linux/include/linux/rculist.h
<<
>>
Prefs
   1#ifndef _LINUX_RCULIST_H
   2#define _LINUX_RCULIST_H
   3
   4#ifdef __KERNEL__
   5
   6/*
   7 * RCU-protected list version
   8 */
   9#include <linux/list.h>
  10#include <linux/rcupdate.h>
  11
  12/*
  13 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  14 * purpose.  The list_empty() function fetches the RCU-protected pointer
  15 * and compares it to the address of the list head, but neither dereferences
  16 * this pointer itself nor provides this pointer to the caller.  Therefore,
  17 * it is not necessary to use rcu_dereference(), so that list_empty() can
  18 * be used anywhere you would want to use a list_empty_rcu().
  19 */
  20
  21/*
  22 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  23 * @list: list to be initialized
  24 *
  25 * You should instead use INIT_LIST_HEAD() for normal initialization and
  26 * cleanup tasks, when readers have no access to the list being initialized.
  27 * However, if the list being initialized is visible to readers, you
  28 * need to keep the compiler from being too mischievous.
  29 */
  30static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  31{
  32        WRITE_ONCE(list->next, list);
  33        WRITE_ONCE(list->prev, list);
  34}
  35
  36/*
  37 * return the ->next pointer of a list_head in an rcu safe
  38 * way, we must not access it directly
  39 */
  40#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  41
  42/*
  43 * Insert a new entry between two known consecutive entries.
  44 *
  45 * This is only for internal list manipulation where we know
  46 * the prev/next entries already!
  47 */
  48#ifndef CONFIG_DEBUG_LIST
  49static inline void __list_add_rcu(struct list_head *new,
  50                struct list_head *prev, struct list_head *next)
  51{
  52        new->next = next;
  53        new->prev = prev;
  54        rcu_assign_pointer(list_next_rcu(prev), new);
  55        next->prev = new;
  56}
  57#else
  58void __list_add_rcu(struct list_head *new,
  59                    struct list_head *prev, struct list_head *next);
  60#endif
  61
  62/**
  63 * list_add_rcu - add a new entry to rcu-protected list
  64 * @new: new entry to be added
  65 * @head: list head to add it after
  66 *
  67 * Insert a new entry after the specified head.
  68 * This is good for implementing stacks.
  69 *
  70 * The caller must take whatever precautions are necessary
  71 * (such as holding appropriate locks) to avoid racing
  72 * with another list-mutation primitive, such as list_add_rcu()
  73 * or list_del_rcu(), running on this same list.
  74 * However, it is perfectly legal to run concurrently with
  75 * the _rcu list-traversal primitives, such as
  76 * list_for_each_entry_rcu().
  77 */
  78static inline void list_add_rcu(struct list_head *new, struct list_head *head)
  79{
  80        __list_add_rcu(new, head, head->next);
  81}
  82
  83/**
  84 * list_add_tail_rcu - add a new entry to rcu-protected list
  85 * @new: new entry to be added
  86 * @head: list head to add it before
  87 *
  88 * Insert a new entry before the specified head.
  89 * This is useful for implementing queues.
  90 *
  91 * The caller must take whatever precautions are necessary
  92 * (such as holding appropriate locks) to avoid racing
  93 * with another list-mutation primitive, such as list_add_tail_rcu()
  94 * or list_del_rcu(), running on this same list.
  95 * However, it is perfectly legal to run concurrently with
  96 * the _rcu list-traversal primitives, such as
  97 * list_for_each_entry_rcu().
  98 */
  99static inline void list_add_tail_rcu(struct list_head *new,
 100                                        struct list_head *head)
 101{
 102        __list_add_rcu(new, head->prev, head);
 103}
 104
 105/**
 106 * list_del_rcu - deletes entry from list without re-initialization
 107 * @entry: the element to delete from the list.
 108 *
 109 * Note: list_empty() on entry does not return true after this,
 110 * the entry is in an undefined state. It is useful for RCU based
 111 * lockfree traversal.
 112 *
 113 * In particular, it means that we can not poison the forward
 114 * pointers that may still be used for walking the list.
 115 *
 116 * The caller must take whatever precautions are necessary
 117 * (such as holding appropriate locks) to avoid racing
 118 * with another list-mutation primitive, such as list_del_rcu()
 119 * or list_add_rcu(), running on this same list.
 120 * However, it is perfectly legal to run concurrently with
 121 * the _rcu list-traversal primitives, such as
 122 * list_for_each_entry_rcu().
