linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in the
  15 * file called COPYING.
  16 */
  17#ifndef LINUX_DMAENGINE_H
  18#define LINUX_DMAENGINE_H
  19
  20#include <linux/device.h>
  21#include <linux/err.h>
  22#include <linux/uio.h>
  23#include <linux/bug.h>
  24#include <linux/scatterlist.h>
  25#include <linux/bitmap.h>
  26#include <linux/types.h>
  27#include <asm/page.h>
  28
  29/**
  30 * typedef dma_cookie_t - an opaque DMA cookie
  31 *
  32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  33 */
  34typedef s32 dma_cookie_t;
  35#define DMA_MIN_COOKIE  1
  36
  37static inline int dma_submit_error(dma_cookie_t cookie)
  38{
  39        return cookie < 0 ? cookie : 0;
  40}
  41
  42/**
  43 * enum dma_status - DMA transaction status
  44 * @DMA_COMPLETE: transaction completed
  45 * @DMA_IN_PROGRESS: transaction not yet processed
  46 * @DMA_PAUSED: transaction is paused
  47 * @DMA_ERROR: transaction failed
  48 */
  49enum dma_status {
  50        DMA_COMPLETE,
  51        DMA_IN_PROGRESS,
  52        DMA_PAUSED,
  53        DMA_ERROR,
  54};
  55
  56/**
  57 * enum dma_transaction_type - DMA transaction types/indexes
  58 *
  59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  60 * automatically set as dma devices are registered.
  61 */
  62enum dma_transaction_type {
  63        DMA_MEMCPY,
  64        DMA_XOR,
  65        DMA_PQ,
  66        DMA_XOR_VAL,
  67        DMA_PQ_VAL,
  68        DMA_MEMSET,
  69        DMA_MEMSET_SG,
  70        DMA_INTERRUPT,
  71        DMA_SG,
  72        DMA_PRIVATE,
  73        DMA_ASYNC_TX,
  74        DMA_SLAVE,
  75        DMA_CYCLIC,
  76        DMA_INTERLEAVE,
  77/* last transaction type for creation of the capabilities mask */
  78        DMA_TX_TYPE_END,
  79};
  80
  81/**
  82 * enum dma_transfer_direction - dma transfer mode and direction indicator
  83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  87 */
  88enum dma_transfer_direction {
  89        DMA_MEM_TO_MEM,
  90        DMA_MEM_TO_DEV,
  91        DMA_DEV_TO_MEM,
  92        DMA_DEV_TO_DEV,
  93        DMA_TRANS_NONE,
  94};
  95
  96/**
  97 * Interleaved Transfer Request
  98 * ----------------------------
  99 * A chunk is collection of contiguous bytes to be transfered.
 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
 101 * ICGs may or maynot change between chunks.
 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
 103 *  that when repeated an integral number of times, specifies the transfer.
 104 * A transfer template is specification of a Frame, the number of times
 105 *  it is to be repeated and other per-transfer attributes.
 106 *
 107 * Practically, a client driver would have ready a template for each
 108 *  type of transfer it is going to need during its lifetime and
 109 *  set only 'src_start' and 'dst_start' before submitting the requests.
 110 *
 111 *
 112 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 113 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 114 *
 115 *    ==  Chunk size
 116 *    ... ICG
 117 */
 118
 119/**
 120 * struct data_chunk - Element of scatter-gather list that makes a frame.
 121 * @size: Number of bytes to read from source.
 122 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 123 * @icg: Number of bytes to jump after last src/dst address of this
 124 *       chunk and before first src/dst address for next chunk.
 125 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 126 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 127 * @dst_icg: Number of bytes to jump after last dst address of this
 128 *       chunk and before the first dst address for next chunk.
 129 *       Ignored if dst_inc is true and dst_sgl is false.
 130 * @src_icg: Number of bytes to jump after last src address of this
 131 *       chunk and before the first src address for next chunk.
 132 *       Ignored if src_inc is true and src_sgl is false.
 133 */
 134struct data_chunk {
 135        size_t size;
 136        size_t icg;
 137        size_t dst_icg;
 138        size_t src_icg;
 139};
 140
 141/**
 142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 143 *       and attributes.
 144 * @src_start: Bus address of source for the first chunk.
 145 * @dst_start: Bus address of destination for the first chunk.
 146 * @dir: Specifies the type of Source and Destination.
 147 * @src_inc: If the source address increments after reading from it.
 148 * @dst_inc: If the destination address increments after writing to it.
 149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 150 *              Otherwise, source is read contiguously (icg ignored).
 151 *              Ignored if src_inc is false.
 152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 153 *              Otherwise, destination is filled contiguously (icg ignored).
 154 *              Ignored if dst_inc is false.
 155 * @numf: Number of frames in this template.
 156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 158 */
 159struct dma_interleaved_template {
 160        dma_addr_t src_start;
 161        dma_addr_t dst_start;
 162        enum dma_transfer_direction dir;
 163        bool src_inc;
 164        bool dst_inc;
 165        bool src_sgl;
 166        bool dst_sgl;
 167        size_t numf;
 168        size_t frame_size;
 169        struct data_chunk sgl[0];
 170};
 171
 172/**
 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 174 *  control completion, and communicate status.
