linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57
  58#include <linux/audit.h>
  59
  60#include <net/sock.h>
  61#include <net/netlink.h>
  62#include <linux/skbuff.h>
  63#ifdef CONFIG_SECURITY
  64#include <linux/security.h>
  65#endif
  66#include <linux/freezer.h>
  67#include <linux/tty.h>
  68#include <linux/pid_namespace.h>
  69#include <net/netns/generic.h>
  70
  71#include "audit.h"
  72
  73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  74 * (Initialization happens after skb_init is called.) */
  75#define AUDIT_DISABLED          -1
  76#define AUDIT_UNINITIALIZED     0
  77#define AUDIT_INITIALIZED       1
  78static int      audit_initialized;
  79
  80#define AUDIT_OFF       0
  81#define AUDIT_ON        1
  82#define AUDIT_LOCKED    2
  83u32             audit_enabled;
  84u32             audit_ever_enabled;
  85
  86EXPORT_SYMBOL_GPL(audit_enabled);
  87
  88/* Default state when kernel boots without any parameters. */
  89static u32      audit_default;
  90
  91/* If auditing cannot proceed, audit_failure selects what happens. */
  92static u32      audit_failure = AUDIT_FAIL_PRINTK;
  93
  94/*
  95 * If audit records are to be written to the netlink socket, audit_pid
  96 * contains the pid of the auditd process and audit_nlk_portid contains
  97 * the portid to use to send netlink messages to that process.
  98 */
  99int             audit_pid;
 100static __u32    audit_nlk_portid;
 101
 102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 103 * to that number per second.  This prevents DoS attacks, but results in
 104 * audit records being dropped. */
 105static u32      audit_rate_limit;
 106
 107/* Number of outstanding audit_buffers allowed.
 108 * When set to zero, this means unlimited. */
 109static u32      audit_backlog_limit = 64;
 110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 111static u32      audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
 112static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 113
 114/* The identity of the user shutting down the audit system. */
 115kuid_t          audit_sig_uid = INVALID_UID;
 116pid_t           audit_sig_pid = -1;
 117u32             audit_sig_sid = 0;
 118
 119/* Records can be lost in several ways:
 120   0) [suppressed in audit_alloc]
 121   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 122   2) out of memory in audit_log_move [alloc_skb]
 123   3) suppressed due to audit_rate_limit
 124   4) suppressed due to audit_backlog_limit
 125*/
 126static atomic_t    audit_lost = ATOMIC_INIT(0);
 127
 128/* The netlink socket. */
 129static struct sock *audit_sock;
 130static int audit_net_id;
 131
 132/* Hash for inode-based rules */
 133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 134
 135/* The audit_freelist is a list of pre-allocated audit buffers (if more
 136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 137 * being placed on the freelist). */
 138static DEFINE_SPINLOCK(audit_freelist_lock);
 139static int         audit_freelist_count;
 140static LIST_HEAD(audit_freelist);
 141
 142static struct sk_buff_head audit_skb_queue;
 143/* queue of skbs to send to auditd when/if it comes back */
 144static struct sk_buff_head audit_skb_hold_queue;
 145static struct task_struct *kauditd_task;
 146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 148
 149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 150                                   .mask = -1,
 151                                   .features = 0,
 152                                   .lock = 0,};
 153
 154static char *audit_feature_names[2] = {
 155        "only_unset_loginuid",
 156        "loginuid_immutable",
 157};
 158
 159
 160/* Serialize requests from userspace. */
 161DEFINE_MUTEX(audit_cmd_mutex);
 162
 163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 164 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 165 * should be at least that large. */
 166#define AUDIT_BUFSIZ 1024
 167
 168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 169 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 170#define AUDIT_MAXFREE  (2*NR_CPUS)
 171
 172/* The audit_buffer is used when formatting an audit record.  The caller
 173 * locks briefly to get the record off the freelist or to allocate the
 174 * buffer, and locks briefly to send the buffer to the netlink layer or
 175 * to place it on a transmit queue.  Multiple audit_buffers can be in
 176 * use simultaneously. */
 177struct audit_buffer {
 178        struct list_head     list;
 179        struct sk_buff       *skb;      /* formatted skb ready to send */
 180        struct audit_context *ctx;      /* NULL or associated context */
 181        gfp_t                gfp_mask;
 182};
 183
 184struct audit_reply {
 185        __u32 portid;
 186        struct net *net;
 187        struct sk_buff *skb;
 188};
 189
 190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 191{
 192        if (ab) {
 193                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 194                nlh->nlmsg_pid = portid;
 195        }
 196}
 197
 198void audit_panic(const char *message)
 199{
 200        switch (audit_failure) {
 201        case AUDIT_FAIL_SILENT:
 202                break;
 203        case AUDIT_FAIL_PRINTK:
 204                if (printk_ratelimit())
 205                        pr_err("%s\n", message);
 206                break;
 207        case AUDIT_FAIL_PANIC:
 208                /* test audit_pid since printk is always losey, why bother? */
 209                if (audit_pid)
 210                        panic("audit: %s\n", message);
 211                break;
 212        }
 213}
 214
 215static inline int audit_rate_check(void)
 216{
 217        static unsigned long    last_check = 0;
 218        static int              messages   = 0;
 219        static DEFINE_SPINLOCK(lock);
 220        unsigned long           flags;
 221        unsigned long           now;
 222        unsigned long           elapsed;
 223        int                     retval     = 0;
 224
 225        if (!audit_rate_limit) return 1;
 226
 227        spin_lock_irqsave(&lock, flags);
 228        if (++messages < audit_rate_limit) {
 229                retval = 1;
 230        } else {
 231                now     = jiffies;
 232                elapsed = now - last_check;
 233                if (elapsed > HZ) {
 234                        last_check = now;
 235                        messages   = 0;
 236                        retval     = 1;
 237                }
 238        }
 239        spin_unlock_irqrestore(&lock, flags);
 240
 241        return retval;
 242}
 243
 244/**
 245 * audit_log_lost - conditionally log lost audit message event
 246 * @message: the message stating reason for lost audit message
 247 *
 248 * Emit at least 1 message per second, even if audit_rate_check is
 249 * throttling.
 250 * Always increment the lost messages counter.
