linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_MOVABLE,
  41        MIGRATE_RECLAIMABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  67extern char * const migratetype_names[MIGRATE_TYPES];
  68
  69#ifdef CONFIG_CMA
  70#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  71#else
  72#  define is_migrate_cma(migratetype) false
  73#endif
  74
  75#define for_each_migratetype_order(order, type) \
  76        for (order = 0; order < MAX_ORDER; order++) \
  77                for (type = 0; type < MIGRATE_TYPES; type++)
  78
  79extern int page_group_by_mobility_disabled;
  80
  81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  83
  84#define get_pageblock_migratetype(page)                                 \
  85        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  86                        PB_migrate_end, MIGRATETYPE_MASK)
  87
  88static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  89{
  90        BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
  91        return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
  92                                        MIGRATETYPE_MASK);
  93}
  94
  95struct free_area {
  96        struct list_head        free_list[MIGRATE_TYPES];
  97        unsigned long           nr_free;
  98};
  99
 100struct pglist_data;
 101
 102/*
 103 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 104 * So add a wild amount of padding here to ensure that they fall into separate
 105 * cachelines.  There are very few zone structures in the machine, so space
 106 * consumption is not a concern here.
 107 */
 108#if defined(CONFIG_SMP)
 109struct zone_padding {
 110        char x[0];
 111} ____cacheline_internodealigned_in_smp;
 112#define ZONE_PADDING(name)      struct zone_padding name;
 113#else
 114#define ZONE_PADDING(name)
 115#endif
 116
 117enum zone_stat_item {
 118        /* First 128 byte cacheline (assuming 64 bit words) */
 119        NR_FREE_PAGES,
 120        NR_ALLOC_BATCH,
 121        NR_LRU_BASE,
 122        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 123        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 124        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 125        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 126        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 127        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 128        NR_ANON_PAGES,  /* Mapped anonymous pages */
 129        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 130                           only modified from process context */
 131        NR_FILE_PAGES,
 132        NR_FILE_DIRTY,
 133        NR_WRITEBACK,
 134        NR_SLAB_RECLAIMABLE,
 135        NR_SLAB_UNRECLAIMABLE,
 136        NR_PAGETABLE,           /* used for pagetables */
 137        NR_KERNEL_STACK,
 138        /* Second 128 byte cacheline */
 139        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 140        NR_BOUNCE,
 141        NR_VMSCAN_WRITE,
 142        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 143        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 144        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 145        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 146        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 147        NR_DIRTIED,             /* page dirtyings since bootup */
 148        NR_WRITTEN,             /* page writings since bootup */
 149        NR_PAGES_SCANNED,       /* pages scanned since last reclaim */
 150#ifdef CONFIG_NUMA
 151        NUMA_HIT,               /* allocated in intended node */
 152        NUMA_MISS,              /* allocated in non intended node */
 153        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 154        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 155        NUMA_LOCAL,             /* allocation from local node */
 156        NUMA_OTHER,             /* allocation from other node */
 157#endif
 158        WORKINGSET_REFAULT,
 159        WORKINGSET_ACTIVATE,
 160        WORKINGSET_NODERECLAIM,
 161        NR_ANON_TRANSPARENT_HUGEPAGES,
 162        NR_FREE_CMA_PAGES,
 163        NR_VM_ZONE_STAT_ITEMS };
 164
 165/*
 166 * We do arithmetic on the LRU lists in various places in the code,
 167 * so it is important to keep the active lists LRU_ACTIVE higher in
 168 * the array than the corresponding inactive lists, and to keep
 169 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 170 *
 171 * This has to be kept in sync with the statistics in zone_stat_item
 172 * above and the descriptions in vmstat_text in mm/vmstat.c
 173 */
 174#define LRU_BASE 0
 175#define LRU_ACTIVE 1
 176#define LRU_FILE 2
 177
 178enum lru_list {
 179        LRU_INACTIVE_ANON = LRU_BASE,
 180        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 181        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 182        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 183        LRU_UNEVICTABLE,
 184        NR_LRU_LISTS
 185};
 186
 187#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 188
 189#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 190
 191static inline int is_file_lru(enum lru_list lru)
 192{
 193        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 194}
 195
 196static inline int is_active_lru(enum lru_list lru)
 197{
 198        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 199}
 200
 201struct zone_reclaim_stat {
 202        /*
 203         * The pageout code in vmscan.c keeps track of how many of the
 204         * mem/swap backed and file backed pages are referenced.
 205         * The higher the rotated/scanned ratio, the more valuable
 206         * that cache is.
