linux/include/linux/rmi.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011-2016 Synaptics Incorporated
   3 * Copyright (c) 2011 Unixphere
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published by
   7 * the Free Software Foundation.
   8 */
   9
  10#ifndef _RMI_H
  11#define _RMI_H
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/interrupt.h>
  15#include <linux/input.h>
  16#include <linux/list.h>
  17#include <linux/module.h>
  18#include <linux/types.h>
  19
  20#define NAME_BUFFER_SIZE 256
  21
  22/**
  23 * struct rmi_2d_axis_alignment - target axis alignment
  24 * @swap_axes: set to TRUE if desired to swap x- and y-axis
  25 * @flip_x: set to TRUE if desired to flip direction on x-axis
  26 * @flip_y: set to TRUE if desired to flip direction on y-axis
  27 * @clip_x_low - reported X coordinates below this setting will be clipped to
  28 *               the specified value
  29 * @clip_x_high - reported X coordinates above this setting will be clipped to
  30 *               the specified value
  31 * @clip_y_low - reported Y coordinates below this setting will be clipped to
  32 *               the specified value
  33 * @clip_y_high - reported Y coordinates above this setting will be clipped to
  34 *               the specified value
  35 * @offset_x - this value will be added to all reported X coordinates
  36 * @offset_y - this value will be added to all reported Y coordinates
  37 * @rel_report_enabled - if set to true, the relative reporting will be
  38 *               automatically enabled for this sensor.
  39 */
  40struct rmi_2d_axis_alignment {
  41        bool swap_axes;
  42        bool flip_x;
  43        bool flip_y;
  44        u16 clip_x_low;
  45        u16 clip_y_low;
  46        u16 clip_x_high;
  47        u16 clip_y_high;
  48        u16 offset_x;
  49        u16 offset_y;
  50        u8 delta_x_threshold;
  51        u8 delta_y_threshold;
  52};
  53
  54/** This is used to override any hints an F11 2D sensor might have provided
  55 * as to what type of sensor it is.
  56 *
  57 * @rmi_f11_sensor_default - do not override, determine from F11_2D_QUERY14 if
  58 * available.
  59 * @rmi_f11_sensor_touchscreen - treat the sensor as a touchscreen (direct
  60 * pointing).
  61 * @rmi_f11_sensor_touchpad - thread the sensor as a touchpad (indirect
  62 * pointing).
  63 */
  64enum rmi_sensor_type {
  65        rmi_sensor_default = 0,
  66        rmi_sensor_touchscreen,
  67        rmi_sensor_touchpad
  68};
  69
  70#define RMI_F11_DISABLE_ABS_REPORT      BIT(0)
  71
  72/**
  73 * struct rmi_2d_sensor_data - overrides defaults for a 2D sensor.
  74 * @axis_align - provides axis alignment overrides (see above).
  75 * @sensor_type - Forces the driver to treat the sensor as an indirect
  76 * pointing device (touchpad) rather than a direct pointing device
  77 * (touchscreen).  This is useful when F11_2D_QUERY14 register is not
  78 * available.
  79 * @disable_report_mask - Force data to not be reported even if it is supported
  80 * by the firware.
  81 * @topbuttonpad - Used with the "5 buttons touchpads" found on the Lenovo 40
  82 * series
  83 * @kernel_tracking - most moderns RMI f11 firmwares implement Multifinger
  84 * Type B protocol. However, there are some corner cases where the user
  85 * triggers some jumps by tapping with two fingers on the touchpad.
  86 * Use this setting and dmax to filter out these jumps.
  87 * Also, when using an old sensor using MF Type A behavior, set to true to
  88 * report an actual MT protocol B.
  89 * @dmax - the maximum distance (in sensor units) the kernel tracking allows two
  90 * distincts fingers to be considered the same.
  91 */
  92struct rmi_2d_sensor_platform_data {
  93        struct rmi_2d_axis_alignment axis_align;
  94        enum rmi_sensor_type sensor_type;
  95        int x_mm;
  96        int y_mm;
  97        int disable_report_mask;
  98        u16 rezero_wait;
  99        bool topbuttonpad;
 100        bool kernel_tracking;
 101        int dmax;
 102};
 103
 104/**
 105 * struct rmi_f30_data - overrides defaults for a single F30 GPIOs/LED chip.
 106 * @buttonpad - the touchpad is a buttonpad, so enable only the first actual
 107 * button that is found.
 108 * @trackstick_buttons - Set when the function 30 is handling the physical
 109 * buttons of the trackstick (as a PD/2 passthrough device.
 110 * @disable - the touchpad incorrectly reports F30 and it should be ignored.
 111 * This is a special case which is due to misconfigured firmware.