 251*/
 252void audit_log_lost(const char *message)
 253{
 254        static unsigned long    last_msg = 0;
 255        static DEFINE_SPINLOCK(lock);
 256        unsigned long           flags;
 257        unsigned long           now;
 258        int                     print;
 259
 260        atomic_inc(&audit_lost);
 261
 262        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 263
 264        if (!print) {
 265                spin_lock_irqsave(&lock, flags);
 266                now = jiffies;
 267                if (now - last_msg > HZ) {
 268                        print = 1;
 269                        last_msg = now;
 270                }
 271                spin_unlock_irqrestore(&lock, flags);
 272        }
 273
 274        if (print) {
 275                if (printk_ratelimit())
 276                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 277                                atomic_read(&audit_lost),
 278                                audit_rate_limit,
 279                                audit_backlog_limit);
 280                audit_panic(message);
 281        }
 282}
 283
 284static int audit_log_config_change(char *function_name, u32 new, u32 old,
 285                                   int allow_changes)
 286{
 287        struct audit_buffer *ab;
 288        int rc = 0;
 289
 290        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 291        if (unlikely(!ab))
 292                return rc;
 293        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 294        audit_log_session_info(ab);
 295        rc = audit_log_task_context(ab);
 296        if (rc)
 297                allow_changes = 0; /* Something weird, deny request */
 298        audit_log_format(ab, " res=%d", allow_changes);
 299        audit_log_end(ab);
 300        return rc;
 301}
 302
 303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 304{
 305        int allow_changes, rc = 0;
 306        u32 old = *to_change;
 307
 308        /* check if we are locked */
 309        if (audit_enabled == AUDIT_LOCKED)
 310                allow_changes = 0;
 311        else
 312                allow_changes = 1;
 313
 314        if (audit_enabled != AUDIT_OFF) {
 315                rc = audit_log_config_change(function_name, new, old, allow_changes);
 316                if (rc)
 317                        allow_changes = 0;
 318        }
 319
 320        /* If we are allowed, make the change */
 321        if (allow_changes == 1)
 322                *to_change = new;
 323        /* Not allowed, update reason */
 324        else if (rc == 0)
 325                rc = -EPERM;
 326        return rc;
 327}
 328
 329static int audit_set_rate_limit(u32 limit)
 330{
 331        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 332}
 333
 334static int audit_set_backlog_limit(u32 limit)
 335{
 336        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 337}
 338
 339static int audit_set_backlog_wait_time(u32 timeout)
 340{
 341        return audit_do_config_change("audit_backlog_wait_time",
 342                                      &audit_backlog_wait_time_master, timeout);
 343}
 344
 345static int audit_set_enabled(u32 state)
 346{
 347        int rc;
 348        if (state > AUDIT_LOCKED)
 349                return -EINVAL;
 350
 351        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 352        if (!rc)
 353                audit_ever_enabled |= !!state;
 354
 355        return rc;
 356}
 357
 358static int audit_set_failure(u32 state)
 359{
 360        if (state != AUDIT_FAIL_SILENT
 361            && state != AUDIT_FAIL_PRINTK
 362            && state != AUDIT_FAIL_PANIC)
 363                return -EINVAL;
 364
 365        return audit_do_config_change("audit_failure", &audit_failure, state);
 366}
 367
 368/*
 369 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 370 * already have been sent via prink/syslog and so if these messages are dropped
 371 * it is not a huge concern since we already passed the audit_log_lost()
 372 * notification and stuff.  This is just nice to get audit messages during
 373 * boot before auditd is running or messages generated while auditd is stopped.
 374 * This only holds messages is audit_default is set, aka booting with audit=1
 375 * or building your kernel that way.
 376 */
 377static void audit_hold_skb(struct sk_buff *skb)
 378{
 379        if (audit_default &&
 380            (!audit_backlog_limit ||
 381             skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 382                skb_queue_tail(&audit_skb_hold_queue, skb);
 383        else
 384                kfree_skb(skb);
 385}
 386
 387/*
 388 * For one reason or another this nlh isn't getting delivered to the userspace
 389 * audit daemon, just send it to printk.
 390 */
 391static void audit_printk_skb(struct sk_buff *skb)
 392{
 393        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 394        char *data = nlmsg_data(nlh);
 395
 396        if (nlh->nlmsg_type != AUDIT_EOE) {
 397                if (printk_ratelimit())
 398                        pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 399                else
 400                        audit_log_lost("printk limit exceeded");
 401        }
 402
 403        audit_hold_skb(skb);
 404}
 405
 406static void kauditd_send_skb(struct sk_buff *skb)
 407{
 408        int err;
 409        int attempts = 0;
 410#define AUDITD_RETRIES 5
 411
 412restart:
 413        /* take a reference in case we can't send it and we want to hold it */
 414        skb_get(skb);
 415        err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 416        if (err < 0) {
 417                pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
 418                       audit_pid, err);
 419                if (audit_pid) {
 420                        if (err == -ECONNREFUSED || err == -EPERM
 421                            || ++attempts >= AUDITD_RETRIES) {
 422                                char s[32];
 423
 424                                snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
 425                                audit_log_lost(s);
 426                                audit_pid = 0;
 427                                audit_sock = NULL;
 428                        } else {
 429                                pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
 430                                        attempts, audit_pid);
 431                                set_current_state(TASK_INTERRUPTIBLE);
 432                                schedule();
 433                                __set_current_state(TASK_RUNNING);
 434                                goto restart;
 435                        }
 436                }
 437                /* we might get lucky and get this in the next auditd */
 438                audit_hold_skb(skb);
 439        } else
 440                /* drop the extra reference if sent ok */
 441                consume_skb(skb);
 442}
 443
 444/*
 445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 446 *
 447 * This function doesn't consume an skb as might be expected since it has to
 448 * copy it anyways.
 449 */
 450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 451{
 452        struct sk_buff          *copy;
 453        struct audit_net        *aunet = net_generic(&init_net, audit_net_id);
 454        struct sock             *sock = aunet->nlsk;
 455
 456        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 457                return;
 458
 459        /*
 460         * The seemingly wasteful skb_copy() rather than bumping the refcount
 461         * using skb_get() is necessary because non-standard mods are made to
 462         * the skb by the original kaudit unicast socket send routine.  The
 463         * existing auditd daemon assumes this breakage.  Fixing this would
 464         * require co-ordinating a change in the established protocol between
 465         * the kaudit kernel subsystem and the auditd userspace code.  There is
 466         * no reason for new multicast clients to continue with this
 467         * non-compliance.
 468         */
 469        copy = skb_copy(skb, gfp_mask);
 470        if (!copy)
 471                return;
 472
 473        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 474}
 475
 476/*
 477 * flush_hold_queue - empty the hold queue if auditd appears
 478 *
 479 * If auditd just started, drain the queue of messages already
 480 * sent to syslog/printk.  Remember loss here is ok.  We already
 481 * called audit_log_lost() if it didn't go out normally.  so the
 482 * race between the skb_dequeue and the next check for audit_pid
 483 * doesn't matter.
