linux/include/linux/radix-tree.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2006 Nick Piggin
   5 * Copyright (C) 2012 Konstantin Khlebnikov
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2, or (at
  10 * your option) any later version.
  11 * 
  12 * This program is distributed in the hope that it will be useful, but
  13 * WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 * 
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21#ifndef _LINUX_RADIX_TREE_H
  22#define _LINUX_RADIX_TREE_H
  23
  24#include <linux/bitops.h>
  25#include <linux/preempt.h>
  26#include <linux/types.h>
  27#include <linux/bug.h>
  28#include <linux/kernel.h>
  29#include <linux/rcupdate.h>
  30
  31/*
  32 * An indirect pointer (root->rnode pointing to a radix_tree_node, rather
  33 * than a data item) is signalled by the low bit set in the root->rnode
  34 * pointer.
  35 *
  36 * In this case root->height is > 0, but the indirect pointer tests are
  37 * needed for RCU lookups (because root->height is unreliable). The only
  38 * time callers need worry about this is when doing a lookup_slot under
  39 * RCU.
  40 *
  41 * Indirect pointer in fact is also used to tag the last pointer of a node
  42 * when it is shrunk, before we rcu free the node. See shrink code for
  43 * details.
  44 */
  45#define RADIX_TREE_INDIRECT_PTR         1
  46/*
  47 * A common use of the radix tree is to store pointers to struct pages;
  48 * but shmem/tmpfs needs also to store swap entries in the same tree:
  49 * those are marked as exceptional entries to distinguish them.
  50 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
  51 */
  52#define RADIX_TREE_EXCEPTIONAL_ENTRY    2
  53#define RADIX_TREE_EXCEPTIONAL_SHIFT    2
  54
  55#define RADIX_DAX_MASK  0xf
  56#define RADIX_DAX_SHIFT 4
  57#define RADIX_DAX_PTE  (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY)
  58#define RADIX_DAX_PMD  (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY)
  59#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK)
  60#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
  61#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
  62                RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE)))
  63
  64static inline int radix_tree_is_indirect_ptr(void *ptr)
  65{
  66        return (int)((unsigned long)ptr & RADIX_TREE_INDIRECT_PTR);
  67}
  68
  69/*** radix-tree API starts here ***/
  70
  71#define RADIX_TREE_MAX_TAGS 3
  72
  73#ifdef __KERNEL__
  74#define RADIX_TREE_MAP_SHIFT    (CONFIG_BASE_SMALL ? 4 : 6)
  75#else
  76#define RADIX_TREE_MAP_SHIFT    3       /* For more stressful testing */
  77#endif
  78
  79#define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
  80#define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
  81
  82#define RADIX_TREE_TAG_LONGS    \
  83        ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
  84
  85#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
  86#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
  87                                          RADIX_TREE_MAP_SHIFT))
  88
  89/* Height component in node->path */
  90#define RADIX_TREE_HEIGHT_SHIFT (RADIX_TREE_MAX_PATH + 1)
  91#define RADIX_TREE_HEIGHT_MASK  ((1UL << RADIX_TREE_HEIGHT_SHIFT) - 1)
  92
  93/* Internally used bits of node->count */
  94#define RADIX_TREE_COUNT_SHIFT  (RADIX_TREE_MAP_SHIFT + 1)
  95#define RADIX_TREE_COUNT_MASK   ((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
  96
  97struct radix_tree_node {
  98        unsigned int    path;   /* Offset in parent & height from the bottom */
  99        unsigned int    count;
 100        union {
 101                struct {
 102                        /* Used when ascending tree */
 103                        struct radix_tree_node *parent;
 104                        /* For tree user */
 105                        void *private_data;
 106                };
 107                /* Used when freeing node */
 108                struct rcu_head rcu_head;
 109        };
 110        /* For tree user */
 111        struct list_head private_list;
 112        void __rcu      *slots[RADIX_TREE_MAP_SIZE];
 113        unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
 114};
 115
 116/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
 117struct radix_tree_root {
 118        unsigned int            height;
 119        gfp_t                   gfp_mask;
 120        struct radix_tree_node  __rcu *rnode;
 121};
 122
 123#define RADIX_TREE_INIT(mask)   {                                       \
 124        .height = 0,                                                    \
 125        .gfp_mask = (mask),                                             \
 126        .rnode = NULL,                                                  \
 127}
 128
 129#define RADIX_TREE(name, mask) \
 130        struct radix_tree_root name = RADIX_TREE_INIT(mask)
 131
 132#define INIT_RADIX_TREE(root, mask)                                     \
 133do {                                                                    \
 134        (root)->height = 0;                                             \
 135        (root)->gfp_mask = (mask);                                      \
 136        (root)->rnode = NULL;                                           \
 137} while (0)
 138
 139/**
 140 * Radix-tree synchronization
 141 *
 142 * The radix-tree API requires that users provide all synchronisation (with
 143 * specific exceptions, noted below).
