linux/include/linux/mm.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_H
   2#define _LINUX_MM_H
   3
   4#include <linux/errno.h>
   5
   6#ifdef __KERNEL__
   7
   8#include <linux/mmdebug.h>
   9#include <linux/gfp.h>
  10#include <linux/bug.h>
  11#include <linux/list.h>
  12#include <linux/mmzone.h>
  13#include <linux/rbtree.h>
  14#include <linux/atomic.h>
  15#include <linux/debug_locks.h>
  16#include <linux/mm_types.h>
  17#include <linux/range.h>
  18#include <linux/pfn.h>
  19#include <linux/percpu-refcount.h>
  20#include <linux/bit_spinlock.h>
  21#include <linux/shrinker.h>
  22#include <linux/resource.h>
  23#include <linux/page_ext.h>
  24#include <linux/err.h>
  25#include <linux/page_ref.h>
  26
  27struct mempolicy;
  28struct anon_vma;
  29struct anon_vma_chain;
  30struct file_ra_state;
  31struct user_struct;
  32struct writeback_control;
  33struct bdi_writeback;
  34
  35#ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
  36extern unsigned long max_mapnr;
  37
  38static inline void set_max_mapnr(unsigned long limit)
  39{
  40        max_mapnr = limit;
  41}
  42#else
  43static inline void set_max_mapnr(unsigned long limit) { }
  44#endif
  45
  46extern unsigned long totalram_pages;
  47extern void * high_memory;
  48extern int page_cluster;
  49
  50#ifdef CONFIG_SYSCTL
  51extern int sysctl_legacy_va_layout;
  52#else
  53#define sysctl_legacy_va_layout 0
  54#endif
  55
  56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  57extern const int mmap_rnd_bits_min;
  58extern const int mmap_rnd_bits_max;
  59extern int mmap_rnd_bits __read_mostly;
  60#endif
  61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  62extern const int mmap_rnd_compat_bits_min;
  63extern const int mmap_rnd_compat_bits_max;
  64extern int mmap_rnd_compat_bits __read_mostly;
  65#endif
  66
  67#include <asm/page.h>
  68#include <asm/pgtable.h>
  69#include <asm/processor.h>
  70
  71#ifndef __pa_symbol
  72#define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
  73#endif
  74
  75/*
  76 * To prevent common memory management code establishing
  77 * a zero page mapping on a read fault.
  78 * This macro should be defined within <asm/pgtable.h>.
  79 * s390 does this to prevent multiplexing of hardware bits
  80 * related to the physical page in case of virtualization.
  81 */
  82#ifndef mm_forbids_zeropage
  83#define mm_forbids_zeropage(X)  (0)
  84#endif
  85
  86/*
  87 * Default maximum number of active map areas, this limits the number of vmas
  88 * per mm struct. Users can overwrite this number by sysctl but there is a
  89 * problem.
  90 *
  91 * When a program's coredump is generated as ELF format, a section is created
  92 * per a vma. In ELF, the number of sections is represented in unsigned short.
  93 * This means the number of sections should be smaller than 65535 at coredump.
  94 * Because the kernel adds some informative sections to a image of program at
  95 * generating coredump, we need some margin. The number of extra sections is
  96 * 1-3 now and depends on arch. We use "5" as safe margin, here.
  97 *
  98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  99 * not a hard limit any more. Although some userspace tools can be surprised by
 100 * that.
 101 */
 102#define MAPCOUNT_ELF_CORE_MARGIN        (5)
 103#define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 104
 105extern int sysctl_max_map_count;
 106
 107extern unsigned long sysctl_user_reserve_kbytes;
 108extern unsigned long sysctl_admin_reserve_kbytes;
 109
 110extern int sysctl_overcommit_memory;
 111extern int sysctl_overcommit_ratio;
 112extern unsigned long sysctl_overcommit_kbytes;
 113
 114extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
 115                                    size_t *, loff_t *);
 116extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
 117                                    size_t *, loff_t *);
 118
 119#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 120
 121/* to align the pointer to the (next) page boundary */
 122#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 123
 124/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 125#define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
 126
 127/*
 128 * Linux kernel virtual memory manager primitives.
 129 * The idea being to have a "virtual" mm in the same way
 130 * we have a virtual fs - giving a cleaner interface to the
 131 * mm details, and allowing different kinds of memory mappings
 132 * (from shared memory to executable loading to arbitrary
 133 * mmap() functions).
 134 */
 135
 136extern struct kmem_cache *vm_area_cachep;
 137
 138#ifndef CONFIG_MMU
 139extern struct rb_root nommu_region_tree;
 140extern struct rw_semaphore nommu_region_sem;
 141
 142extern unsigned int kobjsize(const void *objp);
 143#endif
 144
 145/*
 146 * vm_flags in vm_area_struct, see mm_types.h.
 147 * When changing, update also include/trace/events/mmflags.h
 148 */
 149#define VM_NONE         0x00000000
 150
 151#define VM_READ         0x00000001      /* currently active flags */
 152#define VM_WRITE        0x00000002
 153#define VM_EXEC         0x00000004
 154#define VM_SHARED       0x00000008
 155
 156/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 157#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
 158#define VM_MAYWRITE     0x00000020
 159#define VM_MAYEXEC      0x00000040
 160#define VM_MAYSHARE     0x00000080
 161
 162#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
 163#define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
 164#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
 165#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
 166#define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
 167
 168#define VM_LOCKED       0x00002000
 169#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
 170
 171                                        /* Used by sys_madvise() */
 172#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
 173#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
 174
 175#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
 176#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
 177#define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
 178#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
 179#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
 180#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
 181#define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
 182#define VM_ARCH_2       0x02000000
 183#define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
 184
 185#ifdef CONFIG_MEM_SOFT_DIRTY
 186# define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
 187#else
 188# define VM_SOFTDIRTY   0
 189#endif
 190
 191#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
 192#define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
 193#define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
 194#define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
 195
 196#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 197#define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
 198#define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
 199#define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
 200#define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
 201#define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
 202#define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
 203#define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
 204#define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
 205#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 206
 207#if defined(CONFIG_X86)
 208# define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
 209#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
 210# define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
 211# define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
 212# define VM_PKEY_BIT1   VM_HIGH_ARCH_1
 213# define VM_PKEY_BIT2   VM_HIGH_ARCH_2
 214# define VM_PKEY_BIT3   VM_HIGH_ARCH_3
 215#endif
 216#elif defined(CONFIG_PPC)
 217# define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
 218#elif defined(CONFIG_PARISC)
 219# define VM_GROWSUP     VM_ARCH_1
 220#elif defined(CONFIG_METAG)
 221# define VM_GROWSUP     VM_ARCH_1
 222#elif defined(CONFIG_IA64)
 223# define VM_GROWSUP     VM_ARCH_1
 224#elif !defined(CONFIG_MMU)
 225# define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
 226#endif
 227
 228#if defined(CONFIG_X86)
 229/* MPX specific bounds table or bounds directory */
 230# define VM_MPX         VM_ARCH_2
 231#endif
 232
 233#ifndef VM_GROWSUP
 234# define VM_GROWSUP     VM_NONE
 235#endif
 236
 237/* Bits set in the VMA until the stack is in its final location */
 238#define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
 239
 240#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
 241#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 242#endif
 243
 244#ifdef CONFIG_STACK_GROWSUP
 245#define VM_STACK        VM_GROWSUP
 246#else
 247#define VM_STACK        VM_GROWSDOWN
 248#endif
 249
 250#define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 251
 252/*
 253 * Special vmas that are non-mergable, non-mlock()able.
 254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 255 */
 256#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 257
 258/* This mask defines which mm->def_flags a process can inherit its parent */
 259#define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
 260
 261/* This mask is used to clear all the VMA flags used by mlock */
 262#define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
 263
 264/*
 265 * mapping from the currently active vm_flags protection bits (the
 266 * low four bits) to a page protection mask..
 267 */
 268extern pgprot_t protection_map[16];
 269
 270#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
 271#define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
 272#define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
 273#define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
 274#define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
 275#define FAULT_FLAG_TRIED        0x20    /* Second try */
 276#define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
 277#define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
 278#define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
 279
 280/*
 281 * vm_fault is filled by the the pagefault handler and passed to the vma's
 282 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 283 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 284 *
 285 * MM layer fills up gfp_mask for page allocations but fault handler might
 286 * alter it if its implementation requires a different allocation context.
 287 *
 288 * pgoff should be used in favour of virtual_address, if possible.
 289 */
 290struct vm_fault {
 291        unsigned int flags;             /* FAULT_FLAG_xxx flags */
 292        gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
 293        pgoff_t pgoff;                  /* Logical page offset based on vma */
 294        void __user *virtual_address;   /* Faulting virtual address */
 295
 296        struct page *cow_page;          /* Handler may choose to COW */
 297        struct page *page;              /* ->fault handlers should return a
 298                                         * page here, unless VM_FAULT_NOPAGE
 299                                         * is set (which is also implied by
 300                                         * VM_FAULT_ERROR).
