linux/include/uapi/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _UAPI_LINUX_PERF_EVENT_H
  15#define _UAPI_LINUX_PERF_EVENT_H
  16
  17#include <linux/types.h>
  18#include <linux/ioctl.h>
  19#include <asm/byteorder.h>
  20
  21/*
  22 * User-space ABI bits:
  23 */
  24
  25/*
  26 * attr.type
  27 */
  28enum perf_type_id {
  29        PERF_TYPE_HARDWARE                      = 0,
  30        PERF_TYPE_SOFTWARE                      = 1,
  31        PERF_TYPE_TRACEPOINT                    = 2,
  32        PERF_TYPE_HW_CACHE                      = 3,
  33        PERF_TYPE_RAW                           = 4,
  34        PERF_TYPE_BREAKPOINT                    = 5,
  35
  36        PERF_TYPE_MAX,                          /* non-ABI */
  37};
  38
  39/*
  40 * Generalized performance event event_id types, used by the
  41 * attr.event_id parameter of the sys_perf_event_open()
  42 * syscall:
  43 */
  44enum perf_hw_id {
  45        /*
  46         * Common hardware events, generalized by the kernel:
  47         */
  48        PERF_COUNT_HW_CPU_CYCLES                = 0,
  49        PERF_COUNT_HW_INSTRUCTIONS              = 1,
  50        PERF_COUNT_HW_CACHE_REFERENCES          = 2,
  51        PERF_COUNT_HW_CACHE_MISSES              = 3,
  52        PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
  53        PERF_COUNT_HW_BRANCH_MISSES             = 5,
  54        PERF_COUNT_HW_BUS_CYCLES                = 6,
  55        PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
  56        PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
  57        PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
  58
  59        PERF_COUNT_HW_MAX,                      /* non-ABI */
  60};
  61
  62/*
  63 * Generalized hardware cache events:
  64 *
  65 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  66 *       { read, write, prefetch } x
  67 *       { accesses, misses }
  68 */
  69enum perf_hw_cache_id {
  70        PERF_COUNT_HW_CACHE_L1D                 = 0,
  71        PERF_COUNT_HW_CACHE_L1I                 = 1,
  72        PERF_COUNT_HW_CACHE_LL                  = 2,
  73        PERF_COUNT_HW_CACHE_DTLB                = 3,
  74        PERF_COUNT_HW_CACHE_ITLB                = 4,
  75        PERF_COUNT_HW_CACHE_BPU                 = 5,
  76        PERF_COUNT_HW_CACHE_NODE                = 6,
  77
  78        PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
  79};
  80
  81enum perf_hw_cache_op_id {
  82        PERF_COUNT_HW_CACHE_OP_READ             = 0,
  83        PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
  84        PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
  85
  86        PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
  87};
  88
  89enum perf_hw_cache_op_result_id {
  90        PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
  91        PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
  92
  93        PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
  94};
  95
  96/*
  97 * Special "software" events provided by the kernel, even if the hardware
  98 * does not support performance events. These events measure various
  99 * physical and sw events of the kernel (and allow the profiling of them as
 100 * well):
 101 */
 102enum perf_sw_ids {
 103        PERF_COUNT_SW_CPU_CLOCK                 = 0,
 104        PERF_COUNT_SW_TASK_CLOCK                = 1,
 105        PERF_COUNT_SW_PAGE_FAULTS               = 2,
 106        PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
 107        PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
 108        PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
 109        PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
 110        PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
 111        PERF_COUNT_SW_EMULATION_FAULTS          = 8,
 112        PERF_COUNT_SW_DUMMY                     = 9,
 113        PERF_COUNT_SW_BPF_OUTPUT                = 10,
 114
 115        PERF_COUNT_SW_MAX,                      /* non-ABI */
 116};
 117
 118/*
 119 * Bits that can be set in attr.sample_type to request information
 120 * in the overflow packets.