 144 *
 145 * Synchronization of access to the data items being stored in the tree, and
 146 * management of their lifetimes must be completely managed by API users.
 147 *
 148 * For API usage, in general,
 149 * - any function _modifying_ the tree or tags (inserting or deleting
 150 *   items, setting or clearing tags) must exclude other modifications, and
 151 *   exclude any functions reading the tree.
 152 * - any function _reading_ the tree or tags (looking up items or tags,
 153 *   gang lookups) must exclude modifications to the tree, but may occur
 154 *   concurrently with other readers.
 155 *
 156 * The notable exceptions to this rule are the following functions:
 157 * __radix_tree_lookup
 158 * radix_tree_lookup
 159 * radix_tree_lookup_slot
 160 * radix_tree_tag_get
 161 * radix_tree_gang_lookup
 162 * radix_tree_gang_lookup_slot
 163 * radix_tree_gang_lookup_tag
 164 * radix_tree_gang_lookup_tag_slot
 165 * radix_tree_tagged
 166 *
 167 * The first 8 functions are able to be called locklessly, using RCU. The
 168 * caller must ensure calls to these functions are made within rcu_read_lock()
 169 * regions. Other readers (lock-free or otherwise) and modifications may be
 170 * running concurrently.
 171 *
 172 * It is still required that the caller manage the synchronization and lifetimes
 173 * of the items. So if RCU lock-free lookups are used, typically this would mean
 174 * that the items have their own locks, or are amenable to lock-free access; and
 175 * that the items are freed by RCU (or only freed after having been deleted from
 176 * the radix tree *and* a synchronize_rcu() grace period).
 177 *
 178 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
 179 * access to data items when inserting into or looking up from the radix tree)
 180 *
 181 * Note that the value returned by radix_tree_tag_get() may not be relied upon
 182 * if only the RCU read lock is held.  Functions to set/clear tags and to
 183 * delete nodes running concurrently with it may affect its result such that
 184 * two consecutive reads in the same locked section may return different
 185 * values.  If reliability is required, modification functions must also be
 186 * excluded from concurrency.
 187 *
 188 * radix_tree_tagged is able to be called without locking or RCU.
 189 */
 190
 191/**
 192 * radix_tree_deref_slot        - dereference a slot
 193 * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
 194 * Returns:     item that was stored in that slot with any direct pointer flag
 195 *              removed.
 196 *
 197 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
 198 * locked across slot lookup and dereference. Not required if write lock is
 199 * held (ie. items cannot be concurrently inserted).
 200 *
 201 * radix_tree_deref_retry must be used to confirm validity of the pointer if
 202 * only the read lock is held.
 203 */
 204static inline void *radix_tree_deref_slot(void **pslot)
 205{
 206        return rcu_dereference(*pslot);
 207}
 208
 209/**
 210 * radix_tree_deref_slot_protected      - dereference a slot without RCU lock but with tree lock held
 211 * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
 212 * Returns:     item that was stored in that slot with any direct pointer flag
 213 *              removed.
 214 *
 215 * Similar to radix_tree_deref_slot but only used during migration when a pages
 216 * mapping is being moved. The caller does not hold the RCU read lock but it
 217 * must hold the tree lock to prevent parallel updates.