 301                                         */
 302        /* for ->map_pages() only */
 303        pgoff_t max_pgoff;              /* map pages for offset from pgoff till
 304                                         * max_pgoff inclusive */
 305        pte_t *pte;                     /* pte entry associated with ->pgoff */
 306};
 307
 308/*
 309 * These are the virtual MM functions - opening of an area, closing and
 310 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 311 * to the functions called when a no-page or a wp-page exception occurs. 
 312 */
 313struct vm_operations_struct {
 314        void (*open)(struct vm_area_struct * area);
 315        void (*close)(struct vm_area_struct * area);
 316        int (*mremap)(struct vm_area_struct * area);
 317        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 318        int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
 319                                                pmd_t *, unsigned int flags);
 320        void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
 321
 322        /* notification that a previously read-only page is about to become
 323         * writable, if an error is returned it will cause a SIGBUS */
 324        int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 325
 326        /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 327        int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
 328
 329        /* called by access_process_vm when get_user_pages() fails, typically
 330         * for use by special VMAs that can switch between memory and hardware
 331         */
 332        int (*access)(struct vm_area_struct *vma, unsigned long addr,
 333                      void *buf, int len, int write);
 334
 335        /* Called by the /proc/PID/maps code to ask the vma whether it
 336         * has a special name.  Returning non-NULL will also cause this
 337         * vma to be dumped unconditionally. */
 338        const char *(*name)(struct vm_area_struct *vma);
 339
 340#ifdef CONFIG_NUMA
 341        /*
 342         * set_policy() op must add a reference to any non-NULL @new mempolicy
 343         * to hold the policy upon return.  Caller should pass NULL @new to
 344         * remove a policy and fall back to surrounding context--i.e. do not
 345         * install a MPOL_DEFAULT policy, nor the task or system default
 346         * mempolicy.
 347         */
 348        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 349
 350        /*
 351         * get_policy() op must add reference [mpol_get()] to any policy at
 352         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 353         * in mm/mempolicy.c will do this automatically.
 354         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 355         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 356         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 357         * must return NULL--i.e., do not "fallback" to task or system default
 358         * policy.
 359         */
 360        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 361                                        unsigned long addr);
 362#endif
 363        /*
 364         * Called by vm_normal_page() for special PTEs to find the
 365         * page for @addr.  This is useful if the default behavior
 366         * (using pte_page()) would not find the correct page.
 367         */
 368        struct page *(*find_special_page)(struct vm_area_struct *vma,
 369                                          unsigned long addr);
 370};
 371
 372struct mmu_gather;
 373struct inode;
 374
 375#define page_private(page)              ((page)->private)
 376#define set_page_private(page, v)       ((page)->private = (v))
 377
 378#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 379static inline int pmd_devmap(pmd_t pmd)
 380{
 381        return 0;
 382}
 383#endif
 384
 385/*
 386 * FIXME: take this include out, include page-flags.h in
 387 * files which need it (119 of them)
 388 */
 389#include <linux/page-flags.h>
 390#include <linux/huge_mm.h>
 391
 392/*
 393 * Methods to modify the page usage count.
 394 *
 395 * What counts for a page usage:
 396 * - cache mapping   (page->mapping)
 397 * - private data    (page->private)
 398 * - page mapped in a task's page tables, each mapping
 399 *   is counted separately
 400 *
 401 * Also, many kernel routines increase the page count before a critical
 402 * routine so they can be sure the page doesn't go away from under them.
 403 */
 404
 405/*
 406 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 407 */
 408static inline int put_page_testzero(struct page *page)
 409{
 410        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 411        return page_ref_dec_and_test(page);
 412}
 413
 414/*
 415 * Try to grab a ref unless the page has a refcount of zero, return false if
 416 * that is the case.
 417 * This can be called when MMU is off so it must not access
 418 * any of the virtual mappings.
 419 */
 420static inline int get_page_unless_zero(struct page *page)
 421{
 422        return page_ref_add_unless(page, 1, 0);
 423}
 424
 425extern int page_is_ram(unsigned long pfn);
 426
 427enum {
 428        REGION_INTERSECTS,
 429        REGION_DISJOINT,
 430        REGION_MIXED,
 431};
 432
 433int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 434                      unsigned long desc);
 435
 436/* Support for virtually mapped pages */
 437struct page *vmalloc_to_page(const void *addr);
 438unsigned long vmalloc_to_pfn(const void *addr);
 439
 440/*
 441 * Determine if an address is within the vmalloc range
 442 *
 443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 444 * is no special casing required.
 445 */
 446static inline int is_vmalloc_addr(const void *x)
 447{
 448#ifdef CONFIG_MMU
 449        unsigned long addr = (unsigned long)x;
 450
 451        return addr >= VMALLOC_START && addr < VMALLOC_END;
 452#else
 453        return 0;
 454#endif
 455}
 456#ifdef CONFIG_MMU
 457extern int is_vmalloc_or_module_addr(const void *x);
 458#else
 459static inline int is_vmalloc_or_module_addr(const void *x)
 460{
 461        return 0;
 462}
 463#endif
 464
 465extern void kvfree(const void *addr);
 466
 467static inline atomic_t *compound_mapcount_ptr(struct page *page)
 468{
 469        return &page[1].compound_mapcount;
 470}
 471
 472static inline int compound_mapcount(struct page *page)
 473{
 474        if (!PageCompound(page))
 475                return 0;
 476        page = compound_head(page);
 477        return atomic_read(compound_mapcount_ptr(page)) + 1;
 478}
 479
 480/*
 481 * The atomic page->_mapcount, starts from -1: so that transitions
 482 * both from it and to it can be tracked, using atomic_inc_and_test
 483 * and atomic_add_negative(-1).
 484 */
 485static inline void page_mapcount_reset(struct page *page)
 486{
 487        atomic_set(&(page)->_mapcount, -1);
 488}
 489
 490int __page_mapcount(struct page *page);
 491
 492static inline int page_mapcount(struct page *page)
 493{
 494        VM_BUG_ON_PAGE(PageSlab(page), page);
 495
 496        if (unlikely(PageCompound(page)))
 497                return __page_mapcount(page);
 498        return atomic_read(&page->_mapcount) + 1;
 499}
 500
 501#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 502int total_mapcount(struct page *page);
 503int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 504#else
 505static inline int total_mapcount(struct page *page)
 506{
 507        return page_mapcount(page);
 508}
 509static inline int page_trans_huge_mapcount(struct page *page,
 510                                           int *total_mapcount)
 511{
 512        int mapcount = page_mapcount(page);
 513        if (total_mapcount)
 514                *total_mapcount = mapcount;
 515        return mapcount;
 516}
 517#endif
 518
 519static inline struct page *virt_to_head_page(const void *x)
 520{
 521        struct page *page = virt_to_page(x);
 522
 523        return compound_head(page);
 524}
 525
 526void __put_page(struct page *page);
 527
 528void put_pages_list(struct list_head *pages);
 529
 530void split_page(struct page *page, unsigned int order);
 531int split_free_page(struct page *page);
 532
 533/*
 534 * Compound pages have a destructor function.  Provide a
 535 * prototype for that function and accessor functions.
 536 * These are _only_ valid on the head of a compound page.
 537 */
 538typedef void compound_page_dtor(struct page *);
 539
 540/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 541enum compound_dtor_id {
 542        NULL_COMPOUND_DTOR,
 543        COMPOUND_PAGE_DTOR,
 544#ifdef CONFIG_HUGETLB_PAGE
 545        HUGETLB_PAGE_DTOR,
 546#endif
 547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 548        TRANSHUGE_PAGE_DTOR,
 549#endif
 550        NR_COMPOUND_DTORS,
 551};
 552extern compound_page_dtor * const compound_page_dtors[];
 553
 554static inline void set_compound_page_dtor(struct page *page,
 555                enum compound_dtor_id compound_dtor)
 556{
 557        VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 558        page[1].compound_dtor = compound_dtor;
 559}
 560
 561static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 562{
 563        VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 564        return compound_page_dtors[page[1].compound_dtor];
 565}
 566
 567static inline unsigned int compound_order(struct page *page)
 568{
 569        if (!PageHead(page))
 570                return 0;
 571        return page[1].compound_order;
 572}
 573
 574static inline void set_compound_order(struct page *page, unsigned int order)
 575{
 576        page[1].compound_order = order;
 577}
 578
 579void free_compound_page(struct page *page);
 580
 581#ifdef CONFIG_MMU
 582/*
 583 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 584 * servicing faults for write access.  In the normal case, do always want
 585 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 586 * that do not have writing enabled, when used by access_process_vm.
 587 */
 588static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 589{
 590        if (likely(vma->vm_flags & VM_WRITE))
 591                pte = pte_mkwrite(pte);
 592        return pte;
 593}
 594
 595void do_set_pte(struct vm_area_struct *vma, unsigned long address,
 596                struct page *page, pte_t *pte, bool write, bool anon);
 597#endif
 598
 599/*
 600 * Multiple processes may "see" the same page. E.g. for untouched
 601 * mappings of /dev/null, all processes see the same page full of
 602 * zeroes, and text pages of executables and shared libraries have
 603 * only one copy in memory, at most, normally.
 604 *
 605 * For the non-reserved pages, page_count(page) denotes a reference count.
 606 *   page_count() == 0 means the page is free. page->lru is then used for
 607 *   freelist management in the buddy allocator.