 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 176 *  this transaction
 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 178 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 179 *  chains
 180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 183 *  sources that were the result of a previous operation, in the case of a PQ
 184 *  operation it continues the calculation with new sources
 185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 186 *  on the result of this operation
 187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 188 *  cleared or freed
 189 */
 190enum dma_ctrl_flags {
 191        DMA_PREP_INTERRUPT = (1 << 0),
 192        DMA_CTRL_ACK = (1 << 1),
 193        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 194        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 195        DMA_PREP_CONTINUE = (1 << 4),
 196        DMA_PREP_FENCE = (1 << 5),
 197        DMA_CTRL_REUSE = (1 << 6),
 198};
 199
 200/**
 201 * enum sum_check_bits - bit position of pq_check_flags
 202 */
 203enum sum_check_bits {
 204        SUM_CHECK_P = 0,
 205        SUM_CHECK_Q = 1,
 206};
 207
 208/**
 209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 212 */
 213enum sum_check_flags {
 214        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 215        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 216};
 217
 218
 219/**
 220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 221 * See linux/cpumask.h
 222 */
 223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 224
 225/**
 226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 227 * @memcpy_count: transaction counter
 228 * @bytes_transferred: byte counter
 229 */
 230
 231struct dma_chan_percpu {
 232        /* stats */
 233        unsigned long memcpy_count;
 234        unsigned long bytes_transferred;
 235};
 236
 237/**
 238 * struct dma_router - DMA router structure
 239 * @dev: pointer to the DMA router device
 240 * @route_free: function to be called when the route can be disconnected
 241 */
 242struct dma_router {
 243        struct device *dev;
 244        void (*route_free)(struct device *dev, void *route_data);
 245};
 246
 247/**
 248 * struct dma_chan - devices supply DMA channels, clients use them
 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
 250 * @cookie: last cookie value returned to client
 251 * @completed_cookie: last completed cookie for this channel
 252 * @chan_id: channel ID for sysfs
 253 * @dev: class device for sysfs
 254 * @device_node: used to add this to the device chan list
 255 * @local: per-cpu pointer to a struct dma_chan_percpu
 256 * @client_count: how many clients are using this channel
 257 * @table_count: number of appearances in the mem-to-mem allocation table
 258 * @router: pointer to the DMA router structure
 259 * @route_data: channel specific data for the router
 260 * @private: private data for certain client-channel associations
 261 */
 262struct dma_chan {
 263        struct dma_device *device;
 264        dma_cookie_t cookie;
 265        dma_cookie_t completed_cookie;
 266
 267        /* sysfs */
 268        int chan_id;
 269        struct dma_chan_dev *dev;
 270
 271        struct list_head device_node;
 272        struct dma_chan_percpu __percpu *local;
 273        int client_count;
 274        int table_count;
 275
 276        /* DMA router */
 277        struct dma_router *router;
 278        void *route_data;
 279
 280        void *private;
 281};
 282
 283/**
 284 * struct dma_chan_dev - relate sysfs device node to backing channel device
 285 * @chan: driver channel device
 286 * @device: sysfs device
 287 * @dev_id: parent dma_device dev_id
 288 * @idr_ref: reference count to gate release of dma_device dev_id
 289 */
 290struct dma_chan_dev {
 291        struct dma_chan *chan;
 292        struct device device;
 293        int dev_id;
 294        atomic_t *idr_ref;
 295};
 296
 297/**
 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
 299 * device, source or target buses
 300 */
 301enum dma_slave_buswidth {
 302        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 303        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 304        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 305        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 306        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 307        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 308        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 309        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 310        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 311};
 312
 313/**
 314 * struct dma_slave_config - dma slave channel runtime config
 315 * @direction: whether the data shall go in or out on this slave
 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 317 * legal values. DEPRECATED, drivers should use the direction argument
 318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 319 * the dir field in the dma_interleaved_template structure.
 320 * @src_addr: this is the physical address where DMA slave data
 321 * should be read (RX), if the source is memory this argument is
 322 * ignored.
 323 * @dst_addr: this is the physical address where DMA slave data
 324 * should be written (TX), if the source is memory this argument
 325 * is ignored.
 326 * @src_addr_width: this is the width in bytes of the source (RX)
 327 * register where DMA data shall be read. If the source
 328 * is memory this may be ignored depending on architecture.
 329 * Legal values: 1, 2, 4, 8.
 330 * @dst_addr_width: same as src_addr_width but for destination
 331 * target (TX) mutatis mutandis.
 332 * @src_maxburst: the maximum number of words (note: words, as in
 333 * units of the src_addr_width member, not bytes) that can be sent
 334 * in one burst to the device. Typically something like half the
 335 * FIFO depth on I/O peripherals so you don't overflow it. This
 336 * may or may not be applicable on memory sources.
 337 * @dst_maxburst: same as src_maxburst but for destination target
 338 * mutatis mutandis.
 339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 340 * with 'true' if peripheral should be flow controller. Direction will be
 341 * selected at Runtime.
 342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 343 * slave peripheral will have unique id as dma requester which need to be
 344 * pass as slave config.
