linux/include/linux/page-flags.h
<<
>>
Prefs
   1/*
   2 * Macros for manipulating and testing page->flags
   3 */
   4
   5#ifndef PAGE_FLAGS_H
   6#define PAGE_FLAGS_H
   7
   8#include <linux/types.h>
   9#include <linux/bug.h>
  10#include <linux/mmdebug.h>
  11#ifndef __GENERATING_BOUNDS_H
  12#include <linux/mm_types.h>
  13#include <generated/bounds.h>
  14#endif /* !__GENERATING_BOUNDS_H */
  15
  16/*
  17 * Various page->flags bits:
  18 *
  19 * PG_reserved is set for special pages, which can never be swapped out. Some
  20 * of them might not even exist (eg empty_bad_page)...
  21 *
  22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
  23 * specific data (which is normally at page->private). It can be used by
  24 * private allocations for its own usage.
  25 *
  26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
  27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
  28 * is set before writeback starts and cleared when it finishes.
  29 *
  30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
  31 * while it is held.
  32 *
  33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
  34 * to become unlocked.
  35 *
  36 * PG_uptodate tells whether the page's contents is valid.  When a read
  37 * completes, the page becomes uptodate, unless a disk I/O error happened.
  38 *
  39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
  40 * file-backed pagecache (see mm/vmscan.c).
  41 *
  42 * PG_error is set to indicate that an I/O error occurred on this page.
  43 *
  44 * PG_arch_1 is an architecture specific page state bit.  The generic code
  45 * guarantees that this bit is cleared for a page when it first is entered into
  46 * the page cache.
  47 *
  48 * PG_highmem pages are not permanently mapped into the kernel virtual address
  49 * space, they need to be kmapped separately for doing IO on the pages.  The
  50 * struct page (these bits with information) are always mapped into kernel
  51 * address space...
  52 *
  53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
  54 * data with incorrect ECC bits that triggered a machine check. Accessing is
  55 * not safe since it may cause another machine check. Don't touch!
  56 */
  57
  58/*
  59 * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
  60 * locked- and dirty-page accounting.
  61 *
  62 * The page flags field is split into two parts, the main flags area
  63 * which extends from the low bits upwards, and the fields area which
  64 * extends from the high bits downwards.
  65 *
  66 *  | FIELD | ... | FLAGS |
  67 *  N-1           ^       0
  68 *               (NR_PAGEFLAGS)
  69 *
  70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
  71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
  72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
  73 */
  74enum pageflags {
  75        PG_locked,              /* Page is locked. Don't touch. */
  76        PG_error,
  77        PG_referenced,
  78        PG_uptodate,
  79        PG_dirty,
  80        PG_lru,
  81        PG_active,
  82        PG_slab,
  83        PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
  84        PG_arch_1,
  85        PG_reserved,
  86        PG_private,             /* If pagecache, has fs-private data */
  87        PG_private_2,           /* If pagecache, has fs aux data */
  88        PG_writeback,           /* Page is under writeback */
  89        PG_head,                /* A head page */
  90        PG_swapcache,           /* Swap page: swp_entry_t in private */
  91        PG_mappedtodisk,        /* Has blocks allocated on-disk */
  92        PG_reclaim,             /* To be reclaimed asap */
  93        PG_swapbacked,          /* Page is backed by RAM/swap */
  94        PG_unevictable,         /* Page is "unevictable"  */
  95#ifdef CONFIG_MMU
  96        PG_mlocked,             /* Page is vma mlocked */
  97#endif
  98#ifdef CONFIG_ARCH_USES_PG_UNCACHED
  99        PG_uncached,            /* Page has been mapped as uncached */
 100#endif
 101#ifdef CONFIG_MEMORY_FAILURE
 102        PG_hwpoison,            /* hardware poisoned page. Don't touch */
 103#endif
 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 105        PG_young,
 106        PG_idle,
 107#endif
 108        __NR_PAGEFLAGS,
 109
 110        /* Filesystems */
 111        PG_checked = PG_owner_priv_1,
 112
 113        /* Two page bits are conscripted by FS-Cache to maintain local caching
 114         * state.  These bits are set on pages belonging to the netfs's inodes
 115         * when those inodes are being locally cached.