 608 *   page_count() > 0  means the page has been allocated.
 609 *
 610 * Pages are allocated by the slab allocator in order to provide memory
 611 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 612 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 613 * unless a particular usage is carefully commented. (the responsibility of
 614 * freeing the kmalloc memory is the caller's, of course).
 615 *
 616 * A page may be used by anyone else who does a __get_free_page().
 617 * In this case, page_count still tracks the references, and should only
 618 * be used through the normal accessor functions. The top bits of page->flags
 619 * and page->virtual store page management information, but all other fields
 620 * are unused and could be used privately, carefully. The management of this
 621 * page is the responsibility of the one who allocated it, and those who have
 622 * subsequently been given references to it.
 623 *
 624 * The other pages (we may call them "pagecache pages") are completely
 625 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 626 * The following discussion applies only to them.
 627 *
 628 * A pagecache page contains an opaque `private' member, which belongs to the
 629 * page's address_space. Usually, this is the address of a circular list of
 630 * the page's disk buffers. PG_private must be set to tell the VM to call
 631 * into the filesystem to release these pages.
 632 *
 633 * A page may belong to an inode's memory mapping. In this case, page->mapping
 634 * is the pointer to the inode, and page->index is the file offset of the page,
 635 * in units of PAGE_SIZE.
 636 *
 637 * If pagecache pages are not associated with an inode, they are said to be
 638 * anonymous pages. These may become associated with the swapcache, and in that
 639 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 640 *
 641 * In either case (swapcache or inode backed), the pagecache itself holds one
 642 * reference to the page. Setting PG_private should also increment the
 643 * refcount. The each user mapping also has a reference to the page.
 644 *
 645 * The pagecache pages are stored in a per-mapping radix tree, which is
 646 * rooted at mapping->page_tree, and indexed by offset.
 647 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 648 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 649 *
 650 * All pagecache pages may be subject to I/O:
 651 * - inode pages may need to be read from disk,
 652 * - inode pages which have been modified and are MAP_SHARED may need
 653 *   to be written back to the inode on disk,
 654 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 655 *   modified may need to be swapped out to swap space and (later) to be read
 656 *   back into memory.
 657 */
 658
 659/*
 660 * The zone field is never updated after free_area_init_core()
 661 * sets it, so none of the operations on it need to be atomic.
 662 */
 663
 664/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 665#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 666#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
 667#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
 668#define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
 669
 670/*
 671 * Define the bit shifts to access each section.  For non-existent
 672 * sections we define the shift as 0; that plus a 0 mask ensures
 673 * the compiler will optimise away reference to them.
 674 */
 675#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 676#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
 677#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
 678#define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 679
 680/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 681#ifdef NODE_NOT_IN_PAGE_FLAGS
 682#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
 683#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
 684                                                SECTIONS_PGOFF : ZONES_PGOFF)
 685#else
 686#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
 687#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
 688                                                NODES_PGOFF : ZONES_PGOFF)
 689#endif
 690
 691#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 692
 693#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 694#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 695#endif
 696
 697#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
 698#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
 699#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
 700#define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
 701#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
 702
 703static inline enum zone_type page_zonenum(const struct page *page)
 704{
 705        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 706}
 707
 708#ifdef CONFIG_ZONE_DEVICE
 709void get_zone_device_page(struct page *page);
 710void put_zone_device_page(struct page *page);
 711static inline bool is_zone_device_page(const struct page *page)
 712{
 713        return page_zonenum(page) == ZONE_DEVICE;
 714}
 715#else
 716static inline void get_zone_device_page(struct page *page)
 717{
 718}
 719static inline void put_zone_device_page(struct page *page)
 720{
 721}
 722static inline bool is_zone_device_page(const struct page *page)
 723{
 724        return false;
 725}
 726#endif
 727
 728static inline void get_page(struct page *page)
 729{
 730        page = compound_head(page);
 731        /*
 732         * Getting a normal page or the head of a compound page
 733         * requires to already have an elevated page->_count.
 734         */
 735        VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
 736        page_ref_inc(page);
 737
 738        if (unlikely(is_zone_device_page(page)))
 739                get_zone_device_page(page);
 740}
 741
 742static inline void put_page(struct page *page)
 743{
 744        page = compound_head(page);
 745
 746        if (put_page_testzero(page))
 747                __put_page(page);
 748
 749        if (unlikely(is_zone_device_page(page)))
 750                put_zone_device_page(page);
 751}
 752
 753#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 754#define SECTION_IN_PAGE_FLAGS
 755#endif
 756
 757/*
 758 * The identification function is mainly used by the buddy allocator for
 759 * determining if two pages could be buddies. We are not really identifying
 760 * the zone since we could be using the section number id if we do not have
 761 * node id available in page flags.
 762 * We only guarantee that it will return the same value for two combinable
 763 * pages in a zone.
 764 */
 765static inline int page_zone_id(struct page *page)
 766{
 767        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 768}
 769
 770static inline int zone_to_nid(struct zone *zone)
 771{
 772#ifdef CONFIG_NUMA
 773        return zone->node;
 774#else
 775        return 0;
 776#endif
 777}
 778
 779#ifdef NODE_NOT_IN_PAGE_FLAGS
 780extern int page_to_nid(const struct page *page);
 781#else
 782static inline int page_to_nid(const struct page *page)
 783{
 784        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
 785}
 786#endif
 787
 788#ifdef CONFIG_NUMA_BALANCING
 789static inline int cpu_pid_to_cpupid(int cpu, int pid)
 790{
 791        return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 792}
 793
 794static inline int cpupid_to_pid(int cpupid)
 795{
 796        return cpupid & LAST__PID_MASK;
 797}
 798
 799static inline int cpupid_to_cpu(int cpupid)
 800{
 801        return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 802}
 803
 804static inline int cpupid_to_nid(int cpupid)
 805{
 806        return cpu_to_node(cpupid_to_cpu(cpupid));
 807}
 808
 809static inline bool cpupid_pid_unset(int cpupid)
 810{
 811        return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 812}
 813
 814static inline bool cpupid_cpu_unset(int cpupid)
 815{
 816        return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 817}
 818
 819static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 820{
 821        return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 822}
 823
 824#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 825#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 826static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 827{
 828        return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 829}
 830
 831static inline int page_cpupid_last(struct page *page)
 832{
 833        return page->_last_cpupid;
 834}
 835static inline void page_cpupid_reset_last(struct page *page)
 836{
 837        page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 838}
 839#else
 840static inline int page_cpupid_last(struct page *page)
 841{
 842        return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 843}
 844
 845extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 846
 847static inline void page_cpupid_reset_last(struct page *page)
 848{
 849        int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
 850
 851        page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
 852        page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
 853}
 854#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 855#else /* !CONFIG_NUMA_BALANCING */
 856static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 857{
 858        return page_to_nid(page); /* XXX */
 859}
 860
 861static inline int page_cpupid_last(struct page *page)
 862{
 863        return page_to_nid(page); /* XXX */
 864}
 865
 866static inline int cpupid_to_nid(int cpupid)
 867{
 868        return -1;
 869}
 870
 871static inline int cpupid_to_pid(int cpupid)
 872{
 873        return -1;
 874}
 875
 876static inline int cpupid_to_cpu(int cpupid)
 877{
 878        return -1;
 879}
 880
 881static inline int cpu_pid_to_cpupid(int nid, int pid)
 882{
 883        return -1;
 884}
 885
 886static inline bool cpupid_pid_unset(int cpupid)
 887{
 888        return 1;
 889}
 890
 891static inline void page_cpupid_reset_last(struct page *page)
 892{
 893}
 894
 895static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 896{
 897        return false;
 898}
 899#endif /* CONFIG_NUMA_BALANCING */
 900
 901static inline struct zone *page_zone(const struct page *page)
 902{
 903        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 904}
 905
 906#ifdef SECTION_IN_PAGE_FLAGS
 907static inline void set_page_section(struct page *page, unsigned long section)
 908{
 909        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 910        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 911}
 912
 913static inline unsigned long page_to_section(const struct page *page)
 914{
 915        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 916}
 917#endif
 918
 919static inline void set_page_zone(struct page *page, enum zone_type zone)
 920{
 921        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 922        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 923}
 924
 925static inline void set_page_node(struct page *page, unsigned long node)
 926{
 927        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 928        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 929}
 930
 931static inline void set_page_links(struct page *page, enum zone_type zone,
 932        unsigned long node, unsigned long pfn)
 933{
 934        set_page_zone(page, zone);
 935        set_page_node(page, node);
 936#ifdef SECTION_IN_PAGE_FLAGS
 937        set_page_section(page, pfn_to_section_nr(pfn));
 938#endif
 939}
 940
 941#ifdef CONFIG_MEMCG
 942static inline struct mem_cgroup *page_memcg(struct page *page)
 943{
 944        return page->mem_cgroup;
 945}
 946#else
 947static inline struct mem_cgroup *page_memcg(struct page *page)
 948{
 949        return NULL;
 950}
 951#endif
 952
 953/*
 954 * Some inline functions in vmstat.h depend on page_zone()
 955 */
 956#include <linux/vmstat.h>
 957
 958static __always_inline void *lowmem_page_address(const struct page *page)
 959{
 960        return __va(PFN_PHYS(page_to_pfn(page)));
 961}
 962
 963#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 964#define HASHED_PAGE_VIRTUAL
 965#endif
 966
 967#if defined(WANT_PAGE_VIRTUAL)
 968static inline void *page_address(const struct page *page)
 969{
 970        return page->virtual;
 971}
 972static inline void set_page_address(struct page *page, void *address)
 973{
 974        page->virtual = address;
 975}
 976#define page_address_init()  do { } while(0)
 977#endif
 978
 979#if defined(HASHED_PAGE_VIRTUAL)
 980void *page_address(const struct page *page);
 981void set_page_address(struct page *page, void *virtual);
 982void page_address_init(void);
 983#endif
 984
 985#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 986#define page_address(page) lowmem_page_address(page)
 987#define set_page_address(page, address)  do { } while(0)
 988#define page_address_init()  do { } while(0)
 989#endif
 990
 991extern void *page_rmapping(struct page *page);
 992extern struct anon_vma *page_anon_vma(struct page *page);
 993extern struct address_space *page_mapping(struct page *page);
 994
 995extern struct address_space *__page_file_mapping(struct page *);
 996
 997static inline
 998struct address_space *page_file_mapping(struct page *page)
 999{
1000        if (unlikely(PageSwapCache(page)))
1001                return __page_file_mapping(page);
1002
1003        return page->mapping;
1004}
1005
1006/*
1007 * Return the pagecache index of the passed page.  Regular pagecache pages
1008 * use ->index whereas swapcache pages use ->private
1009 */
1010static inline pgoff_t page_index(struct page *page)
1011{
1012        if (unlikely(PageSwapCache(page)))
1013                return page_private(page);
1014        return page->index;
1015}
1016
1017extern pgoff_t __page_file_index(struct page *page);
1018
1019/*
1020 * Return the file index of the page. Regular pagecache pages use ->index
1021 * whereas swapcache pages use swp_offset(->private)
1022 */
1023static inline pgoff_t page_file_index(struct page *page)
1024{
1025        if (unlikely(PageSwapCache(page)))
1026                return __page_file_index(page);
1027
1028        return page->index;
1029}
1030
1031/*
1032 * Return true if this page is mapped into pagetables.
