linux/include/linux/edac.h
<<
>>
Prefs
   1/*
   2 * Generic EDAC defs
   3 *
   4 * Author: Dave Jiang <djiang@mvista.com>
   5 *
   6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
   7 * the terms of the GNU General Public License version 2. This program
   8 * is licensed "as is" without any warranty of any kind, whether express
   9 * or implied.
  10 *
  11 */
  12#ifndef _LINUX_EDAC_H_
  13#define _LINUX_EDAC_H_
  14
  15#include <linux/atomic.h>
  16#include <linux/device.h>
  17#include <linux/completion.h>
  18#include <linux/workqueue.h>
  19#include <linux/debugfs.h>
  20
  21struct device;
  22
  23#define EDAC_OPSTATE_INVAL      -1
  24#define EDAC_OPSTATE_POLL       0
  25#define EDAC_OPSTATE_NMI        1
  26#define EDAC_OPSTATE_INT        2
  27
  28extern int edac_op_state;
  29extern int edac_err_assert;
  30extern atomic_t edac_handlers;
  31
  32extern int edac_handler_set(void);
  33extern void edac_atomic_assert_error(void);
  34extern struct bus_type *edac_get_sysfs_subsys(void);
  35
  36enum {
  37        EDAC_REPORTING_ENABLED,
  38        EDAC_REPORTING_DISABLED,
  39        EDAC_REPORTING_FORCE
  40};
  41
  42extern int edac_report_status;
  43#ifdef CONFIG_EDAC
  44static inline int get_edac_report_status(void)
  45{
  46        return edac_report_status;
  47}
  48
  49static inline void set_edac_report_status(int new)
  50{
  51        edac_report_status = new;
  52}
  53#else
  54static inline int get_edac_report_status(void)
  55{
  56        return EDAC_REPORTING_DISABLED;
  57}
  58
  59static inline void set_edac_report_status(int new)
  60{
  61}
  62#endif
  63
  64static inline void opstate_init(void)
  65{
  66        switch (edac_op_state) {
  67        case EDAC_OPSTATE_POLL:
  68        case EDAC_OPSTATE_NMI:
  69                break;
  70        default:
  71                edac_op_state = EDAC_OPSTATE_POLL;
  72        }
  73        return;
  74}
  75
  76/* Max length of a DIMM label*/
  77#define EDAC_MC_LABEL_LEN       31
  78
  79/* Maximum size of the location string */
  80#define LOCATION_SIZE 256
  81
  82/* Defines the maximum number of labels that can be reported */
  83#define EDAC_MAX_LABELS         8
  84
  85/* String used to join two or more labels */
  86#define OTHER_LABEL " or "
  87
  88/**
  89 * enum dev_type - describe the type of memory DRAM chips used at the stick
  90 * @DEV_UNKNOWN:        Can't be determined, or MC doesn't support detect it
  91 * @DEV_X1:             1 bit for data
  92 * @DEV_X2:             2 bits for data
  93 * @DEV_X4:             4 bits for data
  94 * @DEV_X8:             8 bits for data
  95 * @DEV_X16:            16 bits for data
  96 * @DEV_X32:            32 bits for data
  97 * @DEV_X64:            64 bits for data
  98 *
  99 * Typical values are x4 and x8.
 100 */
 101enum dev_type {
 102        DEV_UNKNOWN = 0,
 103        DEV_X1,
 104        DEV_X2,
 105        DEV_X4,
 106        DEV_X8,
 107        DEV_X16,
 108        DEV_X32,                /* Do these parts exist? */
 109        DEV_X64                 /* Do these parts exist? */
 110};
 111
 112#define DEV_FLAG_UNKNOWN        BIT(DEV_UNKNOWN)
 113#define DEV_FLAG_X1             BIT(DEV_X1)
 114#define DEV_FLAG_X2             BIT(DEV_X2)
 115#define DEV_FLAG_X4             BIT(DEV_X4)
 116#define DEV_FLAG_X8             BIT(DEV_X8)
 117#define DEV_FLAG_X16            BIT(DEV_X16)
 118#define DEV_FLAG_X32            BIT(DEV_X32)
 119#define DEV_FLAG_X64            BIT(DEV_X64)
 120
 121/**
 122 * enum hw_event_mc_err_type - type of the detected error
 123 *
 124 * @HW_EVENT_ERR_CORRECTED:     Corrected Error - Indicates that an ECC
 125 *                              corrected error was detected
 126 * @HW_EVENT_ERR_UNCORRECTED:   Uncorrected Error - Indicates an error that
 127 *                              can't be corrected by ECC, but it is not
 128 *                              fatal (maybe it is on an unused memory area,
 129 *                              or the memory controller could recover from
 130 *                              it for example, by re-trying the operation).
