linux/include/linux/uwb.h
<<
>>
Prefs
   1/*
   2 * Ultra Wide Band
   3 * UWB API
   4 *
   5 * Copyright (C) 2005-2006 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * FIXME: doc: overview of the API, different parts and pointers
  24 */
  25
  26#ifndef __LINUX__UWB_H__
  27#define __LINUX__UWB_H__
  28
  29#include <linux/limits.h>
  30#include <linux/device.h>
  31#include <linux/mutex.h>
  32#include <linux/timer.h>
  33#include <linux/wait.h>
  34#include <linux/workqueue.h>
  35#include <linux/uwb/spec.h>
  36#include <asm/page.h>
  37
  38struct uwb_dev;
  39struct uwb_beca_e;
  40struct uwb_rc;
  41struct uwb_rsv;
  42struct uwb_dbg;
  43
  44/**
  45 * struct uwb_dev - a UWB Device
  46 * @rc: UWB Radio Controller that discovered the device (kind of its
  47 *     parent).
  48 * @bce: a beacon cache entry for this device; or NULL if the device
  49 *     is a local radio controller.
  50 * @mac_addr: the EUI-48 address of this device.
  51 * @dev_addr: the current DevAddr used by this device.
  52 * @beacon_slot: the slot number the beacon is using.
  53 * @streams: bitmap of streams allocated to reservations targeted at
  54 *     this device.  For an RC, this is the streams allocated for
  55 *     reservations targeted at DevAddrs.
  56 *
  57 * A UWB device may either by a neighbor or part of a local radio
  58 * controller.
  59 */
  60struct uwb_dev {
  61        struct mutex mutex;
  62        struct list_head list_node;
  63        struct device dev;
  64        struct uwb_rc *rc;              /* radio controller */
  65        struct uwb_beca_e *bce;         /* Beacon Cache Entry */
  66
  67        struct uwb_mac_addr mac_addr;
  68        struct uwb_dev_addr dev_addr;
  69        int beacon_slot;
  70        DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
  71        DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
  72};
  73#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
  74
  75/**
  76 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
  77 *
  78 * RC[CE]Bs have a 'context ID' field that matches the command with
  79 * the event received to confirm it.
  80 *
  81 * Maximum number of context IDs
  82 */
  83enum { UWB_RC_CTX_MAX = 256 };
  84
  85
  86/** Notification chain head for UWB generated events to listeners */
  87struct uwb_notifs_chain {
  88        struct list_head list;
  89        struct mutex mutex;
  90};
  91
  92/* Beacon cache list */
  93struct uwb_beca {
  94        struct list_head list;
  95        size_t entries;
  96        struct mutex mutex;
  97};
  98
  99/* Event handling thread. */
 100struct uwbd {
 101        int pid;
 102        struct task_struct *task;
 103        wait_queue_head_t wq;
 104        struct list_head event_list;
 105        spinlock_t event_list_lock;
 106};
 107
 108/**
 109 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
 110 * @bm: a bitmap of length #UWB_NUM_MAS
 111 */
 112struct uwb_mas_bm {
 113        DECLARE_BITMAP(bm, UWB_NUM_MAS);
 114        DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
 115        int safe;
 116        int unsafe;
 117};
 118
 119/**
 120 * uwb_rsv_state - UWB Reservation state.
 121 *
 122 * NONE - reservation is not active (no DRP IE being transmitted).
 123 *
 124 * Owner reservation states:
 125 *
 126 * INITIATED - owner has sent an initial DRP request.
 127 * PENDING - target responded with pending Reason Code.
 128 * MODIFIED - reservation manager is modifying an established
 129 * reservation with a different MAS allocation.
 130 * ESTABLISHED - the reservation has been successfully negotiated.
 131 *
 132 * Target reservation states:
 133 *
 134 * DENIED - request is denied.
 135 * ACCEPTED - request is accepted.
 136 * PENDING - PAL has yet to make a decision to whether to accept or
 137 * deny.