1033 * For compound page it returns true if any subpage of compound page is mapped.
1034 */
1035static inline bool page_mapped(struct page *page)
1036{
1037        int i;
1038        if (likely(!PageCompound(page)))
1039                return atomic_read(&page->_mapcount) >= 0;
1040        page = compound_head(page);
1041        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1042                return true;
1043        if (PageHuge(page))
1044                return false;
1045        for (i = 0; i < hpage_nr_pages(page); i++) {
1046                if (atomic_read(&page[i]._mapcount) >= 0)
1047                        return true;
1048        }
1049        return false;
1050}
1051
1052/*
1053 * Return true only if the page has been allocated with
1054 * ALLOC_NO_WATERMARKS and the low watermark was not
1055 * met implying that the system is under some pressure.
1056 */
1057static inline bool page_is_pfmemalloc(struct page *page)
1058{
1059        /*
1060         * Page index cannot be this large so this must be
1061         * a pfmemalloc page.
1062         */
1063        return page->index == -1UL;
1064}
1065
1066/*
1067 * Only to be called by the page allocator on a freshly allocated
1068 * page.
1069 */
1070static inline void set_page_pfmemalloc(struct page *page)
1071{
1072        page->index = -1UL;
1073}
1074
1075static inline void clear_page_pfmemalloc(struct page *page)
1076{
1077        page->index = 0;
1078}
1079
1080/*
1081 * Different kinds of faults, as returned by handle_mm_fault().
1082 * Used to decide whether a process gets delivered SIGBUS or
1083 * just gets major/minor fault counters bumped up.
1084 */
1085
1086#define VM_FAULT_OOM    0x0001
1087#define VM_FAULT_SIGBUS 0x0002
1088#define VM_FAULT_MAJOR  0x0004
1089#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1090#define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1091#define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1092#define VM_FAULT_SIGSEGV 0x0040
1093
1094#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1095#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1096#define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1097#define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1098
1099#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1100
1101#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1102                         VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1103                         VM_FAULT_FALLBACK)
1104
1105/* Encode hstate index for a hwpoisoned large page */
1106#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1107#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1108
1109/*
1110 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1111 */
1112extern void pagefault_out_of_memory(void);
1113
1114#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1115
1116/*
1117 * Flags passed to show_mem() and show_free_areas() to suppress output in
1118 * various contexts.
1119 */
1120#define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1121
1122extern void show_free_areas(unsigned int flags);
1123extern bool skip_free_areas_node(unsigned int flags, int nid);
1124
1125int shmem_zero_setup(struct vm_area_struct *);
1126#ifdef CONFIG_SHMEM
1127bool shmem_mapping(struct address_space *mapping);
1128#else
1129static inline bool shmem_mapping(struct address_space *mapping)
1130{
1131        return false;
1132}
1133#endif
1134
1135extern bool can_do_mlock(void);
1136extern int user_shm_lock(size_t, struct user_struct *);
1137extern void user_shm_unlock(size_t, struct user_struct *);
1138
1139/*
1140 * Parameter block passed down to zap_pte_range in exceptional cases.
1141 */
1142struct zap_details {
1143        struct address_space *check_mapping;    /* Check page->mapping if set */
1144        pgoff_t first_index;                    /* Lowest page->index to unmap */
1145        pgoff_t last_index;                     /* Highest page->index to unmap */
1146        bool ignore_dirty;                      /* Ignore dirty pages */
1147        bool check_swap_entries;                /* Check also swap entries */
1148};
1149
1150struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1151                pte_t pte);
1152struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1153                                pmd_t pmd);
1154
1155int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1156                unsigned long size);
1157void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1158                unsigned long size, struct zap_details *);
1159void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1160                unsigned long start, unsigned long end);
1161
1162/**
1163 * mm_walk - callbacks for walk_page_range
1164 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1165 *             this handler is required to be able to handle
1166 *             pmd_trans_huge() pmds.  They may simply choose to
1167 *             split_huge_page() instead of handling it explicitly.
1168 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1169 * @pte_hole: if set, called for each hole at all levels
1170 * @hugetlb_entry: if set, called for each hugetlb entry
1171 * @test_walk: caller specific callback function to determine whether
1172 *             we walk over the current vma or not. A positive returned
1173 *             value means "do page table walk over the current vma,"
1174 *             and a negative one means "abort current page table walk
1175 *             right now." 0 means "skip the current vma."