 484 *
 485 * If you ever find kauditd to be too slow we can get a perf win
 486 * by doing our own locking and keeping better track if there
 487 * are messages in this queue.  I don't see the need now, but
 488 * in 5 years when I want to play with this again I'll see this
 489 * note and still have no friggin idea what i'm thinking today.
 490 */
 491static void flush_hold_queue(void)
 492{
 493        struct sk_buff *skb;
 494
 495        if (!audit_default || !audit_pid)
 496                return;
 497
 498        skb = skb_dequeue(&audit_skb_hold_queue);
 499        if (likely(!skb))
 500                return;
 501
 502        while (skb && audit_pid) {
 503                kauditd_send_skb(skb);
 504                skb = skb_dequeue(&audit_skb_hold_queue);
 505        }
 506
 507        /*
 508         * if auditd just disappeared but we
 509         * dequeued an skb we need to drop ref
 510         */
 511        consume_skb(skb);
 512}
 513
 514static int kauditd_thread(void *dummy)
 515{
 516        set_freezable();
 517        while (!kthread_should_stop()) {
 518                struct sk_buff *skb;
 519
 520                flush_hold_queue();
 521
 522                skb = skb_dequeue(&audit_skb_queue);
 523
 524                if (skb) {
 525                        if (!audit_backlog_limit ||
 526                            (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
 527                                wake_up(&audit_backlog_wait);
 528                        if (audit_pid)
 529                                kauditd_send_skb(skb);
 530                        else
 531                                audit_printk_skb(skb);
 532                        continue;
 533                }
 534
 535                wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 536        }
 537        return 0;
 538}
 539
 540int audit_send_list(void *_dest)
 541{
 542        struct audit_netlink_list *dest = _dest;
 543        struct sk_buff *skb;
 544        struct net *net = dest->net;
 545        struct audit_net *aunet = net_generic(net, audit_net_id);
 546
 547        /* wait for parent to finish and send an ACK */
 548        mutex_lock(&audit_cmd_mutex);
 549        mutex_unlock(&audit_cmd_mutex);
 550
 551        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 552                netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 553
 554        put_net(net);
 555        kfree(dest);
 556
 557        return 0;
 558}
 559
 560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 561                                 int multi, const void *payload, int size)
 562{
 563        struct sk_buff  *skb;
 564        struct nlmsghdr *nlh;
 565        void            *data;
 566        int             flags = multi ? NLM_F_MULTI : 0;
 567        int             t     = done  ? NLMSG_DONE  : type;
 568
 569        skb = nlmsg_new(size, GFP_KERNEL);
 570        if (!skb)
 571                return NULL;
 572
 573        nlh     = nlmsg_put(skb, portid, seq, t, size, flags);
 574        if (!nlh)
 575                goto out_kfree_skb;
 576        data = nlmsg_data(nlh);
 577        memcpy(data, payload, size);
 578        return skb;
 579
 580out_kfree_skb:
 581        kfree_skb(skb);
 582        return NULL;
 583}
 584
 585static int audit_send_reply_thread(void *arg)
 586{
 587        struct audit_reply *reply = (struct audit_reply *)arg;
 588        struct net *net = reply->net;
 589        struct audit_net *aunet = net_generic(net, audit_net_id);
 590
 591        mutex_lock(&audit_cmd_mutex);
 592        mutex_unlock(&audit_cmd_mutex);
 593
 594        /* Ignore failure. It'll only happen if the sender goes away,
 595           because our timeout is set to infinite. */
 596        netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 597        put_net(net);
 598        kfree(reply);
 599        return 0;
 600}
 601/**
 602 * audit_send_reply - send an audit reply message via netlink
 603 * @request_skb: skb of request we are replying to (used to target the reply)
 604 * @seq: sequence number
 605 * @type: audit message type
 606 * @done: done (last) flag
 607 * @multi: multi-part message flag
 608 * @payload: payload data
 609 * @size: payload size
 610 *
 611 * Allocates an skb, builds the netlink message, and sends it to the port id.
 612 * No failure notifications.
 613 */
 614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 615                             int multi, const void *payload, int size)
 616{
 617        u32 portid = NETLINK_CB(request_skb).portid;
 618        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 619        struct sk_buff *skb;
 620        struct task_struct *tsk;
 621        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 622                                            GFP_KERNEL);
 623
 624        if (!reply)
 625                return;
 626
 627        skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 628        if (!skb)
 629                goto out;
 630
 631        reply->net = get_net(net);
 632        reply->portid = portid;
 633        reply->skb = skb;
 634
 635        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 636        if (!IS_ERR(tsk))
 637                return;
 638        kfree_skb(skb);
 639out:
 640        kfree(reply);
 641}
 642
 643/*
 644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 645 * control messages.
 646 */
 647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 648{
 649        int err = 0;
 650
 651        /* Only support initial user namespace for now. */
 652        /*
 653         * We return ECONNREFUSED because it tricks userspace into thinking
 654         * that audit was not configured into the kernel.  Lots of users
 655         * configure their PAM stack (because that's what the distro does)
 656         * to reject login if unable to send messages to audit.  If we return
 657         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 658         * configured in and will let login proceed.  If we return EPERM
 659         * userspace will reject all logins.  This should be removed when we
 660         * support non init namespaces!!