 131 * @HW_EVENT_ERR_FATAL:         Fatal Error - Uncorrected error that could not
 132 *                              be recovered.
 133 */
 134enum hw_event_mc_err_type {
 135        HW_EVENT_ERR_CORRECTED,
 136        HW_EVENT_ERR_UNCORRECTED,
 137        HW_EVENT_ERR_FATAL,
 138        HW_EVENT_ERR_INFO,
 139};
 140
 141static inline char *mc_event_error_type(const unsigned int err_type)
 142{
 143        switch (err_type) {
 144        case HW_EVENT_ERR_CORRECTED:
 145                return "Corrected";
 146        case HW_EVENT_ERR_UNCORRECTED:
 147                return "Uncorrected";
 148        case HW_EVENT_ERR_FATAL:
 149                return "Fatal";
 150        default:
 151        case HW_EVENT_ERR_INFO:
 152                return "Info";
 153        }
 154}
 155
 156/**
 157 * enum mem_type - memory types. For a more detailed reference, please see
 158 *                      http://en.wikipedia.org/wiki/DRAM
 159 *
 160 * @MEM_EMPTY           Empty csrow
 161 * @MEM_RESERVED:       Reserved csrow type
 162 * @MEM_UNKNOWN:        Unknown csrow type
 163 * @MEM_FPM:            FPM - Fast Page Mode, used on systems up to 1995.
 164 * @MEM_EDO:            EDO - Extended data out, used on systems up to 1998.
 165 * @MEM_BEDO:           BEDO - Burst Extended data out, an EDO variant.
 166 * @MEM_SDR:            SDR - Single data rate SDRAM
 167 *                      http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
 168 *                      They use 3 pins for chip select: Pins 0 and 2 are
 169 *                      for rank 0; pins 1 and 3 are for rank 1, if the memory
 170 *                      is dual-rank.
 171 * @MEM_RDR:            Registered SDR SDRAM
 172 * @MEM_DDR:            Double data rate SDRAM
 173 *                      http://en.wikipedia.org/wiki/DDR_SDRAM
 174 * @MEM_RDDR:           Registered Double data rate SDRAM
 175 *                      This is a variant of the DDR memories.
 176 *                      A registered memory has a buffer inside it, hiding
 177 *                      part of the memory details to the memory controller.
 178 * @MEM_RMBS:           Rambus DRAM, used on a few Pentium III/IV controllers.
 179 * @MEM_DDR2:           DDR2 RAM, as described at JEDEC JESD79-2F.
 180 *                      Those memories are labed as "PC2-" instead of "PC" to
 181 *                      differenciate from DDR.
 182 * @MEM_FB_DDR2:        Fully-Buffered DDR2, as described at JEDEC Std No. 205
 183 *                      and JESD206.
 184 *                      Those memories are accessed per DIMM slot, and not by
 185 *                      a chip select signal.
 186 * @MEM_RDDR2:          Registered DDR2 RAM
 187 *                      This is a variant of the DDR2 memories.
 188 * @MEM_XDR:            Rambus XDR
 189 *                      It is an evolution of the original RAMBUS memories,
 190 *                      created to compete with DDR2. Weren't used on any
 191 *                      x86 arch, but cell_edac PPC memory controller uses it.
 192 * @MEM_DDR3:           DDR3 RAM
 193 * @MEM_RDDR3:          Registered DDR3 RAM
 194 *                      This is a variant of the DDR3 memories.
 195 * @MEM_LRDDR3          Load-Reduced DDR3 memory.