 207         *
 208         * The anon LRU stats live in [0], file LRU stats in [1]
 209         */
 210        unsigned long           recent_rotated[2];
 211        unsigned long           recent_scanned[2];
 212};
 213
 214struct lruvec {
 215        struct list_head                lists[NR_LRU_LISTS];
 216        struct zone_reclaim_stat        reclaim_stat;
 217        /* Evictions & activations on the inactive file list */
 218        atomic_long_t                   inactive_age;
 219#ifdef CONFIG_MEMCG
 220        struct zone                     *zone;
 221#endif
 222};
 223
 224/* Mask used at gathering information at once (see memcontrol.c) */
 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 227#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 228
 229/* Isolate clean file */
 230#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
 231/* Isolate unmapped file */
 232#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 233/* Isolate for asynchronous migration */
 234#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 235/* Isolate unevictable pages */
 236#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 237
 238/* LRU Isolation modes. */
 239typedef unsigned __bitwise__ isolate_mode_t;
 240
 241enum zone_watermarks {
 242        WMARK_MIN,
 243        WMARK_LOW,
 244        WMARK_HIGH,
 245        NR_WMARK
 246};
 247
 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 251
 252struct per_cpu_pages {
 253        int count;              /* number of pages in the list */
 254        int high;               /* high watermark, emptying needed */
 255        int batch;              /* chunk size for buddy add/remove */
 256
 257        /* Lists of pages, one per migrate type stored on the pcp-lists */
 258        struct list_head lists[MIGRATE_PCPTYPES];
 259};
 260
 261struct per_cpu_pageset {
 262        struct per_cpu_pages pcp;
 263#ifdef CONFIG_NUMA
 264        s8 expire;
 265#endif
 266#ifdef CONFIG_SMP
 267        s8 stat_threshold;
 268        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 269#endif
 270};
 271
 272#endif /* !__GENERATING_BOUNDS.H */
 273
 274enum zone_type {
 275#ifdef CONFIG_ZONE_DMA
 276        /*
 277         * ZONE_DMA is used when there are devices that are not able
 278         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 279         * carve out the portion of memory that is needed for these devices.
 280         * The range is arch specific.
 281         *
 282         * Some examples
 283         *
 284         * Architecture         Limit
 285         * ---------------------------
 286         * parisc, ia64, sparc  <4G
 287         * s390                 <2G
 288         * arm                  Various
 289         * alpha                Unlimited or 0-16MB.
 290         *
 291         * i386, x86_64 and multiple other arches
 292         *                      <16M.
 293         */
 294        ZONE_DMA,
 295#endif
 296#ifdef CONFIG_ZONE_DMA32
 297        /*
 298         * x86_64 needs two ZONE_DMAs because it supports devices that are
 299         * only able to do DMA to the lower 16M but also 32 bit devices that
 300         * can only do DMA areas below 4G.
 301         */
 302        ZONE_DMA32,
 303#endif
 304        /*
 305         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 306         * performed on pages in ZONE_NORMAL if the DMA devices support
 307         * transfers to all addressable memory.
 308         */
 309        ZONE_NORMAL,
 310#ifdef CONFIG_HIGHMEM
 311        /*
 312         * A memory area that is only addressable by the kernel through
 313         * mapping portions into its own address space. This is for example
 314         * used by i386 to allow the kernel to address the memory beyond
 315         * 900MB. The kernel will set up special mappings (page
 316         * table entries on i386) for each page that the kernel needs to
 317         * access.
 318         */
 319        ZONE_HIGHMEM,
 320#endif
 321        ZONE_MOVABLE,
 322#ifdef CONFIG_ZONE_DEVICE
 323        ZONE_DEVICE,
 324#endif
 325        __MAX_NR_ZONES
 326
 327};
 328
 329#ifndef __GENERATING_BOUNDS_H
 330
 331struct zone {
 332        /* Read-mostly fields */
 333
 334        /* zone watermarks, access with *_wmark_pages(zone) macros */
 335        unsigned long watermark[NR_WMARK];
 336
 337        unsigned long nr_reserved_highatomic;
 338
 339        /*
 340         * We don't know if the memory that we're going to allocate will be
 341         * freeable or/and it will be released eventually, so to avoid totally
 342         * wasting several GB of ram we must reserve some of the lower zone
 343         * memory (otherwise we risk to run OOM on the lower zones despite
 344         * there being tons of freeable ram on the higher zones).  This array is
 345         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 346         * changes.
 347         */
 348        long lowmem_reserve[MAX_NR_ZONES];
 349
 350#ifdef CONFIG_NUMA
 351        int node;
 352#endif
 353
 354        /*
 355         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 356         * this zone's LRU.  Maintained by the pageout code.