 345 *
 346 * This struct is passed in as configuration data to a DMA engine
 347 * in order to set up a certain channel for DMA transport at runtime.
 348 * The DMA device/engine has to provide support for an additional
 349 * callback in the dma_device structure, device_config and this struct
 350 * will then be passed in as an argument to the function.
 351 *
 352 * The rationale for adding configuration information to this struct is as
 353 * follows: if it is likely that more than one DMA slave controllers in
 354 * the world will support the configuration option, then make it generic.
 355 * If not: if it is fixed so that it be sent in static from the platform
 356 * data, then prefer to do that.
 357 */
 358struct dma_slave_config {
 359        enum dma_transfer_direction direction;
 360        phys_addr_t src_addr;
 361        phys_addr_t dst_addr;
 362        enum dma_slave_buswidth src_addr_width;
 363        enum dma_slave_buswidth dst_addr_width;
 364        u32 src_maxburst;
 365        u32 dst_maxburst;
 366        bool device_fc;
 367        unsigned int slave_id;
 368};
 369
 370/**
 371 * enum dma_residue_granularity - Granularity of the reported transfer residue
 372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 373 *  DMA channel is only able to tell whether a descriptor has been completed or
 374 *  not, which means residue reporting is not supported by this channel. The
 375 *  residue field of the dma_tx_state field will always be 0.
 376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 377 *  completed segment of the transfer (For cyclic transfers this is after each
 378 *  period). This is typically implemented by having the hardware generate an
 379 *  interrupt after each transferred segment and then the drivers updates the
 380 *  outstanding residue by the size of the segment. Another possibility is if
 381 *  the hardware supports scatter-gather and the segment descriptor has a field
 382 *  which gets set after the segment has been completed. The driver then counts
 383 *  the number of segments without the flag set to compute the residue.
 384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 385 *  burst. This is typically only supported if the hardware has a progress
 386 *  register of some sort (E.g. a register with the current read/write address
 387 *  or a register with the amount of bursts/beats/bytes that have been
 388 *  transferred or still need to be transferred).
 389 */
 390enum dma_residue_granularity {
 391        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 392        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 393        DMA_RESIDUE_GRANULARITY_BURST = 2,
 394};
 395
 396/* struct dma_slave_caps - expose capabilities of a slave channel only
 397 *
 398 * @src_addr_widths: bit mask of src addr widths the channel supports
 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
 400 * @directions: bit mask of slave direction the channel supported
 401 *      since the enum dma_transfer_direction is not defined as bits for each
 402 *      type of direction, the dma controller should fill (1 << <TYPE>) and same
 403 *      should be checked by controller as well
 404 * @max_burst: max burst capability per-transfer
 405 * @cmd_pause: true, if pause and thereby resume is supported
 406 * @cmd_terminate: true, if terminate cmd is supported
 407 * @residue_granularity: granularity of the reported transfer residue
 408 * @descriptor_reuse: if a descriptor can be reused by client and
 409 * resubmitted multiple times
 410 */
 411struct dma_slave_caps {
 412        u32 src_addr_widths;
 413        u32 dst_addr_widths;
 414        u32 directions;
 415        u32 max_burst;
 416        bool cmd_pause;
 417        bool cmd_terminate;
 418        enum dma_residue_granularity residue_granularity;
 419        bool descriptor_reuse;
 420};
 421
 422static inline const char *dma_chan_name(struct dma_chan *chan)
 423{
 424        return dev_name(&chan->dev->device);
 425}
 426
 427void dma_chan_cleanup(struct kref *kref);
 428
 429/**
 430 * typedef dma_filter_fn - callback filter for dma_request_channel
 431 * @chan: channel to be reviewed
 432 * @filter_param: opaque parameter passed through dma_request_channel
 433 *
 434 * When this optional parameter is specified in a call to dma_request_channel a
 435 * suitable channel is passed to this routine for further dispositioning before
 436 * being returned.  Where 'suitable' indicates a non-busy channel that
 437 * satisfies the given capability mask.  It returns 'true' to indicate that the
 438 * channel is suitable.