1176 * @mm:        mm_struct representing the target process of page table walk
1177 * @vma:       vma currently walked (NULL if walking outside vmas)
1178 * @private:   private data for callbacks' usage
1179 *
1180 * (see the comment on walk_page_range() for more details)
1181 */
1182struct mm_walk {
1183        int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1184                         unsigned long next, struct mm_walk *walk);
1185        int (*pte_entry)(pte_t *pte, unsigned long addr,
1186                         unsigned long next, struct mm_walk *walk);
1187        int (*pte_hole)(unsigned long addr, unsigned long next,
1188                        struct mm_walk *walk);
1189        int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1190                             unsigned long addr, unsigned long next,
1191                             struct mm_walk *walk);
1192        int (*test_walk)(unsigned long addr, unsigned long next,
1193                        struct mm_walk *walk);
1194        struct mm_struct *mm;
1195        struct vm_area_struct *vma;
1196        void *private;
1197};
1198
1199int walk_page_range(unsigned long addr, unsigned long end,
1200                struct mm_walk *walk);
1201int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1202void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1203                unsigned long end, unsigned long floor, unsigned long ceiling);
1204int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1205                        struct vm_area_struct *vma);
1206void unmap_mapping_range(struct address_space *mapping,
1207                loff_t const holebegin, loff_t const holelen, int even_cows);
1208int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1209        unsigned long *pfn);
1210int follow_phys(struct vm_area_struct *vma, unsigned long address,
1211                unsigned int flags, unsigned long *prot, resource_size_t *phys);
1212int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1213                        void *buf, int len, int write);
1214
1215static inline void unmap_shared_mapping_range(struct address_space *mapping,
1216                loff_t const holebegin, loff_t const holelen)
1217{
1218        unmap_mapping_range(mapping, holebegin, holelen, 0);
1219}
1220
1221extern void truncate_pagecache(struct inode *inode, loff_t new);
1222extern void truncate_setsize(struct inode *inode, loff_t newsize);
1223void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1224void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1225int truncate_inode_page(struct address_space *mapping, struct page *page);
1226int generic_error_remove_page(struct address_space *mapping, struct page *page);
1227int invalidate_inode_page(struct page *page);
1228
1229#ifdef CONFIG_MMU
1230extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1231                        unsigned long address, unsigned int flags);
1232extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1233                            unsigned long address, unsigned int fault_flags,
1234                            bool *unlocked);
1235#else
1236static inline int handle_mm_fault(struct mm_struct *mm,
1237                        struct vm_area_struct *vma, unsigned long address,
1238                        unsigned int flags)
1239{
1240        /* should never happen if there's no MMU */
1241        BUG();
1242        return VM_FAULT_SIGBUS;
1243}
1244static inline int fixup_user_fault(struct task_struct *tsk,
1245                struct mm_struct *mm, unsigned long address,
1246                unsigned int fault_flags, bool *unlocked)
1247{
1248        /* should never happen if there's no MMU */
1249        BUG();
1250        return -EFAULT;
1251}
1252#endif
1253
1254extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1255extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1256                void *buf, int len, int write);
1257
1258long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1259                      unsigned long start, unsigned long nr_pages,
1260                      unsigned int foll_flags, struct page **pages,
1261                      struct vm_area_struct **vmas, int *nonblocking);
1262long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1263                            unsigned long start, unsigned long nr_pages,
1264                            int write, int force, struct page **pages,
1265                            struct vm_area_struct **vmas);
1266long get_user_pages(unsigned long start, unsigned long nr_pages,
1267                            int write, int force, struct page **pages,
1268                            struct vm_area_struct **vmas);
1269long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1270                    int write, int force, struct page **pages, int *locked);
1271long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1272                               unsigned long start, unsigned long nr_pages,
1273                               int write, int force, struct page **pages,
1274                               unsigned int gup_flags);
1275long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1276                    int write, int force, struct page **pages);
1277int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1278                        struct page **pages);
1279
1280/* Container for pinned pfns / pages */
1281struct frame_vector {
1282        unsigned int nr_allocated;      /* Number of frames we have space for */
1283        unsigned int nr_frames; /* Number of frames stored in ptrs array */
1284        bool got_ref;           /* Did we pin pages by getting page ref? */
1285        bool is_pfns;           /* Does array contain pages or pfns? */
1286        void *ptrs[0];          /* Array of pinned pfns / pages. Use
1287                                 * pfns_vector_pages() or pfns_vector_pfns()
1288                                 * for access */
1289};
1290
1291struct frame_vector *frame_vector_create(unsigned int nr_frames);
1292void frame_vector_destroy(struct frame_vector *vec);
1293int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1294                     bool write, bool force, struct frame_vector *vec);
1295void put_vaddr_frames(struct frame_vector *vec);
1296int frame_vector_to_pages(struct frame_vector *vec);
1297void frame_vector_to_pfns(struct frame_vector *vec);
1298
1299static inline unsigned int frame_vector_count(struct frame_vector *vec)
1300{
1301        return vec->nr_frames;
1302}
1303
1304static inline struct page **frame_vector_pages(struct frame_vector *vec)
1305{
1306        if (vec->is_pfns) {
1307                int err = frame_vector_to_pages(vec);
1308
1309                if (err)
1310                        return ERR_PTR(err);
1311        }
1312        return (struct page **)(vec->ptrs);
1313}
1314
1315static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1316{
1317        if (!vec->is_pfns)
1318                frame_vector_to_pfns(vec);
1319        return (unsigned long *)(vec->ptrs);
1320}
1321
1322struct kvec;
1323int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1324                        struct page **pages);
1325int get_kernel_page(unsigned long start, int write, struct page **pages);
1326struct page *get_dump_page(unsigned long addr);
1327
1328extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1329extern void do_invalidatepage(struct page *page, unsigned int offset,
1330                              unsigned int length);
1331
1332int __set_page_dirty_nobuffers(struct page *page);
1333int __set_page_dirty_no_writeback(struct page *page);
1334int redirty_page_for_writepage(struct writeback_control *wbc,
1335                                struct page *page);
1336void account_page_dirtied(struct page *page, struct address_space *mapping);
1337void account_page_cleaned(struct page *page, struct address_space *mapping,
1338                          struct bdi_writeback *wb);
1339int set_page_dirty(struct page *page);
1340int set_page_dirty_lock(struct page *page);
1341void cancel_dirty_page(struct page *page);
1342int clear_page_dirty_for_io(struct page *page);
1343
1344int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1345
1346/* Is the vma a continuation of the stack vma above it? */
1347static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1348{
1349        return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1350}
1351
1352static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1353{
1354        return !vma->vm_ops;
1355}
1356
1357static inline int stack_guard_page_start(struct vm_area_struct *vma,
1358                                             unsigned long addr)
1359{
1360        return (vma->vm_flags & VM_GROWSDOWN) &&
1361                (vma->vm_start == addr) &&
1362                !vma_growsdown(vma->vm_prev, addr);
1363}
1364
1365/* Is the vma a continuation of the stack vma below it? */
1366static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1367{
1368        return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1369}
1370
1371static inline int stack_guard_page_end(struct vm_area_struct *vma,
1372                                           unsigned long addr)
1373{
1374        return (vma->vm_flags & VM_GROWSUP) &&
1375                (vma->vm_end == addr) &&
1376                !vma_growsup(vma->vm_next, addr);
1377}
1378
1379int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1380
1381extern unsigned long move_page_tables(struct vm_area_struct *vma,
1382                unsigned long old_addr, struct vm_area_struct *new_vma,
1383                unsigned long new_addr, unsigned long len,
1384                bool need_rmap_locks);
1385extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1386                              unsigned long end, pgprot_t newprot,
1387                              int dirty_accountable, int prot_numa);
1388extern int mprotect_fixup(struct vm_area_struct *vma,
1389                          struct vm_area_struct **pprev, unsigned long start,
1390                          unsigned long end, unsigned long newflags);
1391
1392/*
1393 * doesn't attempt to fault and will return short.
1394 */
1395int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1396                          struct page **pages);
1397/*
1398 * per-process(per-mm_struct) statistics.
1399 */
1400static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1401{
1402        long val = atomic_long_read(&mm->rss_stat.count[member]);
1403
1404#ifdef SPLIT_RSS_COUNTING
1405        /*
1406         * counter is updated in asynchronous manner and may go to minus.
1407         * But it's never be expected number for users.
1408         */
1409        if (val < 0)
1410                val = 0;
1411#endif
1412        return (unsigned long)val;
1413}
1414
1415static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1416{
1417        atomic_long_add(value, &mm->rss_stat.count[member]);
1418}
1419
1420static inline void inc_mm_counter(struct mm_struct *mm, int member)
1421{
1422        atomic_long_inc(&mm->rss_stat.count[member]);
1423}
1424
1425static inline void dec_mm_counter(struct mm_struct *mm, int member)
1426{
1427        atomic_long_dec(&mm->rss_stat.count[member]);
1428}
1429
1430/* Optimized variant when page is already known not to be PageAnon */
1431static inline int mm_counter_file(struct page *page)
1432{
1433        if (PageSwapBacked(page))
1434                return MM_SHMEMPAGES;
1435        return MM_FILEPAGES;
1436}
1437
1438static inline int mm_counter(struct page *page)
1439{
1440        if (PageAnon(page))
1441                return MM_ANONPAGES;
1442        return mm_counter_file(page);
1443}
1444
1445static inline unsigned long get_mm_rss(struct mm_struct *mm)
1446{
1447        return get_mm_counter(mm, MM_FILEPAGES) +
1448                get_mm_counter(mm, MM_ANONPAGES) +
1449                get_mm_counter(mm, MM_SHMEMPAGES);
1450}
1451
1452static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1453{
1454        return max(mm->hiwater_rss, get_mm_rss(mm));
1455}
1456
1457static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1458{
1459        return max(mm->hiwater_vm, mm->total_vm);
1460}
1461
1462static inline void update_hiwater_rss(struct mm_struct *mm)
1463{
1464        unsigned long _rss = get_mm_rss(mm);
1465
1466        if ((mm)->hiwater_rss < _rss)
1467                (mm)->hiwater_rss = _rss;
1468}
1469
1470static inline void update_hiwater_vm(struct mm_struct *mm)
1471{
1472        if (mm->hiwater_vm < mm->total_vm)
1473                mm->hiwater_vm = mm->total_vm;
1474}
1475
1476static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1477{
1478        mm->hiwater_rss = get_mm_rss(mm);
1479}
1480
1481static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1482                                         struct mm_struct *mm)
1483{
1484        unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1485
1486        if (*maxrss < hiwater_rss)
1487                *maxrss = hiwater_rss;
1488}
1489
1490#if defined(SPLIT_RSS_COUNTING)
1491void sync_mm_rss(struct mm_struct *mm);
1492#else
1493static inline void sync_mm_rss(struct mm_struct *mm)
1494{
1495}
1496#endif
1497
1498#ifndef __HAVE_ARCH_PTE_DEVMAP
1499static inline int pte_devmap(pte_t pte)
1500{
1501        return 0;
1502}
1503#endif
1504
1505int vma_wants_writenotify(struct vm_area_struct *vma);
1506
1507extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1508                               spinlock_t **ptl);
1509static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1510                                    spinlock_t **ptl)
1511{
1512        pte_t *ptep;
1513        __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1514        return ptep;
1515}
1516
1517#ifdef __PAGETABLE_PUD_FOLDED
1518static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1519                                                unsigned long address)
1520{
1521        return 0;
1522}
1523#else
1524int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1525#endif
1526
1527#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1528static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1529                                                unsigned long address)
1530{
1531        return 0;
1532}
1533
1534static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1535
1536static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1537{
1538        return 0;
1539}
1540
1541static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1542static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1543
1544#else
1545int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1546
1547static inline void mm_nr_pmds_init(struct mm_struct *mm)
1548{
1549        atomic_long_set(&mm->nr_pmds, 0);
1550}
1551
1552static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1553{
1554        return atomic_long_read(&mm->nr_pmds);
1555}
1556
1557static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1558{
1559        atomic_long_inc(&mm->nr_pmds);
1560}
1561
1562static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1563{
1564        atomic_long_dec(&mm->nr_pmds);
1565}
1566#endif
1567
1568int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1569int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1570
1571/*
1572 * The following ifdef needed to get the 4level-fixup.h header to work.
