linux/include/linux/ktime.h
<<
>>
Prefs
   1/*
   2 *  include/linux/ktime.h
   3 *
   4 *  ktime_t - nanosecond-resolution time format.
   5 *
   6 *   Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
   7 *   Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
   8 *
   9 *  data type definitions, declarations, prototypes and macros.
  10 *
  11 *  Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 *  Credits:
  14 *
  15 *      Roman Zippel provided the ideas and primary code snippets of
  16 *      the ktime_t union and further simplifications of the original
  17 *      code.
  18 *
  19 *  For licencing details see kernel-base/COPYING
  20 */
  21#ifndef _LINUX_KTIME_H
  22#define _LINUX_KTIME_H
  23
  24#include <linux/time.h>
  25#include <linux/jiffies.h>
  26
  27/*
  28 * ktime_t:
  29 *
  30 * A single 64-bit variable is used to store the hrtimers
  31 * internal representation of time values in scalar nanoseconds. The
  32 * design plays out best on 64-bit CPUs, where most conversions are
  33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
  34 * operations.
  35 *
  36 */
  37union ktime {
  38        s64     tv64;
  39};
  40
  41typedef union ktime ktime_t;            /* Kill this */
  42
  43/**
  44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  45 * @secs:       seconds to set
  46 * @nsecs:      nanoseconds to set
  47 *
  48 * Return: The ktime_t representation of the value.
  49 */
  50static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
  51{
  52        if (unlikely(secs >= KTIME_SEC_MAX))
  53                return (ktime_t){ .tv64 = KTIME_MAX };
  54
  55        return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
  56}
  57
  58/* Subtract two ktime_t variables. rem = lhs -rhs: */
  59#define ktime_sub(lhs, rhs) \
  60                ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
  61
  62/* Add two ktime_t variables. res = lhs + rhs: */
  63#define ktime_add(lhs, rhs) \
  64                ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
  65
  66/*
  67 * Add a ktime_t variable and a scalar nanosecond value.
  68 * res = kt + nsval:
  69 */
  70#define ktime_add_ns(kt, nsval) \
  71                ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
  72
  73/*
  74 * Subtract a scalar nanosecod from a ktime_t variable
  75 * res = kt - nsval:
  76 */
  77#define ktime_sub_ns(kt, nsval) \
  78                ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
  79
  80/* convert a timespec to ktime_t format: */
  81static inline ktime_t timespec_to_ktime(struct timespec ts)
  82{
  83        return ktime_set(ts.tv_sec, ts.tv_nsec);
  84}
  85
  86/* convert a timespec64 to ktime_t format: */
  87static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
  88{
  89        return ktime_set(ts.tv_sec, ts.tv_nsec);
  90}
  91
  92/* convert a timeval to ktime_t format: */
  93static inline ktime_t timeval_to_ktime(struct timeval tv)
  94{
  95        return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  96}
  97
  98/* Map the ktime_t to timespec conversion to ns_to_timespec function */
  99#define ktime_to_timespec(kt)           ns_to_timespec((kt).tv64)
 100
 101/* Map the ktime_t to timespec conversion to ns_to_timespec function */
 102#define ktime_to_timespec64(kt)         ns_to_timespec64((kt).tv64)
 103
 104/* Map the ktime_t to timeval conversion to ns_to_timeval function */
 105#define ktime_to_timeval(kt)            ns_to_timeval((kt).tv64)
 106
 107/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
 108#define ktime_to_ns(kt)                 ((kt).tv64)
 109
 110
 111/**
 112 * ktime_equal - Compares two ktime_t variables to see if they are equal
 113 * @cmp1:       comparable1
 114 * @cmp2:       comparable2
 115 *
 116 * Compare two ktime_t variables.
 117 *
 118 * Return: 1 if equal.
 119 */
 120static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
 121{
 122        return cmp1.tv64 == cmp2.tv64;
 123}
 124
 125/**
 126 * ktime_compare - Compares two ktime_t variables for less, greater or equal
 127 * @cmp1:       comparable1
 128 * @cmp2:       comparable2
 129 *
 130 * Return: ...
 131 *   cmp1  < cmp2: return <0
 132 *   cmp1 == cmp2: return 0
 133 *   cmp1  > cmp2: return >0
 134 */
 135static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
 136{
 137        if (cmp1.tv64 < cmp2.tv64)
 138                return -1;
 139        if (cmp1.tv64 > cmp2.tv64)
 140                return 1;
 141        return 0;
 142}
 143
 144/**
 145 * ktime_after - Compare if a ktime_t value is bigger than another one.