 116         */
 117        PG_fscache = PG_private_2,      /* page backed by cache */
 118
 119        /* XEN */
 120        /* Pinned in Xen as a read-only pagetable page. */
 121        PG_pinned = PG_owner_priv_1,
 122        /* Pinned as part of domain save (see xen_mm_pin_all()). */
 123        PG_savepinned = PG_dirty,
 124        /* Has a grant mapping of another (foreign) domain's page. */
 125        PG_foreign = PG_owner_priv_1,
 126
 127        /* SLOB */
 128        PG_slob_free = PG_private,
 129
 130        /* Compound pages. Stored in first tail page's flags */
 131        PG_double_map = PG_private_2,
 132};
 133
 134#ifndef __GENERATING_BOUNDS_H
 135
 136struct page;    /* forward declaration */
 137
 138static inline struct page *compound_head(struct page *page)
 139{
 140        unsigned long head = READ_ONCE(page->compound_head);
 141
 142        if (unlikely(head & 1))
 143                return (struct page *) (head - 1);
 144        return page;
 145}
 146
 147static __always_inline int PageTail(struct page *page)
 148{
 149        return READ_ONCE(page->compound_head) & 1;
 150}
 151
 152static __always_inline int PageCompound(struct page *page)
 153{
 154        return test_bit(PG_head, &page->flags) || PageTail(page);
 155}
 156
 157/*
 158 * Page flags policies wrt compound pages
 159 *
 160 * PF_ANY:
 161 *     the page flag is relevant for small, head and tail pages.
 162 *
 163 * PF_HEAD:
 164 *     for compound page all operations related to the page flag applied to
 165 *     head page.
 166 *
 167 * PF_NO_TAIL:
 168 *     modifications of the page flag must be done on small or head pages,
 169 *     checks can be done on tail pages too.
 170 *
 171 * PF_NO_COMPOUND:
 172 *     the page flag is not relevant for compound pages.
 173 */
 174#define PF_ANY(page, enforce)   page
 175#define PF_HEAD(page, enforce)  compound_head(page)
 176#define PF_NO_TAIL(page, enforce) ({                                    \
 177                VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);     \
 178                compound_head(page);})
 179#define PF_NO_COMPOUND(page, enforce) ({                                \
 180                VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
 181                page;})
 182
 183/*
 184 * Macros to create function definitions for page flags
 185 */
 186#define TESTPAGEFLAG(uname, lname, policy)                              \
 187static __always_inline int Page##uname(struct page *page)               \
 188        { return test_bit(PG_##lname, &policy(page, 0)->flags); }
 189
 190#define SETPAGEFLAG(uname, lname, policy)                               \
 191static __always_inline void SetPage##uname(struct page *page)           \
 192        { set_bit(PG_##lname, &policy(page, 1)->flags); }
 193
 194#define CLEARPAGEFLAG(uname, lname, policy)                             \
 195static __always_inline void ClearPage##uname(struct page *page)         \
 196        { clear_bit(PG_##lname, &policy(page, 1)->flags); }
 197
 198#define __SETPAGEFLAG(uname, lname, policy)                             \
 199static __always_inline void __SetPage##uname(struct page *page)         \
 200        { __set_bit(PG_##lname, &policy(page, 1)->flags); }
 201
 202#define __CLEARPAGEFLAG(uname, lname, policy)                           \
 203static __always_inline void __ClearPage##uname(struct page *page)       \
 204        { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
 205
 206#define TESTSETFLAG(uname, lname, policy)                               \
 207static __always_inline int TestSetPage##uname(struct page *page)        \
 208        { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
 209
 210#define TESTCLEARFLAG(uname, lname, policy)                             \
 211static __always_inline int TestClearPage##uname(struct page *page)      \
 212        { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
 213
 214#define PAGEFLAG(uname, lname, policy)                                  \
 215        TESTPAGEFLAG(uname, lname, policy)                              \
 216        SETPAGEFLAG(uname, lname, policy)                               \
 217        CLEARPAGEFLAG(uname, lname, policy)
 218
 219#define __PAGEFLAG(uname, lname, policy)                                \
 220        TESTPAGEFLAG(uname, lname, policy)                              \
 221        __SETPAGEFLAG(uname, lname, policy)                             \
 222        __CLEARPAGEFLAG(uname, lname, policy)
 223
 224#define TESTSCFLAG(uname, lname, policy)                                \
 225        TESTSETFLAG(uname, lname, policy)                               \
 226        TESTCLEARFLAG(uname, lname, policy)
 227
 228#define TESTPAGEFLAG_FALSE(uname)                                       \
 229static inline int Page##uname(const struct page *page) { return 0; }
 230
 231#define SETPAGEFLAG_NOOP(uname)                                         \
 232static inline void SetPage##uname(struct page *page) {  }
 233
 234#define CLEARPAGEFLAG_NOOP(uname)                                       \
 235static inline void ClearPage##uname(struct page *page) {  }
 236
 237#define __CLEARPAGEFLAG_NOOP(uname)                                     \
