increase the wait queue beyond the initial maximum size;
 467 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 468 * @compl: callback function pointer to be registered with the request handle
 469 * @data: The data pointer refers to memory that is not used by the kernel
 470 *        crypto API, but provided to the callback function for it to use. Here,
 471 *        the caller can provide a reference to memory the callback function can
 472 *        operate on. As the callback function is invoked asynchronously to the
 473 *        related functionality, it may need to access data structures of the
 474 *        related functionality which can be referenced using this pointer. The
 475 *        callback function can access the memory via the "data" field in the
 476 *        crypto_async_request data structure provided to the callback function.
 477 *
 478 * This function allows setting the callback function that is triggered once the
 479 * cipher operation completes.
 480 *
 481 * The callback function is registered with the skcipher_request handle and
 482 * must comply with the following template
 483 *
 484 *      void callback_function(struct crypto_async_request *req, int error)
 485 */
 486static inline void skcipher_request_set_callback(struct skcipher_request *req,
 487                                                 u32 flags,
 488                                                 crypto_completion_t compl,
 489                                                 void *data)
 490{
 491        req->base.complete = compl;
 492        req->base.data = data;
 493        req->base.flags = flags;
 494}
 495
 496/**
 497 * skcipher_request_set_crypt() - set data buffers
 498 * @req: request handle
 499 * @src: source scatter / gather list
 500 * @dst: destination scatter / gather list
 501 * @cryptlen: number of bytes to process from @src
 502 * @iv: IV for the cipher operation which must comply with the IV size defined
 503 *      by crypto_skcipher_ivsize
 504 *
 505 * This function allows setting of the source data and destination data
 506 * scatter / gather lists.
 507 *
 508 * For encryption, the source is treated as the plaintext and the
 509 * destination is the ciphertext. For a decryption operation, the use is
 510 * reversed - the source is the ciphertext and the destination is the plaintext.
 511 */
 512static inline void skcipher_request_set_crypt(
 513        struct skcipher_request *req,
 514        struct scatterlist *src, struct scatterlist *dst,
 515        unsigned int cryptlen, void *iv)
 516{
 517        req->src = src;
 518        req->dst = dst;
 519        req->cryptlen = cryptlen;
 520        req->iv = iv;
 521}
 522
 523#endif  /* _CRYPTO_SKCIPHER_H */
 524
 525