 357         */
 358        unsigned int inactive_ratio;
 359
 360        struct pglist_data      *zone_pgdat;
 361        struct per_cpu_pageset __percpu *pageset;
 362
 363        /*
 364         * This is a per-zone reserve of pages that are not available
 365         * to userspace allocations.
 366         */
 367        unsigned long           totalreserve_pages;
 368
 369#ifndef CONFIG_SPARSEMEM
 370        /*
 371         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 372         * In SPARSEMEM, this map is stored in struct mem_section
 373         */
 374        unsigned long           *pageblock_flags;
 375#endif /* CONFIG_SPARSEMEM */
 376
 377#ifdef CONFIG_NUMA
 378        /*
 379         * zone reclaim becomes active if more unmapped pages exist.
 380         */
 381        unsigned long           min_unmapped_pages;
 382        unsigned long           min_slab_pages;
 383#endif /* CONFIG_NUMA */
 384
 385        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 386        unsigned long           zone_start_pfn;
 387
 388        /*
 389         * spanned_pages is the total pages spanned by the zone, including
 390         * holes, which is calculated as:
 391         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 392         *
 393         * present_pages is physical pages existing within the zone, which
 394         * is calculated as:
 395         *      present_pages = spanned_pages - absent_pages(pages in holes);
 396         *
 397         * managed_pages is present pages managed by the buddy system, which
 398         * is calculated as (reserved_pages includes pages allocated by the
 399         * bootmem allocator):
 400         *      managed_pages = present_pages - reserved_pages;
 401         *
 402         * So present_pages may be used by memory hotplug or memory power
 403         * management logic to figure out unmanaged pages by checking
 404         * (present_pages - managed_pages). And managed_pages should be used
 405         * by page allocator and vm scanner to calculate all kinds of watermarks
 406         * and thresholds.
 407         *
 408         * Locking rules:
 409         *
 410         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 411         * It is a seqlock because it has to be read outside of zone->lock,
 412         * and it is done in the main allocator path.  But, it is written
 413         * quite infrequently.
 414         *
 415         * The span_seq lock is declared along with zone->lock because it is
 416         * frequently read in proximity to zone->lock.  It's good to
 417         * give them a chance of being in the same cacheline.
 418         *
 419         * Write access to present_pages at runtime should be protected by
 420         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 421         * present_pages should get_online_mems() to get a stable value.
 422         *
 423         * Read access to managed_pages should be safe because it's unsigned
 424         * long. Write access to zone->managed_pages and totalram_pages are
 425         * protected by managed_page_count_lock at runtime. Idealy only
 426         * adjust_managed_page_count() should be used instead of directly
 427         * touching zone->managed_pages and totalram_pages.
 428         */
 429        unsigned long           managed_pages;
 430        unsigned long           spanned_pages;
 431        unsigned long           present_pages;
 432
 433        const char              *name;
 434
 435#ifdef CONFIG_MEMORY_ISOLATION
 436        /*
 437         * Number of isolated pageblock. It is used to solve incorrect
 438         * freepage counting problem due to racy retrieving migratetype
 439         * of pageblock. Protected by zone->lock.
 440         */
 441        unsigned long           nr_isolate_pageblock;
 442#endif
 443
 444#ifdef CONFIG_MEMORY_HOTPLUG
 445        /* see spanned/present_pages for more description */
 446        seqlock_t               span_seqlock;
 447#endif
 448
 449        /*
 450         * wait_table           -- the array holding the hash table
 451         * wait_table_hash_nr_entries   -- the size of the hash table array
 452         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 453         *
 454         * The purpose of all these is to keep track of the people
 455         * waiting for a page to become available and make them
 456         * runnable again when possible. The trouble is that this
 457         * consumes a lot of space, especially when so few things
 458         * wait on pages at a given time. So instead of using
 459         * per-page waitqueues, we use a waitqueue hash table.
 460         *
 461         * The bucket discipline is to sleep on the same queue when
 462         * colliding and wake all in that wait queue when removing.
 463         * When something wakes, it must check to be sure its page is
 464         * truly available, a la thundering herd. The cost of a
 465         * collision is great, but given the expected load of the
 466         * table, they should be so rare as to be outweighed by the
 467         * benefits from the saved space.
 468         *
 469         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 470         * primary users of these fields, and in mm/page_alloc.c
 471         * free_area_init_core() performs the initialization of them.