 196 * @MEM_DDR4:           Unbuffered DDR4 RAM
 197 * @MEM_RDDR4:          Registered DDR4 RAM
 198 *                      This is a variant of the DDR4 memories.
 199 */
 200enum mem_type {
 201        MEM_EMPTY = 0,
 202        MEM_RESERVED,
 203        MEM_UNKNOWN,
 204        MEM_FPM,
 205        MEM_EDO,
 206        MEM_BEDO,
 207        MEM_SDR,
 208        MEM_RDR,
 209        MEM_DDR,
 210        MEM_RDDR,
 211        MEM_RMBS,
 212        MEM_DDR2,
 213        MEM_FB_DDR2,
 214        MEM_RDDR2,
 215        MEM_XDR,
 216        MEM_DDR3,
 217        MEM_RDDR3,
 218        MEM_LRDDR3,
 219        MEM_DDR4,
 220        MEM_RDDR4,
 221};
 222
 223#define MEM_FLAG_EMPTY          BIT(MEM_EMPTY)
 224#define MEM_FLAG_RESERVED       BIT(MEM_RESERVED)
 225#define MEM_FLAG_UNKNOWN        BIT(MEM_UNKNOWN)
 226#define MEM_FLAG_FPM            BIT(MEM_FPM)
 227#define MEM_FLAG_EDO            BIT(MEM_EDO)
 228#define MEM_FLAG_BEDO           BIT(MEM_BEDO)
 229#define MEM_FLAG_SDR            BIT(MEM_SDR)
 230#define MEM_FLAG_RDR            BIT(MEM_RDR)
 231#define MEM_FLAG_DDR            BIT(MEM_DDR)
 232#define MEM_FLAG_RDDR           BIT(MEM_RDDR)
 233#define MEM_FLAG_RMBS           BIT(MEM_RMBS)
 234#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
 235#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
 236#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
 237#define MEM_FLAG_XDR            BIT(MEM_XDR)
 238#define MEM_FLAG_DDR3           BIT(MEM_DDR3)
 239#define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
 240#define MEM_FLAG_DDR4           BIT(MEM_DDR4)
 241#define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
 242
 243/**
 244 * enum edac-type - Error Detection and Correction capabilities and mode
 245 * @EDAC_UNKNOWN:       Unknown if ECC is available
 246 * @EDAC_NONE:          Doesn't support ECC
 247 * @EDAC_RESERVED:      Reserved ECC type
 248 * @EDAC_PARITY:        Detects parity errors
 249 * @EDAC_EC:            Error Checking - no correction
 250 * @EDAC_SECDED:        Single bit error correction, Double detection
 251 * @EDAC_S2ECD2ED:      Chipkill x2 devices - do these exist?
 252 * @EDAC_S4ECD4ED:      Chipkill x4 devices
 253 * @EDAC_S8ECD8ED:      Chipkill x8 devices
 254 * @EDAC_S16ECD16ED:    Chipkill x16 devices
 255 */
 256enum edac_type {
 257        EDAC_UNKNOWN =  0,
 258        EDAC_NONE,
 259        EDAC_RESERVED,
 260        EDAC_PARITY,
 261        EDAC_EC,
 262        EDAC_SECDED,
 263        EDAC_S2ECD2ED,
 264        EDAC_S4ECD4ED,
 265        EDAC_S8ECD8ED,
 266        EDAC_S16ECD16ED,
 267};
 268
 269#define EDAC_FLAG_UNKNOWN       BIT(EDAC_UNKNOWN)
 270#define EDAC_FLAG_NONE          BIT(EDAC_NONE)
 271#define EDAC_FLAG_PARITY        BIT(EDAC_PARITY)
 272#define EDAC_FLAG_EC            BIT(EDAC_EC)
 273#define EDAC_FLAG_SECDED        BIT(EDAC_SECDED)
 274#define EDAC_FLAG_S2ECD2ED      BIT(EDAC_S2ECD2ED)
 275#define EDAC_FLAG_S4ECD4ED      BIT(EDAC_S4ECD4ED)
 276#define EDAC_FLAG_S8ECD8ED      BIT(EDAC_S8ECD8ED)
 277#define EDAC_FLAG_S16ECD16ED    BIT(EDAC_S16ECD16ED)
 278
 279/**
 280 * enum scrub_type - scrubbing capabilities
 281 * @SCRUB_UNKNOWN               Unknown if scrubber is available
 282 * @SCRUB_NONE:                 No scrubber
 283 * @SCRUB_SW_PROG:              SW progressive (sequential) scrubbing
 284 * @SCRUB_SW_SRC:               Software scrub only errors