 112 */
 113struct rmi_f30_data {
 114        bool buttonpad;
 115        bool trackstick_buttons;
 116        bool disable;
 117};
 118
 119/**
 120 * struct rmi_f01_power - override default power management settings.
 121 *
 122 */
 123enum rmi_f01_nosleep {
 124        RMI_F01_NOSLEEP_DEFAULT = 0,
 125        RMI_F01_NOSLEEP_OFF = 1,
 126        RMI_F01_NOSLEEP_ON = 2
 127};
 128
 129/**
 130 * struct rmi_f01_power_management -When non-zero, these values will be written
 131 * to the touch sensor to override the default firmware settigns.  For a
 132 * detailed explanation of what each field does, see the corresponding
 133 * documention in the RMI4 specification.
 134 *
 135 * @nosleep - specifies whether the device is permitted to sleep or doze (that
 136 * is, enter a temporary low power state) when no fingers are touching the
 137 * sensor.
 138 * @wakeup_threshold - controls the capacitance threshold at which the touch
 139 * sensor will decide to wake up from that low power state.
 140 * @doze_holdoff - controls how long the touch sensor waits after the last
 141 * finger lifts before entering the doze state, in units of 100ms.
 142 * @doze_interval - controls the interval between checks for finger presence
 143 * when the touch sensor is in doze mode, in units of 10ms.
 144 */
 145struct rmi_f01_power_management {
 146        enum rmi_f01_nosleep nosleep;
 147        u8 wakeup_threshold;
 148        u8 doze_holdoff;
 149        u8 doze_interval;
 150};
 151
 152/**
 153 * struct rmi_device_platform_data_spi - provides parameters used in SPI
 154 * communications.  All Synaptics SPI products support a standard SPI
 155 * interface; some also support what is called SPI V2 mode, depending on
 156 * firmware and/or ASIC limitations.  In V2 mode, the touch sensor can
 157 * support shorter delays during certain operations, and these are specified
 158 * separately from the standard mode delays.
 159 *
 160 * @block_delay - for standard SPI transactions consisting of both a read and
 161 * write operation, the delay (in microseconds) between the read and write
 162 * operations.
 163 * @split_read_block_delay_us - for V2 SPI transactions consisting of both a
 164 * read and write operation, the delay (in microseconds) between the read and
 165 * write operations.
 166 * @read_delay_us - the delay between each byte of a read operation in normal
 167 * SPI mode.
 168 * @write_delay_us - the delay between each byte of a write operation in normal
 169 * SPI mode.
 170 * @split_read_byte_delay_us - the delay between each byte of a read operation
 171 * in V2 mode.
 172 * @pre_delay_us - the delay before the start of a SPI transaction.  This is
 173 * typically useful in conjunction with custom chip select assertions (see
 174 * below).
 175 * @post_delay_us - the delay after the completion of an SPI transaction.  This
 176 * is typically useful in conjunction with custom chip select assertions (see
 177 * below).
 178 * @cs_assert - For systems where the SPI subsystem does not control the CS/SSB
 179 * line, or where such control is broken, you can provide a custom routine to
 180 * handle a GPIO as CS/SSB.  This routine will be called at the beginning and
 181 * end of each SPI transaction.  The RMI SPI implementation will wait
 182 * pre_delay_us after this routine returns before starting the SPI transfer;
 183 * and post_delay_us after completion of the SPI transfer(s) before calling it
 184 * with assert==FALSE.
 185 */
 186struct rmi_device_platform_data_spi {
 187        u32 block_delay_us;
 188        u32 split_read_block_delay_us;
 189        u32 read_delay_us;
 190        u32 write_delay_us;
 191        u32 split_read_byte_delay_us;
 192        u32 pre_delay_us;
 193        u32 post_delay_us;
 194        u8 bits_per_word;
 195        u16 mode;
 196
 197        void *cs_assert_data;
 198        int (*cs_assert)(const void *cs_assert_data, const bool assert);
 199};
 200
 201/**
 202 * struct rmi_device_platform_data - system specific configuration info.
 203 *
 204 * @reset_delay_ms - after issuing a reset command to the touch sensor, the
 205 * driver waits a few milliseconds to give the firmware a chance to
 206 * to re-initialize.  You can override the default wait period here.
 207 */
 208struct rmi_device_platform_data {
 209        int reset_delay_ms;
 210
 211        struct rmi_device_platform_data_spi spi_data;
 212
 213        /* function handler pdata */
 214        struct rmi_2d_sensor_platform_data *sensor_pdata;
 215        struct rmi_f01_power_management power_management;
 216        struct rmi_f30_data *f30_data;
 217};
 218
 219/**
 220 * struct rmi_function_descriptor - RMI function base addresses
 221 *
 222 * @query_base_addr: The RMI Query base address
 223 * @command_base_addr: The RMI Command base address
 224 * @control_base_addr: The RMI Control base address
 225 * @data_base_addr: The RMI Data base address
 226 * @interrupt_source_count: The number of irqs this RMI function needs
 227 * @function_number: The RMI function number
 228 *
 229 * This struct is used when iterating the Page Description Table. The addresses
 230 * are 16-bit values to include the current page address.