 123 *
 124 * Note that the caller is not permitted to immediately free
 125 * the newly deleted entry.  Instead, either synchronize_rcu()
 126 * or call_rcu() must be used to defer freeing until an RCU
 127 * grace period has elapsed.
 128 */
 129static inline void list_del_rcu(struct list_head *entry)
 130{
 131        __list_del_entry(entry);
 132        entry->prev = LIST_POISON2;
 133}
 134
 135/**
 136 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 137 * @n: the element to delete from the hash list.
 138 *
 139 * Note: list_unhashed() on the node return true after this. It is
 140 * useful for RCU based read lockfree traversal if the writer side
 141 * must know if the list entry is still hashed or already unhashed.
 142 *
 143 * In particular, it means that we can not poison the forward pointers
 144 * that may still be used for walking the hash list and we can only
 145 * zero the pprev pointer so list_unhashed() will return true after
 146 * this.
 147 *
 148 * The caller must take whatever precautions are necessary (such as
 149 * holding appropriate locks) to avoid racing with another
 150 * list-mutation primitive, such as hlist_add_head_rcu() or
 151 * hlist_del_rcu(), running on this same list.  However, it is
 152 * perfectly legal to run concurrently with the _rcu list-traversal
 153 * primitives, such as hlist_for_each_entry_rcu().
 154 */
 155static inline void hlist_del_init_rcu(struct hlist_node *n)
 156{
 157        if (!hlist_unhashed(n)) {
 158                __hlist_del(n);
 159                n->pprev = NULL;
 160        }
 161}
 162
 163/**
 164 * list_replace_rcu - replace old entry by new one
 165 * @old : the element to be replaced
 166 * @new : the new element to insert
 167 *
 168 * The @old entry will be replaced with the @new entry atomically.
 169 * Note: @old should not be empty.
 170 */
 171static inline void list_replace_rcu(struct list_head *old,
 172                                struct list_head *new)
 173{
 174        new->next = old->next;
 175        new->prev = old->prev;
 176        rcu_assign_pointer(list_next_rcu(new->prev), new);
 177        new->next->prev = new;
 178        old->prev = LIST_POISON2;
 179}
 180
 181/**
 182 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 183 * @list:       the RCU-protected list to splice
 184 * @prev:       points to the last element of the existing list
 185 * @next:       points to the first element of the existing list
 186 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 187 *
 188 * The list pointed to by @prev and @next can be RCU-read traversed
 189 * concurrently with this function.
 190 *
 191 * Note that this function blocks.
 192 *
 193 * Important note: the caller must take whatever action is necessary to prevent
 194 * any other updates to the existing list.  In principle, it is possible to
 195 * modify the list as soon as sync() begins execution. If this sort of thing
 196 * becomes necessary, an alternative version based on call_rcu() could be
 197 * created.  But only if -really- needed -- there is no shortage of RCU API
 198 * members.
 199 */
 200static inline void __list_splice_init_rcu(struct list_head *list,
 201                                          struct list_head *prev,
 202                                          struct list_head *next,
 203                                          void (*sync)(void))
 204{
 205        struct list_head *first = list->next;
 206        struct list_head *last = list->prev;
 207
 208        /*
 209         * "first" and "last" tracking list, so initialize it.  RCU readers
 210         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 211         * instead of INIT_LIST_HEAD().
 212         */
 213
 214        INIT_LIST_HEAD_RCU(list);
 215
 216        /*
 217         * At this point, the list body still points to the source list.
 218         * Wait for any readers to finish using the list before splicing
 219         * the list body into the new list.  Any new readers will see
 220         * an empty list.
 221         */
 222
 223        sync();
 224
 225        /*
 226         * Readers are finished with the source list, so perform splice.
 227         * The order is important if the new list is global and accessible
 228         * to concurrent RCU readers.  Note that RCU readers are not
 229         * permitted to traverse the prev pointers without excluding
 230         * this function.
 231         */
 232
 233        last->next = next;
 234        rcu_assign_pointer(list_next_rcu(prev), first);
 235        first->prev = prev;
 236        next->prev = last;
 237}
 238
 239/**
 240 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 241 *                        designed for stacks.
 242 * @list:       the RCU-protected list to splice
 243 * @head:       the place in the existing list to splice the first list into
 244 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 245 */
 246static inline void list_splice_init_rcu(struct list_head *list,
 247                                        struct list_head *head,
 248                                        void (*sync)(void))
 249{
 250        if (!list_empty(list))
 251                __list_splice_init_rcu(list, head, head->next, sync);
 252}
 253
 254/**
 255 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 256 *                             list, designed for queues.