 218 */
 219static inline void *radix_tree_deref_slot_protected(void **pslot,
 220                                                        spinlock_t *treelock)
 221{
 222        return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
 223}
 224
 225/**
 226 * radix_tree_deref_retry       - check radix_tree_deref_slot
 227 * @arg:        pointer returned by radix_tree_deref_slot
 228 * Returns:     0 if retry is not required, otherwise retry is required
 229 *
 230 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
 231 */
 232static inline int radix_tree_deref_retry(void *arg)
 233{
 234        return unlikely((unsigned long)arg & RADIX_TREE_INDIRECT_PTR);
 235}
 236
 237/**
 238 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
 239 * @arg:        value returned by radix_tree_deref_slot
 240 * Returns:     0 if well-aligned pointer, non-0 if exceptional entry.
 241 */
 242static inline int radix_tree_exceptional_entry(void *arg)
 243{
 244        /* Not unlikely because radix_tree_exception often tested first */
 245        return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
 246}
 247
 248/**
 249 * radix_tree_exception - radix_tree_deref_slot returned either exception?
 250 * @arg:        value returned by radix_tree_deref_slot
 251 * Returns:     0 if well-aligned pointer, non-0 if either kind of exception.
 252 */
 253static inline int radix_tree_exception(void *arg)
 254{
 255        return unlikely((unsigned long)arg &
 256                (RADIX_TREE_INDIRECT_PTR | RADIX_TREE_EXCEPTIONAL_ENTRY));
 257}
 258
 259/**
 260 * radix_tree_replace_slot      - replace item in a slot
 261 * @pslot:      pointer to slot, returned by radix_tree_lookup_slot
 262 * @item:       new item to store in the slot.
 263 *
 264 * For use with radix_tree_lookup_slot().  Caller must hold tree write locked
 265 * across slot lookup and replacement.
 266 */
 267static inline void radix_tree_replace_slot(void **pslot, void *item)
 268{
 269        BUG_ON(radix_tree_is_indirect_ptr(item));
 270        rcu_assign_pointer(*pslot, item);
 271}
 272
 273int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 274                        unsigned order, struct radix_tree_node **nodep,
 275                        void ***slotp);
 276int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
 277                        unsigned order, void *);
 278static inline int radix_tree_insert(struct radix_tree_root *root,
 279                        unsigned long index, void *entry)
 280{
 281        return __radix_tree_insert(root, index, 0, entry);
 282}
 283void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 284                          struct radix_tree_node **nodep, void ***slotp);
 285void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
 286void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
 287bool __radix_tree_delete_node(struct radix_tree_root *root,
 288                              struct radix_tree_node *node);
 289void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
 290void *radix_tree_delete(struct radix_tree_root *, unsigned long);
 291unsigned int
 292radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
 293                        unsigned long first_index, unsigned int max_items);
 294unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
 295                        void ***results, unsigned long *indices,
 296                        unsigned long first_index, unsigned int max_items);
 297int radix_tree_preload(gfp_t gfp_mask);
 298int radix_tree_maybe_preload(gfp_t gfp_mask);
 299void radix_tree_init(void);
 300void *radix_tree_tag_set(struct radix_tree_root *root,
 301                        unsigned long index, unsigned int tag);
 302void *radix_tree_tag_clear(struct radix_tree_root *root,
 303                        unsigned long index, unsigned int tag);
 304int radix_tree_tag_get(struct radix_tree_root *root,
 305                        unsigned long index, unsigned int tag);
 306unsigned int
 307radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
 308                unsigned long first_index, unsigned int max_items,
 309                unsigned int tag);
 310unsigned int
 311radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
 312                unsigned long first_index, unsigned int max_items,
 313                unsigned int tag);
 314unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 315                unsigned long *first_indexp, unsigned long last_index,
 316                unsigned long nr_to_tag,
 317                unsigned int fromtag, unsigned int totag);
 318int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
 319unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
 320
 321static inline void radix_tree_preload_end(void)
 322{
 323        preempt_enable();
 324}
 325
 326/**
 327 * struct radix_tree_iter - radix tree iterator state
 328 *
 329 * @index:      index of current slot
 330 * @next_index: next-to-last index for this chunk
 331 * @tags:       bit-mask for tag-iterating
 332 *
 333 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
 334 * subinterval of slots contained within one radix tree leaf node.  It is
 335 * described by a pointer to its first slot and a struct radix_tree_iter
 336 * which holds the chunk's position in the tree and its size.  For tagged
 337 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
 338 * radix tree tag.