 138 *
 139 * FIXME: further target states TBD.
 140 */
 141enum uwb_rsv_state {
 142        UWB_RSV_STATE_NONE = 0,
 143        UWB_RSV_STATE_O_INITIATED,
 144        UWB_RSV_STATE_O_PENDING,
 145        UWB_RSV_STATE_O_MODIFIED,
 146        UWB_RSV_STATE_O_ESTABLISHED,
 147        UWB_RSV_STATE_O_TO_BE_MOVED,
 148        UWB_RSV_STATE_O_MOVE_EXPANDING,
 149        UWB_RSV_STATE_O_MOVE_COMBINING,
 150        UWB_RSV_STATE_O_MOVE_REDUCING,
 151        UWB_RSV_STATE_T_ACCEPTED,
 152        UWB_RSV_STATE_T_DENIED,
 153        UWB_RSV_STATE_T_CONFLICT,
 154        UWB_RSV_STATE_T_PENDING,
 155        UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
 156        UWB_RSV_STATE_T_EXPANDING_CONFLICT,
 157        UWB_RSV_STATE_T_EXPANDING_PENDING,
 158        UWB_RSV_STATE_T_EXPANDING_DENIED,
 159        UWB_RSV_STATE_T_RESIZED,
 160
 161        UWB_RSV_STATE_LAST,
 162};
 163
 164enum uwb_rsv_target_type {
 165        UWB_RSV_TARGET_DEV,
 166        UWB_RSV_TARGET_DEVADDR,
 167};
 168
 169/**
 170 * struct uwb_rsv_target - the target of a reservation.
 171 *
 172 * Reservations unicast and targeted at a single device
 173 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
 174 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
 175 */
 176struct uwb_rsv_target {
 177        enum uwb_rsv_target_type type;
 178        union {
 179                struct uwb_dev *dev;
 180                struct uwb_dev_addr devaddr;
 181        };
 182};
 183
 184struct uwb_rsv_move {
 185        struct uwb_mas_bm final_mas;
 186        struct uwb_ie_drp *companion_drp_ie;
 187        struct uwb_mas_bm companion_mas;
 188};
 189
 190/*
 191 * Number of streams reserved for reservations targeted at DevAddrs.
 192 */
 193#define UWB_NUM_GLOBAL_STREAMS 1
 194
 195typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
 196
 197/**
 198 * struct uwb_rsv - a DRP reservation
 199 *
 200 * Data structure management:
 201 *
 202 * @rc:             the radio controller this reservation is for
 203 *                  (as target or owner)
 204 * @rc_node:        a list node for the RC
 205 * @pal_node:       a list node for the PAL
 206 *
 207 * Owner and target parameters:
 208 *
 209 * @owner:          the UWB device owning this reservation
 210 * @target:         the target UWB device
 211 * @type:           reservation type
 212 *
 213 * Owner parameters:
 214 *
 215 * @max_mas:        maxiumum number of MAS
 216 * @min_mas:        minimum number of MAS
 217 * @sparsity:       owner selected sparsity
 218 * @is_multicast:   true iff multicast
 219 *
 220 * @callback:       callback function when the reservation completes
 221 * @pal_priv:       private data for the PAL making the reservation
 222 *
 223 * Reservation status:
 224 *
 225 * @status:         negotiation status
 226 * @stream:         stream index allocated for this reservation
 227 * @tiebreaker:     conflict tiebreaker for this reservation
 228 * @mas:            reserved MAS
 229 * @drp_ie:         the DRP IE
 230 * @ie_valid:       true iff the DRP IE matches the reservation parameters
 231 *
 232 * DRP reservations are uniquely identified by the owner, target and
 233 * stream index.  However, when using a DevAddr as a target (e.g., for
 234 * a WUSB cluster reservation) the responses may be received from
 235 * devices with different DevAddrs.  In this case, reservations are
 236 * uniquely identified by just the stream index.  A number of stream
 237 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
 238 */
 239struct uwb_rsv {
 240        struct uwb_rc *rc;
 241        struct list_head rc_node;
 242        struct list_head pal_node;
 243        struct kref kref;
 244
 245        struct uwb_dev *owner;
 246        struct uwb_rsv_target target;
 247        enum uwb_drp_type type;
 248        int max_mas;