 238static inline void __ClearPage##uname(struct page *page) {  }
 239
 240#define TESTSETFLAG_FALSE(uname)                                        \
 241static inline int TestSetPage##uname(struct page *page) { return 0; }
 242
 243#define TESTCLEARFLAG_FALSE(uname)                                      \
 244static inline int TestClearPage##uname(struct page *page) { return 0; }
 245
 246#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)                 \
 247        SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
 248
 249#define TESTSCFLAG_FALSE(uname)                                         \
 250        TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
 251
 252__PAGEFLAG(Locked, locked, PF_NO_TAIL)
 253PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
 254PAGEFLAG(Referenced, referenced, PF_HEAD)
 255        TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
 256        __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
 257PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
 258        __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
 259PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
 260PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
 261        TESTCLEARFLAG(Active, active, PF_HEAD)
 262__PAGEFLAG(Slab, slab, PF_NO_TAIL)
 263__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
 264PAGEFLAG(Checked, checked, PF_NO_COMPOUND)         /* Used by some filesystems */
 265
 266/* Xen */
 267PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
 268        TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
 269PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
 270PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
 271
 272PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 273        __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
 274PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 275        __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 276        __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
 277
 278/*
 279 * Private page markings that may be used by the filesystem that owns the page
 280 * for its own purposes.
 281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
 282 */
 283PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
 284        __CLEARPAGEFLAG(Private, private, PF_ANY)
 285PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
 286PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 287        TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
 288
 289/*
 290 * Only test-and-set exist for PG_writeback.  The unconditional operators are
 291 * risky: they bypass page accounting.
 292 */
 293TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
 294        TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
 295PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND)
 296
 297/* PG_readahead is only used for reads; PG_reclaim is only for writes */
 298PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
 299        TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
 300PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 301        TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
 302
 303#ifdef CONFIG_HIGHMEM
 304/*
 305 * Must use a macro here due to header dependency issues. page_zone() is not
 306 * available at this point.
 307 */
 308#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
 309#else
 310PAGEFLAG_FALSE(HighMem)
 311#endif
 312
 313#ifdef CONFIG_SWAP
 314PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
 315#else
 316PAGEFLAG_FALSE(SwapCache)
 317#endif
 318
 319PAGEFLAG(Unevictable, unevictable, PF_HEAD)
 320        __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
 321        TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
 322
 323#ifdef CONFIG_MMU
 324PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 325        __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
 326        TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
 327#else
 328PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
 329        TESTSCFLAG_FALSE(Mlocked)
 330#endif
 331
 332#ifdef CONFIG_ARCH_USES_PG_UNCACHED
 333PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
 334#else
 335PAGEFLAG_FALSE(Uncached)
 336#endif
 337
 338#ifdef CONFIG_MEMORY_FAILURE
 339PAGEFLAG(HWPoison, hwpoison, PF_ANY)
 340TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
 341#define __PG_HWPOISON (1UL << PG_hwpoison)
 342#else
 343PAGEFLAG_FALSE(HWPoison)
 344#define __PG_HWPOISON 0
 345#endif
 346
 347#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
 348TESTPAGEFLAG(Young, young, PF_ANY)
 349SETPAGEFLAG(Young, young, PF_ANY)
 350TESTCLEARFLAG(Young, young, PF_ANY)
 351PAGEFLAG(Idle, idle, PF_ANY)
 352#endif
 353
 354/*
 355 * On an anonymous page mapped into a user virtual memory area,
 356 * page->mapping points to its anon_vma, not to a struct address_space;
 357 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
 358 *
 359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
 360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
 361 * and then page->mapping points, not to an anon_vma, but to a private
 362 * structure which KSM associates with that merged page.  See ksm.h.