 121 */
 122enum perf_event_sample_format {
 123        PERF_SAMPLE_IP                          = 1U << 0,
 124        PERF_SAMPLE_TID                         = 1U << 1,
 125        PERF_SAMPLE_TIME                        = 1U << 2,
 126        PERF_SAMPLE_ADDR                        = 1U << 3,
 127        PERF_SAMPLE_READ                        = 1U << 4,
 128        PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
 129        PERF_SAMPLE_ID                          = 1U << 6,
 130        PERF_SAMPLE_CPU                         = 1U << 7,
 131        PERF_SAMPLE_PERIOD                      = 1U << 8,
 132        PERF_SAMPLE_STREAM_ID                   = 1U << 9,
 133        PERF_SAMPLE_RAW                         = 1U << 10,
 134        PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
 135        PERF_SAMPLE_REGS_USER                   = 1U << 12,
 136        PERF_SAMPLE_STACK_USER                  = 1U << 13,
 137        PERF_SAMPLE_WEIGHT                      = 1U << 14,
 138        PERF_SAMPLE_DATA_SRC                    = 1U << 15,
 139        PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
 140        PERF_SAMPLE_TRANSACTION                 = 1U << 17,
 141        PERF_SAMPLE_REGS_INTR                   = 1U << 18,
 142
 143        PERF_SAMPLE_MAX = 1U << 19,             /* non-ABI */
 144};
 145
 146/*
 147 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 148 *
 149 * If the user does not pass priv level information via branch_sample_type,
 150 * the kernel uses the event's priv level. Branch and event priv levels do
 151 * not have to match. Branch priv level is checked for permissions.
 152 *
 153 * The branch types can be combined, however BRANCH_ANY covers all types
 154 * of branches and therefore it supersedes all the other types.
 155 */
 156enum perf_branch_sample_type_shift {
 157        PERF_SAMPLE_BRANCH_USER_SHIFT           = 0, /* user branches */
 158        PERF_SAMPLE_BRANCH_KERNEL_SHIFT         = 1, /* kernel branches */
 159        PERF_SAMPLE_BRANCH_HV_SHIFT             = 2, /* hypervisor branches */
 160
 161        PERF_SAMPLE_BRANCH_ANY_SHIFT            = 3, /* any branch types */
 162        PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT       = 4, /* any call branch */
 163        PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT     = 5, /* any return branch */
 164        PERF_SAMPLE_BRANCH_IND_CALL_SHIFT       = 6, /* indirect calls */
 165        PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT       = 7, /* transaction aborts */
 166        PERF_SAMPLE_BRANCH_IN_TX_SHIFT          = 8, /* in transaction */
 167        PERF_SAMPLE_BRANCH_NO_TX_SHIFT          = 9, /* not in transaction */
 168        PERF_SAMPLE_BRANCH_COND_SHIFT           = 10, /* conditional branches */
 169
 170        PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT     = 11, /* call/ret stack */
 171        PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT       = 12, /* indirect jumps */
 172        PERF_SAMPLE_BRANCH_CALL_SHIFT           = 13, /* direct call */
 173
 174        PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT       = 14, /* no flags */
 175        PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT      = 15, /* no cycles */
 176
 177        PERF_SAMPLE_BRANCH_MAX_SHIFT            /* non-ABI */
 178};
 179
 180enum perf_branch_sample_type {
 181        PERF_SAMPLE_BRANCH_USER         = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
 182        PERF_SAMPLE_BRANCH_KERNEL       = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
 183        PERF_SAMPLE_BRANCH_HV           = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
 184
 185        PERF_SAMPLE_BRANCH_ANY          = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
 186        PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
 187        PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
 188        PERF_SAMPLE_BRANCH_IND_CALL     = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
 189        PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
 190        PERF_SAMPLE_BRANCH_IN_TX        = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
 191        PERF_SAMPLE_BRANCH_NO_TX        = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
 192        PERF_SAMPLE_BRANCH_COND         = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
 193
 194        PERF_SAMPLE_BRANCH_CALL_STACK   = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
 195        PERF_SAMPLE_BRANCH_IND_JUMP     = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
 196        PERF_SAMPLE_BRANCH_CALL         = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
 197
 198        PERF_SAMPLE_BRANCH_NO_FLAGS     = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
 199        PERF_SAMPLE_BRANCH_NO_CYCLES    = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
 200
 201        PERF_SAMPLE_BRANCH_MAX          = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
 202};
 203
 204#define PERF_SAMPLE_BRANCH_PLM_ALL \
 205        (PERF_SAMPLE_BRANCH_USER|\
 206         PERF_SAMPLE_BRANCH_KERNEL|\
 207         PERF_SAMPLE_BRANCH_HV)
 208
 209/*
 210 * Values to determine ABI of the registers dump.