 249        int min_mas;
 250        int max_interval;
 251        bool is_multicast;
 252
 253        uwb_rsv_cb_f callback;
 254        void *pal_priv;
 255
 256        enum uwb_rsv_state state;
 257        bool needs_release_companion_mas;
 258        u8 stream;
 259        u8 tiebreaker;
 260        struct uwb_mas_bm mas;
 261        struct uwb_ie_drp *drp_ie;
 262        struct uwb_rsv_move mv;
 263        bool ie_valid;
 264        struct timer_list timer;
 265        struct work_struct handle_timeout_work;
 266};
 267
 268static const
 269struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
 270
 271static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
 272{
 273        bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
 274}
 275
 276/**
 277 * struct uwb_drp_avail - a radio controller's view of MAS usage
 278 * @global:   MAS unused by neighbors (excluding reservations targeted
 279 *            or owned by the local radio controller) or the beaon period
 280 * @local:    MAS unused by local established reservations
 281 * @pending:  MAS unused by local pending reservations
 282 * @ie:       DRP Availability IE to be included in the beacon
 283 * @ie_valid: true iff @ie is valid and does not need to regenerated from
 284 *            @global and @local
 285 *
 286 * Each radio controller maintains a view of MAS usage or
 287 * availability. MAS available for a new reservation are determined
 288 * from the intersection of @global, @local, and @pending.
 289 *
 290 * The radio controller must transmit a DRP Availability IE that's the
 291 * intersection of @global and @local.
 292 *
 293 * A set bit indicates the MAS is unused and available.
 294 *
 295 * rc->rsvs_mutex should be held before accessing this data structure.
 296 *
 297 * [ECMA-368] section 17.4.3.
 298 */
 299struct uwb_drp_avail {
 300        DECLARE_BITMAP(global, UWB_NUM_MAS);
 301        DECLARE_BITMAP(local, UWB_NUM_MAS);
 302        DECLARE_BITMAP(pending, UWB_NUM_MAS);
 303        struct uwb_ie_drp_avail ie;
 304        bool ie_valid;
 305};
 306
 307struct uwb_drp_backoff_win {
 308        u8 window;
 309        u8 n;
 310        int total_expired;
 311        struct timer_list timer;
 312        bool can_reserve_extra_mases;
 313};
 314
 315const char *uwb_rsv_state_str(enum uwb_rsv_state state);
 316const char *uwb_rsv_type_str(enum uwb_drp_type type);
 317
 318struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
 319                               void *pal_priv);
 320void uwb_rsv_destroy(struct uwb_rsv *rsv);
 321
 322int uwb_rsv_establish(struct uwb_rsv *rsv);
 323int uwb_rsv_modify(struct uwb_rsv *rsv,
 324                   int max_mas, int min_mas, int sparsity);
 325void uwb_rsv_terminate(struct uwb_rsv *rsv);
 326
 327void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
 328
 329void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
 330
 331/**
 332 * Radio Control Interface instance
 333 *
 334 *
 335 * Life cycle rules: those of the UWB Device.
 336 *
 337 * @index:    an index number for this radio controller, as used in the
 338 *            device name.
 339 * @version:  version of protocol supported by this device
 340 * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
 341 * @cmd:      Backend implementation to execute commands; rw and call
 342 *            only  with uwb_dev.dev.sem taken.
 343 * @reset:    Hardware reset of radio controller and any PAL controllers.
 344 * @filter:   Backend implementation to manipulate data to and from device
 345 *            to be compliant to specification assumed by driver (WHCI
 346 *            0.95).
 347 *
 348 *            uwb_dev.dev.mutex is used to execute commands and update
 349 *            the corresponding structures; can't use a spinlock
 350 *            because rc->cmd() can sleep.