 363 *
 364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
 365 *
 366 * Please note that, confusingly, "page_mapping" refers to the inode
 367 * address_space which maps the page from disk; whereas "page_mapped"
 368 * refers to user virtual address space into which the page is mapped.
 369 */
 370#define PAGE_MAPPING_ANON       1
 371#define PAGE_MAPPING_KSM        2
 372#define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
 373
 374static __always_inline int PageAnon(struct page *page)
 375{
 376        page = compound_head(page);
 377        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
 378}
 379
 380#ifdef CONFIG_KSM
 381/*
 382 * A KSM page is one of those write-protected "shared pages" or "merged pages"
 383 * which KSM maps into multiple mms, wherever identical anonymous page content
 384 * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
 385 * anon_vma, but to that page's node of the stable tree.
 386 */
 387static __always_inline int PageKsm(struct page *page)
 388{
 389        page = compound_head(page);
 390        return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
 391                                (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
 392}
 393#else
 394TESTPAGEFLAG_FALSE(Ksm)
 395#endif
 396
 397u64 stable_page_flags(struct page *page);
 398
 399static inline int PageUptodate(struct page *page)
 400{
 401        int ret;
 402        page = compound_head(page);
 403        ret = test_bit(PG_uptodate, &(page)->flags);
 404        /*
 405         * Must ensure that the data we read out of the page is loaded
 406         * _after_ we've loaded page->flags to check for PageUptodate.
 407         * We can skip the barrier if the page is not uptodate, because
 408         * we wouldn't be reading anything from it.
 409         *
 410         * See SetPageUptodate() for the other side of the story.
 411         */
 412        if (ret)
 413                smp_rmb();
 414
 415        return ret;
 416}
 417
 418static __always_inline void __SetPageUptodate(struct page *page)
 419{
 420        VM_BUG_ON_PAGE(PageTail(page), page);
 421        smp_wmb();
 422        __set_bit(PG_uptodate, &page->flags);
 423}
 424
 425static __always_inline void SetPageUptodate(struct page *page)
 426{
 427        VM_BUG_ON_PAGE(PageTail(page), page);
 428        /*
 429         * Memory barrier must be issued before setting the PG_uptodate bit,
 430         * so that all previous stores issued in order to bring the page
 431         * uptodate are actually visible before PageUptodate becomes true.
 432         */
 433        smp_wmb();
 434        set_bit(PG_uptodate, &page->flags);
 435}
 436
 437CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
 438
 439int test_clear_page_writeback(struct page *page);
 440int __test_set_page_writeback(struct page *page, bool keep_write);
 441
 442#define test_set_page_writeback(page)                   \
 443        __test_set_page_writeback(page, false)
 444#define test_set_page_writeback_keepwrite(page) \
 445        __test_set_page_writeback(page, true)
 446
 447static inline void set_page_writeback(struct page *page)
 448{
 449        test_set_page_writeback(page);
 450}
 451
 452static inline void set_page_writeback_keepwrite(struct page *page)
 453{
 454        test_set_page_writeback_keepwrite(page);
 455}
 456
 457__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
 458
 459static __always_inline void set_compound_head(struct page *page, struct page *head)
 460{
 461        WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
 462}
 463
 464static __always_inline void clear_compound_head(struct page *page)
 465{
 466        WRITE_ONCE(page->compound_head, 0);
 467}
 468
 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 470static inline void ClearPageCompound(struct page *page)
 471{
 472        BUG_ON(!PageHead(page));
 473        ClearPageHead(page);
 474}
 475#endif
 476
 477#define PG_head_mask ((1L << PG_head))
 478
 479#ifdef CONFIG_HUGETLB_PAGE
 480int PageHuge(struct page *page);
 481int PageHeadHuge(struct page *page);
 482bool page_huge_active(struct page *page);
 483#else
 484TESTPAGEFLAG_FALSE(Huge)
 485TESTPAGEFLAG_FALSE(HeadHuge)
 486
 487static inline bool page_huge_active(struct page *page)
 488{
 489        return 0;
 490}
 491#endif
 492
 493
 494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 495/*
 496 * PageHuge() only returns true for hugetlbfs pages, but not for
 497 * normal or transparent huge pages.