 257 * @list:       the RCU-protected list to splice
 258 * @head:       the place in the existing list to splice the first list into
 259 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 260 */
 261static inline void list_splice_tail_init_rcu(struct list_head *list,
 262                                             struct list_head *head,
 263                                             void (*sync)(void))
 264{
 265        if (!list_empty(list))
 266                __list_splice_init_rcu(list, head->prev, head, sync);
 267}
 268
 269/**
 270 * list_entry_rcu - get the struct for this entry
 271 * @ptr:        the &struct list_head pointer.
 272 * @type:       the type of the struct this is embedded in.
 273 * @member:     the name of the list_head within the struct.
 274 *
 275 * This primitive may safely run concurrently with the _rcu list-mutation
 276 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 277 */
 278#define list_entry_rcu(ptr, type, member) \
 279        container_of(lockless_dereference(ptr), type, member)
 280
 281/**
 282 * Where are list_empty_rcu() and list_first_entry_rcu()?
 283 *
 284 * Implementing those functions following their counterparts list_empty() and
 285 * list_first_entry() is not advisable because they lead to subtle race
 286 * conditions as the following snippet shows:
 287 *
 288 * if (!list_empty_rcu(mylist)) {
 289 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 290 *      do_something(bar);
 291 * }
 292 *
 293 * The list may not be empty when list_empty_rcu checks it, but it may be when
 294 * list_first_entry_rcu rereads the ->next pointer.
 295 *
 296 * Rereading the ->next pointer is not a problem for list_empty() and
 297 * list_first_entry() because they would be protected by a lock that blocks
 298 * writers.
 299 *
 300 * See list_first_or_null_rcu for an alternative.
 301 */
 302
 303/**
 304 * list_first_or_null_rcu - get the first element from a list
 305 * @ptr:        the list head to take the element from.
 306 * @type:       the type of the struct this is embedded in.
 307 * @member:     the name of the list_head within the struct.
 308 *
 309 * Note that if the list is empty, it returns NULL.
 310 *
 311 * This primitive may safely run concurrently with the _rcu list-mutation
 312 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 313 */
 314#define list_first_or_null_rcu(ptr, type, member) \
 315({ \
 316        struct list_head *__ptr = (ptr); \
 317        struct list_head *__next = READ_ONCE(__ptr->next); \
 318        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 319})
 320
 321/**
 322 * list_next_or_null_rcu - get the first element from a list
 323 * @head:       the head for the list.
 324 * @ptr:        the list head to take the next element from.
 325 * @type:       the type of the struct this is embedded in.
 326 * @member:     the name of the list_head within the struct.
 327 *
 328 * Note that if the ptr is at the end of the list, NULL is returned.
 329 *
 330 * This primitive may safely run concurrently with the _rcu list-mutation
 331 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 332 */
 333#define list_next_or_null_rcu(head, ptr, type, member) \
 334({ \
 335        struct list_head *__head = (head); \
 336        struct list_head *__ptr = (ptr); \
 337        struct list_head *__next = READ_ONCE(__ptr->next); \
 338        likely(__next != __head) ? list_entry_rcu(__next, type, \
 339                                                  member) : NULL; \
 340})
 341
 342/**
 343 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 344 * @pos:        the type * to use as a loop cursor.
 345 * @head:       the head for your list.
 346 * @member:     the name of the list_head within the struct.
 347 *
 348 * This list-traversal primitive may safely run concurrently with
 349 * the _rcu list-mutation primitives such as list_add_rcu()
 350 * as long as the traversal is guarded by rcu_read_lock().
 351 */
 352#define list_for_each_entry_rcu(pos, head, member) \
 353        for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
 354                &pos->member != (head); \
 355                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 356
 357/**
 358 * list_entry_lockless - get the struct for this entry
 359 * @ptr:        the &struct list_head pointer.
 360 * @type:       the type of the struct this is embedded in.
 361 * @member:     the name of the list_head within the struct.
 362 *
 363 * This primitive may safely run concurrently with the _rcu list-mutation
 364 * primitives such as list_add_rcu(), but requires some implicit RCU
 365 * read-side guarding.  One example is running within a special
 366 * exception-time environment where preemption is disabled and where
 367 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 368 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 369 * example is when items are added to the list, but never deleted.
 370 */
 371#define list_entry_lockless(ptr, type, member) \
 372        container_of((typeof(ptr))lockless_dereference(ptr), type, member)
 373
 374/**
 375 * list_for_each_entry_lockless - iterate over rcu list of given type
 376 * @pos:        the type * to use as a loop cursor.