 351 * @ies:         This is a dynamically allocated array cacheing the
 352 *               IEs (settable by the host) that the beacon of this
 353 *               radio controller is currently sending.
 354 *
 355 *               In reality, we store here the full command we set to
 356 *               the radio controller (which is basically a command
 357 *               prefix followed by all the IEs the beacon currently
 358 *               contains). This way we don't have to realloc and
 359 *               memcpy when setting it.
 360 *
 361 *               We set this up in uwb_rc_ie_setup(), where we alloc
 362 *               this struct, call get_ie() [so we know which IEs are
 363 *               currently being sent, if any].
 364 *
 365 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
 366 *               amount used is given by sizeof(*ies) plus ies->wIELength
 367 *               (which is a little endian quantity all the time).
 368 * @ies_mutex:   protect the IE cache
 369 * @dbg:         information for the debug interface
 370 */
 371struct uwb_rc {
 372        struct uwb_dev uwb_dev;
 373        int index;
 374        u16 version;
 375
 376        struct module *owner;
 377        void *priv;
 378        int (*start)(struct uwb_rc *rc);
 379        void (*stop)(struct uwb_rc *rc);
 380        int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
 381        int (*reset)(struct uwb_rc *rc);
 382        int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
 383        int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
 384                            size_t *, size_t *);
 385
 386        spinlock_t neh_lock;            /* protects neh_* and ctx_* */
 387        struct list_head neh_list;      /* Open NE handles */
 388        unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
 389        u8 ctx_roll;
 390
 391        int beaconing;                  /* Beaconing state [channel number] */
 392        int beaconing_forced;
 393        int scanning;
 394        enum uwb_scan_type scan_type:3;
 395        unsigned ready:1;
 396        struct uwb_notifs_chain notifs_chain;
 397        struct uwb_beca uwb_beca;
 398
 399        struct uwbd uwbd;
 400
 401        struct uwb_drp_backoff_win bow;
 402        struct uwb_drp_avail drp_avail;
 403        struct list_head reservations;
 404        struct list_head cnflt_alien_list;
 405        struct uwb_mas_bm cnflt_alien_bitmap;
 406        struct mutex rsvs_mutex;
 407        spinlock_t rsvs_lock;
 408        struct workqueue_struct *rsv_workq;
 409
 410        struct delayed_work rsv_update_work;
 411        struct delayed_work rsv_alien_bp_work;
 412        int set_drp_ie_pending;
 413        struct mutex ies_mutex;
 414        struct uwb_rc_cmd_set_ie *ies;
 415        size_t ies_capacity;
 416
 417        struct list_head pals;
 418        int active_pals;
 419
 420        struct uwb_dbg *dbg;
 421};
 422
 423
 424/**
 425 * struct uwb_pal - a UWB PAL
 426 * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
 427 * @device:  a device for the PAL.  Used to link the PAL and the radio
 428 *           controller in sysfs.
 429 * @rc:      the radio controller the PAL uses.
 430 * @channel_changed: called when the channel used by the radio changes.
 431 *           A channel of -1 means the channel has been stopped.
 432 * @new_rsv: called when a peer requests a reservation (may be NULL if
 433 *           the PAL cannot accept reservation requests).
 434 * @channel: channel being used by the PAL; 0 if the PAL isn't using
 435 *           the radio; -1 if the PAL wishes to use the radio but
 436 *           cannot.
 437 * @debugfs_dir: a debugfs directory which the PAL can use for its own
 438 *           debugfs files.
 439 *
 440 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
 441 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
 442 *
 443 * The PALs using a radio controller must register themselves to
 444 * permit the UWB stack to coordinate usage of the radio between the
 445 * various PALs or to allow PALs to response to certain requests from
 446 * peers.
 447 *
 448 * A struct uwb_pal should be embedded in a containing structure
 449 * belonging to the PAL and initialized with uwb_pal_init()).  Fields
 450 * should be set appropriately by the PAL before registering the PAL
 451 * with uwb_pal_register().