 472         */
 473        wait_queue_head_t       *wait_table;
 474        unsigned long           wait_table_hash_nr_entries;
 475        unsigned long           wait_table_bits;
 476
 477        ZONE_PADDING(_pad1_)
 478        /* free areas of different sizes */
 479        struct free_area        free_area[MAX_ORDER];
 480
 481        /* zone flags, see below */
 482        unsigned long           flags;
 483
 484        /* Write-intensive fields used from the page allocator */
 485        spinlock_t              lock;
 486
 487        ZONE_PADDING(_pad2_)
 488
 489        /* Write-intensive fields used by page reclaim */
 490
 491        /* Fields commonly accessed by the page reclaim scanner */
 492        spinlock_t              lru_lock;
 493        struct lruvec           lruvec;
 494
 495        /*
 496         * When free pages are below this point, additional steps are taken
 497         * when reading the number of free pages to avoid per-cpu counter
 498         * drift allowing watermarks to be breached
 499         */
 500        unsigned long percpu_drift_mark;
 501
 502#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 503        /* pfn where compaction free scanner should start */
 504        unsigned long           compact_cached_free_pfn;
 505        /* pfn where async and sync compaction migration scanner should start */
 506        unsigned long           compact_cached_migrate_pfn[2];
 507#endif
 508
 509#ifdef CONFIG_COMPACTION
 510        /*
 511         * On compaction failure, 1<<compact_defer_shift compactions
 512         * are skipped before trying again. The number attempted since
 513         * last failure is tracked with compact_considered.
 514         */
 515        unsigned int            compact_considered;
 516        unsigned int            compact_defer_shift;
 517        int                     compact_order_failed;
 518#endif
 519
 520#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 521        /* Set to true when the PG_migrate_skip bits should be cleared */
 522        bool                    compact_blockskip_flush;
 523#endif
 524
 525        bool                    contiguous;
 526
 527        ZONE_PADDING(_pad3_)
 528        /* Zone statistics */
 529        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 530} ____cacheline_internodealigned_in_smp;
 531
 532enum zone_flags {
 533        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 534        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 535        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 536                                         * a congested BDI
 537                                         */
 538        ZONE_DIRTY,                     /* reclaim scanning has recently found
 539                                         * many dirty file pages at the tail
 540                                         * of the LRU.
 541                                         */
 542        ZONE_WRITEBACK,                 /* reclaim scanning has recently found
 543                                         * many pages under writeback
 544                                         */
 545        ZONE_FAIR_DEPLETED,             /* fair zone policy batch depleted */
 546};
 547
 548static inline unsigned long zone_end_pfn(const struct zone *zone)
 549{
 550        return zone->zone_start_pfn + zone->spanned_pages;
 551}
 552
 553static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 554{
 555        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 556}
 557
 558static inline bool zone_is_initialized(struct zone *zone)
 559{
 560        return !!zone->wait_table;
 561}
 562
 563static inline bool zone_is_empty(struct zone *zone)
 564{
 565        return zone->spanned_pages == 0;
 566}
 567
 568/*
 569 * The "priority" of VM scanning is how much of the queues we will scan in one
 570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 571 * queues ("queue_length >> 12") during an aging round.
 572 */
 573#define DEF_PRIORITY 12
 574
 575/* Maximum number of zones on a zonelist */
 576#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 577
 578enum {
 579        ZONELIST_FALLBACK,      /* zonelist with fallback */
 580#ifdef CONFIG_NUMA
 581        /*
 582         * The NUMA zonelists are doubled because we need zonelists that
 583         * restrict the allocations to a single node for __GFP_THISNODE.
 584         */
 585        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 586#endif
 587        MAX_ZONELISTS
 588};
 589
 590/*
 591 * This struct contains information about a zone in a zonelist. It is stored
 592 * here to avoid dereferences into large structures and lookups of tables
 593 */
 594struct zoneref {
 595        struct zone *zone;      /* Pointer to actual zone */
 596        int zone_idx;           /* zone_idx(zoneref->zone) */
 597};
 598
 599/*
 600 * One allocation request operates on a zonelist. A zonelist
 601 * is a list of zones, the first one is the 'goal' of the
 602 * allocation, the other zones are fallback zones, in decreasing
 603 * priority.
 604 *
 605 * To speed the reading of the zonelist, the zonerefs contain the zone index
 606 * of the entry being read. Helper functions to access information given
 607 * a struct zoneref are
 608 *
 609 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 610 * zonelist_zone_idx()  - Return the index of the zone for an entry
 611 * zonelist_node_idx()  - Return the index of the node for an entry
 612 */
 613struct zonelist {
 614        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 615};
 616
 617#ifndef CONFIG_DISCONTIGMEM
 618/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 619extern struct page *mem_map;
 620#endif
 621
 622/*
 623 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 624 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 625 * zone denotes.