 439 */
 440typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 441
 442typedef void (*dma_async_tx_callback)(void *dma_async_param);
 443
 444struct dmaengine_unmap_data {
 445        u8 map_cnt;
 446        u8 to_cnt;
 447        u8 from_cnt;
 448        u8 bidi_cnt;
 449        struct device *dev;
 450        struct kref kref;
 451        size_t len;
 452        dma_addr_t addr[0];
 453};
 454
 455/**
 456 * struct dma_async_tx_descriptor - async transaction descriptor
 457 * ---dma generic offload fields---
 458 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 459 *      this tx is sitting on a dependency list
 460 * @flags: flags to augment operation preparation, control completion, and
 461 *      communicate status
 462 * @phys: physical address of the descriptor
 463 * @chan: target channel for this operation
 464 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 465 * descriptor pending. To be pushed on .issue_pending() call
 466 * @callback: routine to call after this operation is complete
 467 * @callback_param: general parameter to pass to the callback routine
 468 * ---async_tx api specific fields---
 469 * @next: at completion submit this descriptor
 470 * @parent: pointer to the next level up in the dependency chain
 471 * @lock: protect the parent and next pointers
 472 */
 473struct dma_async_tx_descriptor {
 474        dma_cookie_t cookie;
 475        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 476        dma_addr_t phys;
 477        struct dma_chan *chan;
 478        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 479        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 480        dma_async_tx_callback callback;
 481        void *callback_param;
 482        struct dmaengine_unmap_data *unmap;
 483#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 484        struct dma_async_tx_descriptor *next;
 485        struct dma_async_tx_descriptor *parent;
 486        spinlock_t lock;
 487#endif
 488};
 489
 490#ifdef CONFIG_DMA_ENGINE
 491static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 492                                 struct dmaengine_unmap_data *unmap)
 493{
 494        kref_get(&unmap->kref);
 495        tx->unmap = unmap;
 496}
 497
 498struct dmaengine_unmap_data *
 499dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 500void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 501#else
 502static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 503                                 struct dmaengine_unmap_data *unmap)
 504{
 505}
 506static inline struct dmaengine_unmap_data *
 507dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 508{
 509        return NULL;
 510}
 511static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 512{
 513}
 514#endif
 515
 516static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 517{
 518        if (tx->unmap) {
 519                dmaengine_unmap_put(tx->unmap);
 520                tx->unmap = NULL;
 521        }
 522}
 523
 524#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 525static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 526{
 527}
 528static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 529{
 530}
 531static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 532{
 533        BUG();
 534}
 535static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 536{
 537}
 538static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 539{
 540}
 541static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 542{
 543        return NULL;
 544}
 545static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 546{
 547        return NULL;
 548}
 549
 550#else
 551static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 552{
 553        spin_lock_bh(&txd->lock);
 554}
 555static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 556{
 557        spin_unlock_bh(&txd->lock);
 558}
 559static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 560{
 561        txd->next = next;
 562        next->parent = txd;
 563}
 564static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 565{
 566        txd->parent = NULL;
 567}
 568static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 569{
 570        txd->next = NULL;
 571}
 572static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 573{
 574        return txd->parent;
 575}
 576static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 577{
 578        return txd->next;
 579}
 580#endif
 581
 582/**
 583 * struct dma_tx_state - filled in to report the status of
 584 * a transfer.
 585 * @last: last completed DMA cookie
 586 * @used: last issued DMA cookie (i.e. the one in progress)
 587 * @residue: the remaining number of bytes left to transmit
 588 *      on the selected transfer for states DMA_IN_PROGRESS and
 589 *      DMA_PAUSED if this is implemented in the driver, else 0
 590 */
 591struct dma_tx_state {
 592        dma_cookie_t last;
 593        dma_cookie_t used;
 594        u32 residue;
 595};
 596
 597/**
 598 * enum dmaengine_alignment - defines alignment of the DMA async tx
 599 * buffers
 600 */
 601enum dmaengine_alignment {
 602        DMAENGINE_ALIGN_1_BYTE = 0,
 603        DMAENGINE_ALIGN_2_BYTES = 1,
 604        DMAENGINE_ALIGN_4_BYTES = 2,
 605        DMAENGINE_ALIGN_8_BYTES = 3,
 606        DMAENGINE_ALIGN_16_BYTES = 4,
 607        DMAENGINE_ALIGN_32_BYTES = 5,
 608        DMAENGINE_ALIGN_64_BYTES = 6,
 609};
 610
 611/**
 612 * struct dma_slave_map - associates slave device and it's slave channel with
 613 * parameter to be used by a filter function
 614 * @devname: name of the device
 615 * @slave: slave channel name
 616 * @param: opaque parameter to pass to struct dma_filter.fn
 617 */
 618struct dma_slave_map {
 619        const char *devname;
 620        const char *slave;
 621        void *param;
 622};
 623
 624/**
 625 * struct dma_filter - information for slave device/channel to filter_fn/param
 626 * mapping
 627 * @fn: filter function callback
 628 * @mapcnt: number of slave device/channel in the map
 629 * @map: array of channel to filter mapping data
 630 */
 631struct dma_filter {
 632        dma_filter_fn fn;
 633        int mapcnt;
 634        const struct dma_slave_map *map;
 635};
 636
 637/**
 638 * struct dma_device - info on the entity supplying DMA services
 639 * @chancnt: how many DMA channels are supported
 640 * @privatecnt: how many DMA channels are requested by dma_request_channel
 641 * @channels: the list of struct dma_chan
 642 * @global_node: list_head for global dma_device_list
 643 * @filter: information for device/slave to filter function/param mapping
 644 * @cap_mask: one or more dma_capability flags
 645 * @max_xor: maximum number of xor sources, 0 if no capability
 646 * @max_pq: maximum number of PQ sources and PQ-continue capability
 647 * @copy_align: alignment shift for memcpy operations
 648 * @xor_align: alignment shift for xor operations
 649 * @pq_align: alignment shift for pq operations
 650 * @fill_align: alignment shift for memset operations
 651 * @dev_id: unique device ID
 652 * @dev: struct device reference for dma mapping api
 653 * @src_addr_widths: bit mask of src addr widths the device supports
 654 * @dst_addr_widths: bit mask of dst addr widths the device supports
 655 * @directions: bit mask of slave direction the device supports since
 656 *      the enum dma_transfer_direction is not defined as bits for
 657 *      each type of direction, the dma controller should fill (1 <<
 658 *      <TYPE>) and same should be checked by controller as well
 659 * @max_burst: max burst capability per-transfer
 660 * @residue_granularity: granularity of the transfer residue reported
 661 *      by tx_status
 662 * @device_alloc_chan_resources: allocate resources and return the
 663 *      number of allocated descriptors
 664 * @device_free_chan_resources: release DMA channel's resources
 665 * @device_prep_dma_memcpy: prepares a memcpy operation
 666 * @device_prep_dma_xor: prepares a xor operation
 667 * @device_prep_dma_xor_val: prepares a xor validation operation
 668 * @device_prep_dma_pq: prepares a pq operation
 669 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 670 * @device_prep_dma_memset: prepares a memset operation
 671 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 672 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 673 * @device_prep_slave_sg: prepares a slave dma operation
 674 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 675 *      The function takes a buffer of size buf_len. The callback function will
 676 *      be called after period_len bytes have been transferred.