 452 */
 453struct uwb_pal {
 454        struct list_head node;
 455        const char *name;
 456        struct device *device;
 457        struct uwb_rc *rc;
 458
 459        void (*channel_changed)(struct uwb_pal *pal, int channel);
 460        void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
 461
 462        int channel;
 463        struct dentry *debugfs_dir;
 464};
 465
 466void uwb_pal_init(struct uwb_pal *pal);
 467int uwb_pal_register(struct uwb_pal *pal);
 468void uwb_pal_unregister(struct uwb_pal *pal);
 469
 470int uwb_radio_start(struct uwb_pal *pal);
 471void uwb_radio_stop(struct uwb_pal *pal);
 472
 473/*
 474 * General public API
 475 *
 476 * This API can be used by UWB device drivers or by those implementing
 477 * UWB Radio Controllers
 478 */
 479struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
 480                                       const struct uwb_dev_addr *devaddr);
 481struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
 482static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
 483{
 484        get_device(&uwb_dev->dev);
 485}
 486static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
 487{
 488        put_device(&uwb_dev->dev);
 489}
 490struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
 491
 492/**
 493 * Callback function for 'uwb_{dev,rc}_foreach()'.
 494 *
 495 * @dev:  Linux device instance
 496 *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
 497 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
 498 *
 499 * @returns: 0 to continue the iterations, any other val to stop
 500 *           iterating and return the value to the caller of
 501 *           _foreach().
 502 */
 503typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
 504int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
 505
 506struct uwb_rc *uwb_rc_alloc(void);
 507struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
 508struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
 509void uwb_rc_put(struct uwb_rc *rc);
 510
 511typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
 512                                struct uwb_rceb *reply, ssize_t reply_size);
 513
 514int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
 515                     struct uwb_rccb *cmd, size_t cmd_size,
 516                     u8 expected_type, u16 expected_event,
 517                     uwb_rc_cmd_cb_f cb, void *arg);
 518ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
 519                   struct uwb_rccb *cmd, size_t cmd_size,
 520                   struct uwb_rceb *reply, size_t reply_size);
 521ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
 522                    struct uwb_rccb *cmd, size_t cmd_size,
 523                    u8 expected_type, u16 expected_event,
 524                    struct uwb_rceb **preply);
 525
 526size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
 527
 528int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
 529int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
 530int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
 531int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
 532int __uwb_mac_addr_assigned_check(struct device *, void *);
 533int __uwb_dev_addr_assigned_check(struct device *, void *);
 534
 535/* Print in @buf a pretty repr of @addr */
 536static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
 537                                        const struct uwb_dev_addr *addr)
 538{
 539        return __uwb_addr_print(buf, buf_size, addr->data, 0);
 540}
 541
 542/* Print in @buf a pretty repr of @addr */
 543static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
 544                                        const struct uwb_mac_addr *addr)
 545{
 546        return __uwb_addr_print(buf, buf_size, addr->data, 1);
 547}
 548
 549/* @returns 0 if device addresses @addr2 and @addr1 are equal */
 550static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
 551                                   const struct uwb_dev_addr *addr2)
 552{
 553        return memcmp(addr1, addr2, sizeof(*addr1));
 554}
 555
 556/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
 557static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
 558                                   const struct uwb_mac_addr *addr2)
 559{
 560        return memcmp(addr1, addr2, sizeof(*addr1));
 561}
 562
 563/* @returns !0 if a MAC @addr is a broadcast address */
 564static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
 565{
 566        struct uwb_mac_addr bcast = {
 567                .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
 568        };
 569        return !uwb_mac_addr_cmp(addr, &bcast);
 570}
 571
 572/* @returns !0 if a MAC @addr is all zeroes*/
 573static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
 574{
 575        struct uwb_mac_addr unset = {
 576                .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 577        };
 578        return !uwb_mac_addr_cmp(addr, &unset);
 579}
 580
 581/* @returns !0 if the address is in use. */
 582static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
 583                                               struct uwb_dev_addr *addr)
 584{
 585        return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
 586}
 587
 588/*
 589 * UWB Radio Controller API
 590 *
 591 * This API is used (in addition to the general API) to implement UWB
 592 * Radio Controllers.