 661         */
 662        if (current_user_ns() != &init_user_ns)
 663                return -ECONNREFUSED;
 664
 665        switch (msg_type) {
 666        case AUDIT_LIST:
 667        case AUDIT_ADD:
 668        case AUDIT_DEL:
 669                return -EOPNOTSUPP;
 670        case AUDIT_GET:
 671        case AUDIT_SET:
 672        case AUDIT_GET_FEATURE:
 673        case AUDIT_SET_FEATURE:
 674        case AUDIT_LIST_RULES:
 675        case AUDIT_ADD_RULE:
 676        case AUDIT_DEL_RULE:
 677        case AUDIT_SIGNAL_INFO:
 678        case AUDIT_TTY_GET:
 679        case AUDIT_TTY_SET:
 680        case AUDIT_TRIM:
 681        case AUDIT_MAKE_EQUIV:
 682                /* Only support auditd and auditctl in initial pid namespace
 683                 * for now. */
 684                if (task_active_pid_ns(current) != &init_pid_ns)
 685                        return -EPERM;
 686
 687                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 688                        err = -EPERM;
 689                break;
 690        case AUDIT_USER:
 691        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 692        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 693                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 694                        err = -EPERM;
 695                break;
 696        default:  /* bad msg */
 697                err = -EINVAL;
 698        }
 699
 700        return err;
 701}
 702
 703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 704{
 705        uid_t uid = from_kuid(&init_user_ns, current_uid());
 706        pid_t pid = task_tgid_nr(current);
 707
 708        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 709                *ab = NULL;
 710                return;
 711        }
 712
 713        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 714        if (unlikely(!*ab))
 715                return;
 716        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 717        audit_log_session_info(*ab);
 718        audit_log_task_context(*ab);
 719}
 720
 721int is_audit_feature_set(int i)
 722{
 723        return af.features & AUDIT_FEATURE_TO_MASK(i);
 724}
 725
 726
 727static int audit_get_feature(struct sk_buff *skb)
 728{
 729        u32 seq;
 730
 731        seq = nlmsg_hdr(skb)->nlmsg_seq;
 732
 733        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 734
 735        return 0;
 736}
 737
 738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 739                                     u32 old_lock, u32 new_lock, int res)
 740{
 741        struct audit_buffer *ab;
 742
 743        if (audit_enabled == AUDIT_OFF)
 744                return;
 745
 746        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 747        audit_log_task_info(ab, current);
 748        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 749                         audit_feature_names[which], !!old_feature, !!new_feature,
 750                         !!old_lock, !!new_lock, res);
 751        audit_log_end(ab);
 752}
 753
 754static int audit_set_feature(struct sk_buff *skb)
 755{
 756        struct audit_features *uaf;
 757        int i;
 758
 759        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 760        uaf = nlmsg_data(nlmsg_hdr(skb));
 761
 762        /* if there is ever a version 2 we should handle that here */
 763
 764        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 765                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 766                u32 old_feature, new_feature, old_lock, new_lock;
 767
 768                /* if we are not changing this feature, move along */
 769                if (!(feature & uaf->mask))
 770                        continue;
 771
 772                old_feature = af.features & feature;
 773                new_feature = uaf->features & feature;
 774                new_lock = (uaf->lock | af.lock) & feature;
 775                old_lock = af.lock & feature;
 776
 777                /* are we changing a locked feature? */
 778                if (old_lock && (new_feature != old_feature)) {
 779                        audit_log_feature_change(i, old_feature, new_feature,
 780                                                 old_lock, new_lock, 0);
 781                        return -EPERM;
 782                }
 783        }
 784        /* nothing invalid, do the changes */
 785        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 786                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 787                u32 old_feature, new_feature, old_lock, new_lock;
 788
 789                /* if we are not changing this feature, move along */
 790                if (!(feature & uaf->mask))
 791                        continue;
 792
 793                old_feature = af.features & feature;
 794                new_feature = uaf->features & feature;
 795                old_lock = af.lock & feature;
 796                new_lock = (uaf->lock | af.lock) & feature;
 797
 798                if (new_feature != old_feature)
 799                        audit_log_feature_change(i, old_feature, new_feature,
 800                                                 old_lock, new_lock, 1);
 801
 802                if (new_feature)
 803                        af.features |= feature;
 804                else
 805                        af.features &= ~feature;
 806                af.lock |= new_lock;
 807        }
 808
 809        return 0;
 810}
 811
 812static int audit_replace(pid_t pid)
 813{
 814        struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
 815                                               &pid, sizeof(pid));
 816
 817        if (!skb)
 818                return -ENOMEM;
 819        return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 820}
 821
 822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 823{
 824        u32                     seq;
 825        void                    *data;
 826        int                     err;
 827        struct audit_buffer     *ab;
 828        u16                     msg_type = nlh->nlmsg_type;
 829        struct audit_sig_info   *sig_data;
 830        char                    *ctx = NULL;
 831        u32                     len;
 832
 833        err = audit_netlink_ok(skb, msg_type);
 834        if (err)
 835                return err;
 836
 837        /* As soon as there's any sign of userspace auditd,
 838         * start kauditd to talk to it */
 839        if (!kauditd_task) {
 840                kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 841                if (IS_ERR(kauditd_task)) {
 842                        err = PTR_ERR(kauditd_task);
 843                        kauditd_task = NULL;
 844                        return err;
 845                }
 846        }
 847        seq  = nlh->nlmsg_seq;
 848        data = nlmsg_data(nlh);
 849
 850        switch (msg_type) {
 851        case AUDIT_GET: {
 852                struct audit_status     s;
 853                memset(&s, 0, sizeof(s));
 854                s.enabled               = audit_enabled;
 855                s.failure               = audit_failure;
 856                s.pid                   = audit_pid;
 857                s.rate_limit            = audit_rate_limit;
 858                s.backlog_limit         = audit_backlog_limit;
 859                s.lost                  = atomic_read(&audit_lost);
 860                s.backlog               = skb_queue_len(&audit_skb_queue);
 861                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
 862                s.backlog_wait_time     = audit_backlog_wait_time_master;
 863                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 864                break;
 865        }
 866        case AUDIT_SET: {
 867                struct audit_status     s;
 868                memset(&s, 0, sizeof(s));
 869                /* guard against past and future API changes */
 870                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 871                if (s.mask & AUDIT_STATUS_ENABLED) {
 872                        err = audit_set_enabled(s.enabled);
 873                        if (err < 0)
 874                                return err;
 875                }
 876                if (s.mask & AUDIT_STATUS_FAILURE) {
 877                        err = audit_set_failure(s.failure);
 878                        if (err < 0)
 879                                return err;
 880                }
 881                if (s.mask & AUDIT_STATUS_PID) {
 882                        int new_pid = s.pid;
 883                        pid_t requesting_pid = task_tgid_vnr(current);
 884
 885                        if ((!new_pid) && (requesting_pid != audit_pid)) {
 886                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 887                                return -EACCES;
 888                        }
 889                        if (audit_pid && new_pid &&
 890                            audit_replace(requesting_pid) != -ECONNREFUSED) {
 891                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 892                                return -EEXIST;
 893                        }
 894                        if (audit_enabled != AUDIT_OFF)
 895                                audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 896                        audit_pid = new_pid;
 897                        audit_nlk_portid = NETLINK_CB(skb).portid;
 898                        audit_sock = skb->sk;
 899                }
 900                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 901                        err = audit_set_rate_limit(s.rate_limit);
 902                        if (err < 0)
 903                                return err;
 904                }
 905                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 906                        err = audit_set_backlog_limit(s.backlog_limit);
 907                        if (err < 0)
 908                                return err;
 909                }
 910                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 911                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
 912                                return -EINVAL;
 913                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 914                                return -EINVAL;
 915                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
 916                        if (err < 0)
 917                                return err;
 918                }
 919                break;
 920        }
 921        case AUDIT_GET_FEATURE:
 922                err = audit_get_feature(skb);
 923                if (err)
 924                        return err;
 925                break;
 926        case AUDIT_SET_FEATURE:
 927                err = audit_set_feature(skb);
 928                if (err)
 929                        return err;
 930                break;
 931        case AUDIT_USER:
 932        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 933        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 934                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 935                        return 0;
 936
 937                err = audit_filter_user(msg_type);
 938                if (err == 1) { /* match or error */
 939                        err = 0;
 940                        if (msg_type == AUDIT_USER_TTY) {
 941                                err = tty_audit_push();
 942                                if (err)
 943                                        break;
 944                        }
 945                        mutex_unlock(&audit_cmd_mutex);
 946                        audit_log_common_recv_msg(&ab, msg_type);
 947                        if (msg_type != AUDIT_USER_TTY)
 948                                audit_log_format(ab, " msg='%.*s'",
 949                                                 AUDIT_MESSAGE_TEXT_MAX,
 950                                                 (char *)data);
 951                        else {
 952                                int size;
 953
 954                                audit_log_format(ab, " data=");
 955                                size = nlmsg_len(nlh);
 956                                if (size > 0 &&
 957                                    ((unsigned char *)data)[size - 1] == '\0')
 958                                        size--;
 959                                audit_log_n_untrustedstring(ab, data, size);
 960                        }
 961                        audit_set_portid(ab, NETLINK_CB(skb).portid);
 962                        audit_log_end(ab);
 963                        mutex_lock(&audit_cmd_mutex);
 964                }
 965                break;
 966        case AUDIT_ADD_RULE:
 967        case AUDIT_DEL_RULE:
 968                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 969                        return -EINVAL;
 970                if (audit_enabled == AUDIT_LOCKED) {
 971                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 972                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 973                        audit_log_end(ab);
 974                        return -EPERM;
 975                }
 976                err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 977                                           seq, data, nlmsg_len(nlh));
 978                break;
 979        case AUDIT_LIST_RULES:
 980                err = audit_list_rules_send(skb, seq);
 981                break;
 982        case AUDIT_TRIM:
 983                audit_trim_trees();
 984                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 985                audit_log_format(ab, " op=trim res=1");
 986                audit_log_end(ab);
 987                break;
 988        case AUDIT_MAKE_EQUIV: {
 989                void *bufp = data;
 990                u32 sizes[2];
 991                size_t msglen = nlmsg_len(nlh);
 992                char *old, *new;
 993
 994                err = -EINVAL;
 995                if (msglen < 2 * sizeof(u32))
 996                        break;
 997                memcpy(sizes, bufp, 2 * sizeof(u32));
 998                bufp += 2 * sizeof(u32);
 999                msglen -= 2 * sizeof(u32);
1000                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001                if (IS_ERR(old)) {
1002                        err = PTR_ERR(old);
1003                        break;
1004                }
1005                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006                if (IS_ERR(new)) {
1007                        err = PTR_ERR(new);
1008                        kfree(old);
1009                        break;
1010                }
1011                /* OK, here comes... */
1012                err = audit_tag_tree(old, new);
1013
1014                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016                audit_log_format(ab, " op=make_equiv old=");
1017                audit_log_untrustedstring(ab, old);
1018                audit_log_format(ab, " new=");
1019                audit_log_untrustedstring(ab, new);
1020                audit_log_format(ab, " res=%d", !err);
1021                audit_log_end(ab);
1022                kfree(old);
1023                kfree(new);
1024                break;
1025        }
1026        case AUDIT_SIGNAL_INFO:
1027                len = 0;
1028                if (audit_sig_sid) {
1029                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030                        if (err)
1031                                return err;
1032                }
1033                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034                if (!sig_data) {
1035                        if (audit_sig_sid)
1036                                security_release_secctx(ctx, len);
1037                        return -ENOMEM;
1038                }
1039                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040                sig_data->pid = audit_sig_pid;
1041                if (audit_sig_sid) {
1042                        memcpy(sig_data->ctx, ctx, len);
1043                        security_release_secctx(ctx, len);
1044                }
1045                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046                                 sig_data, sizeof(*sig_data) + len);
1047                kfree(sig_data);
1048                break;
1049        case AUDIT_TTY_GET: {
1050                struct audit_tty_status s;
1051                unsigned int t;
1052
1053                t = READ_ONCE(current->signal->audit_tty);
1054                s.enabled = t & AUDIT_TTY_ENABLE;
1055                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058                break;
1059        }
1060        case AUDIT_TTY_SET: {
1061                struct audit_tty_status s, old;
1062                struct audit_buffer     *ab;
1063                unsigned int t;
1064
1065                memset(&s, 0, sizeof(s));
1066                /* guard against past and future API changes */
1067                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068                /* check if new data is valid */
1069                if ((s.enabled != 0 && s.enabled != 1) ||
1070                    (s.log_passwd != 0 && s.log_passwd != 1))
1071                        err = -EINVAL;
1072
1073                if (err)
1074                        t = READ_ONCE(current->signal->audit_tty);
1075                else {
1076                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077                        t = xchg(&current->signal->audit_tty, t);
1078                }
1079                old.enabled = t & AUDIT_TTY_ENABLE;
1080                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085                                 old.enabled, s.enabled, old.log_passwd,
1086                                 s.log_passwd, !err);
1087                audit_log_end(ab);
1088                break;
1089        }
1090        default:
1091                err = -EINVAL;
1092                break;
1093        }
1094
1095        return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb.  Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104        struct nlmsghdr *nlh;
1105        /*
1106         * len MUST be signed for nlmsg_next to be able to dec it below 0
1107         * if the nlmsg_len was not aligned
1108         */
1109        int len;
1110        int err;
1111
1112        nlh = nlmsg_hdr(skb);
1113        len = skb->len;
1114
1115        while (nlmsg_ok(nlh, len)) {
1116                err = audit_receive_msg(skb, nlh);
1117                /* if err or if this message says it wants a response */
1118                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119                        netlink_ack(skb, nlh, err);
1120
1121                nlh = nlmsg_next(nlh, &len);
1122        }
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff  *skb)
1127{
1128        mutex_lock(&audit_cmd_mutex);
1129        audit_receive_skb(skb);
1130        mutex_unlock(&audit_cmd_mutex);
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
1136        if (!capable(CAP_AUDIT_READ))
1137                return -EPERM;
1138
1139        return 0;
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144        struct netlink_kernel_cfg cfg = {
1145                .input  = audit_receive,
1146                .bind   = audit_bind,
1147                .flags  = NL_CFG_F_NONROOT_RECV,
1148                .groups = AUDIT_NLGRP_MAX,
1149        };
1150
1151        struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153        aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154        if (aunet->nlsk == NULL) {
1155                audit_panic("cannot initialize netlink socket in namespace");
1156                return -ENOMEM;
1157        }
1158        aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159        return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164        struct audit_net *aunet = net_generic(net, audit_net_id);
1165        struct sock *sock = aunet->nlsk;
1166        if (sock == audit_sock) {
1167                audit_pid = 0;
1168                audit_sock = NULL;
1169        }
1170
1171        RCU_INIT_POINTER(aunet->nlsk, NULL);
1172        synchronize_net();
1173        netlink_kernel_release(sock);
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177        .init = audit_net_init,
1178        .exit = audit_net_exit,
1179        .id = &audit_net_id,
1180        .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186        int i;
1187
1188        if (audit_initialized == AUDIT_DISABLED)
1189                return 0;
1190
1191        pr_info("initializing netlink subsys (%s)\n",
1192                audit_default ? "enabled" : "disabled");
1193        register_pernet_subsys(&audit_net_ops);
1194
1195        skb_queue_head_init(&audit_skb_queue);
1196        skb_queue_head_init(&audit_skb_hold_queue);
1197        audit_initialized = AUDIT_INITIALIZED;
1198        audit_enabled = audit_default;
1199        audit_ever_enabled |= !!audit_default;
1200
1201        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202
1203        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204                INIT_LIST_HEAD(&audit_inode_hash[i]);
1205
1206        return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213        audit_default = !!simple_strtol(str, NULL, 0);
1214        if (!audit_default)
1215                audit_initialized = AUDIT_DISABLED;
1216
1217        pr_info("%s\n", audit_default ?