 285 * @SCRUB_SW_PROG_SRC:          Progressive software scrub from an error
 286 * @SCRUB_SW_TUNABLE:           Software scrub frequency is tunable
 287 * @SCRUB_HW_PROG:              HW progressive (sequential) scrubbing
 288 * @SCRUB_HW_SRC:               Hardware scrub only errors
 289 * @SCRUB_HW_PROG_SRC:          Progressive hardware scrub from an error
 290 * SCRUB_HW_TUNABLE:            Hardware scrub frequency is tunable
 291 */
 292enum scrub_type {
 293        SCRUB_UNKNOWN = 0,
 294        SCRUB_NONE,
 295        SCRUB_SW_PROG,
 296        SCRUB_SW_SRC,
 297        SCRUB_SW_PROG_SRC,
 298        SCRUB_SW_TUNABLE,
 299        SCRUB_HW_PROG,
 300        SCRUB_HW_SRC,
 301        SCRUB_HW_PROG_SRC,
 302        SCRUB_HW_TUNABLE
 303};
 304
 305#define SCRUB_FLAG_SW_PROG      BIT(SCRUB_SW_PROG)
 306#define SCRUB_FLAG_SW_SRC       BIT(SCRUB_SW_SRC)
 307#define SCRUB_FLAG_SW_PROG_SRC  BIT(SCRUB_SW_PROG_SRC)
 308#define SCRUB_FLAG_SW_TUN       BIT(SCRUB_SW_SCRUB_TUNABLE)
 309#define SCRUB_FLAG_HW_PROG      BIT(SCRUB_HW_PROG)
 310#define SCRUB_FLAG_HW_SRC       BIT(SCRUB_HW_SRC)
 311#define SCRUB_FLAG_HW_PROG_SRC  BIT(SCRUB_HW_PROG_SRC)
 312#define SCRUB_FLAG_HW_TUN       BIT(SCRUB_HW_TUNABLE)
 313
 314/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
 315
 316/* EDAC internal operation states */
 317#define OP_ALLOC                0x100
 318#define OP_RUNNING_POLL         0x201
 319#define OP_RUNNING_INTERRUPT    0x202
 320#define OP_RUNNING_POLL_INTR    0x203
 321#define OP_OFFLINE              0x300
 322
 323/*
 324 * Concepts used at the EDAC subsystem
 325 *
 326 * There are several things to be aware of that aren't at all obvious:
 327 *
 328 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
 329 *
 330 * These are some of the many terms that are thrown about that don't always
 331 * mean what people think they mean (Inconceivable!).  In the interest of
 332 * creating a common ground for discussion, terms and their definitions
 333 * will be established.
 334 *
 335 * Memory devices:      The individual DRAM chips on a memory stick.  These
 336 *                      devices commonly output 4 and 8 bits each (x4, x8).
 337 *                      Grouping several of these in parallel provides the
 338 *                      number of bits that the memory controller expects:
 339 *                      typically 72 bits, in order to provide 64 bits +
 340 *                      8 bits of ECC data.
 341 *
 342 * Memory Stick:        A printed circuit board that aggregates multiple
 343 *                      memory devices in parallel.  In general, this is the
 344 *                      Field Replaceable Unit (FRU) which gets replaced, in
 345 *                      the case of excessive errors. Most often it is also
 346 *                      called DIMM (Dual Inline Memory Module).
 347 *
 348 * Memory Socket:       A physical connector on the motherboard that accepts
 349 *                      a single memory stick. Also called as "slot" on several
 350 *                      datasheets.
 351 *
 352 * Channel:             A memory controller channel, responsible to communicate
 353 *                      with a group of DIMMs. Each channel has its own
 354 *                      independent control (command) and data bus, and can
 355 *                      be used independently or grouped with other channels.