 211 */
 212enum perf_sample_regs_abi {
 213        PERF_SAMPLE_REGS_ABI_NONE       = 0,
 214        PERF_SAMPLE_REGS_ABI_32         = 1,
 215        PERF_SAMPLE_REGS_ABI_64         = 2,
 216};
 217
 218/*
 219 * Values for the memory transaction event qualifier, mostly for
 220 * abort events. Multiple bits can be set.
 221 */
 222enum {
 223        PERF_TXN_ELISION        = (1 << 0), /* From elision */
 224        PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
 225        PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
 226        PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
 227        PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
 228        PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
 229        PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
 230        PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
 231
 232        PERF_TXN_MAX            = (1 << 8), /* non-ABI */
 233
 234        /* bits 32..63 are reserved for the abort code */
 235
 236        PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
 237        PERF_TXN_ABORT_SHIFT = 32,
 238};
 239
 240/*
 241 * The format of the data returned by read() on a perf event fd,
 242 * as specified by attr.read_format:
 243 *
 244 * struct read_format {
 245 *      { u64           value;
 246 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 247 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 248 *        { u64         id;           } && PERF_FORMAT_ID
 249 *      } && !PERF_FORMAT_GROUP
 250 *
 251 *      { u64           nr;
 252 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 253 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 254 *        { u64         value;
 255 *          { u64       id;           } && PERF_FORMAT_ID
 256 *        }             cntr[nr];
 257 *      } && PERF_FORMAT_GROUP
 258 * };
 259 */
 260enum perf_event_read_format {
 261        PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
 262        PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
 263        PERF_FORMAT_ID                          = 1U << 2,
 264        PERF_FORMAT_GROUP                       = 1U << 3,
 265
 266        PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
 267};
 268
 269#define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
 270#define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
 271#define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
 272#define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
 273                                        /* add: sample_stack_user */
 274#define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
 275#define PERF_ATTR_SIZE_VER5     112     /* add: aux_watermark */
 276
 277/*
 278 * Hardware event_id to monitor via a performance monitoring event:
 279 */
 280struct perf_event_attr {
 281
 282        /*
 283         * Major type: hardware/software/tracepoint/etc.
 284         */
 285        __u32                   type;
 286
 287        /*
 288         * Size of the attr structure, for fwd/bwd compat.
 289         */
 290        __u32                   size;
 291
 292        /*
 293         * Type specific configuration information.
 294         */
 295        __u64                   config;
 296
 297        union {
 298                __u64           sample_period;
 299                __u64           sample_freq;
 300        };
 301
 302        __u64                   sample_type;
 303        __u64                   read_format;
 304
 305        __u64                   disabled       :  1, /* off by default        */
 306                                inherit        :  1, /* children inherit it   */
 307                                pinned         :  1, /* must always be on PMU */
 308                                exclusive      :  1, /* only group on PMU     */
 309                                exclude_user   :  1, /* don't count user      */
 310                                exclude_kernel :  1, /* ditto kernel          */
 311                                exclude_hv     :  1, /* ditto hypervisor      */
 312                                exclude_idle   :  1, /* don't count when idle */
 313                                mmap           :  1, /* include mmap data     */
 314                                comm           :  1, /* include comm data     */
 315                                freq           :  1, /* use freq, not period  */
 316                                inherit_stat   :  1, /* per task counts       */
 317                                enable_on_exec :  1, /* next exec enables     */
 318                                task           :  1, /* trace fork/exit       */
 319                                watermark      :  1, /* wakeup_watermark      */
 320                                /*
 321                                 * precise_ip:
 322                                 *
 323                                 *  0 - SAMPLE_IP can have arbitrary skid
 324                                 *  1 - SAMPLE_IP must have constant skid
 325                                 *  2 - SAMPLE_IP requested to have 0 skid
 326                                 *  3 - SAMPLE_IP must have 0 skid
 327                                 *
 328                                 *  See also PERF_RECORD_MISC_EXACT_IP
 329                                 */
 330                                precise_ip     :  2, /* skid constraint       */
 331                                mmap_data      :  1, /* non-exec mmap data    */
 332                                sample_id_all  :  1, /* sample_type all events */
 333
 334                                exclude_host   :  1, /* don't count in host   */
 335                                exclude_guest  :  1, /* don't count in guest  */
 336
 337                                exclude_callchain_kernel : 1, /* exclude kernel callchains */
 338                                exclude_callchain_user   : 1, /* exclude user callchains */
 339                                mmap2          :  1, /* include mmap with inode data     */
 340                                comm_exec      :  1, /* flag comm events that are due to an exec */
 341                                use_clockid    :  1, /* use @clockid for time fields */
 342                                context_switch :  1, /* context switch data */
 343                                __reserved_1   : 37;
 344
 345        union {
 346                __u32           wakeup_events;    /* wakeup every n events */
 347                __u32           wakeup_watermark; /* bytes before wakeup   */
 348        };
 349
 350        __u32                   bp_type;
 351        union {
 352                __u64           bp_addr;
 353                __u64           config1; /* extension of config */
 354        };
 355        union {
 356                __u64           bp_len;
 357                __u64           config2; /* extension of config1 */
 358        };
 359        __u64   branch_sample_type; /* enum perf_branch_sample_type */
 360
 361        /*
 362         * Defines set of user regs to dump on samples.