1218                "enabled (after initialization)" : "disabled (until reboot)");
1219
1220        return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228        u32 audit_backlog_limit_arg;
1229
1230        pr_info("audit_backlog_limit: ");
1231        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232                pr_cont("using default of %u, unable to parse %s\n",
1233                        audit_backlog_limit, str);
1234                return 1;
1235        }
1236
1237        audit_backlog_limit = audit_backlog_limit_arg;
1238        pr_cont("%d\n", audit_backlog_limit);
1239
1240        return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246        unsigned long flags;
1247
1248        if (!ab)
1249                return;
1250
1251        kfree_skb(ab->skb);
1252        spin_lock_irqsave(&audit_freelist_lock, flags);
1253        if (audit_freelist_count > AUDIT_MAXFREE)
1254                kfree(ab);
1255        else {
1256                audit_freelist_count++;
1257                list_add(&ab->list, &audit_freelist);
1258        }
1259        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263                                                gfp_t gfp_mask, int type)
1264{
1265        unsigned long flags;
1266        struct audit_buffer *ab = NULL;
1267        struct nlmsghdr *nlh;
1268
1269        spin_lock_irqsave(&audit_freelist_lock, flags);
1270        if (!list_empty(&audit_freelist)) {
1271                ab = list_entry(audit_freelist.next,
1272                                struct audit_buffer, list);
1273                list_del(&ab->list);
1274                --audit_freelist_count;
1275        }
1276        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278        if (!ab) {
1279                ab = kmalloc(sizeof(*ab), gfp_mask);
1280                if (!ab)
1281                        goto err;
1282        }
1283
1284        ab->ctx = ctx;
1285        ab->gfp_mask = gfp_mask;
1286
1287        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288        if (!ab->skb)
1289                goto err;
1290
1291        nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292        if (!nlh)
1293                goto out_kfree_skb;
1294
1295        return ab;
1296
1297out_kfree_skb:
1298        kfree_skb(ab->skb);
1299        ab->skb = NULL;
1300err:
1301        audit_buffer_free(ab);
1302        return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record.  Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces.  The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record.  The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit.  However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324        static atomic_t serial = ATOMIC_INIT(0);
1325
1326        return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330                                   struct timespec *t, unsigned int *serial)
1331{
1332        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333                *t = CURRENT_TIME;
1334                *serial = audit_serial();
1335        }
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343        DECLARE_WAITQUEUE(wait, current);
1344        set_current_state(TASK_UNINTERRUPTIBLE);
1345        add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347        if (audit_backlog_limit &&
1348            skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349                sleep_time = schedule_timeout(sleep_time);
1350
1351        __set_current_state(TASK_RUNNING);
1352        remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354        return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer.  This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit.  If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373                                     int type)
1374{
1375        struct audit_buffer     *ab     = NULL;
1376        struct timespec         t;
1377        unsigned int            uninitialized_var(serial);
1378        int reserve = 5; /* Allow atomic callers to go up to five
1379                            entries over the normal backlog limit */
1380        unsigned long timeout_start = jiffies;
1381
1382        if (audit_initialized != AUDIT_INITIALIZED)
1383                return NULL;
1384
1385        if (unlikely(audit_filter_type(type)))
1386                return NULL;
1387
1388        if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389                if (audit_pid && audit_pid == current->tgid)
1390                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391                else
1392                        reserve = 0;
1393        }
1394
1395        while (audit_backlog_limit
1396               && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397                if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398                        long sleep_time;
1399
1400                        sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401                        if (sleep_time > 0) {
1402                                sleep_time = wait_for_auditd(sleep_time);
1403                                if (sleep_time > 0)
1404                                        continue;
1405                        }
1406                }
1407                if (audit_rate_check() && printk_ratelimit())
1408                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409                                skb_queue_len(&audit_skb_queue),
1410                                audit_backlog_limit);
1411                audit_log_lost("backlog limit exceeded");
1412                audit_backlog_wait_time = 0;
1413                wake_up(&audit_backlog_wait);
1414                return NULL;
1415        }
1416
1417        if (!reserve && !audit_backlog_wait_time)
1418                audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421        if (!ab) {
1422                audit_log_lost("out of memory in audit_log_start");
1423                return NULL;
1424        }
1425
1426        audit_get_stamp(ab->ctx, &t, &serial);
1427
1428        audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429                         t.tv_sec, t.tv_nsec/1000000, serial);
1430        return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443        struct sk_buff *skb = ab->skb;
1444        int oldtail = skb_tailroom(skb);
1445        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446        int newtail = skb_tailroom(skb);
1447
1448        if (ret < 0) {
1449                audit_log_lost("out of memory in audit_expand");
1450                return 0;
1451        }
1452
1453        skb->truesize += newtail - oldtail;
1454        return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer.  If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time.  Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464                              va_list args)
1465{
1466        int len, avail;
1467        struct sk_buff *skb;
1468        va_list args2;
1469
1470        if (!ab)
1471                return;
1472
1473        BUG_ON(!ab->skb);
1474        skb = ab->skb;
1475        avail = skb_tailroom(skb);
1476        if (avail == 0) {
1477                avail = audit_expand(ab, AUDIT_BUFSIZ);
1478                if (!avail)
1479                        goto out;
1480        }
1481        va_copy(args2, args);
1482        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483        if (len >= avail) {
1484                /* The printk buffer is 1024 bytes long, so if we get
1485                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486                 * log everything that printk could have logged. */
1487                avail = audit_expand(ab,
1488                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489                if (!avail)