 677 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 678 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 679 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 680 *      code
 681 * @device_pause: Pauses any transfer happening on a channel. Returns
 682 *      0 or an error code
 683 * @device_resume: Resumes any transfer on a channel previously
 684 *      paused. Returns 0 or an error code
 685 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 686 *      or an error code
 687 * @device_synchronize: Synchronizes the termination of a transfers to the
 688 *  current context.
 689 * @device_tx_status: poll for transaction completion, the optional
 690 *      txstate parameter can be supplied with a pointer to get a
 691 *      struct with auxiliary transfer status information, otherwise the call
 692 *      will just return a simple status code
 693 * @device_issue_pending: push pending transactions to hardware
 694 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 695 */
 696struct dma_device {
 697
 698        unsigned int chancnt;
 699        unsigned int privatecnt;
 700        struct list_head channels;
 701        struct list_head global_node;
 702        struct dma_filter filter;
 703        dma_cap_mask_t  cap_mask;
 704        unsigned short max_xor;
 705        unsigned short max_pq;
 706        enum dmaengine_alignment copy_align;
 707        enum dmaengine_alignment xor_align;
 708        enum dmaengine_alignment pq_align;
 709        enum dmaengine_alignment fill_align;
 710        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 711
 712        int dev_id;
 713        struct device *dev;
 714
 715        u32 src_addr_widths;
 716        u32 dst_addr_widths;
 717        u32 directions;
 718        u32 max_burst;
 719        bool descriptor_reuse;
 720        enum dma_residue_granularity residue_granularity;
 721
 722        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 723        void (*device_free_chan_resources)(struct dma_chan *chan);
 724
 725        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 726                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 727                size_t len, unsigned long flags);
 728        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 729                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 730                unsigned int src_cnt, size_t len, unsigned long flags);
 731        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 732                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 733                size_t len, enum sum_check_flags *result, unsigned long flags);
 734        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 735                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 736                unsigned int src_cnt, const unsigned char *scf,
 737                size_t len, unsigned long flags);
 738        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 739                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 740                unsigned int src_cnt, const unsigned char *scf, size_t len,
 741                enum sum_check_flags *pqres, unsigned long flags);
 742        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 743                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 744                unsigned long flags);
 745        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 746                struct dma_chan *chan, struct scatterlist *sg,
 747                unsigned int nents, int value, unsigned long flags);
 748        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 749                struct dma_chan *chan, unsigned long flags);
 750        struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
 751                struct dma_chan *chan,
 752                struct scatterlist *dst_sg, unsigned int dst_nents,
 753                struct scatterlist *src_sg, unsigned int src_nents,
 754                unsigned long flags);
 755
 756        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 757                struct dma_chan *chan, struct scatterlist *sgl,
 758                unsigned int sg_len, enum dma_transfer_direction direction,
 759                unsigned long flags, void *context);
 760        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 761                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 762                size_t period_len, enum dma_transfer_direction direction,
 763                unsigned long flags);
 764        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 765                struct dma_chan *chan, struct dma_interleaved_template *xt,
 766                unsigned long flags);
 767        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 768                struct dma_chan *chan, dma_addr_t dst, u64 data,
 769                unsigned long flags);
 770
 771        int (*device_config)(struct dma_chan *chan,
 772                             struct dma_slave_config *config);
 773        int (*device_pause)(struct dma_chan *chan);
 774        int (*device_resume)(struct dma_chan *chan);
 775        int (*device_terminate_all)(struct dma_chan *chan);
 776        void (*device_synchronize)(struct dma_chan *chan);
 777
 778        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 779                                            dma_cookie_t cookie,
 780                                            struct dma_tx_state *txstate);
 781        void (*device_issue_pending)(struct dma_chan *chan);
 782};
 783
 784static inline int dmaengine_slave_config(struct dma_chan *chan,
 785                                          struct dma_slave_config *config)
 786{
 787        if (chan->device->device_config)
 788                return chan->device->device_config(chan, config);
 789
 790        return -ENOSYS;
 791}
 792
 793static inline bool is_slave_direction(enum dma_transfer_direction direction)
 794{
 795        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 796}
 797
 798static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 799        struct dma_chan *chan, dma_addr_t buf, size_t len,
 800        enum dma_transfer_direction dir, unsigned long flags)
 801{
 802        struct scatterlist sg;
 803        sg_init_table(&sg, 1);