 363         * See asm/perf_regs.h for details.
 364         */
 365        __u64   sample_regs_user;
 366
 367        /*
 368         * Defines size of the user stack to dump on samples.
 369         */
 370        __u32   sample_stack_user;
 371
 372        __s32   clockid;
 373        /*
 374         * Defines set of regs to dump for each sample
 375         * state captured on:
 376         *  - precise = 0: PMU interrupt
 377         *  - precise > 0: sampled instruction
 378         *
 379         * See asm/perf_regs.h for details.
 380         */
 381        __u64   sample_regs_intr;
 382
 383        /*
 384         * Wakeup watermark for AUX area
 385         */
 386        __u32   aux_watermark;
 387        __u32   __reserved_2;   /* align to __u64 */
 388};
 389
 390#define perf_flags(attr)        (*(&(attr)->read_format + 1))
 391
 392/*
 393 * Ioctls that can be done on a perf event fd:
 394 */
 395#define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
 396#define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
 397#define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
 398#define PERF_EVENT_IOC_RESET            _IO ('$', 3)
 399#define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
 400#define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
 401#define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
 402#define PERF_EVENT_IOC_ID               _IOR('$', 7, __u64 *)
 403#define PERF_EVENT_IOC_SET_BPF          _IOW('$', 8, __u32)
 404
 405enum perf_event_ioc_flags {
 406        PERF_IOC_FLAG_GROUP             = 1U << 0,
 407};
 408
 409/*
 410 * Structure of the page that can be mapped via mmap
 411 */
 412struct perf_event_mmap_page {
 413        __u32   version;                /* version number of this structure */
 414        __u32   compat_version;         /* lowest version this is compat with */
 415
 416        /*
 417         * Bits needed to read the hw events in user-space.
 418         *
 419         *   u32 seq, time_mult, time_shift, index, width;
 420         *   u64 count, enabled, running;
 421         *   u64 cyc, time_offset;
 422         *   s64 pmc = 0;
 423         *
 424         *   do {
 425         *     seq = pc->lock;
 426         *     barrier()
 427         *
 428         *     enabled = pc->time_enabled;
 429         *     running = pc->time_running;
 430         *
 431         *     if (pc->cap_usr_time && enabled != running) {
 432         *       cyc = rdtsc();
 433         *       time_offset = pc->time_offset;
 434         *       time_mult   = pc->time_mult;
 435         *       time_shift  = pc->time_shift;
 436         *     }
 437         *
 438         *     index = pc->index;
 439         *     count = pc->offset;
 440         *     if (pc->cap_user_rdpmc && index) {
 441         *       width = pc->pmc_width;
 442         *       pmc = rdpmc(index - 1);
 443         *     }
 444         *
 445         *     barrier();
 446         *   } while (pc->lock != seq);
 447         *
 448         * NOTE: for obvious reason this only works on self-monitoring
 449         *       processes.