1490                        goto out_va_end;
1491                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492        }
1493        if (len > 0)
1494                skb_put(skb, len);
1495out_va_end:
1496        va_end(args2);
1497out:
1498        return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511        va_list args;
1512
1513        if (!ab)
1514                return;
1515        va_start(args, fmt);
1516        audit_log_vformat(ab, fmt, args);
1517        va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532                size_t len)
1533{
1534        int i, avail, new_len;
1535        unsigned char *ptr;
1536        struct sk_buff *skb;
1537
1538        if (!ab)
1539                return;
1540
1541        BUG_ON(!ab->skb);
1542        skb = ab->skb;
1543        avail = skb_tailroom(skb);
1544        new_len = len<<1;
1545        if (new_len >= avail) {
1546                /* Round the buffer request up to the next multiple */
1547                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548                avail = audit_expand(ab, new_len);
1549                if (!avail)
1550                        return;
1551        }
1552
1553        ptr = skb_tail_pointer(skb);
1554        for (i = 0; i < len; i++)
1555                ptr = hex_byte_pack_upper(ptr, buf[i]);
1556        *ptr = 0;
1557        skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565                        size_t slen)
1566{
1567        int avail, new_len;
1568        unsigned char *ptr;
1569        struct sk_buff *skb;
1570
1571        if (!ab)
1572                return;
1573
1574        BUG_ON(!ab->skb);
1575        skb = ab->skb;
1576        avail = skb_tailroom(skb);
1577        new_len = slen + 3;     /* enclosing quotes + null terminator */
1578        if (new_len > avail) {
1579                avail = audit_expand(ab, new_len);
1580                if (!avail)
1581                        return;
1582        }
1583        ptr = skb_tail_pointer(skb);
1584        *ptr++ = '"';
1585        memcpy(ptr, string, slen);
1586        ptr += slen;
1587        *ptr++ = '"';
1588        *ptr = 0;
1589        skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599        const unsigned char *p;
1600        for (p = string; p < (const unsigned char *)string + len; p++) {
1601                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602                        return true;
1603        }
1604        return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622                                 size_t len)
1623{
1624        if (audit_string_contains_control(string, len))
1625                audit_log_n_hex(ab, string, len);
1626        else
1627                audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640        audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645                      const struct path *path)
1646{
1647        char *p, *pathname;
1648
1649        if (prefix)
1650                audit_log_format(ab, "%s", prefix);
1651
1652        /* We will allow 11 spaces for ' (deleted)' to be appended */
1653        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654        if (!pathname) {
1655                audit_log_string(ab, "<no_memory>");
1656                return;
1657        }
1658        p = d_path(path, pathname, PATH_MAX+11);
1659        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660                /* FIXME: can we save some information here? */
1661                audit_log_string(ab, "<too_long>");
1662        } else
1663                audit_log_untrustedstring(ab, p);
1664        kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669        unsigned int sessionid = audit_get_sessionid(current);
1670        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677        audit_log_format(ab, " key=");
1678        if (key)
1679                audit_log_untrustedstring(ab, key);
1680        else
1681                audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686        int i;
1687
1688        audit_log_format(ab, " %s=", prefix);
1689        CAP_FOR_EACH_U32(i) {
1690                audit_log_format(ab, "%08x",
1691                                 cap->cap[CAP_LAST_U32 - i]);
1692        }
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697        kernel_cap_t *perm = &name->fcap.permitted;
1698        kernel_cap_t *inh = &name->fcap.inheritable;
1699        int log = 0;
1700
1701        if (!cap_isclear(*perm)) {
1702                audit_log_cap(ab, "cap_fp", perm);
1703                log = 1;
1704        }
1705        if (!cap_isclear(*inh)) {
1706                audit_log_cap(ab, "cap_fi", inh);
1707                log = 1;
1708        }
1709
1710        if (log)
1711                audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712                                 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716                                   const struct dentry *dentry)
1717{
1718        struct cpu_vfs_cap_data caps;
1719        int rc;
1720
1721        if (!dentry)
1722                return 0;
1723
1724        rc = get_vfs_caps_from_disk(dentry, &caps);
1725        if (rc)
1726                return rc;
1727
1728        name->fcap.permitted = caps.permitted;
1729        name->fcap.inheritable = caps.inheritable;
1730        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732                                VFS_CAP_REVISION_SHIFT;
1733
1734        return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739                      struct inode *inode)
1740{
1741        name->ino   = inode->i_ino;
1742        name->dev   = inode->i_sb->s_dev;
1743        name->mode  = inode->i_mode;
1744        name->uid   = inode->i_uid;
1745        name->gid   = inode->i_gid;
1746        name->rdev  = inode->i_rdev;
1747        security_inode_getsecid(inode, &name->osid);
1748        audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760                    struct path *path, int record_num, int *call_panic)
1761{
1762        struct audit_buffer *ab;
1763        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764        if (!ab)
1765                return;
1766
1767        audit_log_format(ab, "item=%d", record_num);
1768
1769        if (path)
1770                audit_log_d_path(ab, " name=", path);
1771        else if (n->name) {
1772                switch (n->name_len) {
1773                case AUDIT_NAME_FULL:
1774                        /* log the full path */
1775                        audit_log_format(ab, " name=");
1776                        audit_log_untrustedstring(ab, n->name->name);
1777                        break;
1778                case 0:
1779                        /* name was specified as a relative path and the
1780                         * directory component is the cwd */
1781                        audit_log_d_path(ab, " name=", &context->pwd);
1782                        break;
1783                default:
1784                        /* log the name's directory component */
1785                        audit_log_format(ab, " name=");
1786                        audit_log_n_untrustedstring(ab, n->name->name,
1787                                                    n->name_len);
1788                }
1789        } else
1790                audit_log_format(ab, " name=(null)");
1791
1792        if (n->ino != AUDIT_INO_UNSET)
1793                audit_log_format(ab, " inode=%lu"
1794                                 " dev=%02x:%02x mode=%#ho"
1795                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1796                                 n->ino,
1797                                 MAJOR(n->dev),
1798                                 MINOR(n->dev),
1799                                 n->mode,