 356 *
 357 * Branch:              It is typically the highest hierarchy on a
 358 *                      Fully-Buffered DIMM memory controller.
 359 *                      Typically, it contains two channels.
 360 *                      Two channels at the same branch can be used in single
 361 *                      mode or in lockstep mode.
 362 *                      When lockstep is enabled, the cacheline is doubled,
 363 *                      but it generally brings some performance penalty.
 364 *                      Also, it is generally not possible to point to just one
 365 *                      memory stick when an error occurs, as the error
 366 *                      correction code is calculated using two DIMMs instead
 367 *                      of one. Due to that, it is capable of correcting more
 368 *                      errors than on single mode.
 369 *
 370 * Single-channel:      The data accessed by the memory controller is contained
 371 *                      into one dimm only. E. g. if the data is 64 bits-wide,
 372 *                      the data flows to the CPU using one 64 bits parallel
 373 *                      access.
 374 *                      Typically used with SDR, DDR, DDR2 and DDR3 memories.
 375 *                      FB-DIMM and RAMBUS use a different concept for channel,
 376 *                      so this concept doesn't apply there.
 377 *
 378 * Double-channel:      The data size accessed by the memory controller is
 379 *                      interlaced into two dimms, accessed at the same time.
 380 *                      E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
 381 *                      the data flows to the CPU using a 128 bits parallel
 382 *                      access.
 383 *
 384 * Chip-select row:     This is the name of the DRAM signal used to select the
 385 *                      DRAM ranks to be accessed. Common chip-select rows for
 386 *                      single channel are 64 bits, for dual channel 128 bits.
 387 *                      It may not be visible by the memory controller, as some
 388 *                      DIMM types have a memory buffer that can hide direct
 389 *                      access to it from the Memory Controller.
 390 *
 391 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
 392 *                      Motherboards commonly drive two chip-select pins to
 393 *                      a memory stick. A single-ranked stick, will occupy
 394 *                      only one of those rows. The other will be unused.
 395 *
 396 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
 397 *                      access different sets of memory devices.  The two
 398 *                      rows cannot be accessed concurrently.
 399 *
 400 * Double-sided stick:  DEPRECATED TERM, see Double-Ranked stick.
 401 *                      A double-sided stick has two chip-select rows which
 402 *                      access different sets of memory devices. The two
 403 *                      rows cannot be accessed concurrently. "Double-sided"
 404 *                      is irrespective of the memory devices being mounted
 405 *                      on both sides of the memory stick.
 406 *
 407 * Socket set:          All of the memory sticks that are required for
 408 *                      a single memory access or all of the memory sticks
 409 *                      spanned by a chip-select row.  A single socket set
 410 *                      has two chip-select rows and if double-sided sticks
 411 *                      are used these will occupy those chip-select rows.
 412 *
 413 * Bank:                This term is avoided because it is unclear when
 414 *                      needing to distinguish between chip-select rows and
 415 *                      socket sets.
 416 *
 417 * Controller pages:
 418 *
 419 * Physical pages:
 420 *
 421 * Virtual pages:
 422 *
 423 *
 424 * STRUCTURE ORGANIZATION AND CHOICES
 425 *
 426 *
 427 *
 428 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
 429 */
 430
 431/**
 432 * enum edac_mc_layer - memory controller hierarchy layer
 433 *
 434 * @EDAC_MC_LAYER_BRANCH:       memory layer is named "branch"
 435 * @EDAC_MC_LAYER_CHANNEL:      memory layer is named "channel"
 436 * @EDAC_MC_LAYER_SLOT:         memory layer is named "slot"
 437 * @EDAC_MC_LAYER_CHIP_SELECT:  memory layer is named "chip select"
 438 * @EDAC_MC_LAYER_ALL_MEM:      memory layout is unknown. All memory is mapped
 439 *                              as a single memory area. This is used when
 440 *                              retrieving errors from a firmware driven driver.
 441 *
 442 * This enum is used by the drivers to tell edac_mc_sysfs what name should
 443 * be used when describing a memory stick location.