 450         */
 451        __u32   lock;                   /* seqlock for synchronization */
 452        __u32   index;                  /* hardware event identifier */
 453        __s64   offset;                 /* add to hardware event value */
 454        __u64   time_enabled;           /* time event active */
 455        __u64   time_running;           /* time event on cpu */
 456        union {
 457                __u64   capabilities;
 458                struct {
 459                        __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 460                                cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
 461
 462                                cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
 463                                cap_user_time           : 1, /* The time_* fields are used */
 464                                cap_user_time_zero      : 1, /* The time_zero field is used */
 465                                cap_____res             : 59;
 466                };
 467        };
 468
 469        /*
 470         * If cap_user_rdpmc this field provides the bit-width of the value
 471         * read using the rdpmc() or equivalent instruction. This can be used
 472         * to sign extend the result like:
 473         *
 474         *   pmc <<= 64 - width;
 475         *   pmc >>= 64 - width; // signed shift right
 476         *   count += pmc;
 477         */
 478        __u16   pmc_width;
 479
 480        /*
 481         * If cap_usr_time the below fields can be used to compute the time
 482         * delta since time_enabled (in ns) using rdtsc or similar.
 483         *
 484         *   u64 quot, rem;
 485         *   u64 delta;
 486         *
 487         *   quot = (cyc >> time_shift);
 488         *   rem = cyc & (((u64)1 << time_shift) - 1);
 489         *   delta = time_offset + quot * time_mult +
 490         *              ((rem * time_mult) >> time_shift);
 491         *
 492         * Where time_offset,time_mult,time_shift and cyc are read in the
 493         * seqcount loop described above. This delta can then be added to
 494         * enabled and possible running (if index), improving the scaling:
 495         *
 496         *   enabled += delta;
 497         *   if (index)
 498         *     running += delta;
 499         *
 500         *   quot = count / running;
 501         *   rem  = count % running;
 502         *   count = quot * enabled + (rem * enabled) / running;
 503         */
 504        __u16   time_shift;
 505        __u32   time_mult;
 506        __u64   time_offset;
 507        /*
 508         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 509         * from sample timestamps.
 510         *
 511         *   time = timestamp - time_zero;
 512         *   quot = time / time_mult;
 513         *   rem  = time % time_mult;
 514         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 515         *
 516         * And vice versa:
 517         *
 518         *   quot = cyc >> time_shift;
 519         *   rem  = cyc & (((u64)1 << time_shift) - 1);
 520         *   timestamp = time_zero + quot * time_mult +
 521         *               ((rem * time_mult) >> time_shift);
 522         */
 523        __u64   time_zero;
 524        __u32   size;                   /* Header size up to __reserved[] fields. */
 525
 526                /*
 527                 * Hole for extension of the self monitor capabilities
 528                 */
 529
 530        __u8    __reserved[118*8+4];    /* align to 1k. */
 531
 532        /*
 533         * Control data for the mmap() data buffer.
 534         *
 535         * User-space reading the @data_head value should issue an smp_rmb(),
 536         * after reading this value.
 537         *
 538         * When the mapping is PROT_WRITE the @data_tail value should be
 539         * written by userspace to reflect the last read data, after issueing
 540         * an smp_mb() to separate the data read from the ->data_tail store.
 541         * In this case the kernel will not over-write unread data.
 542         *
 543         * See perf_output_put_handle() for the data ordering.
 544         *
 545         * data_{offset,size} indicate the location and size of the perf record
 546         * buffer within the mmapped area.
 547         */
 548        __u64   data_head;              /* head in the data section */
 549        __u64   data_tail;              /* user-space written tail */
 550        __u64   data_offset;            /* where the buffer starts */
 551        __u64   data_size;              /* data buffer size */
 552
 553        /*
 554         * AUX area is defined by aux_{offset,size} fields that should be set
 555         * by the userspace, so that
 556         *
 557         *   aux_offset >= data_offset + data_size
 558         *
 559         * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
 560         *
 561         * Ring buffer pointers aux_{head,tail} have the same semantics as
 562         * data_{head,tail} and same ordering rules apply.
 563         */
 564        __u64   aux_head;
 565        __u64   aux_tail;
 566        __u64   aux_offset;
 567        __u64   aux_size;
 568};
 569
 570#define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
 571#define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
 572#define PERF_RECORD_MISC_KERNEL                 (1 << 0)
 573#define PERF_RECORD_MISC_USER                   (2 << 0)
 574#define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
 575#define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
 576#define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
 577
 578/*
 579 * Indicates that /proc/PID/maps parsing are truncated by time out.