 626 *
 627 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 628 * it's memory layout.
 629 *
 630 * Memory statistics and page replacement data structures are maintained on a
 631 * per-zone basis.
 632 */
 633struct bootmem_data;
 634typedef struct pglist_data {
 635        struct zone node_zones[MAX_NR_ZONES];
 636        struct zonelist node_zonelists[MAX_ZONELISTS];
 637        int nr_zones;
 638#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 639        struct page *node_mem_map;
 640#ifdef CONFIG_PAGE_EXTENSION
 641        struct page_ext *node_page_ext;
 642#endif
 643#endif
 644#ifndef CONFIG_NO_BOOTMEM
 645        struct bootmem_data *bdata;
 646#endif
 647#ifdef CONFIG_MEMORY_HOTPLUG
 648        /*
 649         * Must be held any time you expect node_start_pfn, node_present_pages
 650         * or node_spanned_pages stay constant.  Holding this will also
 651         * guarantee that any pfn_valid() stays that way.
 652         *
 653         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 654         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 655         *
 656         * Nests above zone->lock and zone->span_seqlock
 657         */
 658        spinlock_t node_size_lock;
 659#endif
 660        unsigned long node_start_pfn;
 661        unsigned long node_present_pages; /* total number of physical pages */
 662        unsigned long node_spanned_pages; /* total size of physical page
 663                                             range, including holes */
 664        int node_id;
 665        wait_queue_head_t kswapd_wait;
 666        wait_queue_head_t pfmemalloc_wait;
 667        struct task_struct *kswapd;     /* Protected by
 668                                           mem_hotplug_begin/end() */
 669        int kswapd_max_order;
 670        enum zone_type classzone_idx;
 671#ifdef CONFIG_COMPACTION
 672        int kcompactd_max_order;
 673        enum zone_type kcompactd_classzone_idx;
 674        wait_queue_head_t kcompactd_wait;
 675        struct task_struct *kcompactd;
 676#endif
 677#ifdef CONFIG_NUMA_BALANCING
 678        /* Lock serializing the migrate rate limiting window */
 679        spinlock_t numabalancing_migrate_lock;
 680
 681        /* Rate limiting time interval */
 682        unsigned long numabalancing_migrate_next_window;
 683
 684        /* Number of pages migrated during the rate limiting time interval */
 685        unsigned long numabalancing_migrate_nr_pages;
 686#endif
 687
 688#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 689        /*
 690         * If memory initialisation on large machines is deferred then this
 691         * is the first PFN that needs to be initialised.
 692         */
 693        unsigned long first_deferred_pfn;
 694#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 695
 696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 697        spinlock_t split_queue_lock;
 698        struct list_head split_queue;
 699        unsigned long split_queue_len;
 700#endif
 701} pg_data_t;
 702
 703#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 704#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 705#ifdef CONFIG_FLAT_NODE_MEM_MAP
 706#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 707#else
 708#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 709#endif
 710#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 711
 712#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 713#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 714
 715static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 716{
 717        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 718}
 719
 720static inline bool pgdat_is_empty(pg_data_t *pgdat)
 721{
 722        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 723}
 724
 725static inline int zone_id(const struct zone *zone)
 726{
 727        struct pglist_data *pgdat = zone->zone_pgdat;
 728
 729        return zone - pgdat->node_zones;
 730}
 731
 732#ifdef CONFIG_ZONE_DEVICE
 733static inline bool is_dev_zone(const struct zone *zone)
 734{
 735        return zone_id(zone) == ZONE_DEVICE;
 736}
 737#else
 738static inline bool is_dev_zone(const struct zone *zone)
 739{
 740        return false;
 741}
 742#endif
 743
 744#include <linux/memory_hotplug.h>
 745
 746extern struct mutex zonelists_mutex;
 747void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 748void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 749bool zone_watermark_ok(struct zone *z, unsigned int order,
 750                unsigned long mark, int classzone_idx, int alloc_flags);
 751bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 752                unsigned long mark, int classzone_idx);
 753enum memmap_context {
 754        MEMMAP_EARLY,
 755        MEMMAP_HOTPLUG,
 756};
 757extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 758                                     unsigned long size);
 759
 760extern void lruvec_init(struct lruvec *lruvec);
 761
 762static inline struct zone *lruvec_zone(struct lruvec *lruvec)
 763{
 764#ifdef CONFIG_MEMCG
 765        return lruvec->zone;
 766#else
 767        return container_of(lruvec, struct zone, lruvec);
 768#endif
 769}
 770
 771extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
 772
 773#ifdef CONFIG_HAVE_MEMORY_PRESENT
 774void memory_present(int nid, unsigned long start, unsigned long end);
 775#else
 776static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 777#endif
 778
 779#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 780int local_memory_node(int node_id);
 781#else
 782static inline int local_memory_node(int node_id) { return node_id; };
 783#endif
 784