1573 * Remove it when 4level-fixup.h has been removed.
1574 */
1575#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1576static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1577{
1578        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1579                NULL: pud_offset(pgd, address);
1580}
1581
1582static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1583{
1584        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1585                NULL: pmd_offset(pud, address);
1586}
1587#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1588
1589#if USE_SPLIT_PTE_PTLOCKS
1590#if ALLOC_SPLIT_PTLOCKS
1591void __init ptlock_cache_init(void);
1592extern bool ptlock_alloc(struct page *page);
1593extern void ptlock_free(struct page *page);
1594
1595static inline spinlock_t *ptlock_ptr(struct page *page)
1596{
1597        return page->ptl;
1598}
1599#else /* ALLOC_SPLIT_PTLOCKS */
1600static inline void ptlock_cache_init(void)
1601{
1602}
1603
1604static inline bool ptlock_alloc(struct page *page)
1605{
1606        return true;
1607}
1608
1609static inline void ptlock_free(struct page *page)
1610{
1611}
1612
1613static inline spinlock_t *ptlock_ptr(struct page *page)
1614{
1615        return &page->ptl;
1616}
1617#endif /* ALLOC_SPLIT_PTLOCKS */
1618
1619static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620{
1621        return ptlock_ptr(pmd_page(*pmd));
1622}
1623
1624static inline bool ptlock_init(struct page *page)
1625{
1626        /*
1627         * prep_new_page() initialize page->private (and therefore page->ptl)
1628         * with 0. Make sure nobody took it in use in between.
1629         *
1630         * It can happen if arch try to use slab for page table allocation:
1631         * slab code uses page->slab_cache, which share storage with page->ptl.
1632         */
1633        VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1634        if (!ptlock_alloc(page))
1635                return false;
1636        spin_lock_init(ptlock_ptr(page));
1637        return true;
1638}
1639
1640/* Reset page->mapping so free_pages_check won't complain. */
1641static inline void pte_lock_deinit(struct page *page)
1642{
1643        page->mapping = NULL;
1644        ptlock_free(page);
1645}
1646
1647#else   /* !USE_SPLIT_PTE_PTLOCKS */
1648/*
1649 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1650 */
1651static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1652{
1653        return &mm->page_table_lock;
1654}
1655static inline void ptlock_cache_init(void) {}
1656static inline bool ptlock_init(struct page *page) { return true; }
1657static inline void pte_lock_deinit(struct page *page) {}
1658#endif /* USE_SPLIT_PTE_PTLOCKS */
1659
1660static inline void pgtable_init(void)
1661{
1662        ptlock_cache_init();
1663        pgtable_cache_init();
1664}
1665
1666static inline bool pgtable_page_ctor(struct page *page)
1667{
1668        if (!ptlock_init(page))
1669                return false;
1670        inc_zone_page_state(page, NR_PAGETABLE);
1671        return true;
1672}
1673
1674static inline void pgtable_page_dtor(struct page *page)
1675{
1676        pte_lock_deinit(page);
1677        dec_zone_page_state(page, NR_PAGETABLE);
1678}
1679
1680#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1681({                                                      \
1682        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1683        pte_t *__pte = pte_offset_map(pmd, address);    \
1684        *(ptlp) = __ptl;                                \
1685        spin_lock(__ptl);                               \
1686        __pte;                                          \
1687})
1688
1689#define pte_unmap_unlock(pte, ptl)      do {            \
1690        spin_unlock(ptl);                               \
1691        pte_unmap(pte);                                 \
1692} while (0)
1693
1694#define pte_alloc(mm, pmd, address)                     \
1695        (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1696
1697#define pte_alloc_map(mm, pmd, address)                 \
1698        (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1699
1700#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1701        (pte_alloc(mm, pmd, address) ?                  \
1702                 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1703
1704#define pte_alloc_kernel(pmd, address)                  \
1705        ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1706                NULL: pte_offset_kernel(pmd, address))
1707
1708#if USE_SPLIT_PMD_PTLOCKS
1709
1710static struct page *pmd_to_page(pmd_t *pmd)
1711{
1712        unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1713        return virt_to_page((void *)((unsigned long) pmd & mask));
1714}
1715
1716static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1717{
1718        return ptlock_ptr(pmd_to_page(pmd));
1719}
1720
1721static inline bool pgtable_pmd_page_ctor(struct page *page)
1722{
1723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1724        page->pmd_huge_pte = NULL;
1725#endif
1726        return ptlock_init(page);
1727}
1728
1729static inline void pgtable_pmd_page_dtor(struct page *page)
1730{
1731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1732        VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1733#endif
1734        ptlock_free(page);
1735}
1736
1737#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1738
1739#else
1740
1741static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1742{
1743        return &mm->page_table_lock;
1744}
1745
1746static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1747static inline void pgtable_pmd_page_dtor(struct page *page) {}
1748
1749#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1750
1751#endif
1752
1753static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1754{
1755        spinlock_t *ptl = pmd_lockptr(mm, pmd);
1756        spin_lock(ptl);
1757        return ptl;
1758}
1759
1760extern void free_area_init(unsigned long * zones_size);
1761extern void free_area_init_node(int nid, unsigned long * zones_size,
1762                unsigned long zone_start_pfn, unsigned long *zholes_size);
1763extern void free_initmem(void);
1764
1765/*
1766 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1767 * into the buddy system. The freed pages will be poisoned with pattern
1768 * "poison" if it's within range [0, UCHAR_MAX].
1769 * Return pages freed into the buddy system.
1770 */
1771extern unsigned long free_reserved_area(void *start, void *end,
1772                                        int poison, char *s);
1773
1774#ifdef  CONFIG_HIGHMEM
1775/*
1776 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1777 * and totalram_pages.
1778 */
1779extern void free_highmem_page(struct page *page);
1780#endif
1781
1782extern void adjust_managed_page_count(struct page *page, long count);
1783extern void mem_init_print_info(const char *str);
1784
1785extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1786
1787/* Free the reserved page into the buddy system, so it gets managed. */
1788static inline void __free_reserved_page(struct page *page)
1789{
1790        ClearPageReserved(page);
1791        init_page_count(page);
1792        __free_page(page);
1793}
1794
1795static inline void free_reserved_page(struct page *page)
1796{
1797        __free_reserved_page(page);
1798        adjust_managed_page_count(page, 1);
1799}
1800
1801static inline void mark_page_reserved(struct page *page)
1802{
1803        SetPageReserved(page);
1804        adjust_managed_page_count(page, -1);
1805}
1806
1807/*
1808 * Default method to free all the __init memory into the buddy system.
1809 * The freed pages will be poisoned with pattern "poison" if it's within
1810 * range [0, UCHAR_MAX].
1811 * Return pages freed into the buddy system.
1812 */
1813static inline unsigned long free_initmem_default(int poison)
1814{
1815        extern char __init_begin[], __init_end[];
1816
1817        return free_reserved_area(&__init_begin, &__init_end,
1818                                  poison, "unused kernel");
1819}
1820
1821static inline unsigned long get_num_physpages(void)
1822{
1823        int nid;
1824        unsigned long phys_pages = 0;
1825
1826        for_each_online_node(nid)
1827                phys_pages += node_present_pages(nid);
1828
1829        return phys_pages;
1830}
1831
1832#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1833/*
1834 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1835 * zones, allocate the backing mem_map and account for memory holes in a more
1836 * architecture independent manner. This is a substitute for creating the
1837 * zone_sizes[] and zholes_size[] arrays and passing them to
1838 * free_area_init_node()
1839 *
1840 * An architecture is expected to register range of page frames backed by
1841 * physical memory with memblock_add[_node]() before calling
1842 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1843 * usage, an architecture is expected to do something like
1844 *
1845 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1846 *                                                       max_highmem_pfn};
1847 * for_each_valid_physical_page_range()
1848 *      memblock_add_node(base, size, nid)
1849 * free_area_init_nodes(max_zone_pfns);
1850 *
1851 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1852 * registered physical page range.  Similarly
1853 * sparse_memory_present_with_active_regions() calls memory_present() for
1854 * each range when SPARSEMEM is enabled.