 146 * @cmp1:       comparable1
 147 * @cmp2:       comparable2
 148 *
 149 * Return: true if cmp1 happened after cmp2.
 150 */
 151static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
 152{
 153        return ktime_compare(cmp1, cmp2) > 0;
 154}
 155
 156/**
 157 * ktime_before - Compare if a ktime_t value is smaller than another one.
 158 * @cmp1:       comparable1
 159 * @cmp2:       comparable2
 160 *
 161 * Return: true if cmp1 happened before cmp2.
 162 */
 163static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
 164{
 165        return ktime_compare(cmp1, cmp2) < 0;
 166}
 167
 168#if BITS_PER_LONG < 64
 169extern s64 __ktime_divns(const ktime_t kt, s64 div);
 170static inline s64 ktime_divns(const ktime_t kt, s64 div)
 171{
 172        /*
 173         * Negative divisors could cause an inf loop,
 174         * so bug out here.
 175         */
 176        BUG_ON(div < 0);
 177        if (__builtin_constant_p(div) && !(div >> 32)) {
 178                s64 ns = kt.tv64;
 179                u64 tmp = ns < 0 ? -ns : ns;
 180
 181                do_div(tmp, div);
 182                return ns < 0 ? -tmp : tmp;
 183        } else {
 184                return __ktime_divns(kt, div);
 185        }
 186}
 187#else /* BITS_PER_LONG < 64 */
 188static inline s64 ktime_divns(const ktime_t kt, s64 div)
 189{
 190        /*
 191         * 32-bit implementation cannot handle negative divisors,
 192         * so catch them on 64bit as well.
 193         */
 194        WARN_ON(div < 0);
 195        return kt.tv64 / div;
 196}
 197#endif
 198
 199static inline s64 ktime_to_us(const ktime_t kt)
 200{
 201        return ktime_divns(kt, NSEC_PER_USEC);
 202}
 203
 204static inline s64 ktime_to_ms(const ktime_t kt)
 205{
 206        return ktime_divns(kt, NSEC_PER_MSEC);
 207}
 208
 209static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
 210{
 211       return ktime_to_us(ktime_sub(later, earlier));
 212}
 213
 214static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
 215{
 216        return ktime_to_ms(ktime_sub(later, earlier));
 217}
 218
 219static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
 220{
 221        return ktime_add_ns(kt, usec * NSEC_PER_USEC);
 222}
 223
 224static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
 225{
 226        return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
 227}
 228
 229static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
 230{
 231        return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
 232}
 233
 234extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
 235
 236/**
 237 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
 238 *                          format only if the variable contains data
 239 * @kt:         the ktime_t variable to convert
 240 * @ts:         the timespec variable to store the result in
 241 *
 242 * Return: %true if there was a successful conversion, %false if kt was 0.
 243 */
 244static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
 245                                                       struct timespec *ts)
 246{
 247        if (kt.tv64) {
 248                *ts = ktime_to_timespec(kt);
 249                return true;
 250        } else {
 251                return false;
 252        }
 253}
 254
 255/**
 256 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
 257 *                          format only if the variable contains data
 258 * @kt:         the ktime_t variable to convert
 259 * @ts:         the timespec variable to store the result in
 260 *
 261 * Return: %true if there was a successful conversion, %false if kt was 0.
 262 */
 263static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
 264                                                       struct timespec64 *ts)
 265{
 266        if (kt.tv64) {
 267                *ts = ktime_to_timespec64(kt);
 268                return true;
 269        } else {
 270                return false;
 271        }
 272}
 273
 274/*
 275 * The resolution of the clocks. The resolution value is returned in
 276 * the clock_getres() system call to give application programmers an
 277 * idea of the (in)accuracy of timers. Timer values are rounded up to
 278 * this resolution values.
 279 */
 280#define LOW_RES_NSEC            TICK_NSEC
 281#define KTIME_LOW_RES           (ktime_t){ .tv64 = LOW_RES_NSEC }
 282
 283static inline ktime_t ns_to_ktime(u64 ns)
 284{
 285        static const ktime_t ktime_zero = { .tv64 = 0 };
 286
 287        return ktime_add_ns(ktime_zero, ns);
 288}
 289
 290static inline ktime_t ms_to_ktime(u64 ms)
 291{
 292        static const ktime_t ktime_zero = { .tv64 = 0 };
 293
 294        return ktime_add_ms(ktime_zero, ms);
 295}
 296
 297# include <linux/timekeeping.h>
 298
 299#endif
 300