 377 * @head:       the head for your list.
 378 * @member:     the name of the list_struct within the struct.
 379 *
 380 * This primitive may safely run concurrently with the _rcu list-mutation
 381 * primitives such as list_add_rcu(), but requires some implicit RCU
 382 * read-side guarding.  One example is running within a special
 383 * exception-time environment where preemption is disabled and where
 384 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 385 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 386 * example is when items are added to the list, but never deleted.
 387 */
 388#define list_for_each_entry_lockless(pos, head, member) \
 389        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 390             &pos->member != (head); \
 391             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 392
 393/**
 394 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 395 * @pos:        the type * to use as a loop cursor.
 396 * @head:       the head for your list.
 397 * @member:     the name of the list_head within the struct.
 398 *
 399 * Continue to iterate over list of given type, continuing after
 400 * the current position.
 401 */
 402#define list_for_each_entry_continue_rcu(pos, head, member)             \
 403        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 404             &pos->member != (head);    \
 405             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 406
 407/**
 408 * hlist_del_rcu - deletes entry from hash list without re-initialization
 409 * @n: the element to delete from the hash list.
 410 *
 411 * Note: list_unhashed() on entry does not return true after this,
 412 * the entry is in an undefined state. It is useful for RCU based
 413 * lockfree traversal.
 414 *
 415 * In particular, it means that we can not poison the forward
 416 * pointers that may still be used for walking the hash list.
 417 *
 418 * The caller must take whatever precautions are necessary
 419 * (such as holding appropriate locks) to avoid racing
 420 * with another list-mutation primitive, such as hlist_add_head_rcu()
 421 * or hlist_del_rcu(), running on this same list.
 422 * However, it is perfectly legal to run concurrently with
 423 * the _rcu list-traversal primitives, such as
 424 * hlist_for_each_entry().
 425 */
 426static inline void hlist_del_rcu(struct hlist_node *n)
 427{
 428        __hlist_del(n);
 429        n->pprev = LIST_POISON2;
 430}
 431
 432/**
 433 * hlist_replace_rcu - replace old entry by new one
 434 * @old : the element to be replaced
 435 * @new : the new element to insert
 436 *
 437 * The @old entry will be replaced with the @new entry atomically.
 438 */
 439static inline void hlist_replace_rcu(struct hlist_node *old,
 440                                        struct hlist_node *new)
 441{
 442        struct hlist_node *next = old->next;
 443
 444        new->next = next;
 445        new->pprev = old->pprev;
 446        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 447        if (next)
 448                new->next->pprev = &new->next;
 449        old->pprev = LIST_POISON2;
 450}
 451
 452/*
 453 * return the first or the next element in an RCU protected hlist
 454 */
 455#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 456#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 457#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 458
 459/**
 460 * hlist_add_head_rcu
 461 * @n: the element to add to the hash list.
 462 * @h: the list to add to.
 463 *
 464 * Description:
 465 * Adds the specified element to the specified hlist,
 466 * while permitting racing traversals.
 467 *
 468 * The caller must take whatever precautions are necessary
 469 * (such as holding appropriate locks) to avoid racing
 470 * with another list-mutation primitive, such as hlist_add_head_rcu()
 471 * or hlist_del_rcu(), running on this same list.
 472 * However, it is perfectly legal to run concurrently with
 473 * the _rcu list-traversal primitives, such as
 474 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 475 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 476 * list-traversal primitive must be guarded by rcu_read_lock().
 477 */
 478static inline void hlist_add_head_rcu(struct hlist_node *n,
 479                                        struct hlist_head *h)
 480{
 481        struct hlist_node *first = h->first;
 482
 483        n->next = first;
 484        n->pprev = &h->first;
 485        rcu_assign_pointer(hlist_first_rcu(h), n);
 486        if (first)
 487                first->pprev = &n->next;
 488}
 489
 490/**
 491 * hlist_add_before_rcu
 492 * @n: the new element to add to the hash list.
 493 * @next: the existing element to add the new element before.
 494 *
 495 * Description:
 496 * Adds the specified element to the specified hlist
 497 * before the specified node while permitting racing traversals.
 498 *
 499 * The caller must take whatever precautions are necessary
 500 * (such as holding appropriate locks) to avoid racing
 501 * with another list-mutation primitive, such as hlist_add_head_rcu()
 502 * or hlist_del_rcu(), running on this same list.