 785#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 786unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 787#endif
 788
 789/*
 790 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 791 */
 792#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 793
 794static inline int populated_zone(struct zone *zone)
 795{
 796        return (!!zone->present_pages);
 797}
 798
 799extern int movable_zone;
 800
 801#ifdef CONFIG_HIGHMEM
 802static inline int zone_movable_is_highmem(void)
 803{
 804#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 805        return movable_zone == ZONE_HIGHMEM;
 806#else
 807        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 808#endif
 809}
 810#endif
 811
 812static inline int is_highmem_idx(enum zone_type idx)
 813{
 814#ifdef CONFIG_HIGHMEM
 815        return (idx == ZONE_HIGHMEM ||
 816                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 817#else
 818        return 0;
 819#endif
 820}
 821
 822/**
 823 * is_highmem - helper function to quickly check if a struct zone is a 
 824 *              highmem zone or not.  This is an attempt to keep references
 825 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 826 * @zone - pointer to struct zone variable
 827 */
 828static inline int is_highmem(struct zone *zone)
 829{
 830#ifdef CONFIG_HIGHMEM
 831        int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
 832        return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
 833               (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
 834                zone_movable_is_highmem());
 835#else
 836        return 0;
 837#endif
 838}
 839
 840/* These two functions are used to setup the per zone pages min values */
 841struct ctl_table;
 842int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 843                                        void __user *, size_t *, loff_t *);
 844int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 845                                        void __user *, size_t *, loff_t *);
 846extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 847int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 848                                        void __user *, size_t *, loff_t *);
 849int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 850                                        void __user *, size_t *, loff_t *);
 851int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 852                        void __user *, size_t *, loff_t *);
 853int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 854                        void __user *, size_t *, loff_t *);
 855
 856extern int numa_zonelist_order_handler(struct ctl_table *, int,
 857                        void __user *, size_t *, loff_t *);
 858extern char numa_zonelist_order[];
 859#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 860
 861#ifndef CONFIG_NEED_MULTIPLE_NODES
 862
 863extern struct pglist_data contig_page_data;
 864#define NODE_DATA(nid)          (&contig_page_data)
 865#define NODE_MEM_MAP(nid)       mem_map
 866
 867#else /* CONFIG_NEED_MULTIPLE_NODES */
 868
 869#include <asm/mmzone.h>
 870
 871#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 872
 873extern struct pglist_data *first_online_pgdat(void);
 874extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 875extern struct zone *next_zone(struct zone *zone);
 876
 877/**
 878 * for_each_online_pgdat - helper macro to iterate over all online nodes
 879 * @pgdat - pointer to a pg_data_t variable
 880 */
 881#define for_each_online_pgdat(pgdat)                    \
 882        for (pgdat = first_online_pgdat();              \
 883             pgdat;                                     \
 884             pgdat = next_online_pgdat(pgdat))
 885/**
 886 * for_each_zone - helper macro to iterate over all memory zones
 887 * @zone - pointer to struct zone variable
 888 *
 889 * The user only needs to declare the zone variable, for_each_zone
 890 * fills it in.
 891 */
 892#define for_each_zone(zone)                             \
 893        for (zone = (first_online_pgdat())->node_zones; \
 894             zone;                                      \
 895             zone = next_zone(zone))
 896
 897#define for_each_populated_zone(zone)                   \
 898        for (zone = (first_online_pgdat())->node_zones; \
 899             zone;                                      \
 900             zone = next_zone(zone))                    \
 901                if (!populated_zone(zone))              \
 902                        ; /* do nothing */              \
 903                else
 904
 905static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 906{
 907        return zoneref->zone;
 908}
 909
 910static inline int zonelist_zone_idx(struct zoneref *zoneref)
 911{
 912        return zoneref->zone_idx;
 913}
 914
 915static inline int zonelist_node_idx(struct zoneref *zoneref)
 916{
 917#ifdef CONFIG_NUMA
 918        /* zone_to_nid not available in this context */
 919        return zoneref->zone->node;
 920#else
 921        return 0;
 922#endif /* CONFIG_NUMA */
 923}
 924
 925/**
 926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 927 * @z - The cursor used as a starting point for the search
 928 * @highest_zoneidx - The zone index of the highest zone to return
 929 * @nodes - An optional nodemask to filter the zonelist with
 930 *
 931 * This function returns the next zone at or below a given zone index that is
 932 * within the allowed nodemask using a cursor as the starting point for the
 933 * search. The zoneref returned is a cursor that represents the current zone
 934 * being examined. It should be advanced by one before calling
 935 * next_zones_zonelist again.