 804        sg_dma_address(&sg) = buf;
 805        sg_dma_len(&sg) = len;
 806
 807        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 808                                                  dir, flags, NULL);
 809}
 810
 811static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 812        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 813        enum dma_transfer_direction dir, unsigned long flags)
 814{
 815        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 816                                                  dir, flags, NULL);
 817}
 818
 819#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 820struct rio_dma_ext;
 821static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 822        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 823        enum dma_transfer_direction dir, unsigned long flags,
 824        struct rio_dma_ext *rio_ext)
 825{
 826        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 827                                                  dir, flags, rio_ext);
 828}
 829#endif
 830
 831static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 832                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 833                size_t period_len, enum dma_transfer_direction dir,
 834                unsigned long flags)
 835{
 836        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 837                                                period_len, dir, flags);
 838}
 839
 840static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 841                struct dma_chan *chan, struct dma_interleaved_template *xt,
 842                unsigned long flags)
 843{
 844        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 845}
 846
 847static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
 848                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 849                unsigned long flags)
 850{
 851        if (!chan || !chan->device)
 852                return NULL;
 853
 854        return chan->device->device_prep_dma_memset(chan, dest, value,
 855                                                    len, flags);
 856}
 857
 858static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
 859                struct dma_chan *chan,
 860                struct scatterlist *dst_sg, unsigned int dst_nents,
 861                struct scatterlist *src_sg, unsigned int src_nents,
 862                unsigned long flags)
 863{
 864        return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
 865                        src_sg, src_nents, flags);
 866}
 867
 868/**
 869 * dmaengine_terminate_all() - Terminate all active DMA transfers
 870 * @chan: The channel for which to terminate the transfers
 871 *
 872 * This function is DEPRECATED use either dmaengine_terminate_sync() or
 873 * dmaengine_terminate_async() instead.
 874 */
 875static inline int dmaengine_terminate_all(struct dma_chan *chan)
 876{
 877        if (chan->device->device_terminate_all)
 878                return chan->device->device_terminate_all(chan);
 879
 880        return -ENOSYS;
 881}
 882
 883/**
 884 * dmaengine_terminate_async() - Terminate all active DMA transfers
 885 * @chan: The channel for which to terminate the transfers
 886 *
 887 * Calling this function will terminate all active and pending descriptors
 888 * that have previously been submitted to the channel. It is not guaranteed
 889 * though that the transfer for the active descriptor has stopped when the
 890 * function returns. Furthermore it is possible the complete callback of a
 891 * submitted transfer is still running when this function returns.
 892 *
 893 * dmaengine_synchronize() needs to be called before it is safe to free
 894 * any memory that is accessed by previously submitted descriptors or before
 895 * freeing any resources accessed from within the completion callback of any
 896 * perviously submitted descriptors.
 897 *
 898 * This function can be called from atomic context as well as from within a
 899 * complete callback of a descriptor submitted on the same channel.
 900 *
 901 * If none of the two conditions above apply consider using
 902 * dmaengine_terminate_sync() instead.
 903 */
 904static inline int dmaengine_terminate_async(struct dma_chan *chan)
 905{
 906        if (chan->device->device_terminate_all)
 907                return chan->device->device_terminate_all(chan);
 908
 909        return -EINVAL;
 910}
 911
 912/**
 913 * dmaengine_synchronize() - Synchronize DMA channel termination
 914 * @chan: The channel to synchronize
 915 *
 916 * Synchronizes to the DMA channel termination to the current context. When this
 917 * function returns it is guaranteed that all transfers for previously issued
 918 * descriptors have stopped and and it is safe to free the memory assoicated
 919 * with them. Furthermore it is guaranteed that all complete callback functions
 920 * for a previously submitted descriptor have finished running and it is safe to
 921 * free resources accessed from within the complete callbacks.
 922 *
 923 * The behavior of this function is undefined if dma_async_issue_pending() has
 924 * been called between dmaengine_terminate_async() and this function.
 925 *
 926 * This function must only be called from non-atomic context and must not be
 927 * called from within a complete callback of a descriptor submitted on the same
 928 * channel.
 929 */
 930static inline void dmaengine_synchronize(struct dma_chan *chan)
 931{
 932        might_sleep();
 933
 934        if (chan->device->device_synchronize)
 935                chan->device->device_synchronize(chan);
 936}
 937
 938/**
 939 * dmaengine_terminate_sync() - Terminate all active DMA transfers
 940 * @chan: The channel for which to terminate the transfers
 941 *
 942 * Calling this function will terminate all active and pending transfers
 943 * that have previously been submitted to the channel. It is similar to
 944 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
 945 * stopped and that all complete callbacks have finished running when the
 946 * function returns.
 947 *
 948 * This function must only be called from non-atomic context and must not be
 949 * called from within a complete callback of a descriptor submitted on the same
 950 * channel.