1855 *
1856 * See mm/page_alloc.c for more information on each function exposed by
1857 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1858 */
1859extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1860unsigned long node_map_pfn_alignment(void);
1861unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1862                                                unsigned long end_pfn);
1863extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1864                                                unsigned long end_pfn);
1865extern void get_pfn_range_for_nid(unsigned int nid,
1866                        unsigned long *start_pfn, unsigned long *end_pfn);
1867extern unsigned long find_min_pfn_with_active_regions(void);
1868extern void free_bootmem_with_active_regions(int nid,
1869                                                unsigned long max_low_pfn);
1870extern void sparse_memory_present_with_active_regions(int nid);
1871
1872#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1873
1874#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1875    !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1876static inline int __early_pfn_to_nid(unsigned long pfn,
1877                                        struct mminit_pfnnid_cache *state)
1878{
1879        return 0;
1880}
1881#else
1882/* please see mm/page_alloc.c */
1883extern int __meminit early_pfn_to_nid(unsigned long pfn);
1884/* there is a per-arch backend function. */
1885extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1886                                        struct mminit_pfnnid_cache *state);
1887#endif
1888
1889extern void set_dma_reserve(unsigned long new_dma_reserve);
1890extern void memmap_init_zone(unsigned long, int, unsigned long,
1891                                unsigned long, enum memmap_context);
1892extern void setup_per_zone_wmarks(void);
1893extern int __meminit init_per_zone_wmark_min(void);
1894extern void mem_init(void);
1895extern void __init mmap_init(void);
1896extern void show_mem(unsigned int flags);
1897extern long si_mem_available(void);
1898extern void si_meminfo(struct sysinfo * val);
1899extern void si_meminfo_node(struct sysinfo *val, int nid);
1900
1901extern __printf(3, 4)
1902void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1903                const char *fmt, ...);
1904
1905extern void setup_per_cpu_pageset(void);
1906
1907extern void zone_pcp_update(struct zone *zone);
1908extern void zone_pcp_reset(struct zone *zone);
1909
1910/* page_alloc.c */
1911extern int min_free_kbytes;
1912extern int watermark_scale_factor;
1913
1914/* nommu.c */
1915extern atomic_long_t mmap_pages_allocated;
1916extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1917
1918/* interval_tree.c */
1919void vma_interval_tree_insert(struct vm_area_struct *node,
1920                              struct rb_root *root);
1921void vma_interval_tree_insert_after(struct vm_area_struct *node,
1922                                    struct vm_area_struct *prev,
1923                                    struct rb_root *root);
1924void vma_interval_tree_remove(struct vm_area_struct *node,
1925                              struct rb_root *root);
1926struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1927                                unsigned long start, unsigned long last);
1928struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1929                                unsigned long start, unsigned long last);
1930
1931#define vma_interval_tree_foreach(vma, root, start, last)               \
1932        for (vma = vma_interval_tree_iter_first(root, start, last);     \
1933             vma; vma = vma_interval_tree_iter_next(vma, start, last))
1934
1935void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1936                                   struct rb_root *root);
1937void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1938                                   struct rb_root *root);
1939struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1940        struct rb_root *root, unsigned long start, unsigned long last);
1941struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1942        struct anon_vma_chain *node, unsigned long start, unsigned long last);
1943#ifdef CONFIG_DEBUG_VM_RB
1944void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1945#endif
1946
1947#define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1948        for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1949             avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1950
1951/* mmap.c */
1952extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1953extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1954        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1955extern struct vm_area_struct *vma_merge(struct mm_struct *,
1956        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1957        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1958        struct mempolicy *, struct vm_userfaultfd_ctx);
1959extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1960extern int split_vma(struct mm_struct *,
1961        struct vm_area_struct *, unsigned long addr, int new_below);
1962extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1963extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1964        struct rb_node **, struct rb_node *);
1965extern void unlink_file_vma(struct vm_area_struct *);
1966extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1967        unsigned long addr, unsigned long len, pgoff_t pgoff,
1968        bool *need_rmap_locks);
1969extern void exit_mmap(struct mm_struct *);
1970
1971static inline int check_data_rlimit(unsigned long rlim,
1972                                    unsigned long new,
1973                                    unsigned long start,
1974                                    unsigned long end_data,
1975                                    unsigned long start_data)
1976{
1977        if (rlim < RLIM_INFINITY) {
1978                if (((new - start) + (end_data - start_data)) > rlim)
1979                        return -ENOSPC;
1980        }
1981
1982        return 0;
1983}
1984
1985extern int mm_take_all_locks(struct mm_struct *mm);
1986extern void mm_drop_all_locks(struct mm_struct *mm);
1987
1988extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1989extern struct file *get_mm_exe_file(struct mm_struct *mm);
1990
1991extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1992extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1993
1994extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1995                                   unsigned long addr, unsigned long len,
1996                                   unsigned long flags,
1997                                   const struct vm_special_mapping *spec);
1998/* This is an obsolete alternative to _install_special_mapping. */
1999extern int install_special_mapping(struct mm_struct *mm,
2000                                   unsigned long addr, unsigned long len,
2001                                   unsigned long flags, struct page **pages);
2002
2003extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2004
2005extern unsigned long mmap_region(struct file *file, unsigned long addr,
2006        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2007extern unsigned long do_mmap(struct file *file, unsigned long addr,
2008        unsigned long len, unsigned long prot, unsigned long flags,
2009        vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2010extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2011
2012static inline unsigned long
2013do_mmap_pgoff(struct file *file, unsigned long addr,
2014        unsigned long len, unsigned long prot, unsigned long flags,
2015        unsigned long pgoff, unsigned long *populate)
2016{
2017        return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2018}
2019
2020#ifdef CONFIG_MMU
2021extern int __mm_populate(unsigned long addr, unsigned long len,
2022                         int ignore_errors);
2023static inline void mm_populate(unsigned long addr, unsigned long len)
2024{
2025        /* Ignore errors */
2026        (void) __mm_populate(addr, len, 1);
2027}
2028#else
2029static inline void mm_populate(unsigned long addr, unsigned long len) {}
2030#endif
2031
2032/* These take the mm semaphore themselves */
2033extern unsigned long vm_brk(unsigned long, unsigned long);
2034extern int vm_munmap(unsigned long, size_t);
2035extern unsigned long vm_mmap(struct file *, unsigned long,
2036        unsigned long, unsigned long,
2037        unsigned long, unsigned long);
2038
2039struct vm_unmapped_area_info {
2040#define VM_UNMAPPED_AREA_TOPDOWN 1
2041        unsigned long flags;
2042        unsigned long length;
2043        unsigned long low_limit;
2044        unsigned long high_limit;
2045        unsigned long align_mask;
2046        unsigned long align_offset;
2047};
2048
2049extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2050extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2051
2052/*
2053 * Search for an unmapped address range.
2054 *
2055 * We are looking for a range that:
2056 * - does not intersect with any VMA;
2057 * - is contained within the [low_limit, high_limit) interval;
2058 * - is at least the desired size.