 444 */
 445enum edac_mc_layer_type {
 446        EDAC_MC_LAYER_BRANCH,
 447        EDAC_MC_LAYER_CHANNEL,
 448        EDAC_MC_LAYER_SLOT,
 449        EDAC_MC_LAYER_CHIP_SELECT,
 450        EDAC_MC_LAYER_ALL_MEM,
 451};
 452
 453/**
 454 * struct edac_mc_layer - describes the memory controller hierarchy
 455 * @layer:              layer type
 456 * @size:               number of components per layer. For example,
 457 *                      if the channel layer has two channels, size = 2
 458 * @is_virt_csrow:      This layer is part of the "csrow" when old API
 459 *                      compatibility mode is enabled. Otherwise, it is
 460 *                      a channel
 461 */
 462struct edac_mc_layer {
 463        enum edac_mc_layer_type type;
 464        unsigned                size;
 465        bool                    is_virt_csrow;
 466};
 467
 468/*
 469 * Maximum number of layers used by the memory controller to uniquely
 470 * identify a single memory stick.
 471 * NOTE: Changing this constant requires not only to change the constant
 472 * below, but also to change the existing code at the core, as there are
 473 * some code there that are optimized for 3 layers.
 474 */
 475#define EDAC_MAX_LAYERS         3
 476
 477/**
 478 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
 479 *                 for the element given by [layer0,layer1,layer2] position
 480 *
 481 * @layers:     a struct edac_mc_layer array, describing how many elements
 482 *              were allocated for each layer
 483 * @n_layers:   Number of layers at the @layers array
 484 * @layer0:     layer0 position
 485 * @layer1:     layer1 position. Unused if n_layers < 2
 486 * @layer2:     layer2 position. Unused if n_layers < 3
 487 *
 488 * For 1 layer, this macro returns &var[layer0] - &var
 489 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 490 *              and to return "&var[layer0][layer1] - &var"
 491 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 492 *              and to return "&var[layer0][layer1][layer2] - &var"
 493 *
 494 * A loop could be used here to make it more generic, but, as we only have
 495 * 3 layers, this is a little faster.
 496 * By design, layers can never be 0 or more than 3. If that ever happens,
 497 * a NULL is returned, causing an OOPS during the memory allocation routine,
 498 * with would point to the developer that he's doing something wrong.
 499 */
 500#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({               \
 501        int __i;                                                        \
 502        if ((nlayers) == 1)                                             \
 503                __i = layer0;                                           \
 504        else if ((nlayers) == 2)                                        \
 505                __i = (layer1) + ((layers[1]).size * (layer0));         \
 506        else if ((nlayers) == 3)                                        \
 507                __i = (layer2) + ((layers[2]).size * ((layer1) +        \
 508                            ((layers[1]).size * (layer0))));            \
 509        else                                                            \
 510                __i = -EINVAL;                                          \
 511        __i;                                                            \
 512})
 513
 514/**
 515 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
 516 *                 for the element given by [layer0,layer1,layer2] position
 517 *
 518 * @layers:     a struct edac_mc_layer array, describing how many elements
 519 *              were allocated for each layer
 520 * @var:        name of the var where we want to get the pointer
 521 *              (like mci->dimms)
 522 * @n_layers:   Number of layers at the @layers array
 523 * @layer0:     layer0 position
 524 * @layer1:     layer1 position. Unused if n_layers < 2
 525 * @layer2:     layer2 position. Unused if n_layers < 3
 526 *
 527 * For 1 layer, this macro returns &var[layer0]
 528 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 529 *              and to return "&var[layer0][layer1]"
 530 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 531 *              and to return "&var[layer0][layer1][layer2]"
 532 */
 533#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({  \
 534        typeof(*var) __p;                                               \
 535        int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);      \
 536        if (___i < 0)                                                   \
 537                __p = NULL;                                             \
 538        else                                                            \
 539                __p = (var)[___i];                                      \
 540        __p;                                                            \
 541})
 542
 543struct dimm_info {
 544        struct device dev;
 545
 546        char label[EDAC_MC_LABEL_LEN + 1];      /* DIMM label on motherboard */
 547
 548        /* Memory location data */
 549        unsigned location[EDAC_MAX_LAYERS];
 550
 551        struct mem_ctl_info *mci;       /* the parent */
 552
 553        u32 grain;              /* granularity of reported error in bytes */
 554        enum dev_type dtype;    /* memory device type */
 555        enum mem_type mtype;    /* memory dimm type */
 556        enum edac_type edac_mode;       /* EDAC mode for this dimm */
 557
 558        u32 nr_pages;                   /* number of pages on this dimm */
 559
 560        unsigned csrow, cschannel;      /* Points to the old API data */
 561};
 562
 563/**
 564 * struct rank_info - contains the information for one DIMM rank
 565 *
 566 * @chan_idx:   channel number where the rank is (typically, 0 or 1)
 567 * @ce_count:   number of correctable errors for this rank
 568 * @csrow:      A pointer to the chip select row structure (the parent
 569 *              structure). The location of the rank is given by
 570 *              the (csrow->csrow_idx, chan_idx) vector.