 580 */
 581#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
 582/*
 583 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 584 * different events so can reuse the same bit position.
 585 * Ditto PERF_RECORD_MISC_SWITCH_OUT.
 586 */
 587#define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
 588#define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
 589#define PERF_RECORD_MISC_SWITCH_OUT             (1 << 13)
 590/*
 591 * Indicates that the content of PERF_SAMPLE_IP points to
 592 * the actual instruction that triggered the event. See also
 593 * perf_event_attr::precise_ip.
 594 */
 595#define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
 596/*
 597 * Reserve the last bit to indicate some extended misc field
 598 */
 599#define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
 600
 601struct perf_event_header {
 602        __u32   type;
 603        __u16   misc;
 604        __u16   size;
 605};
 606
 607enum perf_event_type {
 608
 609        /*
 610         * If perf_event_attr.sample_id_all is set then all event types will
 611         * have the sample_type selected fields related to where/when
 612         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 613         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 614         * just after the perf_event_header and the fields already present for
 615         * the existing fields, i.e. at the end of the payload. That way a newer
 616         * perf.data file will be supported by older perf tools, with these new
 617         * optional fields being ignored.
 618         *
 619         * struct sample_id {
 620         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 621         *      { u64                   time;     } && PERF_SAMPLE_TIME
 622         *      { u64                   id;       } && PERF_SAMPLE_ID
 623         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 624         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 625         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 626         * } && perf_event_attr::sample_id_all
 627         *
 628         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 629         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 630         * relative to header.size.
 631         */
 632
 633        /*
 634         * The MMAP events record the PROT_EXEC mappings so that we can
 635         * correlate userspace IPs to code. They have the following structure:
 636         *
 637         * struct {
 638         *      struct perf_event_header        header;
 639         *
 640         *      u32                             pid, tid;
 641         *      u64                             addr;
 642         *      u64                             len;
 643         *      u64                             pgoff;
 644         *      char                            filename[];
 645         *      struct sample_id                sample_id;
 646         * };
 647         */
 648        PERF_RECORD_MMAP                        = 1,
 649
 650        /*
 651         * struct {
 652         *      struct perf_event_header        header;
 653         *      u64                             id;
 654         *      u64                             lost;
 655         *      struct sample_id                sample_id;
 656         * };
 657         */
 658        PERF_RECORD_LOST                        = 2,
 659
 660        /*
 661         * struct {
 662         *      struct perf_event_header        header;
 663         *
 664         *      u32                             pid, tid;
 665         *      char                            comm[];
 666         *      struct sample_id                sample_id;
 667         * };
 668         */
 669        PERF_RECORD_COMM                        = 3,
 670
 671        /*
 672         * struct {
 673         *      struct perf_event_header        header;
 674         *      u32                             pid, ppid;
 675         *      u32                             tid, ptid;
 676         *      u64                             time;
 677         *      struct sample_id                sample_id;
 678         * };
 679         */
 680        PERF_RECORD_EXIT                        = 4,
 681
 682        /*
 683         * struct {
 684         *      struct perf_event_header        header;
 685         *      u64                             time;
 686         *      u64                             id;
 687         *      u64                             stream_id;
 688         *      struct sample_id                sample_id;
 689         * };
 690         */
 691        PERF_RECORD_THROTTLE                    = 5,
 692        PERF_RECORD_UNTHROTTLE                  = 6,
 693
 694        /*
 695         * struct {
 696         *      struct perf_event_header        header;
 697         *      u32                             pid, ppid;
 698         *      u32                             tid, ptid;
 699         *      u64                             time;
 700         *      struct sample_id                sample_id;
 701         * };
 702         */
 703        PERF_RECORD_FORK                        = 7,
 704
 705        /*
 706         * struct {
 707         *      struct perf_event_header        header;
 708         *      u32                             pid, tid;
 709         *
 710         *      struct read_format              values;
 711         *      struct sample_id                sample_id;
 712         * };
 713         */
 714        PERF_RECORD_READ                        = 8,
 715
 716        /*
 717         * struct {
 718         *      struct perf_event_header        header;
 719         *
 720         *      #
 721         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 722         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 723         *      # is fixed relative to header.