2059 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2060 */
2061static inline unsigned long
2062vm_unmapped_area(struct vm_unmapped_area_info *info)
2063{
2064        if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2065                return unmapped_area_topdown(info);
2066        else
2067                return unmapped_area(info);
2068}
2069
2070/* truncate.c */
2071extern void truncate_inode_pages(struct address_space *, loff_t);
2072extern void truncate_inode_pages_range(struct address_space *,
2073                                       loff_t lstart, loff_t lend);
2074extern void truncate_inode_pages_final(struct address_space *);
2075
2076/* generic vm_area_ops exported for stackable file systems */
2077extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2078extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2079extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2080
2081/* mm/page-writeback.c */
2082int write_one_page(struct page *page, int wait);
2083void task_dirty_inc(struct task_struct *tsk);
2084
2085/* readahead.c */
2086#define VM_MAX_READAHEAD        128     /* kbytes */
2087#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2088
2089int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2090                        pgoff_t offset, unsigned long nr_to_read);
2091
2092void page_cache_sync_readahead(struct address_space *mapping,
2093                               struct file_ra_state *ra,
2094                               struct file *filp,
2095                               pgoff_t offset,
2096                               unsigned long size);
2097
2098void page_cache_async_readahead(struct address_space *mapping,
2099                                struct file_ra_state *ra,
2100                                struct file *filp,
2101                                struct page *pg,
2102                                pgoff_t offset,
2103                                unsigned long size);
2104
2105/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2106extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2107
2108/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2109extern int expand_downwards(struct vm_area_struct *vma,
2110                unsigned long address);
2111#if VM_GROWSUP
2112extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2113#else
2114  #define expand_upwards(vma, address) (0)
2115#endif
2116
2117/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2118extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2119extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2120                                             struct vm_area_struct **pprev);
2121
2122/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2123   NULL if none.  Assume start_addr < end_addr. */
2124static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2125{
2126        struct vm_area_struct * vma = find_vma(mm,start_addr);
2127
2128        if (vma && end_addr <= vma->vm_start)
2129                vma = NULL;
2130        return vma;
2131}
2132
2133static inline unsigned long vma_pages(struct vm_area_struct *vma)
2134{
2135        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2136}
2137
2138/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2139static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2140                                unsigned long vm_start, unsigned long vm_end)
2141{
2142        struct vm_area_struct *vma = find_vma(mm, vm_start);
2143
2144        if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2145                vma = NULL;
2146
2147        return vma;
2148}
2149
2150#ifdef CONFIG_MMU
2151pgprot_t vm_get_page_prot(unsigned long vm_flags);
2152void vma_set_page_prot(struct vm_area_struct *vma);
2153#else
2154static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2155{
2156        return __pgprot(0);
2157}
2158static inline void vma_set_page_prot(struct vm_area_struct *vma)
2159{
2160        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2161}
2162#endif
2163
2164#ifdef CONFIG_NUMA_BALANCING
2165unsigned long change_prot_numa(struct vm_area_struct *vma,
2166                        unsigned long start, unsigned long end);
2167#endif
2168
2169struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2170int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2171                        unsigned long pfn, unsigned long size, pgprot_t);
2172int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2173int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2174                        unsigned long pfn);
2175int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2176                        unsigned long pfn, pgprot_t pgprot);
2177int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2178                        pfn_t pfn);
2179int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2180
2181
2182struct page *follow_page_mask(struct vm_area_struct *vma,
2183                              unsigned long address, unsigned int foll_flags,
2184                              unsigned int *page_mask);
2185
2186static inline struct page *follow_page(struct vm_area_struct *vma,
2187                unsigned long address, unsigned int foll_flags)
2188{
2189        unsigned int unused_page_mask;
2190        return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2191}
2192
2193#define FOLL_WRITE      0x01    /* check pte is writable */
2194#define FOLL_TOUCH      0x02    /* mark page accessed */
2195#define FOLL_GET        0x04    /* do get_page on page */
2196#define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2197#define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2198#define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2199                                 * and return without waiting upon it */
2200#define FOLL_POPULATE   0x40    /* fault in page */
2201#define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2202#define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2203#define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2204#define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2205#define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2206#define FOLL_MLOCK      0x1000  /* lock present pages */
2207#define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2208
2209typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2210                        void *data);
2211extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2212                               unsigned long size, pte_fn_t fn, void *data);
2213
2214
2215#ifdef CONFIG_PAGE_POISONING
2216extern bool page_poisoning_enabled(void);
2217extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2218extern bool page_is_poisoned(struct page *page);
2219#else
2220static inline bool page_poisoning_enabled(void) { return false; }
2221static inline void kernel_poison_pages(struct page *page, int numpages,
2222                                        int enable) { }
2223static inline bool page_is_poisoned(struct page *page) { return false; }
2224#endif
2225
2226#ifdef CONFIG_DEBUG_PAGEALLOC
2227extern bool _debug_pagealloc_enabled;
2228extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2229
2230static inline bool debug_pagealloc_enabled(void)
2231{
2232        return _debug_pagealloc_enabled;
2233}
2234
2235static inline void
2236kernel_map_pages(struct page *page, int numpages, int enable)
2237{
2238        if (!debug_pagealloc_enabled())
2239                return;
2240
2241        __kernel_map_pages(page, numpages, enable);
2242}
2243#ifdef CONFIG_HIBERNATION
2244extern bool kernel_page_present(struct page *page);
2245#endif  /* CONFIG_HIBERNATION */
2246#else   /* CONFIG_DEBUG_PAGEALLOC */
2247static inline void
2248kernel_map_pages(struct page *page, int numpages, int enable) {}
2249#ifdef CONFIG_HIBERNATION
2250static inline bool kernel_page_present(struct page *page) { return true; }
2251#endif  /* CONFIG_HIBERNATION */
2252static inline bool debug_pagealloc_enabled(void)
2253{
2254        return false;
2255}
2256#endif  /* CONFIG_DEBUG_PAGEALLOC */
2257
2258#ifdef __HAVE_ARCH_GATE_AREA
2259extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2260extern int in_gate_area_no_mm(unsigned long addr);
2261extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2262#else
2263static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2264{
2265        return NULL;
2266}
2267static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2268static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2269{
2270        return 0;
2271}
2272#endif  /* __HAVE_ARCH_GATE_AREA */
2273
2274#ifdef CONFIG_SYSCTL
2275extern int sysctl_drop_caches;
2276int drop_caches_sysctl_handler(struct ctl_table *, int,
2277                                        void __user *, size_t *, loff_t *);
2278#endif
2279
2280void drop_slab(void);
2281void drop_slab_node(int nid);
2282
2283#ifndef CONFIG_MMU
2284#define randomize_va_space 0
2285#else
2286extern int randomize_va_space;
2287#endif
2288
2289const char * arch_vma_name(struct vm_area_struct *vma);
2290void print_vma_addr(char *prefix, unsigned long rip);
2291
2292void sparse_mem_maps_populate_node(struct page **map_map,
2293                                   unsigned long pnum_begin,
2294                                   unsigned long pnum_end,
2295                                   unsigned long map_count,
2296                                   int nodeid);
2297
2298struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2299pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2300pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2301pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2302pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2303void *vmemmap_alloc_block(unsigned long size, int node);
2304struct vmem_altmap;
2305void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2306                struct vmem_altmap *altmap);
2307static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2308{
2309        return __vmemmap_alloc_block_buf(size, node, NULL);
2310}
2311
2312void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2313int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2314                               int node);
2315int vmemmap_populate(unsigned long start, unsigned long end, int node);
2316void vmemmap_populate_print_last(void);
2317#ifdef CONFIG_MEMORY_HOTPLUG
2318void vmemmap_free(unsigned long start, unsigned long end);
2319#endif
2320void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2321                                  unsigned long size);
2322
2323enum mf_flags {
2324        MF_COUNT_INCREASED = 1 << 0,
2325        MF_ACTION_REQUIRED = 1 << 1,
2326        MF_MUST_KILL = 1 << 2,
2327        MF_SOFT_OFFLINE = 1 << 3,
2328};
2329extern int memory_failure(unsigned long pfn, int trapno, int flags);
2330extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2331extern int unpoison_memory(unsigned long pfn);
2332extern int get_hwpoison_page(struct page *page);
2333#define put_hwpoison_page(page) put_page(page)
2334extern int sysctl_memory_failure_early_kill;
2335extern int sysctl_memory_failure_recovery;
2336extern void shake_page(struct page *p, int access);
2337extern atomic_long_t num_poisoned_pages;
2338extern int soft_offline_page(struct page *page, int flags);
2339
2340
2341/*
2342 * Error handlers for various types of pages.
2343 */
2344enum mf_result {
2345        MF_IGNORED,     /* Error: cannot be handled */
2346        MF_FAILED,      /* Error: handling failed */
2347        MF_DELAYED,     /* Will be handled later */
2348        MF_RECOVERED,   /* Successfully recovered */
2349};
2350
2351enum mf_action_page_type {
2352        MF_MSG_KERNEL,
2353        MF_MSG_KERNEL_HIGH_ORDER,
2354        MF_MSG_SLAB,
2355        MF_MSG_DIFFERENT_COMPOUND,
2356        MF_MSG_POISONED_HUGE,
2357        MF_MSG_HUGE,
2358        MF_MSG_FREE_HUGE,
2359        MF_MSG_UNMAP_FAILED,
2360        MF_MSG_DIRTY_SWAPCACHE,
2361        MF_MSG_CLEAN_SWAPCACHE,
2362        MF_MSG_DIRTY_MLOCKED_LRU,
2363        MF_MSG_CLEAN_MLOCKED_LRU,
2364        MF_MSG_DIRTY_UNEVICTABLE_LRU,
2365        MF_MSG_CLEAN_UNEVICTABLE_LRU,
2366        MF_MSG_DIRTY_LRU,
2367        MF_MSG_CLEAN_LRU,
2368        MF_MSG_TRUNCATED_LRU,
2369        MF_MSG_BUDDY,
2370        MF_MSG_BUDDY_2ND,
2371        MF_MSG_UNKNOWN,
2372};
2373
2374#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2375extern void clear_huge_page(struct page *page,
2376                            unsigned long addr,
2377                            unsigned int pages_per_huge_page);
2378extern void copy_user_huge_page(struct page *dst, struct page *src,
2379                                unsigned long addr, struct vm_area_struct *vma,
2380                                unsigned int pages_per_huge_page);
2381#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2382
2383extern struct page_ext_operations debug_guardpage_ops;
2384extern struct page_ext_operations page_poisoning_ops;
2385
2386#ifdef CONFIG_DEBUG_PAGEALLOC
2387extern unsigned int _debug_guardpage_minorder;
2388extern bool _debug_guardpage_enabled;
2389
2390static inline unsigned int debug_guardpage_minorder(void)
2391{
2392        return _debug_guardpage_minorder;
2393}
2394
2395static inline bool debug_guardpage_enabled(void)
2396{
2397        return _debug_guardpage_enabled;
2398}
2399
2400static inline bool page_is_guard(struct page *page)
2401{
2402        struct page_ext *page_ext;
2403
2404        if (!debug_guardpage_enabled())
2405                return false;
2406
2407        page_ext = lookup_page_ext(page);
2408        return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2409}
2410#else
2411static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2412static inline bool debug_guardpage_enabled(void) { return false; }
2413static inline bool page_is_guard(struct page *page) { return false; }
2414#endif /* CONFIG_DEBUG_PAGEALLOC */
2415
2416#if MAX_NUMNODES > 1
2417void __init setup_nr_node_ids(void);
2418#else
2419static inline void setup_nr_node_ids(void) {}
2420#endif
2421
2422#endif /* __KERNEL__ */
2423#endif /* _LINUX_MM_H */
2424