 498 *
 499 * PageTransHuge() returns true for both transparent huge and
 500 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
 501 * called only in the core VM paths where hugetlbfs pages can't exist.
 502 */
 503static inline int PageTransHuge(struct page *page)
 504{
 505        VM_BUG_ON_PAGE(PageTail(page), page);
 506        return PageHead(page);
 507}
 508
 509/*
 510 * PageTransCompound returns true for both transparent huge pages
 511 * and hugetlbfs pages, so it should only be called when it's known
 512 * that hugetlbfs pages aren't involved.
 513 */
 514static inline int PageTransCompound(struct page *page)
 515{
 516        return PageCompound(page);
 517}
 518
 519/*
 520 * PageTransCompoundMap is the same as PageTransCompound, but it also
 521 * guarantees the primary MMU has the entire compound page mapped
 522 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
 523 * can also map the entire compound page. This allows the secondary
 524 * MMUs to call get_user_pages() only once for each compound page and
 525 * to immediately map the entire compound page with a single secondary
 526 * MMU fault. If there will be a pmd split later, the secondary MMUs
 527 * will get an update through the MMU notifier invalidation through
 528 * split_huge_pmd().
 529 *
 530 * Unlike PageTransCompound, this is safe to be called only while
 531 * split_huge_pmd() cannot run from under us, like if protected by the
 532 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
 533 * positives.
 534 */
 535static inline int PageTransCompoundMap(struct page *page)
 536{
 537        return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
 538}
 539
 540/*
 541 * PageTransTail returns true for both transparent huge pages
 542 * and hugetlbfs pages, so it should only be called when it's known
 543 * that hugetlbfs pages aren't involved.
 544 */
 545static inline int PageTransTail(struct page *page)
 546{
 547        return PageTail(page);
 548}
 549
 550/*
 551 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
 552 * as PMDs.
 553 *
 554 * This is required for optimization of rmap operations for THP: we can postpone
 555 * per small page mapcount accounting (and its overhead from atomic operations)
 556 * until the first PMD split.
 557 *
 558 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
 559 * by one. This reference will go away with last compound_mapcount.
 560 *
 561 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
 562 */
 563static inline int PageDoubleMap(struct page *page)
 564{
 565        return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
 566}
 567
 568static inline int TestSetPageDoubleMap(struct page *page)
 569{
 570        VM_BUG_ON_PAGE(!PageHead(page), page);
 571        return test_and_set_bit(PG_double_map, &page[1].flags);
 572}
 573
 574static inline int TestClearPageDoubleMap(struct page *page)
 575{
 576        VM_BUG_ON_PAGE(!PageHead(page), page);
 577        return test_and_clear_bit(PG_double_map, &page[1].flags);
 578}
 579
 580#else
 581TESTPAGEFLAG_FALSE(TransHuge)
 582TESTPAGEFLAG_FALSE(TransCompound)
 583TESTPAGEFLAG_FALSE(TransCompoundMap)
 584TESTPAGEFLAG_FALSE(TransTail)
 585TESTPAGEFLAG_FALSE(DoubleMap)
 586        TESTSETFLAG_FALSE(DoubleMap)
 587        TESTCLEARFLAG_FALSE(DoubleMap)
 588#endif
 589
 590/*
 591 * PageBuddy() indicate that the page is free and in the buddy system
 592 * (see mm/page_alloc.c).