 936 */
 937struct zoneref *next_zones_zonelist(struct zoneref *z,
 938                                        enum zone_type highest_zoneidx,
 939                                        nodemask_t *nodes);
 940
 941/**
 942 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 943 * @zonelist - The zonelist to search for a suitable zone
 944 * @highest_zoneidx - The zone index of the highest zone to return
 945 * @nodes - An optional nodemask to filter the zonelist with
 946 * @zone - The first suitable zone found is returned via this parameter
 947 *
 948 * This function returns the first zone at or below a given zone index that is
 949 * within the allowed nodemask. The zoneref returned is a cursor that can be
 950 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 951 * one before calling.
 952 */
 953static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
 954                                        enum zone_type highest_zoneidx,
 955                                        nodemask_t *nodes,
 956                                        struct zone **zone)
 957{
 958        struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
 959                                                        highest_zoneidx, nodes);
 960        *zone = zonelist_zone(z);
 961        return z;
 962}
 963
 964/**
 965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 966 * @zone - The current zone in the iterator
 967 * @z - The current pointer within zonelist->zones being iterated
 968 * @zlist - The zonelist being iterated
 969 * @highidx - The zone index of the highest zone to return
 970 * @nodemask - Nodemask allowed by the allocator
 971 *
 972 * This iterator iterates though all zones at or below a given zone index and
 973 * within a given nodemask
 974 */
 975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
 976        for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
 977                zone;                                                   \
 978                z = next_zones_zonelist(++z, highidx, nodemask),        \
 979                        zone = zonelist_zone(z))                        \
 980
 981/**
 982 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 983 * @zone - The current zone in the iterator
 984 * @z - The current pointer within zonelist->zones being iterated
 985 * @zlist - The zonelist being iterated
 986 * @highidx - The zone index of the highest zone to return
 987 *
 988 * This iterator iterates though all zones at or below a given zone index.
 989 */
 990#define for_each_zone_zonelist(zone, z, zlist, highidx) \
 991        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
 992
 993#ifdef CONFIG_SPARSEMEM
 994#include <asm/sparsemem.h>
 995#endif
 996
 997#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
 998        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 999static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1000{
1001        return 0;
1002}
1003#endif
1004
1005#ifdef CONFIG_FLATMEM
1006#define pfn_to_nid(pfn)         (0)
1007#endif
1008
1009#ifdef CONFIG_SPARSEMEM
1010
1011/*
1012 * SECTION_SHIFT                #bits space required to store a section #
1013 *
1014 * PA_SECTION_SHIFT             physical address to/from section number
1015 * PFN_SECTION_SHIFT            pfn to/from section number
1016 */
1017#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1018#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1019
1020#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1021
1022#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1023#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1024
1025#define SECTION_BLOCKFLAGS_BITS \
1026        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1027
1028#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1029#error Allocator MAX_ORDER exceeds SECTION_SIZE
1030#endif
1031
1032#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1033#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1034
1035#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1036#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1037
1038struct page;
1039struct page_ext;
1040struct mem_section {
1041        /*
1042         * This is, logically, a pointer to an array of struct
1043         * pages.  However, it is stored with some other magic.
1044         * (see sparse.c::sparse_init_one_section())
1045         *
1046         * Additionally during early boot we encode node id of
1047         * the location of the section here to guide allocation.
1048         * (see sparse.c::memory_present())
1049         *
1050         * Making it a UL at least makes someone do a cast
1051         * before using it wrong.
1052         */
1053        unsigned long section_mem_map;
1054
1055        /* See declaration of similar field in struct zone */
1056        unsigned long *pageblock_flags;
1057#ifdef CONFIG_PAGE_EXTENSION
1058        /*
1059         * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1060         * section. (see page_ext.h about this.)
1061         */
1062        struct page_ext *page_ext;
1063        unsigned long pad;
1064#endif
1065        /*
1066         * WARNING: mem_section must be a power-of-2 in size for the
1067         * calculation and use of SECTION_ROOT_MASK to make sense.