 571 * @dimm:       A pointer to the DIMM structure, where the DIMM label
 572 *              information is stored.
 573 *
 574 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
 575 *        This is a bad assumption, but it makes this patch easier. Later
 576 *        patches in this series will fix this issue.
 577 */
 578struct rank_info {
 579        int chan_idx;
 580        struct csrow_info *csrow;
 581        struct dimm_info *dimm;
 582
 583        u32 ce_count;           /* Correctable Errors for this csrow */
 584};
 585
 586struct csrow_info {
 587        struct device dev;
 588
 589        /* Used only by edac_mc_find_csrow_by_page() */
 590        unsigned long first_page;       /* first page number in csrow */
 591        unsigned long last_page;        /* last page number in csrow */
 592        unsigned long page_mask;        /* used for interleaving -
 593                                         * 0UL for non intlv */
 594
 595        int csrow_idx;                  /* the chip-select row */
 596
 597        u32 ue_count;           /* Uncorrectable Errors for this csrow */
 598        u32 ce_count;           /* Correctable Errors for this csrow */
 599
 600        struct mem_ctl_info *mci;       /* the parent */
 601
 602        /* channel information for this csrow */
 603        u32 nr_channels;
 604        struct rank_info **channels;
 605};
 606
 607/*
 608 * struct errcount_attribute - used to store the several error counts
 609 */
 610struct errcount_attribute_data {
 611        int n_layers;
 612        int pos[EDAC_MAX_LAYERS];
 613        int layer0, layer1, layer2;
 614};
 615
 616/**
 617 * edac_raw_error_desc - Raw error report structure
 618 * @grain:                      minimum granularity for an error report, in bytes
 619 * @error_count:                number of errors of the same type
 620 * @top_layer:                  top layer of the error (layer[0])
 621 * @mid_layer:                  middle layer of the error (layer[1])
 622 * @low_layer:                  low layer of the error (layer[2])
 623 * @page_frame_number:          page where the error happened
 624 * @offset_in_page:             page offset
 625 * @syndrome:                   syndrome of the error (or 0 if unknown or if
 626 *                              the syndrome is not applicable)
 627 * @msg:                        error message
 628 * @location:                   location of the error
 629 * @label:                      label of the affected DIMM(s)
 630 * @other_detail:               other driver-specific detail about the error
 631 * @enable_per_layer_report:    if false, the error affects all layers
 632 *                              (typically, a memory controller error)
 633 */
 634struct edac_raw_error_desc {
 635        /*
 636         * NOTE: everything before grain won't be cleaned by
 637         * edac_raw_error_desc_clean()
 638         */
 639        char location[LOCATION_SIZE];
 640        char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
 641        long grain;
 642
 643        /* the vars below and grain will be cleaned on every new error report */
 644        u16 error_count;
 645        int top_layer;
 646        int mid_layer;
 647        int low_layer;
 648        unsigned long page_frame_number;
 649        unsigned long offset_in_page;
 650        unsigned long syndrome;
 651        const char *msg;
 652        const char *other_detail;
 653        bool enable_per_layer_report;
 654};
 655
 656/* MEMORY controller information structure
 657 */
 658struct mem_ctl_info {
 659        struct device                   dev;
 660        struct bus_type                 *bus;
 661
 662        struct list_head link;  /* for global list of mem_ctl_info structs */
 663
 664        struct module *owner;   /* Module owner of this control struct */
 665
 666        unsigned long mtype_cap;        /* memory types supported by mc */
 667        unsigned long edac_ctl_cap;     /* Mem controller EDAC capabilities */
 668        unsigned long edac_cap; /* configuration capabilities - this is
 669                                 * closely related to edac_ctl_cap.  The
 670                                 * difference is that the controller may be
 671                                 * capable of s4ecd4ed which would be listed
 672                                 * in edac_ctl_cap, but if channels aren't
 673                                 * capable of s4ecd4ed then the edac_cap would
 674                                 * not have that capability.