 593 *
 594 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
 595 * -2 so that an underflow of the page_mapcount() won't be mistaken
 596 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
 597 * efficiently by most CPU architectures.
 598 */
 599#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
 600
 601static inline int PageBuddy(struct page *page)
 602{
 603        return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
 604}
 605
 606static inline void __SetPageBuddy(struct page *page)
 607{
 608        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
 609        atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
 610}
 611
 612static inline void __ClearPageBuddy(struct page *page)
 613{
 614        VM_BUG_ON_PAGE(!PageBuddy(page), page);
 615        atomic_set(&page->_mapcount, -1);
 616}
 617
 618extern bool is_free_buddy_page(struct page *page);
 619
 620#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
 621
 622static inline int PageBalloon(struct page *page)
 623{
 624        return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
 625}
 626
 627static inline void __SetPageBalloon(struct page *page)
 628{
 629        VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
 630        atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
 631}
 632
 633static inline void __ClearPageBalloon(struct page *page)
 634{
 635        VM_BUG_ON_PAGE(!PageBalloon(page), page);
 636        atomic_set(&page->_mapcount, -1);
 637}
 638
 639/*
 640 * If network-based swap is enabled, sl*b must keep track of whether pages
 641 * were allocated from pfmemalloc reserves.
 642 */
 643static inline int PageSlabPfmemalloc(struct page *page)
 644{
 645        VM_BUG_ON_PAGE(!PageSlab(page), page);
 646        return PageActive(page);
 647}
 648
 649static inline void SetPageSlabPfmemalloc(struct page *page)
 650{
 651        VM_BUG_ON_PAGE(!PageSlab(page), page);
 652        SetPageActive(page);
 653}
 654
 655static inline void __ClearPageSlabPfmemalloc(struct page *page)
 656{
 657        VM_BUG_ON_PAGE(!PageSlab(page), page);
 658        __ClearPageActive(page);
 659}
 660
 661static inline void ClearPageSlabPfmemalloc(struct page *page)
 662{
 663        VM_BUG_ON_PAGE(!PageSlab(page), page);
 664        ClearPageActive(page);
 665}
 666
 667#ifdef CONFIG_MMU
 668#define __PG_MLOCKED            (1 << PG_mlocked)
 669#else
 670#define __PG_MLOCKED            0
 671#endif
 672
 673/*
 674 * Flags checked when a page is freed.  Pages being freed should not have
 675 * these flags set.  It they are, there is a problem.
 676 */
 677#define PAGE_FLAGS_CHECK_AT_FREE \
 678        (1 << PG_lru     | 1 << PG_locked    | \
 679         1 << PG_private | 1 << PG_private_2 | \
 680         1 << PG_writeback | 1 << PG_reserved | \
 681         1 << PG_slab    | 1 << PG_swapcache | 1 << PG_active | \
 682         1 << PG_unevictable | __PG_MLOCKED)
 683
 684/*
 685 * Flags checked when a page is prepped for return by the page allocator.
 686 * Pages being prepped should not have these flags set.  It they are set,
 687 * there has been a kernel bug or struct page corruption.
 688 *
 689 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
 690 * alloc-free cycle to prevent from reusing the page.
 691 */
 692#define PAGE_FLAGS_CHECK_AT_PREP        \
 693        (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
 694
 695#define PAGE_FLAGS_PRIVATE                              \
 696        (1 << PG_private | 1 << PG_private_2)
 697/**
 698 * page_has_private - Determine if page has private stuff
 699 * @page: The page to be checked
 700 *
 701 * Determine if a page has private stuff, indicating that release routines
 702 * should be invoked upon it.
 703 */
 704static inline int page_has_private(struct page *page)
 705{
 706        return !!(page->flags & PAGE_FLAGS_PRIVATE);
 707}
 708
 709#undef PF_ANY
 710#undef PF_HEAD
 711#undef PF_NO_TAIL
 712#undef PF_NO_COMPOUND
 713#endif /* !__GENERATING_BOUNDS_H */
 714
 715#endif  /* PAGE_FLAGS_H */
 716