1068         */
1069};
1070
1071#ifdef CONFIG_SPARSEMEM_EXTREME
1072#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1073#else
1074#define SECTIONS_PER_ROOT       1
1075#endif
1076
1077#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1078#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1079#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1080
1081#ifdef CONFIG_SPARSEMEM_EXTREME
1082extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1083#else
1084extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1085#endif
1086
1087static inline struct mem_section *__nr_to_section(unsigned long nr)
1088{
1089        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1090                return NULL;
1091        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1092}
1093extern int __section_nr(struct mem_section* ms);
1094extern unsigned long usemap_size(void);
1095
1096/*
1097 * We use the lower bits of the mem_map pointer to store
1098 * a little bit of information.  There should be at least
1099 * 3 bits here due to 32-bit alignment.
1100 */
1101#define SECTION_MARKED_PRESENT  (1UL<<0)
1102#define SECTION_HAS_MEM_MAP     (1UL<<1)
1103#define SECTION_MAP_LAST_BIT    (1UL<<2)
1104#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1105#define SECTION_NID_SHIFT       2
1106
1107static inline struct page *__section_mem_map_addr(struct mem_section *section)
1108{
1109        unsigned long map = section->section_mem_map;
1110        map &= SECTION_MAP_MASK;
1111        return (struct page *)map;
1112}
1113
1114static inline int present_section(struct mem_section *section)
1115{
1116        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1117}
1118
1119static inline int present_section_nr(unsigned long nr)
1120{
1121        return present_section(__nr_to_section(nr));
1122}
1123
1124static inline int valid_section(struct mem_section *section)
1125{
1126        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1127}
1128
1129static inline int valid_section_nr(unsigned long nr)
1130{
1131        return valid_section(__nr_to_section(nr));
1132}
1133
1134static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1135{
1136        return __nr_to_section(pfn_to_section_nr(pfn));
1137}
1138
1139#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1140static inline int pfn_valid(unsigned long pfn)
1141{
1142        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1143                return 0;
1144        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1145}
1146#endif
1147
1148static inline int pfn_present(unsigned long pfn)
1149{
1150        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1151                return 0;
1152        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1153}
1154
1155/*
1156 * These are _only_ used during initialisation, therefore they
1157 * can use __initdata ...  They could have names to indicate
1158 * this restriction.
1159 */
1160#ifdef CONFIG_NUMA
1161#define pfn_to_nid(pfn)                                                 \
1162({                                                                      \
1163        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1164        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1165})
1166#else
1167#define pfn_to_nid(pfn)         (0)
1168#endif
1169
1170#define early_pfn_valid(pfn)    pfn_valid(pfn)
1171void sparse_init(void);
1172#else
1173#define sparse_init()   do {} while (0)
1174#define sparse_index_init(_sec, _nid)  do {} while (0)
1175#endif /* CONFIG_SPARSEMEM */
1176
1177/*
1178 * During memory init memblocks map pfns to nids. The search is expensive and
1179 * this caches recent lookups. The implementation of __early_pfn_to_nid
1180 * may treat start/end as pfns or sections.
1181 */
1182struct mminit_pfnnid_cache {
1183        unsigned long last_start;
1184        unsigned long last_end;
1185        int last_nid;
1186};
1187
1188#ifndef early_pfn_valid
1189#define early_pfn_valid(pfn)    (1)
1190#endif
1191
1192void memory_present(int nid, unsigned long start, unsigned long end);
1193unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1194
1195/*
1196 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1197 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1198 * pfn_valid_within() should be used in this case; we optimise this away
1199 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1200 */
1201#ifdef CONFIG_HOLES_IN_ZONE
1202#define pfn_valid_within(pfn) pfn_valid(pfn)
1203#else
1204#define pfn_valid_within(pfn) (1)
1205#endif
1206
1207#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1208/*
1209 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1210 * associated with it or not. In FLATMEM, it is expected that holes always
1211 * have valid memmap as long as there is valid PFNs either side of the hole.
1212 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1213 * entire section.
1214 *
1215 * However, an ARM, and maybe other embedded architectures in the future
1216 * free memmap backing holes to save memory on the assumption the memmap is
1217 * never used. The page_zone linkages are then broken even though pfn_valid()
1218 * returns true. A walker of the full memmap must then do this additional
1219 * check to ensure the memmap they are looking at is sane by making sure
1220 * the zone and PFN linkages are still valid. This is expensive, but walkers
1221 * of the full memmap are extremely rare.
1222 */
1223bool memmap_valid_within(unsigned long pfn,
1224                                        struct page *page, struct zone *zone);
1225#else
1226static inline bool memmap_valid_within(unsigned long pfn,
1227                                        struct page *page, struct zone *zone)
1228{
1229        return true;
1230}
1231#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1232
1233#endif /* !__GENERATING_BOUNDS.H */
1234#endif /* !__ASSEMBLY__ */
1235#endif /* _LINUX_MMZONE_H */
1236