 724         *      #
 725         *
 726         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 727         *      { u64                   ip;       } && PERF_SAMPLE_IP
 728         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 729         *      { u64                   time;     } && PERF_SAMPLE_TIME
 730         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
 731         *      { u64                   id;       } && PERF_SAMPLE_ID
 732         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 733         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 734         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
 735         *
 736         *      { struct read_format    values;   } && PERF_SAMPLE_READ
 737         *
 738         *      { u64                   nr,
 739         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 740         *
 741         *      #
 742         *      # The RAW record below is opaque data wrt the ABI
 743         *      #
 744         *      # That is, the ABI doesn't make any promises wrt to
 745         *      # the stability of its content, it may vary depending
 746         *      # on event, hardware, kernel version and phase of
 747         *      # the moon.
 748         *      #
 749         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
 750         *      #
 751         *
 752         *      { u32                   size;
 753         *        char                  data[size];}&& PERF_SAMPLE_RAW
 754         *
 755         *      { u64                   nr;
 756         *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
 757         *
 758         *      { u64                   abi; # enum perf_sample_regs_abi
 759         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
 760         *
 761         *      { u64                   size;
 762         *        char                  data[size];
 763         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
 764         *
 765         *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
 766         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
 767         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
 768         *      { u64                   abi; # enum perf_sample_regs_abi
 769         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
 770         * };
 771         */
 772        PERF_RECORD_SAMPLE                      = 9,
 773
 774        /*
 775         * The MMAP2 records are an augmented version of MMAP, they add
 776         * maj, min, ino numbers to be used to uniquely identify each mapping
 777         *
 778         * struct {
 779         *      struct perf_event_header        header;
 780         *
 781         *      u32                             pid, tid;
 782         *      u64                             addr;
 783         *      u64                             len;
 784         *      u64                             pgoff;
 785         *      u32                             maj;
 786         *      u32                             min;
 787         *      u64                             ino;
 788         *      u64                             ino_generation;
 789         *      u32                             prot, flags;
 790         *      char                            filename[];
 791         *      struct sample_id                sample_id;
 792         * };
 793         */
 794        PERF_RECORD_MMAP2                       = 10,
 795
 796        /*
 797         * Records that new data landed in the AUX buffer part.
 798         *
 799         * struct {
 800         *      struct perf_event_header        header;
 801         *
 802         *      u64                             aux_offset;
 803         *      u64                             aux_size;
 804         *      u64                             flags;
 805         *      struct sample_id                sample_id;
 806         * };
 807         */
 808        PERF_RECORD_AUX                         = 11,
 809
 810        /*
 811         * Indicates that instruction trace has started
 812         *
 813         * struct {
 814         *      struct perf_event_header        header;
 815         *      u32                             pid;
 816         *      u32                             tid;
 817         * };
 818         */
 819        PERF_RECORD_ITRACE_START                = 12,
 820
 821        /*
 822         * Records the dropped/lost sample number.
 823         *
 824         * struct {
 825         *      struct perf_event_header        header;
 826         *
 827         *      u64                             lost;
 828         *      struct sample_id                sample_id;
 829         * };
 830         */
 831        PERF_RECORD_LOST_SAMPLES                = 13,
 832
 833        /*
 834         * Records a context switch in or out (flagged by
 835         * PERF_RECORD_MISC_SWITCH_OUT). See also
 836         * PERF_RECORD_SWITCH_CPU_WIDE.
 837         *
 838         * struct {
 839         *      struct perf_event_header        header;
 840         *      struct sample_id                sample_id;
 841         * };
 842         */
 843        PERF_RECORD_SWITCH                      = 14,
 844
 845        /*
 846         * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
 847         * next_prev_tid that are the next (switching out) or previous
 848         * (switching in) pid/tid.