 951 */
 952static inline int dmaengine_terminate_sync(struct dma_chan *chan)
 953{
 954        int ret;
 955
 956        ret = dmaengine_terminate_async(chan);
 957        if (ret)
 958                return ret;
 959
 960        dmaengine_synchronize(chan);
 961
 962        return 0;
 963}
 964
 965static inline int dmaengine_pause(struct dma_chan *chan)
 966{
 967        if (chan->device->device_pause)
 968                return chan->device->device_pause(chan);
 969
 970        return -ENOSYS;
 971}
 972
 973static inline int dmaengine_resume(struct dma_chan *chan)
 974{
 975        if (chan->device->device_resume)
 976                return chan->device->device_resume(chan);
 977
 978        return -ENOSYS;
 979}
 980
 981static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
 982        dma_cookie_t cookie, struct dma_tx_state *state)
 983{
 984        return chan->device->device_tx_status(chan, cookie, state);
 985}
 986
 987static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
 988{
 989        return desc->tx_submit(desc);
 990}
 991
 992static inline bool dmaengine_check_align(enum dmaengine_alignment align,
 993                                         size_t off1, size_t off2, size_t len)
 994{
 995        size_t mask;
 996
 997        if (!align)
 998                return true;
 999        mask = (1 << align) - 1;
1000        if (mask & (off1 | off2 | len))
1001                return false;
1002        return true;
1003}
1004
1005static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1006                                       size_t off2, size_t len)
1007{
1008        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1009}
1010
1011static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1012                                      size_t off2, size_t len)
1013{
1014        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1015}
1016
1017static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1018                                     size_t off2, size_t len)
1019{
1020        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1021}
1022
1023static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1024                                       size_t off2, size_t len)
1025{
1026        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1027}
1028
1029static inline void
1030dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1031{
1032        dma->max_pq = maxpq;
1033        if (has_pq_continue)
1034                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1035}
1036
1037static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1038{
1039        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1040}
1041
1042static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1043{
1044        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1045
1046        return (flags & mask) == mask;
1047}
1048
1049static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1050{
1051        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1052}
1053
1054static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1055{
1056        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1057}
1058
1059/* dma_maxpq - reduce maxpq in the face of continued operations
1060 * @dma - dma device with PQ capability
1061 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1062 *
1063 * When an engine does not support native continuation we need 3 extra
1064 * source slots to reuse P and Q with the following coefficients:
1065 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1066 * 2/ {01} * Q : use Q to continue Q' calculation
1067 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1068 *
1069 * In the case where P is disabled we only need 1 extra source:
1070 * 1/ {01} * Q : use Q to continue Q' calculation
1071 */
1072static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1073{
1074        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1075                return dma_dev_to_maxpq(dma);
1076        else if (dmaf_p_disabled_continue(flags))
1077                return dma_dev_to_maxpq(dma) - 1;
1078        else if (dmaf_continue(flags))
1079                return dma_dev_to_maxpq(dma) - 3;
1080        BUG();
1081}
1082
1083static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1084                                      size_t dir_icg)
1085{
1086        if (inc) {
1087                if (dir_icg)
1088                        return dir_icg;
1089                else if (sgl)
1090                        return icg;
1091        }
1092
1093        return 0;
1094}
1095
1096static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1097                                           struct data_chunk *chunk)
1098{
1099        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1100                                 chunk->icg, chunk->dst_icg);
1101}
1102
1103static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1104                                           struct data_chunk *chunk)
1105{
1106        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1107                                 chunk->icg, chunk->src_icg);
1108}
1109
1110/* --- public DMA engine API --- */
1111
1112#ifdef CONFIG_DMA_ENGINE
1113void dmaengine_get(void);
1114void dmaengine_put(void);
1115#else
1116static inline void dmaengine_get(void)
1117{
1118}
1119static inline void dmaengine_put(void)
1120{
1121}
1122#endif
1123
1124#ifdef CONFIG_ASYNC_TX_DMA
1125#define async_dmaengine_get()   dmaengine_get()
1126#define async_dmaengine_put()   dmaengine_put()
1127#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1128#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1129#else
1130#define async_dma_find_channel(type) dma_find_channel(type)
1131#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1132#else
1133static inline void async_dmaengine_get(void)
1134{
1135}
1136static inline void async_dmaengine_put(void)
1137{
1138}
1139static inline struct dma_chan *
1140async_dma_find_channel(enum dma_transaction_type type)
1141{
1142        return NULL;
1143}
1144#endif /* CONFIG_ASYNC_TX_DMA */
1145void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1146                                  struct dma_chan *chan);
1147
1148static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1149{
1150        tx->flags |= DMA_CTRL_ACK;
1151}
1152
1153static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1154{
1155        tx->flags &= ~DMA_CTRL_ACK;
1156}
1157
1158static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1159{
1160        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1161}
1162
1163#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1164static inline void
1165__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1166{
1167        set_bit(tx_type, dstp->bits);
1168}
1169
1170#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1171static inline void
1172__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1173{
1174        clear_bit(tx_type, dstp->bits);
1175}
1176
1177#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1178static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1179{
1180        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1181}
1182
1183#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1184static inline int
1185__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1186{
1187        return test_bit(tx_type, srcp->bits);
1188}
1189
1190#define for_each_dma_cap_mask(cap, mask) \
1191        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1192
1193/**
1194 * dma_async_issue_pending - flush pending transactions to HW
1195 * @chan: target DMA channel
1196 *
1197 * This allows drivers to push copies to HW in batches,
1198 * reducing MMIO writes where possible.