1800                                 from_kuid(&init_user_ns, n->uid),
1801                                 from_kgid(&init_user_ns, n->gid),
1802                                 MAJOR(n->rdev),
1803                                 MINOR(n->rdev));
1804        if (n->osid != 0) {
1805                char *ctx = NULL;
1806                u32 len;
1807                if (security_secid_to_secctx(
1808                        n->osid, &ctx, &len)) {
1809                        audit_log_format(ab, " osid=%u", n->osid);
1810                        if (call_panic)
1811                                *call_panic = 2;
1812                } else {
1813                        audit_log_format(ab, " obj=%s", ctx);
1814                        security_release_secctx(ctx, len);
1815                }
1816        }
1817
1818        /* log the audit_names record type */
1819        audit_log_format(ab, " nametype=");
1820        switch(n->type) {
1821        case AUDIT_TYPE_NORMAL:
1822                audit_log_format(ab, "NORMAL");
1823                break;
1824        case AUDIT_TYPE_PARENT:
1825                audit_log_format(ab, "PARENT");
1826                break;
1827        case AUDIT_TYPE_CHILD_DELETE:
1828                audit_log_format(ab, "DELETE");
1829                break;
1830        case AUDIT_TYPE_CHILD_CREATE:
1831                audit_log_format(ab, "CREATE");
1832                break;
1833        default:
1834                audit_log_format(ab, "UNKNOWN");
1835                break;
1836        }
1837
1838        audit_log_fcaps(ab, n);
1839        audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844        char *ctx = NULL;
1845        unsigned len;
1846        int error;
1847        u32 sid;
1848
1849        security_task_getsecid(current, &sid);
1850        if (!sid)
1851                return 0;
1852
1853        error = security_secid_to_secctx(sid, &ctx, &len);
1854        if (error) {
1855                if (error != -EINVAL)
1856                        goto error_path;
1857                return 0;
1858        }
1859
1860        audit_log_format(ab, " subj=%s", ctx);
1861        security_release_secctx(ctx, len);
1862        return 0;
1863
1864error_path:
1865        audit_panic("error in audit_log_task_context");
1866        return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871                          struct mm_struct *mm)
1872{
1873        struct file *exe_file;
1874
1875        if (!mm)
1876                goto out_null;
1877
1878        exe_file = get_mm_exe_file(mm);
1879        if (!exe_file)
1880                goto out_null;
1881
1882        audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883        fput(exe_file);
1884        return;
1885out_null:
1886        audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891        const struct cred *cred;
1892        char comm[sizeof(tsk->comm)];
1893        char *tty;
1894
1895        if (!ab)
1896                return;
1897
1898        /* tsk == current */
1899        cred = current_cred();
1900
1901        spin_lock_irq(&tsk->sighand->siglock);
1902        if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903                tty = tsk->signal->tty->name;
1904        else
1905                tty = "(none)";
1906        spin_unlock_irq(&tsk->sighand->siglock);
1907
1908        audit_log_format(ab,
1909                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910                         " euid=%u suid=%u fsuid=%u"
1911                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912                         task_ppid_nr(tsk),
1913                         task_pid_nr(tsk),
1914                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915                         from_kuid(&init_user_ns, cred->uid),
1916                         from_kgid(&init_user_ns, cred->gid),
1917                         from_kuid(&init_user_ns, cred->euid),
1918                         from_kuid(&init_user_ns, cred->suid),
1919                         from_kuid(&init_user_ns, cred->fsuid),
1920                         from_kgid(&init_user_ns, cred->egid),
1921                         from_kgid(&init_user_ns, cred->sgid),
1922                         from_kgid(&init_user_ns, cred->fsgid),
1923                         tty, audit_get_sessionid(tsk));
1924
1925        audit_log_format(ab, " comm=");
1926        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928        audit_log_d_path_exe(ab, tsk->mm);
1929        audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940        struct audit_buffer *ab;
1941        struct audit_names *name;
1942
1943        name = kzalloc(sizeof(*name), GFP_NOFS);
1944        if (!name)
1945                return;
1946
1947        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948        ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949                             AUDIT_ANOM_LINK);
1950        if (!ab)
1951                goto out;
1952        audit_log_format(ab, "op=%s", operation);
1953        audit_log_task_info(ab, current);
1954        audit_log_format(ab, " res=0");
1955        audit_log_end(ab);
1956
1957        /* Generate AUDIT_PATH record with object. */
1958        name->type = AUDIT_TYPE_NORMAL;
1959        audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960        audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962        kfree(name);
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context.  May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
1976        if (!ab)
1977                return;
1978        if (!audit_rate_check()) {
1979                audit_log_lost("rate limit exceeded");
1980        } else {
1981                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983                nlh->nlmsg_len = ab->skb->len;
1984                kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985
1986                /*
1987                 * The original kaudit unicast socket sends up messages with
1988                 * nlmsg_len set to the payload length rather than the entire
1989                 * message length.  This breaks the standard set by netlink.
1990                 * The existing auditd daemon assumes this breakage.  Fixing
1991                 * this would require co-ordinating a change in the established
1992                 * protocol between the kaudit kernel subsystem and the auditd
1993                 * userspace code.
1994                 */
1995                nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997                if (audit_pid) {
1998                        skb_queue_tail(&audit_skb_queue, ab->skb);
1999                        wake_up_interruptible(&kauditd_wait);
2000                } else {
2001                        audit_printk_skb(ab->skb);
2002                }
2003                ab->skb = NULL;
2004        }
2005        audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end.  It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021               const char *fmt, ...)
2022{
2023        struct audit_buffer *ab;
2024        va_list args;
2025
2026        ab = audit_log_start(ctx, gfp_mask, type);
2027        if (ab) {
2028                va_start(args, fmt);
2029                audit_log_vformat(ab, fmt, args);
2030                va_end(args);
2031                audit_log_end(ab);
2032        }
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048        u32 len;
2049        char *secctx;
2050
2051        if (security_secid_to_secctx(secid, &secctx, &len)) {
2052                audit_panic("Cannot convert secid to context");
2053        } else {
2054                audit_log_format(ab, " obj=%s", secctx);
2055                security_release_secctx(secctx, len);
2056        }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);
2065