 849         *
 850         * struct {
 851         *      struct perf_event_header        header;
 852         *      u32                             next_prev_pid;
 853         *      u32                             next_prev_tid;
 854         *      struct sample_id                sample_id;
 855         * };
 856         */
 857        PERF_RECORD_SWITCH_CPU_WIDE             = 15,
 858
 859        PERF_RECORD_MAX,                        /* non-ABI */
 860};
 861
 862#define PERF_MAX_STACK_DEPTH            127
 863
 864enum perf_callchain_context {
 865        PERF_CONTEXT_HV                 = (__u64)-32,
 866        PERF_CONTEXT_KERNEL             = (__u64)-128,
 867        PERF_CONTEXT_USER               = (__u64)-512,
 868
 869        PERF_CONTEXT_GUEST              = (__u64)-2048,
 870        PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
 871        PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
 872
 873        PERF_CONTEXT_MAX                = (__u64)-4095,
 874};
 875
 876/**
 877 * PERF_RECORD_AUX::flags bits
 878 */
 879#define PERF_AUX_FLAG_TRUNCATED         0x01    /* record was truncated to fit */
 880#define PERF_AUX_FLAG_OVERWRITE         0x02    /* snapshot from overwrite mode */
 881
 882#define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
 883#define PERF_FLAG_FD_OUTPUT             (1UL << 1)
 884#define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
 885#define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
 886
 887union perf_mem_data_src {
 888        __u64 val;
 889        struct {
 890                __u64   mem_op:5,       /* type of opcode */
 891                        mem_lvl:14,     /* memory hierarchy level */
 892                        mem_snoop:5,    /* snoop mode */
 893                        mem_lock:2,     /* lock instr */
 894                        mem_dtlb:7,     /* tlb access */
 895                        mem_rsvd:31;
 896        };
 897};
 898
 899/* type of opcode (load/store/prefetch,code) */
 900#define PERF_MEM_OP_NA          0x01 /* not available */
 901#define PERF_MEM_OP_LOAD        0x02 /* load instruction */
 902#define PERF_MEM_OP_STORE       0x04 /* store instruction */
 903#define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
 904#define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
 905#define PERF_MEM_OP_SHIFT       0
 906
 907/* memory hierarchy (memory level, hit or miss) */
 908#define PERF_MEM_LVL_NA         0x01  /* not available */
 909#define PERF_MEM_LVL_HIT        0x02  /* hit level */
 910#define PERF_MEM_LVL_MISS       0x04  /* miss level  */
 911#define PERF_MEM_LVL_L1         0x08  /* L1 */
 912#define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
 913#define PERF_MEM_LVL_L2         0x20  /* L2 */
 914#define PERF_MEM_LVL_L3         0x40  /* L3 */
 915#define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
 916#define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
 917#define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
 918#define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
 919#define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
 920#define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
 921#define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
 922#define PERF_MEM_LVL_SHIFT      5
 923
 924/* snoop mode */
 925#define PERF_MEM_SNOOP_NA       0x01 /* not available */
 926#define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
 927#define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
 928#define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
 929#define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
 930#define PERF_MEM_SNOOP_SHIFT    19
 931
 932/* locked instruction */
 933#define PERF_MEM_LOCK_NA        0x01 /* not available */
 934#define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
 935#define PERF_MEM_LOCK_SHIFT     24
 936
 937/* TLB access */
 938#define PERF_MEM_TLB_NA         0x01 /* not available */
 939#define PERF_MEM_TLB_HIT        0x02 /* hit level */
 940#define PERF_MEM_TLB_MISS       0x04 /* miss level */
 941#define PERF_MEM_TLB_L1         0x08 /* L1 */
 942#define PERF_MEM_TLB_L2         0x10 /* L2 */
 943#define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
 944#define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
 945#define PERF_MEM_TLB_SHIFT      26
 946
 947#define PERF_MEM_S(a, s) \
 948        (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
 949
 950/*
 951 * single taken branch record layout:
 952 *
 953 *      from: source instruction (may not always be a branch insn)
 954 *        to: branch target
 955 *   mispred: branch target was mispredicted
 956 * predicted: branch target was predicted
 957 *
 958 * support for mispred, predicted is optional. In case it
 959 * is not supported mispred = predicted = 0.
 960 *
 961 *     in_tx: running in a hardware transaction
 962 *     abort: aborting a hardware transaction
 963 *    cycles: cycles from last branch (or 0 if not supported)
 964 */
 965struct perf_branch_entry {
 966        __u64   from;
 967        __u64   to;
 968        __u64   mispred:1,  /* target mispredicted */
 969                predicted:1,/* target predicted */
 970                in_tx:1,    /* in transaction */
 971                abort:1,    /* transaction abort */
 972                cycles:16,  /* cycle count to last branch */
 973                reserved:44;
 974};
 975
 976#endif /* _UAPI_LINUX_PERF_EVENT_H */
 977