1199 */
1200static inline void dma_async_issue_pending(struct dma_chan *chan)
1201{
1202        chan->device->device_issue_pending(chan);
1203}
1204
1205/**
1206 * dma_async_is_tx_complete - poll for transaction completion
1207 * @chan: DMA channel
1208 * @cookie: transaction identifier to check status of
1209 * @last: returns last completed cookie, can be NULL
1210 * @used: returns last issued cookie, can be NULL
1211 *
1212 * If @last and @used are passed in, upon return they reflect the driver
1213 * internal state and can be used with dma_async_is_complete() to check
1214 * the status of multiple cookies without re-checking hardware state.
1215 */
1216static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1217        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1218{
1219        struct dma_tx_state state;
1220        enum dma_status status;
1221
1222        status = chan->device->device_tx_status(chan, cookie, &state);
1223        if (last)
1224                *last = state.last;
1225        if (used)
1226                *used = state.used;
1227        return status;
1228}
1229
1230/**
1231 * dma_async_is_complete - test a cookie against chan state
1232 * @cookie: transaction identifier to test status of
1233 * @last_complete: last know completed transaction
1234 * @last_used: last cookie value handed out
1235 *
1236 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1237 * the test logic is separated for lightweight testing of multiple cookies
1238 */
1239static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1240                        dma_cookie_t last_complete, dma_cookie_t last_used)
1241{
1242        if (last_complete <= last_used) {
1243                if ((cookie <= last_complete) || (cookie > last_used))
1244                        return DMA_COMPLETE;
1245        } else {
1246                if ((cookie <= last_complete) && (cookie > last_used))
1247                        return DMA_COMPLETE;
1248        }
1249        return DMA_IN_PROGRESS;
1250}
1251
1252static inline void
1253dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1254{
1255        if (st) {
1256                st->last = last;
1257                st->used = used;
1258                st->residue = residue;
1259        }
1260}
1261
1262#ifdef CONFIG_DMA_ENGINE
1263struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1264enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1265enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1266void dma_issue_pending_all(void);
1267struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1268                                        dma_filter_fn fn, void *fn_param);
1269struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1270
1271struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1272struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1273
1274void dma_release_channel(struct dma_chan *chan);
1275int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1276#else
1277static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1278{
1279        return NULL;
1280}
1281static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1282{
1283        return DMA_COMPLETE;
1284}
1285static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1286{
1287        return DMA_COMPLETE;
1288}
1289static inline void dma_issue_pending_all(void)
1290{
1291}
1292static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1293                                              dma_filter_fn fn, void *fn_param)
1294{
1295        return NULL;
1296}
1297static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1298                                                         const char *name)
1299{
1300        return NULL;
1301}
1302static inline struct dma_chan *dma_request_chan(struct device *dev,
1303                                                const char *name)
1304{
1305        return ERR_PTR(-ENODEV);
1306}
1307static inline struct dma_chan *dma_request_chan_by_mask(
1308                                                const dma_cap_mask_t *mask)
1309{
1310        return ERR_PTR(-ENODEV);
1311}
1312static inline void dma_release_channel(struct dma_chan *chan)
1313{
1314}
1315static inline int dma_get_slave_caps(struct dma_chan *chan,
1316                                     struct dma_slave_caps *caps)
1317{
1318        return -ENXIO;
1319}
1320#endif
1321
1322#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1323
1324static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1325{
1326        struct dma_slave_caps caps;
1327
1328        dma_get_slave_caps(tx->chan, &caps);
1329
1330        if (caps.descriptor_reuse) {
1331                tx->flags |= DMA_CTRL_REUSE;
1332                return 0;
1333        } else {
1334                return -EPERM;
1335        }
1336}
1337
1338static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1339{
1340        tx->flags &= ~DMA_CTRL_REUSE;
1341}
1342
1343static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1344{
1345        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1346}
1347
1348static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1349{
1350        /* this is supported for reusable desc, so check that */
1351        if (dmaengine_desc_test_reuse(desc))
1352                return desc->desc_free(desc);
1353        else
1354                return -EPERM;
1355}
1356
1357/* --- DMA device --- */
1358
1359int dma_async_device_register(struct dma_device *device);
1360void dma_async_device_unregister(struct dma_device *device);
1361void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1362struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1363struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1364#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1365#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1366        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1367
1368static inline struct dma_chan
1369*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1370                                  dma_filter_fn fn, void *fn_param,
1371                                  struct device *dev, const char *name)
1372{
1373        struct dma_chan *chan;
1374
1375        chan = dma_request_slave_channel(dev, name);
1376        if (chan)
1377                return chan;
1378
1379        if (!fn || !fn_param)
1380                return NULL;
1381
1382        return __dma_request_channel(mask, fn, fn_param);
1383}
1384#endif /* DMAENGINE_H */
1385