 231 *
 232 */
 233struct rmi_function_descriptor {
 234        u16 query_base_addr;
 235        u16 command_base_addr;
 236        u16 control_base_addr;
 237        u16 data_base_addr;
 238        u8 interrupt_source_count;
 239        u8 function_number;
 240        u8 function_version;
 241};
 242
 243struct rmi_device;
 244
 245/**
 246 * struct rmi_transport_dev - represent an RMI transport device
 247 *
 248 * @dev: Pointer to the communication device, e.g. i2c or spi
 249 * @rmi_dev: Pointer to the RMI device
 250 * @proto_name: name of the transport protocol (SPI, i2c, etc)
 251 * @ops: pointer to transport operations implementation
 252 *
 253 * The RMI transport device implements the glue between different communication
 254 * buses such as I2C and SPI.
 255 *
 256 */
 257struct rmi_transport_dev {
 258        struct device *dev;
 259        struct rmi_device *rmi_dev;
 260
 261        const char *proto_name;
 262        const struct rmi_transport_ops *ops;
 263
 264        struct rmi_device_platform_data pdata;
 265
 266        struct input_dev *input;
 267
 268        void *attn_data;
 269        int attn_size;
 270};
 271
 272/**
 273 * struct rmi_transport_ops - defines transport protocol operations.
 274 *
 275 * @write_block: Writing a block of data to the specified address
 276 * @read_block: Read a block of data from the specified address.
 277 */
 278struct rmi_transport_ops {
 279        int (*write_block)(struct rmi_transport_dev *xport, u16 addr,
 280                           const void *buf, size_t len);
 281        int (*read_block)(struct rmi_transport_dev *xport, u16 addr,
 282                          void *buf, size_t len);
 283        int (*reset)(struct rmi_transport_dev *xport, u16 reset_addr);
 284};
 285
 286/**
 287 * struct rmi_driver - driver for an RMI4 sensor on the RMI bus.
 288 *
 289 * @driver: Device driver model driver
 290 * @reset_handler: Called when a reset is detected.
 291 * @clear_irq_bits: Clear the specified bits in the current interrupt mask.
 292 * @set_irq_bist: Set the specified bits in the current interrupt mask.
 293 * @store_productid: Callback for cache product id from function 01
 294 * @data: Private data pointer
 295 *
 296 */
 297struct rmi_driver {
 298        struct device_driver driver;
 299
 300        int (*reset_handler)(struct rmi_device *rmi_dev);
 301        int (*clear_irq_bits)(struct rmi_device *rmi_dev, unsigned long *mask);
 302        int (*set_irq_bits)(struct rmi_device *rmi_dev, unsigned long *mask);
 303        int (*store_productid)(struct rmi_device *rmi_dev);
 304        int (*set_input_params)(struct rmi_device *rmi_dev,
 305                        struct input_dev *input);
 306        void *data;
 307};
 308
 309/**
 310 * struct rmi_device - represents an RMI4 sensor device on the RMI bus.
 311 *
 312 * @dev: The device created for the RMI bus
 313 * @number: Unique number for the device on the bus.
 314 * @driver: Pointer to associated driver
 315 * @xport: Pointer to the transport interface
 316 *
 317 */
 318struct rmi_device {
 319        struct device dev;
 320        int number;
 321
 322        struct rmi_driver *driver;
 323        struct rmi_transport_dev *xport;
 324
 325};
 326
 327struct rmi_driver_data {
 328        struct list_head function_list;
 329
 330        struct rmi_device *rmi_dev;
 331
 332        struct rmi_function *f01_container;
 333        bool f01_bootloader_mode;
 334
 335        u32 attn_count;
 336        int num_of_irq_regs;
 337        int irq_count;
 338        unsigned long *irq_status;
 339        unsigned long *fn_irq_bits;
 340        unsigned long *current_irq_mask;
 341        unsigned long *new_irq_mask;
 342        struct mutex irq_mutex;
 343        struct input_dev *input;
 344
 345        u8 pdt_props;
 346        u8 bsr;
 347
 348        bool enabled;
 349
 350        void *data;
 351};
 352
 353int rmi_register_transport_device(struct rmi_transport_dev *xport);
 354void rmi_unregister_transport_device(struct rmi_transport_dev *xport);
 355int rmi_process_interrupt_requests(struct rmi_device *rmi_dev);
 356
 357int rmi_driver_suspend(struct rmi_device *rmi_dev);
 358int rmi_driver_resume(struct rmi_device *rmi_dev);
 359#endif
 360