 593 */
 594void uwb_rc_init(struct uwb_rc *);
 595int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
 596void uwb_rc_rm(struct uwb_rc *);
 597void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
 598void uwb_rc_neh_error(struct uwb_rc *, int);
 599void uwb_rc_reset_all(struct uwb_rc *rc);
 600void uwb_rc_pre_reset(struct uwb_rc *rc);
 601int uwb_rc_post_reset(struct uwb_rc *rc);
 602
 603/**
 604 * uwb_rsv_is_owner - is the owner of this reservation the RC?
 605 * @rsv: the reservation
 606 */
 607static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
 608{
 609        return rsv->owner == &rsv->rc->uwb_dev;
 610}
 611
 612/**
 613 * enum uwb_notifs - UWB events that can be passed to any listeners
 614 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
 615 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
 616 *
 617 * Higher layers can register callback functions with the radio
 618 * controller using uwb_notifs_register(). The radio controller
 619 * maintains a list of all registered handlers and will notify all
 620 * nodes when an event occurs.
 621 */
 622enum uwb_notifs {
 623        UWB_NOTIF_ONAIR,
 624        UWB_NOTIF_OFFAIR,
 625};
 626
 627/* Callback function registered with UWB */
 628struct uwb_notifs_handler {
 629        struct list_head list_node;
 630        void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
 631        void *data;
 632};
 633
 634int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
 635int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
 636
 637
 638/**
 639 * UWB radio controller Event Size Entry (for creating entry tables)
 640 *
 641 * WUSB and WHCI define events and notifications, and they might have
 642 * fixed or variable size.
 643 *
 644 * Each event/notification has a size which is not necessarily known
 645 * in advance based on the event code. As well, vendor specific
 646 * events/notifications will have a size impossible to determine
 647 * unless we know about the device's specific details.
 648 *
 649 * It was way too smart of the spec writers not to think that it would
 650 * be impossible for a generic driver to skip over vendor specific
 651 * events/notifications if there are no LENGTH fields in the HEADER of
 652 * each message...the transaction size cannot be counted on as the
 653 * spec does not forbid to pack more than one event in a single
 654 * transaction.
 655 *
 656 * Thus, we guess sizes with tables (or for events, when you know the
 657 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
 658 * register tables with the known events and their sizes, and then we
 659 * traverse those tables. For those with variable length, we provide a
 660 * way to lookup the size inside the event/notification's
 661 * payload. This allows device-specific event size tables to be
 662 * registered.
 663 *
 664 * @size:   Size of the payload
 665 *
 666 * @offset: if != 0, at offset @offset-1 starts a field with a length
 667 *          that has to be added to @size. The format of the field is
 668 *          given by @type.
 669 *
 670 * @type:   Type and length of the offset field. Most common is LE 16
 671 *          bits (that's why that is zero); others are there mostly to
 672 *          cover for bugs and weirdos.
 673 */
 674struct uwb_est_entry {
 675        size_t size;
 676        unsigned offset;
 677        enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
 678};
 679
 680int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
 681                     const struct uwb_est_entry *, size_t entries);
 682int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
 683                       const struct uwb_est_entry *, size_t entries);
 684ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
 685                          size_t len);
 686
 687/* -- Misc */
 688
 689enum {
 690        EDC_MAX_ERRORS = 10,
 691        EDC_ERROR_TIMEFRAME = HZ,
 692};
 693
 694/* error density counter */
 695struct edc {
 696        unsigned long timestart;
 697        u16 errorcount;
 698};
 699
 700static inline
 701void edc_init(struct edc *edc)
 702{
 703        edc->timestart = jiffies;
 704}
 705
 706/* Called when an error occurred.