 675                                 */
 676        unsigned long scrub_cap;        /* chipset scrub capabilities */
 677        enum scrub_type scrub_mode;     /* current scrub mode */
 678
 679        /* Translates sdram memory scrub rate given in bytes/sec to the
 680           internal representation and configures whatever else needs
 681           to be configured.
 682         */
 683        int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
 684
 685        /* Get the current sdram memory scrub rate from the internal
 686           representation and converts it to the closest matching
 687           bandwidth in bytes/sec.
 688         */
 689        int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
 690
 691
 692        /* pointer to edac checking routine */
 693        void (*edac_check) (struct mem_ctl_info * mci);
 694
 695        /*
 696         * Remaps memory pages: controller pages to physical pages.
 697         * For most MC's, this will be NULL.
 698         */
 699        /* FIXME - why not send the phys page to begin with? */
 700        unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
 701                                           unsigned long page);
 702        int mc_idx;
 703        struct csrow_info **csrows;
 704        unsigned nr_csrows, num_cschannel;
 705
 706        /*
 707         * Memory Controller hierarchy
 708         *
 709         * There are basically two types of memory controller: the ones that
 710         * sees memory sticks ("dimms"), and the ones that sees memory ranks.
 711         * All old memory controllers enumerate memories per rank, but most
 712         * of the recent drivers enumerate memories per DIMM, instead.
 713         * When the memory controller is per rank, csbased is true.
 714         */
 715        unsigned n_layers;
 716        struct edac_mc_layer *layers;
 717        bool csbased;
 718
 719        /*
 720         * DIMM info. Will eventually remove the entire csrows_info some day
 721         */
 722        unsigned tot_dimms;
 723        struct dimm_info **dimms;
 724
 725        /*
 726         * FIXME - what about controllers on other busses? - IDs must be
 727         * unique.  dev pointer should be sufficiently unique, but
 728         * BUS:SLOT.FUNC numbers may not be unique.
 729         */
 730        struct device *pdev;
 731        const char *mod_name;
 732        const char *mod_ver;
 733        const char *ctl_name;
 734        const char *dev_name;
 735        void *pvt_info;
 736        unsigned long start_time;       /* mci load start time (in jiffies) */
 737
 738        /*
 739         * drivers shouldn't access those fields directly, as the core
 740         * already handles that.
 741         */
 742        u32 ce_noinfo_count, ue_noinfo_count;
 743        u32 ue_mc, ce_mc;
 744        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 745
 746        struct completion complete;
 747
 748        /* Additional top controller level attributes, but specified
 749         * by the low level driver.
 750         *
 751         * Set by the low level driver to provide attributes at the
 752         * controller level.
 753         * An array of structures, NULL terminated
 754         *
 755         * If attributes are desired, then set to array of attributes
 756         * If no attributes are desired, leave NULL
 757         */
 758        const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
 759
 760        /* work struct for this MC */
 761        struct delayed_work work;
 762
 763        /*
 764         * Used to report an error - by being at the global struct
 765         * makes the memory allocated by the EDAC core
 766         */
 767        struct edac_raw_error_desc error_desc;
 768
 769        /* the internal state of this controller instance */
 770        int op_state;
 771
 772        struct dentry *debugfs;
 773        u8 fake_inject_layer[EDAC_MAX_LAYERS];
 774        bool fake_inject_ue;
 775        u16 fake_inject_count;
 776};
 777
 778/*
 779 * Maximum number of memory controllers in the coherent fabric.
 780 */
 781#define EDAC_MAX_MCS    16
 782
 783#endif
 784