 503 * However, it is perfectly legal to run concurrently with
 504 * the _rcu list-traversal primitives, such as
 505 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 506 * problems on Alpha CPUs.
 507 */
 508static inline void hlist_add_before_rcu(struct hlist_node *n,
 509                                        struct hlist_node *next)
 510{
 511        n->pprev = next->pprev;
 512        n->next = next;
 513        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 514        next->pprev = &n->next;
 515}
 516
 517/**
 518 * hlist_add_behind_rcu
 519 * @n: the new element to add to the hash list.
 520 * @prev: the existing element to add the new element after.
 521 *
 522 * Description:
 523 * Adds the specified element to the specified hlist
 524 * after the specified node while permitting racing traversals.
 525 *
 526 * The caller must take whatever precautions are necessary
 527 * (such as holding appropriate locks) to avoid racing
 528 * with another list-mutation primitive, such as hlist_add_head_rcu()
 529 * or hlist_del_rcu(), running on this same list.
 530 * However, it is perfectly legal to run concurrently with
 531 * the _rcu list-traversal primitives, such as
 532 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 533 * problems on Alpha CPUs.
 534 */
 535static inline void hlist_add_behind_rcu(struct hlist_node *n,
 536                                        struct hlist_node *prev)
 537{
 538        n->next = prev->next;
 539        n->pprev = &prev->next;
 540        rcu_assign_pointer(hlist_next_rcu(prev), n);
 541        if (n->next)
 542                n->next->pprev = &n->next;
 543}
 544
 545#define __hlist_for_each_rcu(pos, head)                         \
 546        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 547             pos;                                               \
 548             pos = rcu_dereference(hlist_next_rcu(pos)))
 549
 550/**
 551 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 552 * @pos:        the type * to use as a loop cursor.
 553 * @head:       the head for your list.
 554 * @member:     the name of the hlist_node within the struct.
 555 *
 556 * This list-traversal primitive may safely run concurrently with
 557 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 558 * as long as the traversal is guarded by rcu_read_lock().
 559 */
 560#define hlist_for_each_entry_rcu(pos, head, member)                     \
 561        for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
 562                        typeof(*(pos)), member);                        \
 563                pos;                                                    \
 564                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 565                        &(pos)->member)), typeof(*(pos)), member))
 566
 567/**
 568 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 569 * @pos:        the type * to use as a loop cursor.
 570 * @head:       the head for your list.
 571 * @member:     the name of the hlist_node within the struct.
 572 *
 573 * This list-traversal primitive may safely run concurrently with
 574 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 575 * as long as the traversal is guarded by rcu_read_lock().
 576 *
 577 * This is the same as hlist_for_each_entry_rcu() except that it does
 578 * not do any RCU debugging or tracing.
 579 */
 580#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 581        for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
 582                        typeof(*(pos)), member);                        \
 583                pos;                                                    \
 584                pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
 585                        &(pos)->member)), typeof(*(pos)), member))
 586
 587/**
 588 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 589 * @pos:        the type * to use as a loop cursor.
 590 * @head:       the head for your list.
 591 * @member:     the name of the hlist_node within the struct.
 592 *
 593 * This list-traversal primitive may safely run concurrently with
 594 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 595 * as long as the traversal is guarded by rcu_read_lock().
 596 */
 597#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 598        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 599                        typeof(*(pos)), member);                        \
 600                pos;                                                    \
 601                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 602                        &(pos)->member)), typeof(*(pos)), member))
 603
 604/**
 605 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 606 * @pos:        the type * to use as a loop cursor.
 607 * @member:     the name of the hlist_node within the struct.
 608 */
 609#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 610        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 611                        &(pos)->member)), typeof(*(pos)), member);      \
 612             pos;                                                       \
 613             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 614                        &(pos)->member)), typeof(*(pos)), member))
 615
 616/**
 617 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 618 * @pos:        the type * to use as a loop cursor.
 619 * @member:     the name of the hlist_node within the struct.
 620 */
 621#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 622        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 623                        &(pos)->member)), typeof(*(pos)), member);      \
 624             pos;                                                       \
 625             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 626                        &(pos)->member)), typeof(*(pos)), member))
 627
 628/**
 629 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 630 * @pos:        the type * to use as a loop cursor.
 631 * @member:     the name of the hlist_node within the struct.
 632 */
 633#define hlist_for_each_entry_from_rcu(pos, member)                      \
 634        for (; pos;                                                     \
 635             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 636                        &(pos)->member)), typeof(*(pos)), member))
 637
 638#endif  /* __KERNEL__ */
 639#endif
 640