 339 */
 340struct radix_tree_iter {
 341        unsigned long   index;
 342        unsigned long   next_index;
 343        unsigned long   tags;
 344};
 345
 346#define RADIX_TREE_ITER_TAG_MASK        0x00FF  /* tag index in lower byte */
 347#define RADIX_TREE_ITER_TAGGED          0x0100  /* lookup tagged slots */
 348#define RADIX_TREE_ITER_CONTIG          0x0200  /* stop at first hole */
 349
 350/**
 351 * radix_tree_iter_init - initialize radix tree iterator
 352 *
 353 * @iter:       pointer to iterator state
 354 * @start:      iteration starting index
 355 * Returns:     NULL
 356 */
 357static __always_inline void **
 358radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
 359{
 360        /*
 361         * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
 362         * in the case of a successful tagged chunk lookup.  If the lookup was
 363         * unsuccessful or non-tagged then nobody cares about ->tags.
 364         *
 365         * Set index to zero to bypass next_index overflow protection.
 366         * See the comment in radix_tree_next_chunk() for details.
 367         */
 368        iter->index = 0;
 369        iter->next_index = start;
 370        return NULL;
 371}
 372
 373/**
 374 * radix_tree_next_chunk - find next chunk of slots for iteration
 375 *
 376 * @root:       radix tree root
 377 * @iter:       iterator state
 378 * @flags:      RADIX_TREE_ITER_* flags and tag index
 379 * Returns:     pointer to chunk first slot, or NULL if there no more left
 380 *
 381 * This function looks up the next chunk in the radix tree starting from
 382 * @iter->next_index.  It returns a pointer to the chunk's first slot.
 383 * Also it fills @iter with data about chunk: position in the tree (index),
 384 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
 385 */
 386void **radix_tree_next_chunk(struct radix_tree_root *root,
 387                             struct radix_tree_iter *iter, unsigned flags);
 388
 389/**
 390 * radix_tree_iter_retry - retry this chunk of the iteration
 391 * @iter:       iterator state
 392 *
 393 * If we iterate over a tree protected only by the RCU lock, a race
 394 * against deletion or creation may result in seeing a slot for which
 395 * radix_tree_deref_retry() returns true.  If so, call this function
 396 * and continue the iteration.
 397 */
 398static inline __must_check
 399void **radix_tree_iter_retry(struct radix_tree_iter *iter)
 400{
 401        iter->next_index = iter->index;
 402        return NULL;
 403}
 404
 405/**
 406 * radix_tree_iter_next - resume iterating when the chunk may be invalid
 407 * @iter:       iterator state
 408 *
 409 * If the iterator needs to release then reacquire a lock, the chunk may
 410 * have been invalidated by an insertion or deletion.  Call this function
 411 * to continue the iteration from the next index.
 412 */
 413static inline __must_check
 414void **radix_tree_iter_next(struct radix_tree_iter *iter)
 415{
 416        iter->next_index = iter->index + 1;
 417        iter->tags = 0;
 418        return NULL;
 419}
 420
 421/**
 422 * radix_tree_chunk_size - get current chunk size
 423 *
 424 * @iter:       pointer to radix tree iterator
 425 * Returns:     current chunk size
 426 */
 427static __always_inline long
 428radix_tree_chunk_size(struct radix_tree_iter *iter)
 429{
 430        return iter->next_index - iter->index;
 431}
 432
 433/**
 434 * radix_tree_next_slot - find next slot in chunk
 435 *
 436 * @slot:       pointer to current slot
 437 * @iter:       pointer to interator state
 438 * @flags:      RADIX_TREE_ITER_*, should be constant
 439 * Returns:     pointer to next slot, or NULL if there no more left
 440 *
 441 * This function updates @iter->index in the case of a successful lookup.
 442 * For tagged lookup it also eats @iter->tags.