 707 * This is way to determine if the number of acceptable errors per time
 708 * period has been exceeded. It is not accurate as there are cases in which
 709 * this scheme will not work, for example if there are periodic occurrences
 710 * of errors that straddle updates to the start time. This scheme is
 711 * sufficient for our usage.
 712 *
 713 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
 714 */
 715static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
 716{
 717        unsigned long now;
 718
 719        now = jiffies;
 720        if (now - err_hist->timestart > timeframe) {
 721                err_hist->errorcount = 1;
 722                err_hist->timestart = now;
 723        } else if (++err_hist->errorcount > max_err) {
 724                        err_hist->errorcount = 0;
 725                        err_hist->timestart = now;
 726                        return 1;
 727        }
 728        return 0;
 729}
 730
 731
 732/* Information Element handling */
 733
 734struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
 735int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
 736int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
 737
 738/*
 739 * Transmission statistics
 740 *
 741 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
 742 * strength and line quality indication. We do quick and dirty
 743 * averages of those. They are signed values, btw.
 744 *
 745 * For 8 bit quantities, we keep the min, the max, an accumulator
 746 * (@sigma) and a # of samples. When @samples gets to 255, we compute
 747 * the average (@sigma / @samples), place it in @sigma and reset
 748 * @samples to 1 (so we use it as the first sample).
 749 *
 750 * Now, statistically speaking, probably I am kicking the kidneys of
 751 * some books I have in my shelves collecting dust, but I just want to
 752 * get an approx, not the Nobel.
 753 *
 754 * LOCKING: there is no locking per se, but we try to keep a lockless
 755 * schema. Only _add_samples() modifies the values--as long as you
 756 * have other locking on top that makes sure that no two calls of
 757 * _add_sample() happen at the same time, then we are fine. Now, for
 758 * resetting the values we just set @samples to 0 and that makes the
 759 * next _add_sample() to start with defaults. Reading the values in
 760 * _show() currently can race, so you need to make sure the calls are
 761 * under the same lock that protects calls to _add_sample(). FIXME:
 762 * currently unlocked (It is not ultraprecise but does the trick. Bite
 763 * me).
 764 */
 765struct stats {
 766        s8 min, max;
 767        s16 sigma;
 768        atomic_t samples;
 769};
 770
 771static inline
 772void stats_init(struct stats *stats)
 773{
 774        atomic_set(&stats->samples, 0);
 775        wmb();
 776}
 777
 778static inline
 779void stats_add_sample(struct stats *stats, s8 sample)
 780{
 781        s8 min, max;
 782        s16 sigma;
 783        unsigned samples = atomic_read(&stats->samples);
 784        if (samples == 0) {     /* it was zero before, so we initialize */
 785                min = 127;
 786                max = -128;
 787                sigma = 0;
 788        } else {
 789                min = stats->min;
 790                max = stats->max;
 791                sigma = stats->sigma;
 792        }
 793
 794        if (sample < min)       /* compute new values */
 795                min = sample;
 796        else if (sample > max)
 797                max = sample;
 798        sigma += sample;
 799
 800        stats->min = min;       /* commit */
 801        stats->max = max;
 802        stats->sigma = sigma;
 803        if (atomic_add_return(1, &stats->samples) > 255) {
 804                /* wrapped around! reset */
 805                stats->sigma = sigma / 256;
 806                atomic_set(&stats->samples, 1);
 807        }
 808}
 809
 810static inline ssize_t stats_show(struct stats *stats, char *buf)
 811{
 812        int min, max, avg;
 813        int samples = atomic_read(&stats->samples);
 814        if (samples == 0)
 815                min = max = avg = 0;
 816        else {
 817                min = stats->min;
 818                max = stats->max;
 819                avg = stats->sigma / samples;
 820        }
 821        return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
 822}
 823
 824static inline ssize_t stats_store(struct stats *stats, const char *buf,
 825                                  size_t size)
 826{
 827        stats_init(stats);
 828        return size;
 829}
 830
 831#endif /* #ifndef __LINUX__UWB_H__ */
 832