 443 */
 444static __always_inline void **
 445radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
 446{
 447        if (flags & RADIX_TREE_ITER_TAGGED) {
 448                iter->tags >>= 1;
 449                if (likely(iter->tags & 1ul)) {
 450                        iter->index++;
 451                        return slot + 1;
 452                }
 453                if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
 454                        unsigned offset = __ffs(iter->tags);
 455
 456                        iter->tags >>= offset;
 457                        iter->index += offset + 1;
 458                        return slot + offset + 1;
 459                }
 460        } else {
 461                long size = radix_tree_chunk_size(iter);
 462
 463                while (--size > 0) {
 464                        slot++;
 465                        iter->index++;
 466                        if (likely(*slot))
 467                                return slot;
 468                        if (flags & RADIX_TREE_ITER_CONTIG) {
 469                                /* forbid switching to the next chunk */
 470                                iter->next_index = 0;
 471                                break;
 472                        }
 473                }
 474        }
 475        return NULL;
 476}
 477
 478/**
 479 * radix_tree_for_each_chunk - iterate over chunks
 480 *
 481 * @slot:       the void** variable for pointer to chunk first slot
 482 * @root:       the struct radix_tree_root pointer
 483 * @iter:       the struct radix_tree_iter pointer
 484 * @start:      iteration starting index
 485 * @flags:      RADIX_TREE_ITER_* and tag index
 486 *
 487 * Locks can be released and reacquired between iterations.
 488 */
 489#define radix_tree_for_each_chunk(slot, root, iter, start, flags)       \
 490        for (slot = radix_tree_iter_init(iter, start) ;                 \
 491              (slot = radix_tree_next_chunk(root, iter, flags)) ;)
 492
 493/**
 494 * radix_tree_for_each_chunk_slot - iterate over slots in one chunk
 495 *
 496 * @slot:       the void** variable, at the beginning points to chunk first slot
 497 * @iter:       the struct radix_tree_iter pointer
 498 * @flags:      RADIX_TREE_ITER_*, should be constant
 499 *
 500 * This macro is designed to be nested inside radix_tree_for_each_chunk().
 501 * @slot points to the radix tree slot, @iter->index contains its index.
 502 */
 503#define radix_tree_for_each_chunk_slot(slot, iter, flags)               \
 504        for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
 505
 506/**
 507 * radix_tree_for_each_slot - iterate over non-empty slots
 508 *
 509 * @slot:       the void** variable for pointer to slot
 510 * @root:       the struct radix_tree_root pointer
 511 * @iter:       the struct radix_tree_iter pointer
 512 * @start:      iteration starting index
 513 *
 514 * @slot points to radix tree slot, @iter->index contains its index.
 515 */
 516#define radix_tree_for_each_slot(slot, root, iter, start)               \
 517        for (slot = radix_tree_iter_init(iter, start) ;                 \
 518             slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;    \
 519             slot = radix_tree_next_slot(slot, iter, 0))
 520
 521/**
 522 * radix_tree_for_each_contig - iterate over contiguous slots
 523 *
 524 * @slot:       the void** variable for pointer to slot
 525 * @root:       the struct radix_tree_root pointer
 526 * @iter:       the struct radix_tree_iter pointer
 527 * @start:      iteration starting index
 528 *
 529 * @slot points to radix tree slot, @iter->index contains its index.
 530 */
 531#define radix_tree_for_each_contig(slot, root, iter, start)             \
 532        for (slot = radix_tree_iter_init(iter, start) ;                 \
 533             slot || (slot = radix_tree_next_chunk(root, iter,          \
 534                                RADIX_TREE_ITER_CONTIG)) ;              \
 535             slot = radix_tree_next_slot(slot, iter,                    \
 536                                RADIX_TREE_ITER_CONTIG))
 537
 538/**
 539 * radix_tree_for_each_tagged - iterate over tagged slots
 540 *
 541 * @slot:       the void** variable for pointer to slot
 542 * @root:       the struct radix_tree_root pointer
 543 * @iter:       the struct radix_tree_iter pointer
 544 * @start:      iteration starting index
 545 * @tag:        tag index
 546 *
 547 * @slot points to radix tree slot, @iter->index contains its index.
 548 */
 549#define radix_tree_for_each_tagged(slot, root, iter, start, tag)        \
 550        for (slot = radix_tree_iter_init(iter, start) ;                 \
 551             slot || (slot = radix_tree_next_chunk(root, iter,          \
 552                              RADIX_TREE_ITER_TAGGED | tag)) ;          \
 553             slot = radix_tree_next_slot(slot, iter,                    \
 554                                RADIX_TREE_ITER_TAGGED))
 555
 556#endif /* _LINUX_RADIX_TREE_H */
 557